Aging genes 1-2: различия между версиями
Перейти к навигации
Перейти к поиску
Нет описания правки |
Нет описания правки |
||
Строка 1: | Строка 1: | ||
__NOTOC__ | __NOTOC__ | ||
* [[Aging genes | * [[Aging genes 300|Genes with 300 and more publications]] | ||
* [[Aging genes 60- | * [[Aging genes 200-299|Genes with 200-299 publications]] | ||
* [[Aging genes 30- | * [[Aging genes 100-199|Genes with 100-199 publications]] | ||
* [[Aging genes 10- | * [[Aging genes 90-99|Genes with 90-99 publications]] | ||
* [[Aging genes 3- | * [[Aging genes 80-89|Genes with 80-89 publications]] | ||
* [[Aging genes 70-79|Genes with 70-79 publications]] | |||
* [[Aging genes 60-69|Genes with 60-69 publications]] | |||
* [[Aging genes 50-59|Genes with 50-59 publications]] | |||
* [[Aging genes 40-49|Genes with 40-49 publications]] | |||
* [[Aging genes 30-39|Genes with 30-39 publications]] | |||
* [[Aging genes 20-29|Genes with 20-29 publications]] | |||
* [[Aging genes 10-19|Genes with 10-19 publications]] | |||
* [[Aging genes 5-9|Genes with 5-9 publications]] | |||
* [[Aging genes 3-4|Genes with 3-4 publications]] | |||
* [[Aging genes 1-2|Genes with 1-2 publications]] | * [[Aging genes 1-2|Genes with 1-2 publications]] | ||
* [[Aging_genes_A-Z_table]] | |||
==AACS== | ==AACS== | ||
Строка 35: | Строка 45: | ||
|full-text-url=https://sci-hub.do/10.1111/ped.12965 | |full-text-url=https://sci-hub.do/10.1111/ped.12965 | ||
}} | }} | ||
== | ==ABCG1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Disrupted cholesterol metabolism promotes age-related photoreceptor neurodegeneration. | ||
|date= | |date=08.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29946056 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071770 | ||
}} | |||
* {{medline-title | |||
|title=Elevated COX2 expression and PGE2 production by downregulation of RXRα in senescent macrophages. | |||
|date=11.10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24051096 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2013.09.047 | |||
}} | |||
==ABCG5== | |||
* {{medline-title | |||
|title=2, 3, 4', 5-tetrahydroxystilbene-2-0-β-d Glycoside Attenuates Age- and Diet-Associated Non-Alcoholic Steatohepatitis and Atherosclerosis in LDL Receptor Knockout Mice and Its Possible Mechanisms. | |||
|date=01.04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30939745 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479705 | |||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Genetic determinants of macular pigments in women of the Carotenoids in Age-Related Eye Disease Study. | ||
|date= | |date=28.03.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23404124 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3626525 | ||
}} | }} | ||
==ABI3== | ==ABI3== | ||
Строка 77: | Строка 101: | ||
|full-text-url=https://sci-hub.do/10.1016/j.bone.2018.04.014 | |full-text-url=https://sci-hub.do/10.1016/j.bone.2018.04.014 | ||
}} | }} | ||
== | ==ACAT2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Cholesterol Homeostasis: An In Silico Investigation into How Aging Disrupts Its Key Hepatic Regulatory Mechanisms. | ||
|date= | |date=30.09.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33007859 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599957 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Serum starvation of A[[RPE]]-19 changes the cellular distribution of cholesterol and Fibulin3 in patterns reminiscent of age-related macular degeneration. | ||
|date= | |date=15.12.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29097185 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701823 | ||
}} | }} | ||
==ACTA1== | ==ACTA1== | ||
Строка 133: | Строка 157: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5135304 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5135304 | ||
}} | }} | ||
== | ==ADAMTS4== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Influences of circulatory factors on intervertebral disc aging phenotype. | ||
|date= | |date=11.06.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32527988 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343497 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Genotoxic stress accelerates age-associated degenerative changes in intervertebral discs. | ||
|date= | |date=01-02.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23262094 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3558562 | ||
}} | }} | ||
==ADH5== | ==ADH5== | ||
Строка 160: | Строка 184: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30029585 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30029585 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6103690 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6103690 | ||
}} | }} | ||
==ADIPOR1== | ==ADIPOR1== | ||
Строка 217: | Строка 227: | ||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2016.06.011 | |full-text-url=https://sci-hub.do/10.1016/j.exger.2016.06.011 | ||
}} | }} | ||
== | ==ADRB2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Interactions between social/ behavioral factors and [[ADRB2]] genotypes may be associated with health at advanced ages in China. | ||
|date= | |date=09.09.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24016068 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3846634 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[[ADRB2]], brain white matter integrity and cognitive ageing in the Lothian Birth Cohort 1936. | ||
|date= | |date=01.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23229623 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1007/s10519-012-9570-x | ||
}} | }} | ||
==AGO2== | ==AGO2== | ||
Строка 272: | Строка 282: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24390964 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24390964 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959216 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959216 | ||
}} | |||
==AKT2== | |||
* {{medline-title | |||
|title=A conserved role of the insulin-like signaling pathway in diet-dependent uric acid pathologies in Drosophila melanogaster. | |||
|date=08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31415568 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695094 | |||
}} | |||
* {{medline-title | |||
|title=Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats. | |||
|date=02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30661688 | |||
|full-text-url=https://sci-hub.do/10.1016/j.clnesp.2018.10.003 | |||
}} | }} | ||
==AKT3== | ==AKT3== | ||
Строка 300: | Строка 324: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27512140 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27512140 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5008010 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5008010 | ||
}} | |||
==ALDOA== | |||
* {{medline-title | |||
|title=Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31733664 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939615 | |||
}} | |||
* {{medline-title | |||
|title=An Adult Drosophila Glioma Model for Studying Pathometabolic Pathways of Gliomagenesis. | |||
|date=06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30357574 | |||
|full-text-url=https://sci-hub.do/10.1007/s12035-018-1392-2 | |||
}} | }} | ||
==ALKBH8== | ==ALKBH8== | ||
Строка 315: | Строка 353: | ||
}} | }} | ||
== | ==ALOX5== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis. | ||
|date= | |date=19.12.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31687975 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6975274 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Functional Characterization of Knock-In Mice Expressing a 12/15-Lipoxygenating Alox5 Mutant Instead of the 5-Lipoxygenating Wild-Type Enzyme. | ||
|date= | |date=01.01.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31642348 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1089/ars.2019.7751 | ||
}} | }} | ||
==ANK1== | ==ANK1== | ||
Строка 360: | Строка 398: | ||
* {{medline-title | * {{medline-title | ||
|title=Circular RNA NF1-419 enhances autophagy to ameliorate senile dementia by binding Dynamin-1 and Adaptor protein 2 B1 in AD-like mice. | |title=Circular RNA [[NF1]]-419 enhances autophagy to ameliorate senile dementia by binding Dynamin-1 and Adaptor protein 2 B1 in AD-like mice. | ||
|date=20.12.2019 | |date=20.12.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31860870 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31860870 | ||
Строка 371: | Строка 409: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890987 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890987 | ||
}} | }} | ||
== | ==APOD== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Identification of reference genes for RT-qPCR data normalisation in aging studies. | ||
|date= | |date=27.09.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31562345 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764958 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Apolipoprotein D takes center stage in the stress response of the aging and degenerative brain. | ||
|date= | |date=07.2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24612673 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3988949 | ||
}} | }} | ||
==APOL1== | ==APOL1== | ||
Строка 412: | Строка 450: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28965332 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28965332 | ||
|full-text-url=https://sci-hub.do/10.1007/s12035-017-0785-y | |full-text-url=https://sci-hub.do/10.1007/s12035-017-0785-y | ||
}} | |||
==AQP2== | |||
* {{medline-title | |||
|title=A bell-shaped pattern of urinary aquaporin-2-bearing extracellular vesicle release in an experimental model of nephronophthisis. | |||
|date=05.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31074077 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509436 | |||
}} | |||
* {{medline-title | |||
|title=Nitric oxide and [[AQP2]] in hypothyroid rats: a link between aging and water homeostasis. | |||
|date=09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23706747 | |||
|full-text-url=https://sci-hub.do/10.1016/j.metabol.2013.04.013 | |||
}} | }} | ||
==AQP3== | ==AQP3== | ||
Строка 510: | Строка 562: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28981097 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28981097 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5680584 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5680584 | ||
}} | |||
==ATOH1== | |||
* {{medline-title | |||
|title=In Vivo Interplay between p27 , [[GATA3]], [[ATOH1]], and [[POU4F3]] Converts Non-sensory Cells to Hair Cells in Adult Mice. | |||
|date=11.04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28402854 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5423718 | |||
}} | |||
* {{medline-title | |||
|title=A new mutation of the Atoh1 gene in mice with normal life span allows analysis of inner ear and cerebellar phenotype in aging. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24265785 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827170 | |||
}} | }} | ||
==ATP1A2== | ==ATP1A2== | ||
Строка 552: | Строка 618: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30530920 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30530920 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326685 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326685 | ||
}} | |||
==ATXN3== | |||
* {{medline-title | |||
|title=Rescue of [[ATXN3]] neuronal toxicity in [i]Caenorhabditis[/i][i]elegans[/i] by chemical modification of endoplasmic reticulum stress. | |||
|date=19.12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29061563 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5769603 | |||
}} | |||
* {{medline-title | |||
|title=Sodium valproate alleviates neurodegeneration in SCA3/MJD via suppressing apoptosis and rescuing the hypoacetylation levels of histone H3 and H4. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23382971 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3557284 | |||
}} | }} | ||
==AXL== | ==AXL== | ||
Строка 580: | Строка 660: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30779020 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30779020 | ||
|full-text-url=https://sci-hub.do/10.1007/978-981-13-2835-0_17 | |full-text-url=https://sci-hub.do/10.1007/978-981-13-2835-0_17 | ||
}} | |||
==BACH2== | |||
* {{medline-title | |||
|title=Age-related changes in the [[BACH2]] and [[PRDM1]] genes in lymphocytes from healthy donors and chronic lymphocytic leukemia patients. | |||
|date=17.01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30654767 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6337793 | |||
}} | |||
* {{medline-title | |||
|title=[[BACH2]]: a marker of DNA damage and ageing. | |||
|date=11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24075570 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912324 | |||
}} | }} | ||
==BAG3== | ==BAG3== | ||
Строка 637: | Строка 731: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541364 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541364 | ||
}} | }} | ||
== | ==BCL2L1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=The transcription factor [[ETS1]] promotes apoptosis resistance of senescent cholangiocytes by epigenetically up-regulating the apoptosis suppressor [[BCL2]]L1. | ||
|date= | |date=06.12.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31659122 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6901313 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[[SIRT6]] histone deacetylase functions as a potential oncogene in human melanoma. | ||
|date= | |date=09.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29234488 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724804 | ||
}} | }} | ||
==BMPR1B== | ==BMPR1B== | ||
Строка 664: | Строка 758: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26805635 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26805635 | ||
|full-text-url=https://sci-hub.do/10.1016/j.mce.2016.01.016 | |full-text-url=https://sci-hub.do/10.1016/j.mce.2016.01.016 | ||
}} | |||
==BMX== | |||
* {{medline-title | |||
|title=Inducible Activation of [[FGFR2]] in Adult Mice Promotes Bone Formation After Bone Marrow Ablation. | |||
|date=11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28650109 | |||
|full-text-url=https://sci-hub.do/10.1002/jbmr.3204 | |||
}} | |||
* {{medline-title | |||
|title=Enhanced activity of an angiotensin-(1-7) neuropeptidase in glucocorticoid-induced fetal programming. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24355101 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157337 | |||
}} | }} | ||
==BRD2== | ==BRD2== | ||
Строка 693: | Строка 801: | ||
|full-text-url=https://sci-hub.do/10.2527/jas.2015-9252 | |full-text-url=https://sci-hub.do/10.2527/jas.2015-9252 | ||
}} | }} | ||
== | ==BTG1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Effects of hydrogen peroxide, doxorubicin and ultraviolet irradiation on senescence of human dental pulp stem cells. | ||
|date= | |date=09.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32592933 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.archoralbio.2020.104819 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title=[[BTK]] suppresses myeloma cellular senescence through activating AKT/P27/Rb signaling. | |title=Tumor cell escape from therapy-induced senescence. | ||
|date=04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30576620 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bcp.2018.12.013 | |||
}} | |||
==BTK== | |||
* {{medline-title | |||
|title=Amelioration of age-related brain function decline by Bruton's tyrosine kinase inhibition. | |||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31736210 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974713 | |||
}} | |||
* {{medline-title | |||
|title=[[BTK]] suppresses myeloma cellular senescence through activating AKT/P27/Rb signaling. | |||
|date=22.08.2017 | |date=22.08.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28915637 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28915637 | ||
Строка 734: | Строка 856: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28473691 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28473691 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431421 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431421 | ||
}} | |||
==CACNA1C== | |||
* {{medline-title | |||
|title=Profiling gene expression in the human dentate gyrus granule cell layer reveals insights into schizophrenia and its genetic risk. | |||
|date=04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32203495 | |||
|full-text-url=https://sci-hub.do/10.1038/s41593-020-0604-z | |||
}} | |||
* {{medline-title | |||
|title=Epigenetic regulation of L-type voltage-gated Ca channels in mesenteric arteries of aging hypertensive rats. | |||
|date=05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27881847 | |||
|full-text-url=https://sci-hub.do/10.1038/hr.2016.167 | |||
}} | |||
==CALR== | |||
* {{medline-title | |||
|title=Elevated circulating HtrA4 in preeclampsia may alter endothelial expression of senescence genes. | |||
|date=15.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32056555 | |||
|full-text-url=https://sci-hub.do/10.1016/j.placenta.2019.12.012 | |||
}} | |||
* {{medline-title | |||
|title=Molecular Pathogenesis of Myeloproliferative Neoplasms: Influence of Age and Gender. | |||
|date=10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28948454 | |||
|full-text-url=https://sci-hub.do/10.1007/s11899-017-0411-0 | |||
}} | }} | ||
==CASK== | ==CASK== | ||
Строка 749: | Строка 899: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5654756 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5654756 | ||
}} | }} | ||
== | ==CASP1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy. | ||
|date= | |date=02.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31691183 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035207 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Gene expression of inflammasome components in peripheral blood mononuclear cells (PBMC) of vascular patients increases with age. | ||
|date= | |date=2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26448778 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596365 | ||
}} | }} | ||
== | ==CASP7== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Global Characteristics of CSIG-Associated Gene Expression Changes in Human HEK293 Cells and the Implications for CSIG Regulating Cell Proliferation and Senescence. | ||
|date= | |date=2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26029164 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432801 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Dual role of the caspase enzymes in satellite cells from aged and young subjects. | ||
|date=12. | |date=12.12.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24336075 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877545 | ||
}} | }} | ||
== | ==CASP8== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Crucial role of the terminal complement complex in chondrocyte death and hypertrophy after cartilage trauma. | ||
|date= | |date=05.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31981738 | ||
|full-text-url=https://sci-hub.do/10.1016/j. | |full-text-url=https://sci-hub.do/10.1016/j.joca.2020.01.004 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title=[[ | |title=[Association of polymorphic markers of [[CASP8]], [[BCL2]] and [[BAX]] genes with aging and longevity]. | ||
|date= | |date=2012 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23289213 | ||
}} | }} | ||
== | ==CASQ2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Single delivery of an adeno-associated viral construct to transfer the [[CASQ2]] gene to knock-in mice affected by catecholaminergic polymorphic ventricular tachycardia is able to cure the disease from birth to advanced age. | ||
|date= | |date=24.06.2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24888331 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1161/CIRCULATIONAHA.113.006901 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title=Differential Gene Expression Profiles Reflecting Macrophage Polarization in Aging and Periodontitis Gingival Tissues. | |title=The role of mutant protein level in autosomal recessive catecholamine dependent polymorphic ventricular tachycardia (CPVT2). | ||
|date=2015 | |date=01.12.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26397131 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24070655 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786741 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103182 | ||
}} | |||
==CAST== | |||
* {{medline-title | |||
|title=Cytomatrix proteins [[CAST]] and ELKS regulate retinal photoreceptor development and maintenance. | |||
|date=05.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30190286 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219712 | |||
}} | |||
* {{medline-title | |||
|title=Short Telomeres Induce p53 and Autophagy and Modulate Age-Associated Changes in Cardiac Progenitor Cell Fate. | |||
|date=06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29441645 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5992026 | |||
}} | |||
==CAV1== | |||
* {{medline-title | |||
|title=Candesartan Neuroprotection in Rat Primary Neurons Negatively Correlates with Aging and Senescence: a Transcriptomic Analysis. | |||
|date=03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31811565 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062590 | |||
}} | |||
* {{medline-title | |||
|title=Broad range metabolomics coupled with network analysis for explaining possible mechanisms of Er-Zhi-Wan in treating liver-kidney Yin deficiency syndrome of Traditional Chinese medicine. | |||
|date=24.04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30690072 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jep.2019.01.019 | |||
}} | |||
==CBX4== | |||
* {{medline-title | |||
|title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. | |||
|date=24.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659 | |||
}} | |||
* {{medline-title | |||
|title=Maintenance of Nucleolar Homeostasis by [[CBX4]] Alleviates Senescence and Osteoarthritis. | |||
|date=26.03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30917318 | |||
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2019.02.088 | |||
}} | |||
==CBX8== | |||
* {{medline-title | |||
|title=[[PIM1]]-catalyzed [[CBX8]] phosphorylation promotes the oncogene-induced senescence of human diploid fibroblast. | |||
|date=27.06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29763603 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2018.05.070 | |||
}} | |||
* {{medline-title | |||
|title=[[CBX8]] antagonizes the effect of Sirtinol on premature senescence through the AKT-RB-[[E2F1]] pathway in K562 leukemia cells. | |||
|date=22.01.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26718407 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2015.12.070 | |||
}} | |||
==CCL13== | |||
* {{medline-title | |||
|title=Age-specific changes in the molecular phenotype of patients with moderate-to-severe atopic dermatitis. | |||
|date=07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30685456 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jaci.2019.01.015 | |||
}} | |||
* {{medline-title | |||
|title=Differential Gene Expression Profiles Reflecting Macrophage Polarization in Aging and Periodontitis Gingival Tissues. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26397131 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786741 | |||
}} | }} | ||
==CCL17== | ==CCL17== | ||
Строка 833: | Строка 1053: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707671 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707671 | ||
}} | }} | ||
== | ==CCL7== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Increased cardiovascular and atherosclerosis markers in blood of older patients with atopic dermatitis. | ||
|date= | |date=01.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31622668 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.anai.2019.10.013 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Advanced atherosclerosis is associated with inflammation, vascular dysfunction and oxidative stress, but not hypertension. | ||
|date=2017 | |date=02.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28017665 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1016/j.phrs.2016.12.032 | ||
}} | }} | ||
== | ==CCNG2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=A Novel [i]Dnmt3a1[/i] Transcript Inhibits Adipogenesis. | ||
|date= | |date=2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30333755 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6176318 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Hypoxia-inducible transcription factors, [[HIF1A]] and HIF2A, increase in aging mucosal tissues. | ||
|date= | |date=07.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29338076 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002220 | ||
}} | }} | ||
== | ==CCR4== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=mTOR regulates the expression of DNA damage response enzymes in long-lived Snell dwarf, GHRKO, and [[PAPPA]]-KO mice. | ||
|date= | |date=02.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27618784 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5242303 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Circulating T helper and T regulatory subsets in untreated early rheumatoid arthritis and healthy control subjects. | ||
|date= | |date=10.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27190305 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1189/jlb.5A0116-025R | ||
}} | }} | ||
== | ==CD209== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Senescence in Monocytes Facilitates Dengue Virus Infection by Increasing Infectivity. | ||
|date= | |date=2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32850477 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7399640 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Comparative analysis of microbial sensing molecules in mucosal tissues with aging. | ||
|date= | |date=03.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29066255 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821569 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |||
}} | }} | ||
==CD46== | ==CD46== | ||
Строка 917: | Строка 1123: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157566 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157566 | ||
}} | }} | ||
== | ==CD70== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[[CD70]] contributes to age-associated T cell defects and overwhelming inflammatory responses. | ||
|date= | |date=19.06.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32559178 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343466 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Molecular mechanisms involved in the aging of the T-cell immune response. | ||
|date= | |date=12.2012 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23730199 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3492799 | ||
}} | }} | ||
==CDH1== | ==CDH1== | ||
Строка 972: | Строка 1178: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28589682 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28589682 | ||
|full-text-url=https://sci-hub.do/10.1002/cbf.3267 | |full-text-url=https://sci-hub.do/10.1002/cbf.3267 | ||
}} | }} | ||
==CDR1== | ==CDR1== | ||
Строка 1043: | Строка 1235: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5005889 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5005889 | ||
}} | }} | ||
== | ==CHEK1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Candesartan Neuroprotection in Rat Primary Neurons Negatively Correlates with Aging and Senescence: a Transcriptomic Analysis. | ||
|date= | |date=03.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31811565 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062590 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=The Ubiquitin-like with PHD and Ring Finger Domains 1 ([[UHRF1]])/DNA Methyltransferase 1 ([[DNMT1]]) Axis Is a Primary Regulator of Cell Senescence. | ||
|date= | |date=03.03.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28100769 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5339756 | ||
}} | }} | ||
== | ==CHEK2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Elevated circulating HtrA4 in preeclampsia may alter endothelial expression of senescence genes. | ||
|date= | |date=15.01.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32056555 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.placenta.2019.12.012 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass. | ||
|date=20.06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31219803 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628988 | |||
|date= | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |||
}} | }} | ||
==CHI3L1== | ==CHI3L1== | ||
* {{medline-title | * {{medline-title | ||
|title=Postsynaptic damage and microglial activation in AD patients could be linked CXCR4/CXCL12 expression levels. | |title=Postsynaptic damage and microglial activation in AD patients could be linked [[CXCR4]]/[[CXCL12]] expression levels. | ||
|date=15.12.2020 | |date=15.12.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32949560 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32949560 | ||
Строка 1141: | Строка 1319: | ||
|full-text-url=https://sci-hub.do/10.4268/cjcmm20162105 | |full-text-url=https://sci-hub.do/10.4268/cjcmm20162105 | ||
}} | }} | ||
== | ==CIDEA== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Growth hormone receptor expression in human gluteal versus abdominal subcutaneous adipose tissue: Association with body shape. | ||
|date= | |date=05.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27015877 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5084456 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=The developmental transition of ovine adipose tissue through early life. | ||
|date= | |date=01.2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23351024 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1111/apha.12053 | ||
}} | }} | ||
== | ==CIP2A== | ||
* {{medline-title | * {{medline-title | ||
|title=[[CLEC3B]] p.S106G Mutant in a Caucasian Population of Successful Neurological Aging. | |title=Long-lived mice with reduced growth hormone signaling have a constitutive upregulation of hepatic chaperone-mediated autophagy. | ||
|date=12.02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32013718 | |||
|full-text-url=https://sci-hub.do/10.1080/15548627.2020.1725378 | |||
}} | |||
* {{medline-title | |||
|title=Inhibition of [[CIP2A]] attenuates tumor progression by inducing cell cycle arrest and promoting cellular senescence in hepatocellular carcinoma. | |||
|date=08.01.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29175329 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2017.11.124 | |||
}} | |||
==CLC== | |||
* {{medline-title | |||
|title=Impact of Intervention to Improve Nursing Home Resident-Staff Interactions and Engagement. | |||
|date=13.07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29718195 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6455946 | |||
}} | |||
* {{medline-title | |||
|title=Effect of cholesterol loaded cyclodextrin on semen cryopreservation of Aksaray Malakli shepherd dogs of different ages. | |||
|date=06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29699920 | |||
|full-text-url=https://sci-hub.do/10.1016/j.anireprosci.2018.04.068 | |||
}} | |||
==CLEC3B== | |||
* {{medline-title | |||
|title=[[CLEC3B]] p.S106G Mutant in a Caucasian Population of Successful Neurological Aging. | |||
|date=16.09.2020 | |date=16.09.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31570938 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31570938 | ||
Строка 1182: | Строка 1388: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29851234 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29851234 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052477 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052477 | ||
}} | |||
==CLSTN2== | |||
* {{medline-title | |||
|title=Investigating the influence of KIBRA and [[CLSTN2]] genetic polymorphisms on cross-sectional and longitudinal measures of memory performance and hippocampal volume in older individuals. | |||
|date=11.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26415670 | |||
|full-text-url=https://sci-hub.do/10.1016/j.neuropsychologia.2015.09.031 | |||
}} | |||
* {{medline-title | |||
|title=Genetic effects on old-age cognitive functioning: a population-based study. | |||
|date=03.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23276211 | |||
|full-text-url=https://sci-hub.do/10.1037/a0030829 | |||
}} | }} | ||
==CNP== | ==CNP== | ||
Строка 1224: | Строка 1444: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25139204 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25139204 | ||
|full-text-url=https://sci-hub.do/10.1159/000363320 | |full-text-url=https://sci-hub.do/10.1159/000363320 | ||
}} | }} | ||
==COPE== | ==COPE== | ||
Строка 1280: | Строка 1486: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26506233 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26506233 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791237 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791237 | ||
}} | |||
==CPNE1== | |||
* {{medline-title | |||
|title=Prevalent intron retention fine-tunes gene expression and contributes to cellular senescence. | |||
|date=04.12.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33274830 | |||
|full-text-url=https://sci-hub.do/10.1111/acel.13276 | |||
}} | |||
* {{medline-title | |||
|title=Genome-wide Associations Reveal Human-Mouse Genetic Convergence and Modifiers of Myogenesis, [[CPNE1]] and [[STC2]]. | |||
|date=05.12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31761296 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904802 | |||
}} | }} | ||
==CPQ== | ==CPQ== | ||
Строка 1322: | Строка 1542: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25588812 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25588812 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295106 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295106 | ||
}} | }} | ||
==CRABP2== | ==CRABP2== | ||
Строка 1378: | Строка 1584: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25150575 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25150575 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4253058 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4253058 | ||
}} | }} | ||
==CRYAB== | ==CRYAB== | ||
Строка 1421: | Строка 1613: | ||
|full-text-url=https://sci-hub.do/10.1016/j.stem.2018.12.002 | |full-text-url=https://sci-hub.do/10.1016/j.stem.2018.12.002 | ||
}} | }} | ||
== | ==CYB5A== | ||
* {{medline-title | * {{medline-title | ||
|title=11-Oxygenated C19 Steroids Do Not Decline With Age in Women. | |||
|date=01.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30753518 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525564 | |||
|title=11-Oxygenated C19 Steroids Do Not Decline With Age in Women. | |||
|date=01.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30753518 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525564 | |||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
Строка 1462: | Строка 1640: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28566337 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28566337 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568806 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568806 | ||
}} | }} | ||
==CYP27A1== | ==CYP27A1== | ||
Строка 1561: | Строка 1725: | ||
|full-text-url=https://sci-hub.do/10.1007/s12035-018-1312-5 | |full-text-url=https://sci-hub.do/10.1007/s12035-018-1312-5 | ||
}} | }} | ||
== | ==DAZL== | ||
* {{medline-title | * {{medline-title | ||
|title=[[ | |title=[[DAZL]] Regulates Germ Cell Survival through a Network of PolyA-Proximal mRNA Interactions. | ||
|date= | |date=30.10.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30380414 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6878787 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=No evidence for neo-oogenesis may link to ovarian senescence in adult monkey. | ||
|date=11. | |date=11.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23897655 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1002/stem.1480 | ||
}} | }} | ||
==DBT== | ==DBT== | ||
Строка 1588: | Строка 1752: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28197085 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28197085 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5281631 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5281631 | ||
}} | }} | ||
==DCTN3== | ==DCTN3== | ||
Строка 1701: | Строка 1851: | ||
|full-text-url=https://sci-hub.do/10.1016/j.jsams.2017.08.022 | |full-text-url=https://sci-hub.do/10.1016/j.jsams.2017.08.022 | ||
}} | }} | ||
== | ==DHFR== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Excessive folic acid intake and relation to adverse health outcome. | ||
|date= | |date=07.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27131640 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.biochi.2016.04.010 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Increase in tetrahydrobiopterin concentration with aging in the cerebral cortex of the senescence-accelerated mouse prone 10 strain caused by abnormal regulation of tetrahydrobiopterin biosynthesis. | ||
|date= | |date=10.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23933678 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1007/s10522-013-9452-5 | ||
}} | }} | ||
==DHX9== | ==DHX9== | ||
Строка 1770: | Строка 1920: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24478790 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24478790 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894567 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894567 | ||
}} | |||
==DLC1== | |||
* {{medline-title | |||
|title=Resveratrol promotes oxidative stress to drive [[DLC1]] mediated cellular senescence in cancer cells. | |||
|date=15.09.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29964052 | |||
|full-text-url=https://sci-hub.do/10.1016/j.yexcr.2018.06.031 | |||
}} | |||
* {{medline-title | |||
|title=Depletion of the transcriptional coactivators megakaryoblastic leukaemia 1 and 2 abolishes hepatocellular carcinoma xenograft growth by inducing oncogene-induced senescence. | |||
|date=09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23853104 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799492 | |||
}} | }} | ||
==DLX5== | ==DLX5== | ||
* {{medline-title | * {{medline-title | ||
|title=Inhibition of microRNA-27b-3p relieves osteoarthritis pain via regulation of KDM4B-dependent [[DLX5]]. | |title=Inhibition of microRNA-27b-3p relieves osteoarthritis pain via regulation of [[KDM4B]]-dependent [[DLX5]]. | ||
|date=09.2020 | |date=09.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32856377 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32856377 | ||
Строка 1784: | Строка 1948: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28854399 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28854399 | ||
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.07.011 | |full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.07.011 | ||
}} | |||
==DNA2== | |||
* {{medline-title | |||
|title=53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination. | |||
|date=02.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31653568 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993210 | |||
}} | |||
* {{medline-title | |||
|title=Replication Stress at Telomeric and Mitochondrial DNA: Common Origins and Consequences on Ageing. | |||
|date=08.10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31597307 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6801922 | |||
}} | }} | ||
==DNAJC5== | ==DNAJC5== | ||
Строка 1841: | Строка 2019: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4661415 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4661415 | ||
}} | }} | ||
== | ==DRD1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Impact of dopamine-related genetic variants on physical activity in old age - a cohort study. | ||
|date= | |date=24.05.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32448293 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245799 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Maternal deprivation enhances behavioral vulnerability to stress associated with miR-504 expression in nucleus accumbens of rats. | ||
|date= | |date=2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23922862 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724734 | ||
}} | }} | ||
==DROSHA== | ==DROSHA== | ||
Строка 1883: | Строка 2061: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4191645 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4191645 | ||
}} | }} | ||
== | ==DSG2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. | ||
|date= | |date=11.04.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28199971 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421828 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Age-dependent clinical and genetic characteristics in Japanese patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. | ||
|date= | |date=2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23514727 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1253/circj.cj-12-1446 | ||
}} | }} | ||
== | ==DSPP== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Effects of [i]p[/i]-Cresol on Senescence, Survival, Inflammation, and Odontoblast Differentiation in Canine Dental Pulp Stem Cells. | ||
|date= | |date=21.09.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32967298 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555360 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title=[[ | |title=[[GREM1]] inhibits osteogenic differentiation, senescence and BMP transcription of adipose-derived stem cells. | ||
|date= | |date=09.03.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32151168 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1080/03008207.2020.1736054 | ||
}} | |||
==DUSP2== | |||
* {{medline-title | |||
|title=The association between poverty and gene expression within peripheral blood mononuclear cells in a diverse Baltimore City cohort. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32970748 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514036 | |||
}} | |||
* {{medline-title | |||
|title=Aging Increases Hippocampal [[DUSP2]] by a Membrane Cholesterol Loss-Mediated RTK/p38MAPK Activation Mechanism. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31293510 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603139 | |||
}} | }} | ||
==E2F2== | ==E2F2== | ||
Строка 1953: | Строка 2145: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827 | ||
}} | }} | ||
== | ==EDNRB== | ||
* {{medline-title | |||
|title=Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. | |||
|date=03.03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26863197 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846424 | |||
}} | |||
* {{medline-title | |||
|title=Variation in genes in the endothelin pathway and endothelium-dependent and endothelium-independent vasodilation in an elderly population. | |||
|date=05.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23336501 | |||
|full-text-url=https://sci-hub.do/10.1111/apha.12068 | |||
}} | |||
==EED== | |||
* {{medline-title | * {{medline-title | ||
|title= | |title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. | ||
|date= | |date=24.09.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540 | ||
|full-text-url=https://sci-hub.do/10.1016/j. | |full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Economic evaluations of eHealth technologies: A systematic review. | ||
|date= | |date=2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29897921 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5999277 | ||
}} | }} | ||
==EIF2B1== | ==EIF2B1== | ||
Строка 1995: | Строка 2201: | ||
|full-text-url=https://sci-hub.do/10.1002/ajmg.a.36961 | |full-text-url=https://sci-hub.do/10.1002/ajmg.a.36961 | ||
}} | }} | ||
== | ==EIF5A== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=The curious case of polyamines: spermidine drives reversal of B cell senescence. | ||
|date= | |date=03.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31795807 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999633 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Polyamines reverse immune senescence via the translational control of autophagy. | ||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31679458 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6984486 | |||
|date= | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |||
}} | }} | ||
==EN1== | ==EN1== | ||
Строка 2050: | Строка 2242: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28441426 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28441426 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5404753 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5404753 | ||
}} | }} | ||
==ENTPD7== | ==ENTPD7== | ||
Строка 2078: | Строка 2256: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27737960 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27737960 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5088567 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5088567 | ||
}} | |||
==EOMES== | |||
* {{medline-title | |||
|title=Association of Epigenetic Age and p16INK4a With Markers of T-Cell Composition in a Healthy Cohort. | |||
|date=13.11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32361724 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662168 | |||
}} | |||
* {{medline-title | |||
|title=Eomesodermin Expression in CD4 T Cells Restricts Peripheral Foxp3 Induction. | |||
|date=15.11.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26453746 | |||
|full-text-url=https://sci-hub.do/10.4049/jimmunol.1501159 | |||
}} | }} | ||
==EPHA2== | ==EPHA2== | ||
Строка 2121: | Строка 2313: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5787419 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5787419 | ||
}} | }} | ||
== | ==ERCC6== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Two Cockayne Syndrome patients with a novel splice site mutation - clinical and metabolic analyses. | ||
|date= | |date=10.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29944916 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.mad.2018.06.001 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=The associations between single nucleotide polymorphisms of DNA repair genes, DNA damage, and age-related cataract: Jiangsu Eye Study. | ||
|date= | |date=01.02.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23322570 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1167/iovs.12-10940 | ||
}} | }} | ||
== | ==ETS2== | ||
* {{medline-title | * {{medline-title | ||
|title=[[EWSR1]], a multifunctional protein, regulates cellular function and aging via genetic and epigenetic pathways. | |title=[[FOXO3]] targets are reprogrammed as Huntington's disease neural cells and striatal neurons face senescence with p16 increase. | ||
|date=11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33156570 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7681055 | |||
}} | |||
* {{medline-title | |||
|title=The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. | |||
|date=29.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32997995 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527782 | |||
}} | |||
==EWSR1== | |||
* {{medline-title | |||
|title=[[EWSR1]], a multifunctional protein, regulates cellular function and aging via genetic and epigenetic pathways. | |||
|date=01.07.2019 | |date=01.07.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30481590 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30481590 | ||
Строка 2149: | Строка 2355: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5198945 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5198945 | ||
}} | }} | ||
== | ==EZR== | ||
* {{medline-title | |||
|title=Proteomic analysis of six- and twelve-month hippocampus and cerebellum in a murine Down syndrome model. | |||
|date=03.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29245059 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5801041 | |||
}} | |||
* {{medline-title | |||
|title=Genetic variations and polymorphisms in the ezrin gene are associated with age-related cataract. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23882136 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718490 | |||
}} | |||
==F8== | |||
* {{medline-title | |||
|title=The Pattern of Mu Rhythm Modulation During Emotional Destination Memory: Comparison Between Mild Cognitive Impairment Patients and Healthy Controls. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31524160 | |||
|full-text-url=https://sci-hub.do/10.3233/JAD-190311 | |||
}} | |||
* {{medline-title | |||
|title=Correlations between the signal complexity of cerebral and cardiac electrical activity: a multiscale entropy analysis. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24498375 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912068 | |||
}} | |||
==F9== | |||
* {{medline-title | |||
|title=Hypermaintenance and hypofunction of aged spermatogonia: insight from age-related increase of Plzf expression. | |||
|date=30.06.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25986924 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4599245 | |||
}} | |||
* {{medline-title | |||
|title=eHealth literacy and Web 2.0 health information seeking behaviors among baby boomers and older adults. | |||
|date=17.03.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25783036 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381816 | |||
}} | |||
==FABP1== | |||
* {{medline-title | |||
|title=The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32729662 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511879 | |||
}} | |||
* {{medline-title | |||
|title=Expression of digestive enzyme and intestinal transporter genes during chronic heat stress in the thermally manipulated broiler chicken. | |||
|date=01.09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31065718 | |||
|full-text-url=https://sci-hub.do/10.3382/ps/pez249 | |||
}} | |||
==FADS1== | |||
* {{medline-title | * {{medline-title | ||
|title= | |title=Aging and [[FADS1]] polymorphisms decrease the biosynthetic capacity of long-chain PUFAs: A human trial using [U- C]linoleic acid. | ||
|date= | |date=09.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31492428 | ||
|full-text-url=https://sci-hub.do/10.1016/j. | |full-text-url=https://sci-hub.do/10.1016/j.plefa.2019.07.003 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Genetic determinants of macular pigments in women of the Carotenoids in Age-Related Eye Disease Study. | ||
|date= | |date=28.03.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23404124 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3626525 | ||
}} | }} | ||
==FAHD1== | ==FAHD1== | ||
Строка 2180: | Строка 2442: | ||
* {{medline-title | * {{medline-title | ||
|title=TFG-maintaining stability of overlooked [[FANCD2]] confers early DNA-damage response. | |title=[[TFG]]-maintaining stability of overlooked [[FANCD2]] confers early DNA-damage response. | ||
|date=24.10.2020 | |date=24.10.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33099537 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33099537 | ||
Строка 2191: | Строка 2453: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5578191 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5578191 | ||
}} | }} | ||
== | ==FAR2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[[FAR2]] is associated with kidney disease in mice and humans. | ||
|date=08. | |date=01.08.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29652635 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6139637 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Genetic analysis of mesangial matrix expansion in aging mice and identification of Far2 as a candidate gene. | ||
|date= | |date=12.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24009241 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3839541 | ||
}} | }} | ||
==FBN1== | ==FBN1== | ||
Строка 2246: | Строка 2508: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26056366 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26056366 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581027 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581027 | ||
}} | }} | ||
==FGF6== | ==FGF6== | ||
Строка 2275: | Строка 2523: | ||
|full-text-url=https://sci-hub.do/10.1002/dvdy.24495 | |full-text-url=https://sci-hub.do/10.1002/dvdy.24495 | ||
}} | }} | ||
== | ==FGG== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Candidate SNP associations of optimism and resilience in older adults: exploratory study of 935 community-dwelling adults. | ||
|date=10. | |date=10.2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24791650 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163500 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. | ||
|date=07.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23650146 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990406 | |||
}} | |||
|date= | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |||
}} | |||
==FHL1== | ==FHL1== | ||
Строка 2330: | Строка 2564: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29300832 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29300832 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6175033 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6175033 | ||
}} | }} | ||
==FOXA2== | ==FOXA2== | ||
Строка 2387: | Строка 2607: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019307 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019307 | ||
}} | }} | ||
== | ==FOXP2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Identification of the neurotransmitter profile of AmFoxP expressing neurons in the honeybee brain using double-label in situ hybridization. | ||
|date= | |date=06.11.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30400853 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219247 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Human skin keratinocytes can be reprogrammed to express neuronal genes and proteins after a single treatment with decitabine. | ||
|date= | |date=06.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23741634 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3666219 | ||
}} | }} | ||
== | ==FSTL1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Blocking the [[FSTL1]]-[[DIP2A]] Axis Improves Anti-tumor Immunity. | ||
|date=14.08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30110636 | |||
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2018.07.043 | |||
|date= | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |||
|full-text-url=https:// | |||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Vitamin D-responsive [[SGPP2]] variants associated with lung cell expression and lung function. | ||
|date= | |date=25.11.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24274704 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907038 | ||
}} | }} | ||
==FXN== | ==FXN== | ||
Строка 2442: | Строка 2648: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24860428 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24860428 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4026758 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4026758 | ||
}} | |||
==GABARAP== | |||
* {{medline-title | |||
|title=Age-dependent loss of adipose Rubicon promotes metabolic disorders via excess autophagy. | |||
|date=18.08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32811819 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7434891 | |||
}} | |||
* {{medline-title | |||
|title=Age-dependent autophagy induction after injury promotes axon regeneration by limiting NOTCH. | |||
|date=11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31920157 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595581 | |||
}} | |||
==GAK== | |||
* {{medline-title | |||
|title=Auxilin Underlies Progressive Locomotor Deficits and Dopaminergic Neuron Loss in a Drosophila Model of Parkinson's Disease. | |||
|date=31.01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28147270 | |||
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2017.01.005 | |||
}} | |||
* {{medline-title | |||
|title=Disruption of clathrin-mediated trafficking causes centrosome overduplication and senescence. | |||
|date=01.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24138026 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868896 | |||
}} | }} | ||
==GAS6== | ==GAS6== | ||
Строка 2484: | Строка 2718: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26000717 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26000717 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5377050 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5377050 | ||
}} | }} | ||
==GDF3== | ==GDF3== | ||
Строка 2513: | Строка 2733: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5718149 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5718149 | ||
}} | }} | ||
== | ==GIT1== | ||
* {{medline-title | * {{medline-title | ||
|title=[[GIT2]]-A keystone in ageing and age-related disease. | |||
|title=[[GIT2]]-A keystone in ageing and age-related disease. | |||
|date=05.2018 | |date=05.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29452267 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29452267 | ||
Строка 2540: | Строка 2746: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25009255 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25009255 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608362 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608362 | ||
}} | }} | ||
==GLI1== | ==GLI1== | ||
Строка 2583: | Строка 2775: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050201 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050201 | ||
}} | }} | ||
== | ==GNAQ== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Active notch protects MAPK activated melanoma cell lines from MEK inhibitor cobimetinib. | ||
|date= | |date=14.11.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33202284 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.biopha.2020.111006 | ||
}} | |||
* {{medline-title | |||
|title=[[GNAQ]] expression initiated in multipotent neural crest cells drives aggressive melanoma of the central nervous system. | |||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31680437 | |||
|full-text-url=https://sci-hub.do/10.1111/pcmr.12843 | |||
}} | |||
==GNAS== | |||
* {{medline-title | |||
|title=Intratumoral heterogeneity of the tumor cells based on in situ cortisol excess in cortisol-producing adenomas; ∼An association among morphometry, genotype and cellular senescence∼. | |||
|date=11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33002589 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jsbmb.2020.105764 | |||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Clinical characterization and molecular classification of 12 Korean patients with pseudohypoparathyroidism and pseudopseudohypoparathyroidism. | ||
|date=2013 | |date=10.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24127307 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1055/s-0033-1349867 | ||
}} | }} | ||
==GNG3== | ==GNG3== | ||
Строка 2652: | Строка 2858: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26941383 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26941383 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5909633 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5909633 | ||
}} | |||
==GPR158== | |||
* {{medline-title | |||
|title=Identifying blood-specific age-related DNA methylation markers on the Illumina MethylationEPIC® BeadChip. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31546163 | |||
|full-text-url=https://sci-hub.do/10.1016/j.forsciint.2019.109944 | |||
}} | |||
* {{medline-title | |||
|title=RbAp48 Protein Is a Critical Component of [[GPR158]]/OCN Signaling and Ameliorates Age-Related Memory Loss. | |||
|date=23.10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30355501 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725275 | |||
}} | }} | ||
==GPR17== | ==GPR17== | ||
Строка 2694: | Строка 2914: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31237151 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31237151 | ||
|full-text-url=https://sci-hub.do/10.1080/21691401.2019.1626405 | |full-text-url=https://sci-hub.do/10.1080/21691401.2019.1626405 | ||
}} | }} | ||
==GRB10== | ==GRB10== | ||
Строка 2807: | Строка 3013: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6128438 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6128438 | ||
}} | }} | ||
== | ==GSTA2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats. | ||
|date= | |date=09.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32729662 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511879 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=The age-related change of glutathione antioxidant system in mice liver. | ||
|date= | |date=07.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23343351 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.3109/15376516.2013.769655 | ||
}} | }} | ||
==GSTA4== | ==GSTA4== | ||
Строка 2834: | Строка 3040: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30444463 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30444463 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748684 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748684 | ||
}} | |||
==GSTK1== | |||
* {{medline-title | |||
|title=Age-associated changes in GSH S-transferase gene/proteins in livers of rats. | |||
|date=12.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30444463 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748684 | |||
}} | |||
* {{medline-title | |||
|title=Growth hormone alters the glutathione S-transferase and mitochondrial thioredoxin systems in long-living Ames dwarf mice. | |||
|date=10.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24285747 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172038 | |||
}} | }} | ||
==GSTM3== | ==GSTM3== | ||
Строка 2863: | Строка 3083: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150915 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150915 | ||
}} | }} | ||
==HAPLN1== | |||
==HAPLN1== | |||
* {{medline-title | * {{medline-title | ||
Строка 2904: | Строка 3110: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29063508 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29063508 | ||
|full-text-url=https://sci-hub.do/10.1007/s13577-017-0185-7 | |full-text-url=https://sci-hub.do/10.1007/s13577-017-0185-7 | ||
}} | |||
==HAS3== | |||
* {{medline-title | |||
|title=Microneedle fractional radiofrequency increases epidermal hyaluronan and reverses age-related epidermal dysfunction. | |||
|date=02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26415023 | |||
|full-text-url=https://sci-hub.do/10.1002/lsm.22420 | |||
}} | |||
* {{medline-title | |||
|title=Age-associated changes in gene expression of goat oocytes. | |||
|date=01.09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23746875 | |||
|full-text-url=https://sci-hub.do/10.1016/j.theriogenology.2013.04.019 | |||
}} | |||
==HAT1== | |||
* {{medline-title | |||
|title=Activation of p53 by spermine mediates induction of autophagy in HT1080 cells. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24189165 | |||
|full-text-url=https://sci-hub.do/10.1016/j.ijbiomac.2013.10.041 | |||
}} | |||
* {{medline-title | |||
|title=Age-associated changes in gene expression of goat oocytes. | |||
|date=01.09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23746875 | |||
|full-text-url=https://sci-hub.do/10.1016/j.theriogenology.2013.04.019 | |||
}} | }} | ||
==HBD== | ==HBD== | ||
Строка 2932: | Строка 3166: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25887273 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25887273 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4367845 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4367845 | ||
}} | |||
==HCRT== | |||
* {{medline-title | |||
|title=Age-related central regulation of orexin and [[NPY]] in the short-lived African killifish Nothobranchius furzeri. | |||
|date=15.05.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30666646 | |||
|full-text-url=https://sci-hub.do/10.1002/cne.24638 | |||
}} | |||
* {{medline-title | |||
|title=Sleep and cardiovascular phenotype in middle-aged hypocretin-deficient narcoleptic mice. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24033681 | |||
|full-text-url=https://sci-hub.do/10.1111/jsr.12081 | |||
}} | |||
==HELLS== | |||
* {{medline-title | |||
|title=The Ubiquitin-like with PHD and Ring Finger Domains 1 ([[UHRF1]])/DNA Methyltransferase 1 ([[DNMT1]]) Axis Is a Primary Regulator of Cell Senescence. | |||
|date=03.03.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28100769 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5339756 | |||
}} | |||
* {{medline-title | |||
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335 | |||
}} | }} | ||
==HGD== | ==HGD== | ||
Строка 2974: | Строка 3236: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26415502 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26415502 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4587922 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4587922 | ||
}} | |||
==HLA-A== | |||
* {{medline-title | |||
|title=Reduced expression of the lncRNA NRON is a potential hallmark of the CMV-amplified CD8 T cell accumulations commonly seen in older humans. | |||
|date=01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30415066 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2018.11.004 | |||
}} | |||
* {{medline-title | |||
|title=Cytomegalovirus-Specific T Cells Restricted by [[HLA-C]]w*0702 Increase Markedly with Age and Dominate the CD8 T-Cell Repertoire in Older People. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29312307 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5732243 | |||
}} | }} | ||
==HLA-B== | ==HLA-B== | ||
Строка 3058: | Строка 3334: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25187565 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25187565 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169931 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169931 | ||
}} | |||
==HNF4A== | |||
* {{medline-title | |||
|title=The Impact of Biomarker Screening and Cascade Genetic Testing on the Cost-Effectiveness of MODY Genetic Testing. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31558549 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868460 | |||
}} | |||
* {{medline-title | |||
|title=Hepatocyte Nuclear Factor-4α P2 Promoter Variants Are Associated With the Risk of Metabolic Syndrome and Testosterone Deficiency in Aging Taiwanese Men. | |||
|date=11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30415809 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jsxm.2018.09.012 | |||
}} | }} | ||
==HNRNPA1== | ==HNRNPA1== | ||
Строка 3142: | Строка 3432: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28166986 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28166986 | ||
|full-text-url=https://sci-hub.do/10.1016/j.theriogenology.2016.11.007 | |full-text-url=https://sci-hub.do/10.1016/j.theriogenology.2016.11.007 | ||
}} | |||
==HSF4== | |||
* {{medline-title | |||
|title=Effect of [[HSF4]]b on age related cataract may through its novel downstream target Hif1α. | |||
|date=24.10.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25088997 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2014.07.118 | |||
}} | |||
* {{medline-title | |||
|title=Copy number variations of DNA repair genes and the age-related cataract: Jiangsu Eye Study. | |||
|date=01.02.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23329665 | |||
|full-text-url=https://sci-hub.do/10.1167/iovs.12-10948 | |||
}} | }} | ||
==HSP90AA1== | ==HSP90AA1== | ||
Строка 3185: | Строка 3489: | ||
|full-text-url=https://sci-hub.do/10.1016/j.jprot.2015.04.023 | |full-text-url=https://sci-hub.do/10.1016/j.jprot.2015.04.023 | ||
}} | }} | ||
== | ==HUS1== | ||
* {{medline-title | * {{medline-title | ||
|title=Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes. | |||
|title=Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes. | |||
|date=19.10.2015 | |date=19.10.2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26477511 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26477511 | ||
Строка 3227: | Строка 3517: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4655906 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4655906 | ||
}} | }} | ||
== | ==ID2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. | ||
|date=2019 | |date=10.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31254144 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733812 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Ablation of the [[ID2]] gene results in altered circadian feeding behavior, and sex-specific enhancement of insulin sensitivity and elevated glucose uptake in skeletal muscle and brown adipose tissue. | ||
|date= | |date=2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24023810 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759459 | ||
}} | }} | ||
==ID3== | ==ID3== | ||
Строка 3254: | Строка 3544: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29196338 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29196338 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795392 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795392 | ||
}} | |||
==IDO1== | |||
* {{medline-title | |||
|title=Different expression of Defensin-B gene in the endometrium of mares of different age during the breeding season. | |||
|date=21.12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31864349 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925900 | |||
}} | |||
* {{medline-title | |||
|title=Advanced age negatively impacts survival in an experimental brain tumor model. | |||
|date=06.09.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27493076 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5006183 | |||
}} | }} | ||
==IFIT1== | ==IFIT1== | ||
Строка 3282: | Строка 3586: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28325852 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28325852 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827 | ||
}} | |||
==IFITM1== | |||
* {{medline-title | |||
|title=White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy. | |||
|date=02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31691183 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035207 | |||
}} | |||
* {{medline-title | |||
|title=Age-Associated Changes in the Respiratory Epithelial Response to Influenza Infection. | |||
|date=10.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29878083 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6230210 | |||
}} | |||
==IFITM3== | |||
* {{medline-title | |||
|title=Blood DNA methylation sites predict death risk in a longitudinal study of 12, 300 individuals. | |||
|date=22.07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32697766 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7425458 | |||
}} | |||
* {{medline-title | |||
|title=Small Extracellular Vesicles Are Key Regulators of Non-cell Autonomous Intercellular Communication in Senescence via the Interferon Protein [[IFITM3]]. | |||
|date=25.06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31242426 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613042 | |||
}} | }} | ||
==IFNAR1== | ==IFNAR1== | ||
Строка 3296: | Строка 3628: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26046815 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26046815 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4622626 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4622626 | ||
}} | }} | ||
==IGFBP4== | ==IGFBP4== | ||
Строка 3324: | Строка 3642: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28595186 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28595186 | ||
|full-text-url=https://sci-hub.do/10.1159/000477873 | |full-text-url=https://sci-hub.do/10.1159/000477873 | ||
}} | |||
==IGHD== | |||
* {{medline-title | |||
|title=Growth Hormone Deficiency: Health and Longevity. | |||
|date=01.04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30576428 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416709 | |||
}} | |||
* {{medline-title | |||
|title=Lifetime, untreated isolated GH deficiency due to a GH-releasing hormone receptor mutation has beneficial consequences on bone status in older individuals, and does not influence their abdominal aorta calcification. | |||
|date=09.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24272598 | |||
|full-text-url=https://sci-hub.do/10.1007/s12020-013-0118-5 | |||
}} | |||
==IGSF1== | |||
* {{medline-title | |||
|title=Age-related gene and miRNA expression changes in airways of healthy individuals. | |||
|date=06.03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30842487 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403379 | |||
}} | |||
* {{medline-title | |||
|title=The [[IGSF1]] deficiency syndrome: characteristics of male and female patients. | |||
|date=12.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24108313 | |||
|full-text-url=https://sci-hub.do/10.1210/jc.2013-2743 | |||
}} | }} | ||
==IHH== | ==IHH== | ||
Строка 3339: | Строка 3685: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5325333 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5325333 | ||
}} | }} | ||
== | ==IL18== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=p53 and p53-related mediators PAI-1 and IGFBP-3 are downregulated in peripheral blood mononuclear cells of HIV-patients exposed to non-nucleoside reverse transcriptase inhibitors. | ||
|date= | |date=06.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32272174 | ||
|full-text-url=https://sci-hub.do/10.1016/j. | |full-text-url=https://sci-hub.do/10.1016/j.antiviral.2020.104784 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Aging and the Inflammasomes. | ||
|date= | |date=2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30536177 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1007/978-3-319-89390-7_13 | ||
}} | }} | ||
== | ==IL9== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=A novel multi-marker discovery approach identifies new serum biomarkers for Parkinson's disease in older people: an EXosomes in PArkiNson Disease (EXPAND) ancillary study. | ||
|date= | |date=10.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32458283 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7525911 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Transcription factor networks in aged naïve [[CD4]] T cells bias lineage differentiation. | ||
|date=08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31264370 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612640 | |||
|date= | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |||
}} | }} | ||
==ILDR1== | ==ILDR1== | ||
Строка 3437: | Строка 3755: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567 | ||
}} | }} | ||
== | ==INSR== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Proteomics of Long-Lived Mammals. | ||
|date= | |date=03.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31737995 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7117992 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=The Ubiquitin Ligase CHIP Integrates Proteostasis and Aging by Regulation of Insulin Receptor Turnover. | ||
|date= | |date=20.04.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28431247 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5406386 | ||
}} | }} | ||
==IRF4== | ==IRF4== | ||
Строка 3478: | Строка 3796: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27670271 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27670271 | ||
|full-text-url=https://sci-hub.do/10.1093/jee/tow204 | |full-text-url=https://sci-hub.do/10.1093/jee/tow204 | ||
}} | |||
==ISG15== | |||
* {{medline-title | |||
|title=White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy. | |||
|date=02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31691183 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035207 | |||
}} | |||
* {{medline-title | |||
|title=Transcriptome analysis reveals immune-related gene expression changes with age in giant panda ([i]Ailuropoda melanoleuca[/i]) blood. | |||
|date=14.01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30641486 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339791 | |||
}} | |||
==ISL1== | |||
* {{medline-title | |||
|title=Aging-relevant human basal forebrain cholinergic neurons as a cell model for Alzheimer's disease. | |||
|date=21.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33087140 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579825 | |||
}} | |||
* {{medline-title | |||
|title=Deterioration of the Medial Olivocochlear Efferent System Accelerates Age-Related Hearing Loss in Pax2-Isl1 Transgenic Mice. | |||
|date=05.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25990412 | |||
|full-text-url=https://sci-hub.do/10.1007/s12035-015-9215-1 | |||
}} | }} | ||
==ITGAM== | ==ITGAM== | ||
Строка 3493: | Строка 3839: | ||
|full-text-url=https://sci-hub.do/10.1038/nn.4597 | |full-text-url=https://sci-hub.do/10.1038/nn.4597 | ||
}} | }} | ||
== | ==ITGB2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Comparative Analysis of Gene Expression Patterns for Oral Epithelium-Related Functions with Aging. | ||
|date= | |date=2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31732940 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1007/978-3-030-28524-1_11 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=A Microglial Signature Directing Human Aging and Neurodegeneration-Related Gene Networks. | ||
|date= | |date=2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30733664 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6353788 | |||
}} | }} | ||
==ITK== | ==ITK== | ||
Строка 3549: | Строка 3895: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809609 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809609 | ||
}} | }} | ||
== | ==KDM4B== | ||
* {{medline-title | * {{medline-title | ||
|title=[[KDM3A]] and KDM4C Regulate Mesenchymal Stromal Cell Senescence and Bone Aging via Condensin-mediated Heterochromatin Reorganization. | |title=Inhibition of microRNA-27b-3p relieves osteoarthritis pain via regulation of [[KDM4B]]-dependent [[DLX5]]. | ||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32856377 | |||
|full-text-url=https://sci-hub.do/10.1002/biof.1670 | |||
}} | |||
* {{medline-title | |||
|title=Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases. | |||
|date=03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27114850 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809609 | |||
}} | |||
==KDM4C== | |||
* {{medline-title | |||
|title=[[KDM3A]] and [[KDM4C]] Regulate Mesenchymal Stromal Cell Senescence and Bone Aging via Condensin-mediated Heterochromatin Reorganization. | |||
|date=22.11.2019 | |date=22.11.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31704649 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31704649 | ||
Строка 3577: | Строка 3937: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809609 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809609 | ||
}} | }} | ||
== | ==KIFC3== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Defective recruitment of motor proteins to autophagic compartments contributes to autophagic failure in aging. | ||
|date= | |date=08.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29845728 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052466 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
Строка 3591: | Строка 3951: | ||
|full-text-url=https://sci-hub.do/10.1159/000443664 | |full-text-url=https://sci-hub.do/10.1159/000443664 | ||
}} | }} | ||
== | ==KIR2DS5== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[The relationship between the polymorphism of immunity genes and both aging and age-related diseases]. | ||
|date= | |date=07.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23853351 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.3724/sp.j.1005.2013.00813 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=16(th) IHIW: immunogenetics of aging. | ||
|date= | |date=02.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23302099 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1111/iji.12027 | ||
}} | }} | ||
==KISS1R== | ==KISS1R== | ||
Строка 3632: | Строка 3992: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26340948 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26340948 | ||
|full-text-url=https://sci-hub.do/10.1007/s10571-015-0258-7 | |full-text-url=https://sci-hub.do/10.1007/s10571-015-0258-7 | ||
}} | }} | ||
==LAMA5== | ==LAMA5== | ||
Строка 3688: | Строка 4020: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25087724 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25087724 | ||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2014.07.020 | |full-text-url=https://sci-hub.do/10.1016/j.exger.2014.07.020 | ||
}} | }} | ||
==LAT== | ==LAT== | ||
Строка 3773: | Строка 4091: | ||
|full-text-url=https://sci-hub.do/10.5603/EP.2014.0002 | |full-text-url=https://sci-hub.do/10.5603/EP.2014.0002 | ||
}} | }} | ||
== | ==LGI1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Antibody-associated CNS syndromes without signs of inflammation in the elderly. | ||
|date= | |date=03.10.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28878050 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5631166 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Expression of NgR1-antagonizing proteins decreases with aging and cognitive decline in rat hippocampus. | ||
|date= | |date=05.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23525710 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651369 | ||
}} | }} | ||
== | ==LGR5== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Thyroid hormone activates Wnt/β-catenin signaling involved in adult epithelial development during intestinal remodeling in Xenopus laevis. | ||
|date= | |date=08.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27068920 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1007/s00441-016-2396-8 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title=Methylation of [[LOXL1]] Promoter by [[DNMT3A]] in Aged Human Skin Fibroblasts. | |title=Cancer stem cells in Helicobacter pylori infection and aging: Implications for gastric carcinogenesis. | ||
|date=15.08.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25133037 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4133534 | |||
}} | |||
==LHCGR== | |||
* {{medline-title | |||
|title=Comparative Study of the Steroidogenic Effects of Human Chorionic Gonadotropin and Thieno[2,3-D]pyrimidine-Based Allosteric Agonist of Luteinizing Hormone Receptor in Young Adult, Aging and Diabetic Male Rats. | |||
|date=11.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33050653 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7590010 | |||
}} | |||
* {{medline-title | |||
|title=Association between the luteinizing hormone/chorionic gonadotropin receptor ([[LHCGR]]) rs4073366 polymorphism and ovarian hyperstimulation syndrome during controlled ovarian hyperstimulation. | |||
|date=25.07.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23883350 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3727944 | |||
}} | |||
==LIFR== | |||
* {{medline-title | |||
|title=Efficacy of leukemia inhibitory factor as a therapeutic for permanent large vessel stroke differs among aged male and female rats. | |||
|date=15.03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30445025 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814304 | |||
}} | |||
* {{medline-title | |||
|title=Characterization of Nestin-positive stem Leydig cells as a potential source for the treatment of testicular Leydig cell dysfunction. | |||
|date=12.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25418539 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260348 | |||
}} | |||
==LIPA== | |||
* {{medline-title | |||
|title=Modeling the cardiometabolic benefits of sleep in older women: exploring the 24-hour day. | |||
|date=13.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31553045 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955642 | |||
}} | |||
* {{medline-title | |||
|title=Influence of Habitual Physical Behavior - Sleeping, Sedentarism, Physical Activity - On Bone Health in Community-Dwelling Older People. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31037056 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6476278 | |||
}} | |||
==LOXL1== | |||
* {{medline-title | |||
|title=A blackberry-dill extract combination synergistically increases skin elasticity. | |||
|date=10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32583541 | |||
|full-text-url=https://sci-hub.do/10.1111/ics.12644 | |||
}} | |||
* {{medline-title | |||
|title=Methylation of [[LOXL1]] Promoter by [[DNMT3A]] in Aged Human Skin Fibroblasts. | |||
|date=04.2017 | |date=04.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27396912 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27396912 | ||
Строка 3814: | Строка 4188: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30171091 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30171091 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6181315 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6181315 | ||
}} | }} | ||
==LRPPRC== | ==LRPPRC== | ||
Строка 3842: | Строка 4202: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25428350 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25428350 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267620 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267620 | ||
}} | |||
==LRRN3== | |||
* {{medline-title | |||
|title=Accelerated aging in HIV/AIDS: novel biomarkers of senescent human CD8 T cells. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23717651 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3661524 | |||
}} | |||
* {{medline-title | |||
|title=Transcriptomics of cortical gray matter thickness decline during normal aging. | |||
|date=15.11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23707588 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759649 | |||
}} | }} | ||
==LTB== | ==LTB== | ||
Строка 3912: | Строка 4286: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30025493 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30025493 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152528 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152528 | ||
}} | }} | ||
==MAVS== | ==MAVS== | ||
Строка 3955: | Строка 4301: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5541666 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5541666 | ||
}} | }} | ||
== | ==MBNL1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Compound loss of muscleblind-like function in myotonic dystrophy. | ||
|date= | |date=12.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24293317 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3914532 | ||
}} | |||
* {{medline-title | |||
|title=Dysfunction of protein homeostasis in myotonic dystrophies. | |||
|date=09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23536431 | |||
|full-text-url=https://sci-hub.do/10.14670/HH-28.1089 | |||
}} | |||
==MC4R== | |||
* {{medline-title | |||
|title=Melanocortin-4 receptor rs17782313 polymorphisms are associated with serum triglycerides in older Chinese women. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26965781 | |||
|full-text-url=https://sci-hub.do/10.6133/apjcn.2016.25.1.18 | |||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Polymorphic variants of neurotransmitter receptor genes may affect sexual function in aging males: data from the HALS study. | ||
|date= | |date=2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23485949 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1159/000350324 | ||
}} | }} | ||
==MCM3== | ==MCM3== | ||
Строка 3983: | Строка 4343: | ||
|full-text-url=https://sci-hub.do/10.1007/s10571-016-0404-x | |full-text-url=https://sci-hub.do/10.1007/s10571-016-0404-x | ||
}} | }} | ||
==MCM8== | ==MCM4== | ||
* {{medline-title | |||
|title=Hepatoprotective effects of hydroxysafflor yellow A in D-galactose-treated aging mice. | |||
|date=15.08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32454116 | |||
|full-text-url=https://sci-hub.do/10.1016/j.ejphar.2020.173214 | |||
}} | |||
* {{medline-title | |||
|title=Changes in [[MCM2]]-7 proteins at senescence. | |||
|date=27.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31092751 | |||
|full-text-url=https://sci-hub.do/10.1266/ggs.18-00062 | |||
}} | |||
==MCM8== | |||
* {{medline-title | * {{medline-title | ||
Строка 4024: | Строка 4398: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30977188 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30977188 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850038 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850038 | ||
}} | |||
==MDM4== | |||
* {{medline-title | |||
|title=In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31520345 | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-019-09834-1 | |||
}} | |||
* {{medline-title | |||
|title=Germline genetics of the p53 pathway affect longevity in a gender specific manner. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24654968 | |||
|full-text-url=https://sci-hub.do/10.2174/1874609807666140321150751 | |||
}} | }} | ||
==ME1== | ==ME1== | ||
Строка 4066: | Строка 4454: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25184702 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25184702 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4153547 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4153547 | ||
}} | |||
==MEFV== | |||
* {{medline-title | |||
|title=The grandfather's fever. | |||
|date=02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31401792 | |||
|full-text-url=https://sci-hub.do/10.1007/s10067-019-04741-9 | |||
}} | |||
* {{medline-title | |||
|title=E148Q [[MEFV]] mutation carriage and longevity in individuals of Ashkenazi origin. | |||
|date=07.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23592051 | |||
|full-text-url=https://sci-hub.do/10.1007/s12026-013-8414-y | |||
}} | }} | ||
==MEIS1== | ==MEIS1== | ||
Строка 4080: | Строка 4482: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28841467 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28841467 | ||
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.07.015 | |full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.07.015 | ||
}} | |||
==MELK== | |||
* {{medline-title | |||
|title=[[MELK]]-T1, a small-molecule inhibitor of protein kinase [[MELK]], decreases DNA-damage tolerance in proliferating cancer cells. | |||
|date=02.10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26431963 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643329 | |||
}} | |||
* {{medline-title | |||
|title=Maternal embryonic leucine zipper kinase ([[MELK]]) reduces replication stress in glioblastoma cells. | |||
|date=16.08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23836907 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3745365 | |||
}} | }} | ||
==MEOX2== | ==MEOX2== | ||
Строка 4094: | Строка 4510: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27143421 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27143421 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4878023 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4878023 | ||
}} | }} | ||
==MGAT1== | ==MGAT1== | ||
Строка 4122: | Строка 4524: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24904604 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24904604 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4033622 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4033622 | ||
}} | |||
==MIB1== | |||
* {{medline-title | |||
|title=[[MIB1]]-mediated degradation of [[WRN]] promotes cellular senescence in response to camptothecin treatment. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32652764 | |||
|full-text-url=https://sci-hub.do/10.1096/fj.202000268RRR | |||
}} | |||
* {{medline-title | |||
|title=Immunohistochemical detection of senescence markers in human sarcomas. | |||
|date=02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31899047 | |||
|full-text-url=https://sci-hub.do/10.1016/j.prp.2019.152800 | |||
}} | }} | ||
==MICA== | ==MICA== | ||
Строка 4136: | Строка 4552: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26878797 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26878797 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4789586 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4789586 | ||
}} | }} | ||
==MLH1== | ==MLH1== | ||
Строка 4165: | Строка 4567: | ||
|full-text-url=https://sci-hub.do/10.1002/jcb.28417 | |full-text-url=https://sci-hub.do/10.1002/jcb.28417 | ||
}} | }} | ||
== | ==MMP10== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Astrocyte senescence may drive alterations in GFAPα, [[[[CDKN2A]]]] p14 , and TAU3 transcript expression and contribute to cognitive decline. | ||
|date= | |date=10.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31654269 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6885035 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Bone biology-related gingival transcriptome in ageing and periodontitis in non-human primates. | ||
|date= | |date=05.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26859687 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844783 | ||
}} | }} | ||
== | ==MMP14== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Overexpression of microRNA-1470 promotes proliferation and migration, and inhibits senescence of esophageal squamous carcinoma cells. | ||
|date= | |date=12.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29344220 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5755030 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Enhanced tissue regeneration potential of juvenile articular cartilage. | ||
|date= | |date=11.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24043472 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1177/0363546513502945 | ||
}} | }} | ||
== | ==MMP8== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[Investigation of signal molecules in saliva: prospects of application for diagnostics of myocardial infarction and the aging rate of different age people.] | ||
|date= | |date=2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31512422 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Bone biology-related gingival transcriptome in ageing and periodontitis in non-human primates. | ||
|date= | |date=05.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26859687 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844783 | ||
}} | }} | ||
==MS4A6E== | ==MS4A6E== | ||
Строка 4221: | Строка 4623: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5005889 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5005889 | ||
}} | }} | ||
== | ==MSH6== | ||
* {{medline-title | * {{medline-title | ||
Строка 4230: | Строка 4632: | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=DNA mismatch repair system: repercussions in cellular homeostasis and relationship with aging. | ||
|date= | |date=2012 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23213348 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3504481 | ||
}} | }} | ||
==MT2A== | ==MT2A== | ||
Строка 4276: | Строка 4678: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24640693 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24640693 | ||
}} | |||
==MUC1== | |||
* {{medline-title | |||
|title=Sensitivity of neoplastic cells to senescence unveiled under standard cell culture conditions. | |||
|date=05.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25964555 | |||
}} | |||
* {{medline-title | |||
|title=Serum [[KL]]-6 concentrations are associated with molecular sizes and efflux behavior of [[KL]]-6/[[MUC1]] in healthy subjects. | |||
|date=23.09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23778023 | |||
|full-text-url=https://sci-hub.do/10.1016/j.cca.2013.06.002 | |||
}} | }} | ||
==MUC2== | ==MUC2== | ||
Строка 4290: | Строка 4706: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26944966 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26944966 | ||
|full-text-url=https://sci-hub.do/10.3382/ps/pew019 | |full-text-url=https://sci-hub.do/10.3382/ps/pew019 | ||
}} | |||
==MX1== | |||
* {{medline-title | |||
|title=White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy. | |||
|date=02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31691183 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035207 | |||
}} | |||
* {{medline-title | |||
|title=Age-Associated Changes in the Respiratory Epithelial Response to Influenza Infection. | |||
|date=10.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29878083 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6230210 | |||
}} | |||
==MYBL2== | |||
* {{medline-title | |||
|title=A multidimensional systems biology analysis of cellular senescence in aging and disease. | |||
|date=07.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264951 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333371 | |||
}} | |||
* {{medline-title | |||
|title=Molecular mechanism of G arrest and cellular senescence induced by LEE011, a novel [[CDK4]]/CDK6 inhibitor, in leukemia cells. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28286417 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5340031 | |||
}} | }} | ||
==MYBPC3== | ==MYBPC3== | ||
Строка 4304: | Строка 4748: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24951664 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24951664 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066205 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066205 | ||
}} | |||
==MYOCD== | |||
* {{medline-title | |||
|title=Aging-associated changes in microRNA expression profile of internal anal sphincter smooth muscle: Role of microRNA-133a. | |||
|date=01.11.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27634012 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5130548 | |||
}} | |||
* {{medline-title | |||
|title=Transplantation of mesenchymal cells rejuvenated by the overexpression of telomerase and myocardin promotes revascularization and tissue repair in a murine model of hindlimb ischemia. | |||
|date=13.09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23780385 | |||
|full-text-url=https://sci-hub.do/10.1161/CIRCRESAHA.113.301690 | |||
}} | }} | ||
==MYOD1== | ==MYOD1== | ||
Строка 4347: | Строка 4805: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076205 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076205 | ||
}} | }} | ||
== | ==NCAM1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Resistance Training Enhances Skeletal Muscle Innervation Without Modifying the Number of Satellite Cells or their Myofiber Association in Obese Older Adults. | ||
|date= | |date=10.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26447161 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5018557 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Human skin keratinocytes can be reprogrammed to express neuronal genes and proteins after a single treatment with decitabine. | ||
|date=06.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23741634 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3666219 | |||
|date= | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |||
}} | }} | ||
==NDNF== | ==NDNF== | ||
Строка 4403: | Строка 4847: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050201 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050201 | ||
}} | }} | ||
== | ==NECTIN2== | ||
* {{medline-title | * {{medline-title | ||
|title=Genetics of Human Longevity From Incomplete Data: New Findings From the Long Life Family Study. | |||
|title=Genetics of Human Longevity From Incomplete Data: New Findings From the Long Life Family Study. | |||
|date=08.10.2018 | |date=08.10.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30299504 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30299504 | ||
Строка 4430: | Строка 4860: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29797398 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29797398 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052488 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052488 | ||
}} | |||
==NEDD4== | |||
* {{medline-title | |||
|title=Mechanism of [[PRL]]2 phosphatase-mediated [[PTEN]] degradation and tumorigenesis. | |||
|date=25.08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32788364 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456095 | |||
}} | |||
* {{medline-title | |||
|title=Estrogen receptor β, a regulator of androgen receptor signaling in the mouse ventral prostate. | |||
|date=09.05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28439009 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441728 | |||
}} | }} | ||
==NEFM== | ==NEFM== | ||
Строка 4458: | Строка 4902: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26245904 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26245904 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598976 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598976 | ||
}} | |||
==NEIL2== | |||
* {{medline-title | |||
|title=Mitochondrial base excision repair positively correlates with longevity in the liver and heart of mammals. | |||
|date=04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31970600 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7205949 | |||
}} | |||
* {{medline-title | |||
|title=Neil2-null Mice Accumulate Oxidized DNA Bases in the Transcriptionally Active Sequences of the Genome and Are Susceptible to Innate Inflammation. | |||
|date=09.10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26245904 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598976 | |||
}} | |||
==NEK2== | |||
* {{medline-title | |||
|title=A multidimensional systems biology analysis of cellular senescence in aging and disease. | |||
|date=07.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264951 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333371 | |||
}} | |||
* {{medline-title | |||
|title=Upregulation of [[FOXM1]] leads to diminished drug sensitivity in myeloma. | |||
|date=21.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30463534 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6249818 | |||
}} | }} | ||
==NEO1== | ==NEO1== | ||
Строка 4500: | Строка 4972: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27545503 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27545503 | ||
|full-text-url=https://sci-hub.do/10.1016/j.stem.2016.07.003 | |full-text-url=https://sci-hub.do/10.1016/j.stem.2016.07.003 | ||
}} | }} | ||
==NHLRC1== | ==NHLRC1== | ||
Строка 4574: | Строка 5032: | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Deceased donor kidney allocation: an economic evaluation of contemporary longevity matching practices. | ||
|date= | |date=09.10.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33036621 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547436 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
Строка 4682: | Строка 5140: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29055871 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29055871 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5650655 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5650655 | ||
}} | }} | ||
==NPTX2== | ==NPTX2== | ||
Строка 4725: | Строка 5169: | ||
|full-text-url=https://sci-hub.do/10.1016/j.peptides.2015.07.011 | |full-text-url=https://sci-hub.do/10.1016/j.peptides.2015.07.011 | ||
}} | }} | ||
== | ==NPY1R== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[[NPY]]/neuropeptide Y enhances autophagy in the hypothalamus: a mechanism to delay aging? | ||
|date= | |date=2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26086271 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4590601 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Vulnerability imposed by diet and brain trauma for anxiety-like phenotype: implications for post-traumatic stress disorders. | ||
|date= | |date=2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23483949 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3590222 | ||
}} | }} | ||
== | ==NPY5R== | ||
* {{medline-title | |||
|title=Effects of age on feeding response: Focus on the rostral C1 neuron and its glucoregulatory proteins. | |||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31705967 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2019.110779 | |||
}} | |||
* {{medline-title | |||
|title=[[NPY]]/neuropeptide Y enhances autophagy in the hypothalamus: a mechanism to delay aging? | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26086271 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4590601 | |||
}} | |||
==NR3C1== | |||
* {{medline-title | |||
|title=Glucocorticoid receptor ([[NR3C1]]) gene polymorphisms are associated with age and blood parameters in Polish Caucasian nonagenarians and centenarians. | |||
|date=02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30553025 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2018.12.006 | |||
}} | |||
* {{medline-title | |||
|title=Inter-Regional Variations in Gene Expression and Age-Related Cortical Thinning in the Adolescent Brain. | |||
|date=01.04.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28334178 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6093352 | |||
}} | |||
==NRL== | |||
* {{medline-title | * {{medline-title | ||
|title= | |title=Development of a cyclophosphamide stress test to predict resilience to aging in mice. | ||
|date= | |date=12.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32613492 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1007/s11357-020-00222-z | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=A Spontaneous Aggressive ERα Mammary Tumor Model Is Driven by Kras Activation. | ||
|date= | |date=06.08.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31390566 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713291 | ||
}} | }} | ||
==NRM== | ==NRM== | ||
Строка 4762: | Строка 5234: | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title=[[ | |title=Who is the better donor for older hematopoietic transplant recipients: an older-aged sibling or a young, matched unrelated volunteer? | ||
|date=03.2015 | |date=28.03.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23361908 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612864 | ||
}} | |||
==NRP1== | |||
* {{medline-title | |||
|title=[[APOE]] ε4-specific associations of VEGF gene family expression with cognitive aging and Alzheimer's disease. | |||
|date=03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31791659 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064375 | |||
}} | |||
* {{medline-title | |||
|title=Neuropilin 1 is essential for gastrointestinal smooth muscle contractility and motility in aged mice. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25659123 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319892 | |||
}} | }} | ||
==NRXN1== | ==NRXN1== | ||
Строка 4808: | Строка 5294: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27207784 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27207784 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4886166 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4886166 | ||
}} | |||
==NTRK2== | |||
* {{medline-title | |||
|title=The Role of [[BDNF]] in Age-Dependent Changes of Excitatory and Inhibitory Synaptic Markers in the Human Prefrontal Cortex. | |||
|date=12.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27417517 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5101556 | |||
}} | |||
* {{medline-title | |||
|title=Nodes and biological processes identified on the basis of network analysis in the brain of the senescence accelerated mice as an Alzheimer's disease animal model. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24194717 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810591 | |||
}} | }} | ||
==OAT== | ==OAT== | ||
Строка 4823: | Строка 5323: | ||
|full-text-url=https://sci-hub.do/10.1007/s13105-019-00663-x | |full-text-url=https://sci-hub.do/10.1007/s13105-019-00663-x | ||
}} | }} | ||
== | ==OMD== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Genome-wide associations and detection of potential candidate genes for direct genetic and maternal genetic effects influencing dairy cattle body weight at different ages. | ||
|date= | |date=06.02.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30727969 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6366057 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Digestive capacity in weanling and mature horses. | ||
|date= | |date=05.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23463556 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.2527/jas.2012-5789 | ||
}} | }} | ||
== | ==OPTN== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Autophagy receptor [[OPTN]] (optineurin) regulates mesenchymal stem cell fate and bone-fat balance during aging by clearing [[FABP3]]. | ||
|date=11. | |date=04.11.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33143524 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1080/15548627.2020.1839286 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis. | ||
|date= | |date=24.02.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26912063 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765225 | ||
}} | }} | ||
== | ==ORAI1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Progerin in muscle leads to thermogenic and metabolic defects via impaired calcium homeostasis. | ||
|date= | |date=02.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31833196 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996945 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title=Developmental expression of B cell molecules in equine lymphoid tissues. | |title=Calcium Dynamics of Ex Vivo Long-Term Cultured CD8 T Cells Are Regulated by Changes in Redox Metabolism. | ||
|date=01.2017 | |date=2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28063478 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27526200 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4985122 | |||
}} | |||
==P2RX7== | |||
* {{medline-title | |||
|title=The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. | |||
|date=29.07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32727592 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392710 | |||
}} | |||
* {{medline-title | |||
|title=A rare functional haplotype of the [[P2RX4]] and [[P2RX7]] genes leads to loss of innate phagocytosis and confers increased risk of age-related macular degeneration. | |||
|date=04.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23303206 | |||
|full-text-url=https://sci-hub.do/10.1096/fj.12-215368 | |||
}} | |||
==PALB2== | |||
* {{medline-title | |||
|title=53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination. | |||
|date=02.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31653568 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993210 | |||
}} | |||
* {{medline-title | |||
|title=A Multigene Test Could Cost-Effectively Help Extend Life Expectancy for Women at Risk of Hereditary Breast Cancer. | |||
|date=04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28407996 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jval.2017.01.006 | |||
}} | |||
==PAX5== | |||
* {{medline-title | |||
|title=Diminished antibody response to influenza vaccination is characterized by expansion of an age-associated B-cell population with low [[PAX5]]. | |||
|date=08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29425852 | |||
|full-text-url=https://sci-hub.do/10.1016/j.clim.2018.02.003 | |||
}} | |||
* {{medline-title | |||
|title=Developmental expression of B cell molecules in equine lymphoid tissues. | |||
|date=01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28063478 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5267323 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5267323 | ||
}} | }} | ||
Строка 4882: | Строка 5424: | ||
* {{medline-title | * {{medline-title | ||
|title=Internalization of the TAT-[[PBX1]] fusion protein significantly enhances the proliferation of human hair follicle-derived mesenchymal stem cells and delays their senescence. | |title=Internalization of the [[TAT]]-[[PBX1]] fusion protein significantly enhances the proliferation of human hair follicle-derived mesenchymal stem cells and delays their senescence. | ||
|date=10.2020 | |date=10.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32436118 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32436118 | ||
Строка 4921: | Строка 5463: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334536 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334536 | ||
}} | }} | ||
== | ==PDE2A== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=TAK-915, a phosphodiesterase 2A inhibitor, ameliorates the cognitive impairment associated with aging in rodent models. | ||
|date= | |date=30.12.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31521738 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.bbr.2019.112192 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. | ||
|date= | |date=02.2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653 | ||
|full-text-url=https://sci-hub.do/10.1016/j. | |full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007 | ||
}} | }} | ||
== | ==PDE3A== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Effects of aging on gene expression and mitochondrial DNA in the equine oocyte and follicle cells. | ||
|date= | |date=07.2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25786490 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1071/RD14472 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. | ||
|date= | |date=02.2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007 | ||
}} | }} | ||
== | ==PDE5A== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Repurposing erectile dysfunction drugs tadalafil and vardenafil to increase bone mass. | ||
|date= | |date=23.06.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32513693 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7321982 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. | ||
|date= | |date=02.2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007 | ||
}} | }} | ||
== | ==PDE9A== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Identification of new [[PDE9A]] isoforms and how their expression and subcellular compartmentalization in the brain change across the life span. | ||
|date= | |date=05.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29505961 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5871571 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. | ||
|date= | |date=02.2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653 | ||
|full-text-url=https://sci-hub.do/10.1016/j. | |full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007 | ||
}} | }} | ||
==PDGFB== | ==PDGFB== | ||
Строка 4991: | Строка 5533: | ||
|full-text-url=https://sci-hub.do/10.1016/j.bbi.2015.06.008 | |full-text-url=https://sci-hub.do/10.1016/j.bbi.2015.06.008 | ||
}} | }} | ||
== | ==PDHB== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Oxidative Damage to the TCA Cycle Enzyme [[MDH1]] Dysregulates Bioenergetic Enzymatic Activity in the Aged Murine Brain. | ||
|date=04. | |date=03.04.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32175745 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1021/acs.jproteome.9b00861 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Neuron-specific knockdown of Drosophila [[PDHB]] induces reduction of lifespan, deficient locomotive ability, abnormal morphology of motor neuron terminals and photoreceptor axon targeting. | ||
|date= | |date=15.05.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29501567 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1016/j.yexcr.2018.02.035 | ||
}} | }} | ||
==PDK2== | ==PDK2== | ||
Строка 5033: | Строка 5575: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967149 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967149 | ||
}} | }} | ||
== | ==PENK== | ||
* {{medline-title | * {{medline-title | ||
|title=Aging-associated DNA methylation changes in middle-aged individuals: the Young Finns study. | |||
|date=09.02.2016 | |||
|title=Aging-associated DNA methylation changes in middle-aged individuals: the Young Finns study. | |||
|date=09.02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26861258 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26861258 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746895 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746895 | ||
Строка 5089: | Строка 5617: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432272 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432272 | ||
}} | }} | ||
== | ==PGAM1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. | ||
|date= | |date=2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31733664 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939615 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=The aged testis. A good model to find proteins involved in age-related changes of testis by proteomic analysis. | ||
|date=01. | |date=01-02.2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24597284 | ||
}} | }} | ||
==PGR== | ==PGR== | ||
Строка 5172: | Строка 5700: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26487704 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26487704 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4757025 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4757025 | ||
}} | |||
==PKP2== | |||
* {{medline-title | |||
|title=Molecular disturbance underlies to arrhythmogenic cardiomyopathy induced by transgene content, age and exercise in a truncated [[PKP2]] mouse model. | |||
|date=01.09.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27412010 | |||
|full-text-url=https://sci-hub.do/10.1093/hmg/ddw213 | |||
}} | |||
* {{medline-title | |||
|title=Age-dependent clinical and genetic characteristics in Japanese patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23514727 | |||
|full-text-url=https://sci-hub.do/10.1253/circj.cj-12-1446 | |||
}} | }} | ||
==PLA2G6== | ==PLA2G6== | ||
Строка 5186: | Строка 5728: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24919816 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24919816 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4364003 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4364003 | ||
}} | }} | ||
==PLD3== | ==PLD3== | ||
Строка 5214: | Строка 5742: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28199971 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28199971 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421828 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421828 | ||
}} | |||
==PLK1== | |||
* {{medline-title | |||
|title=Dynactin pathway-related gene expression is altered by aging, but not by vitrification. | |||
|date=09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31260804 | |||
|full-text-url=https://sci-hub.do/10.1016/j.reprotox.2019.06.011 | |||
}} | |||
* {{medline-title | |||
|title=Downregulation of Polo-like kinase 1 induces cellular senescence in human primary cells through a p53-dependent pathway. | |||
|date=10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23525475 | |||
|full-text-url=https://sci-hub.do/10.1093/gerona/glt017 | |||
}} | }} | ||
==PLK4== | ==PLK4== | ||
Строка 5224: | Строка 5766: | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title=Differential expression of AURKA/[[PLK4]] in quiescence and senescence of osteosarcoma U2OS cells. | |title=Differential expression of [[AURKA]]/[[PLK4]] in quiescence and senescence of osteosarcoma U2OS cells. | ||
|date=04.2020 | |date=04.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32200684 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32200684 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217361 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217361 | ||
}} | |||
==PMP22== | |||
* {{medline-title | |||
|title=Role of microRNAs in senescence and its contribution to peripheral neuropathy in the arsenic exposed population of West Bengal, India. | |||
|date=02.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29107899 | |||
|full-text-url=https://sci-hub.do/10.1016/j.envpol.2017.09.063 | |||
}} | |||
* {{medline-title | |||
|title=A molecular signature predictive of indolent prostate cancer. | |||
|date=11.09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24027026 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3943244 | |||
}} | }} | ||
==POLD3== | ==POLD3== | ||
Строка 5260: | Строка 5816: | ||
* {{medline-title | * {{medline-title | ||
|title=[[ | |title=[[PPARD]] 294C overrepresentation in general and long-lived population in China Bama longevity area and unique relationships between [[PPARD]] 294T/C polymorphism and serum lipid profiles. | ||
|date=07.03.2015 | |date=07.03.2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25873088 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25873088 | ||
Строка 5266: | Строка 5822: | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title=[Genotype and allele frequencies of | |title=[Genotype and allele frequencies of UCP and PPAR gene families in residents of besieged Leningrad and in the control group]. | ||
|date=2014 | |date=2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25826986 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25826986 | ||
Строка 5284: | Строка 5840: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30602793 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30602793 | ||
|full-text-url=https://sci-hub.do/10.1038/s41586-018-0811-x | |full-text-url=https://sci-hub.do/10.1038/s41586-018-0811-x | ||
}} | |||
==PPP3CB== | |||
* {{medline-title | |||
|title=The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. | |||
|date=29.07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32727592 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392710 | |||
}} | |||
* {{medline-title | |||
|title=Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30210331 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6119720 | |||
}} | }} | ||
==PPY== | ==PPY== | ||
Строка 5298: | Строка 5868: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25881911 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25881911 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4923714 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4923714 | ||
}} | }} | ||
==PRF1== | ==PRF1== | ||
Строка 5327: | Строка 5883: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600657 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600657 | ||
}} | }} | ||
== | ==PRG4== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Inhibition of Wnt/β-catenin signaling ameliorates osteoarthritis in a murine model of experimental osteoarthritis. | ||
|date= | |date=08.02.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29415892 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821202 | ||
}} | |||
* {{medline-title | |||
|title=Age-related changes in structure and extracellular matrix protein expression levels in rat tendons. | |||
|date=12.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23354684 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3824999 | |||
}} | |||
==PRKAA2== | |||
* {{medline-title | |||
|title=Study on the effect of CaMKKβ-mediated AMPK activation on the glycolysis and the quality of different altitude postmortem bovines longissimus muscle. | |||
|date=11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31456257 | |||
|full-text-url=https://sci-hub.do/10.1111/jfbc.13023 | |||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone. | ||
|date= | |date=07.2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24760536 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1530/EJE-14-0006 | ||
}} | }} | ||
==PRMT7== | ==PRMT7== | ||
Строка 5369: | Строка 5939: | ||
|full-text-url=https://sci-hub.do/10.1002/jcb.25508 | |full-text-url=https://sci-hub.do/10.1002/jcb.25508 | ||
}} | }} | ||
== | ==PROX1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Molecular control of two novel migratory paths for CGE-derived interneurons in the developing mouse brain. | ||
|date= | |date=15.05.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27034423 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1242/dev.131102 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[[PROX1]]: a lineage tracer for cortical interneurons originating in the lateral/caudal ganglionic eminence and preoptic area. | ||
|date= | |date=2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24155945 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3796451 | ||
}} | }} | ||
== | ==PSMB8== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[Target protein candidates of hypothalamus in aging rats with intervention by Qiongyugao]. | ||
|date= | |date=04.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28879748 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.4268/cjcmm20160724 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Assessment of the risk of blastomere biopsy during preimplantation genetic diagnosis in a mouse model: reducing female ovary function with an increase in age by proteomics method. | ||
|date= | |date=06.12.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24156634 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1021/pr400366j | ||
}} | }} | ||
==PTH1R== | ==PTH1R== | ||
Строка 5410: | Строка 5980: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24378925 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24378925 | ||
|full-text-url=https://sci-hub.do/10.1007/s00774-013-0550-x | |full-text-url=https://sci-hub.do/10.1007/s00774-013-0550-x | ||
}} | |||
==PTK7== | |||
* {{medline-title | |||
|title=Innate and adaptive immune dysregulation in critically ill ICU patients. | |||
|date=05.07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29976949 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6033948 | |||
}} | |||
* {{medline-title | |||
|title=Heterogeneity in thymic emigrants: implications for thymectomy and immunosenescence. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23468830 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3584139 | |||
}} | |||
==PTPN1== | |||
* {{medline-title | |||
|title=The genetic component of human longevity: New insights from the analysis of pathway-based SNP-SNP interactions. | |||
|date=06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29577582 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946073 | |||
}} | |||
* {{medline-title | |||
|title=Leptin and leptin-related gene polymorphisms, obesity, and influenza A/H1N1 vaccine-induced immune responses in older individuals. | |||
|date=07.02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24360890 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922536 | |||
}} | |||
==PTTG1== | |||
* {{medline-title | |||
|title=[Down-regulated [[PTTG1]] expression promotes the senescence of human prostate cancer LNCaP-AI]. | |||
|date=03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32216239 | |||
}} | |||
* {{medline-title | |||
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335 | |||
}} | }} | ||
==PUM2== | ==PUM2== | ||
Строка 5439: | Строка 6051: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5225059 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5225059 | ||
}} | }} | ||
== | ==RAD51B== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Increased age-adjusted hazard of death associated with a common single nucleotide polymorphism of the human [[RAD52]] gene in a cardiovascular cohort. | ||
|date= | |date=10.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29024686 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.mad.2017.10.003 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[What's new in dermatological research?]. | ||
|date= | |date=12.2012 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23522705 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1016/S0151-9638(12)70133-3 | ||
}} | }} | ||
== | ==RAG1== | ||
* {{medline-title | * {{medline-title | ||
|title=T cell senescence accelerates Angiotensin II-induced target organ damage. | |||
|date=12.02.2020 | |||
|title=T cell senescence accelerates Angiotensin II-induced target organ damage. | |||
|date=12.02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32049355 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32049355 | ||
|full-text-url=https://sci-hub.do/10.1093/cvr/cvaa032 | |full-text-url=https://sci-hub.do/10.1093/cvr/cvaa032 | ||
Строка 5494: | Строка 6092: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24894919 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24894919 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4177035 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4177035 | ||
}} | |||
==RASGRP1== | |||
* {{medline-title | |||
|title=Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. | |||
|date=12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27878761 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441979 | |||
}} | |||
* {{medline-title | |||
|title=PPARβ/δ promotes [[HRAS]]-induced senescence and tumor suppression by potentiating p-ERK and repressing p-AKT signaling. | |||
|date=13.11.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24213576 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4017002 | |||
}} | }} | ||
==RECQL5== | ==RECQL5== | ||
Строка 5509: | Строка 6121: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047874 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047874 | ||
}} | }} | ||
== | ==RNF168== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination. | ||
|date= | |date=02.01.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31653568 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993210 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[[PML]] nuclear bodies are recruited to persistent DNA damage lesions in an [[RNF168]]-53BP1 dependent manner and contribute to DNA repair. | ||
|date=06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31009828 | |||
|full-text-url=https://sci-hub.do/10.1016/j.dnarep.2019.04.001 | |||
|date= | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |||
|full-text-url=https://sci-hub.do/10. | |||
}} | }} | ||
==RPIA== | ==RPIA== | ||
Строка 5550: | Строка 6148: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25429733 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25429733 | ||
|full-text-url=https://sci-hub.do/10.1002/ijc.29361 | |full-text-url=https://sci-hub.do/10.1002/ijc.29361 | ||
}} | }} | ||
==RRM1== | ==RRM1== | ||
Строка 5579: | Строка 6163: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342491 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342491 | ||
}} | }} | ||
== | ==RXRG== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Genetic variations, reproductive aging, and breast cancer risk in African American and European American women: The Women's Circle of Health Study. | ||
|date= | |date=2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29073238 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5658184 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title=Genome | |title=Genome wide association study of age at menarche in the Japanese population. | ||
|date= | |date=2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23667675 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646805 | ||
}} | }} | ||
==S100A12== | ==S100A12== | ||
Строка 5607: | Строка 6191: | ||
|full-text-url=https://sci-hub.do/10.2460/javma.246.1.91 | |full-text-url=https://sci-hub.do/10.2460/javma.246.1.91 | ||
}} | }} | ||
== | ==S100A6== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Sex differences in distribution of cannabinoid receptors (CB1 and CB2), [[S100A6]] and CacyBP/SIP in human ageing hearts. | ||
|date= | |date=27.11.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30482253 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6258148 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[[S100A6]] (calcyclin) is a novel marker of neural stem cells and astrocyte precursors in the subgranular zone of the adult mouse hippocampus. | ||
|date= | |date=01.2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24115312 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1002/hipo.22207 | ||
}} | }} | ||
==S1PR3== | ==S1PR3== | ||
Строка 5705: | Строка 6289: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4177904 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4177904 | ||
}} | }} | ||
== | ==SCO2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients. | ||
|date= | |date=03.09.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31560770 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1167/iovs.19-27921 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title=Metabolism and successful aging: Polymorphic variation of syndecan-4 ([[SDC4]]) gene associate with longevity and lipid profile in healthy elderly Italian subjects. | |title=Role of SCOX in determination of Drosophila melanogaster lifespan. | ||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25057436 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4106651 | |||
}} | |||
==SDC4== | |||
* {{medline-title | |||
|title=Alterations in Corneal Sensory Nerves During Homeostasis, Aging, and After Injury in Mice Lacking the Heparan Sulfate Proteoglycan Syndecan-1. | |||
|date=01.10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28973369 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627677 | |||
}} | |||
* {{medline-title | |||
|title=Metabolism and successful aging: Polymorphic variation of syndecan-4 ([[SDC4]]) gene associate with longevity and lipid profile in healthy elderly Italian subjects. | |||
|date=09.2015 | |date=09.2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26254886 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26254886 | ||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2015.08.003 | |full-text-url=https://sci-hub.do/10.1016/j.mad.2015.08.003 | ||
}} | }} | ||
== | ==SDHC== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Endogenous reactive oxygen species cause astrocyte defects and neuronal dysfunctions in the hippocampus: a new model for aging brain. | ||
|date=02. | |date=02.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27623715 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5242301 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Long-term prognosis of patients with pediatric pheochromocytoma. | ||
|date= | |date=02.2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24169644 | ||
|full-text-url=https://sci-hub.do/10.1530/ | |full-text-url=https://sci-hub.do/10.1530/ERC-13-0415 | ||
}} | }} | ||
== | ==SERPINB2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Elevated circulating HtrA4 in preeclampsia may alter endothelial expression of senescence genes. | ||
|date= | |date=15.01.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32056555 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.placenta.2019.12.012 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=An Endogenous Anti-aging Factor, Sonic Hedgehog, Suppresses Endometrial Stem Cell Aging through [[SERPINB2]]. | ||
|date= | |date=03.07.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31080015 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612665 | ||
}} | }} | ||
==SESN2== | ==SESN2== | ||
Строка 5774: | Строка 6372: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28430387 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28430387 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5650945 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5650945 | ||
}} | }} | ||
==SFRP2== | ==SFRP2== | ||
Строка 5803: | Строка 6387: | ||
|full-text-url=https://sci-hub.do/10.1007/s00441-016-2396-8 | |full-text-url=https://sci-hub.do/10.1007/s00441-016-2396-8 | ||
}} | }} | ||
== | ==SGK1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Epigenetic Regulation of [[KL]] (Klotho) via H3K27me3 (Histone 3 Lysine [K] 27 Trimethylation) in Renal Tubule Cells. | ||
|date= | |date=05.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32223380 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1161/HYPERTENSIONAHA.120.14642 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=The cell survival kinase [[SGK1]] and its targets FOXO3a and [[NDRG1]] in aged human brain. | ||
|date= | |date=10.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23363009 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1111/nan.12023 | ||
}} | }} | ||
==SIX3== | ==SIX3== | ||
Строка 5858: | Строка 6428: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26106407 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26106407 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4460575 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4460575 | ||
}} | |||
==SLC16A7== | |||
* {{medline-title | |||
|title=Genetics of facial telangiectasia in the Rotterdam Study: a genome-wide association study and candidate gene approach. | |||
|date=23.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33095951 | |||
|full-text-url=https://sci-hub.do/10.1111/jdv.17014 | |||
}} | |||
* {{medline-title | |||
|title=The SLC16 gene family - structure, role and regulation in health and disease. | |||
|date=04-06.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23506875 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mam.2012.05.003 | |||
}} | }} | ||
==SLC19A1== | ==SLC19A1== | ||
Строка 5901: | Строка 6485: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5673623 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5673623 | ||
}} | }} | ||
== | ==SLC26A2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Phenotypic characterization of Slc26a2 mutant mice reveals a multifactorial etiology of spondylolysis. | ||
|date= | |date=01.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31914611 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1096/fj.201901040RR | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Alteration of proteoglycan sulfation affects bone growth and remodeling. | ||
|date= | |date=05.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23369989 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3607217 | ||
}} | }} | ||
== | ==SLC2A4== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Permanent cystathionine-β-Synthase gene knockdown promotes inflammation and oxidative stress in immortalized human adipose-derived mesenchymal stem cells, enhancing their adipogenic capacity. | ||
|date= | |date=02.08.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32800520 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.redox.2020.101668 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title=Comprehensive Analysis of Interaction Networks of Telomerase Reverse Transcriptase with Multiple Bioinformatic Approaches: Deep Mining the Potential Functions of Telomere and Telomerase. | |title=Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats. | ||
|date=08.2017 | |date=02.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30661688 | |||
|full-text-url=https://sci-hub.do/10.1016/j.clnesp.2018.10.003 | |||
}} | |||
==SLC2A9== | |||
* {{medline-title | |||
|title=[[ABCG2]] rs2231142 variant in hyperuricemia is modified by [[SLC2A9]] and [[SLC22A12]] polymorphisms and cardiovascular risk factors in an elderly community-dwelling population. | |||
|date=17.03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32183743 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7077001 | |||
}} | |||
* {{medline-title | |||
|title=MicroRNA-Based Linkage between Aging and Cancer: from Epigenetics View Point. | |||
|date=07-09.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27540517 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4988411 | |||
}} | |||
==SLC6A3== | |||
* {{medline-title | |||
|title=A variable number of tandem repeats in the 3'-untranslated region of the dopamine transporter modulates striatal function during working memory updating across the adult age span. | |||
|date=08.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25997640 | |||
|full-text-url=https://sci-hub.do/10.1111/ejn.12956 | |||
}} | |||
* {{medline-title | |||
|title=Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25765287 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475460 | |||
}} | |||
==SLC7A11== | |||
* {{medline-title | |||
|title=[[SOCS1]] regulates senescence and ferroptosis by modulating the expression of p53 target genes. | |||
|date=28.10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29081404 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5680560 | |||
}} | |||
* {{medline-title | |||
|title=Comprehensive Analysis of Interaction Networks of Telomerase Reverse Transcriptase with Multiple Bioinformatic Approaches: Deep Mining the Potential Functions of Telomere and Telomerase. | |||
|date=08.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28281877 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28281877 | ||
|full-text-url=https://sci-hub.do/10.1089/rej.2016.1909 | |full-text-url=https://sci-hub.do/10.1089/rej.2016.1909 | ||
Строка 5946: | Строка 6572: | ||
* {{medline-title | * {{medline-title | ||
|title=TGFB1-Mediated Gliosis in Multiple Sclerosis Spinal Cords Is Favored by the Regionalized Expression of HOXA5 and the Age-Dependent Decline in Androgen Receptor Ligands. | |title=[[TGFB1]]-Mediated Gliosis in Multiple Sclerosis Spinal Cords Is Favored by the Regionalized Expression of [[HOXA5]] and the Age-Dependent Decline in Androgen Receptor Ligands. | ||
|date=26.11.2019 | |date=26.11.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31779094 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31779094 | ||
Строка 5970: | Строка 6596: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25107564 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25107564 | ||
|full-text-url=https://sci-hub.do/10.1016/j.anireprosci.2014.07.016 | |full-text-url=https://sci-hub.do/10.1016/j.anireprosci.2014.07.016 | ||
}} | |||
==SMARCA4== | |||
* {{medline-title | |||
|title=Attenuation of epigenetic regulator [[SMARCA4]] and ERK-ETS signaling suppresses aging-related dopaminergic degeneration. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32749068 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511865 | |||
}} | |||
* {{medline-title | |||
|title=GBM-associated mutations and altered protein expression are more common in young patients. | |||
|date=25.10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27579614 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342491 | |||
}} | }} | ||
==SMO== | ==SMO== | ||
Строка 5998: | Строка 6638: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26005834 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26005834 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449816 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449816 | ||
}} | |||
==SMPD1== | |||
* {{medline-title | |||
|title=Alterations in Lipid Profile of the Aging Kidney Identified by MALDI Imaging Mass Spectrometry. | |||
|date=05.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31244212 | |||
|full-text-url=https://sci-hub.do/10.1021/acs.jproteome.9b00108 | |||
}} | |||
* {{medline-title | |||
|title=Rare lysosomal enzyme gene [[SMPD1]] variant (p.R591C) associates with Parkinson's disease. | |||
|date=12.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23871123 | |||
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2013.06.010 | |||
}} | }} | ||
==SNCB== | ==SNCB== | ||
Строка 6040: | Строка 6694: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29154276 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29154276 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5934753 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5934753 | ||
}} | |||
==SPN== | |||
* {{medline-title | |||
|title=Parkinson's disease-related Leucine-rich repeat kinase 2 modulates nuclear morphology and genomic stability in striatal projection neurons during aging. | |||
|date=19.02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32075681 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031993 | |||
}} | |||
* {{medline-title | |||
|title=[Identification of single nucleotide polymorphisms in centenarians]. | |||
|date=05-06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26541311 | |||
|full-text-url=https://sci-hub.do/10.1016/j.regg.2015.09.006 | |||
}} | }} | ||
==SPON1== | ==SPON1== | ||
Строка 6054: | Строка 6722: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26923371 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26923371 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408358 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408358 | ||
}} | |||
==SREBF2== | |||
* {{medline-title | |||
|title=The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. | |||
|date=29.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32997995 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527782 | |||
}} | |||
* {{medline-title | |||
|title=White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy. | |||
|date=02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31691183 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035207 | |||
}} | }} | ||
==SRR== | ==SRR== | ||
Строка 6068: | Строка 6750: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29209239 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29209239 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702307 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702307 | ||
}} | }} | ||
==SSTR1== | ==SSTR1== | ||
Строка 6111: | Строка 6779: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4884931 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4884931 | ||
}} | }} | ||
==STAT5A== | ==STAR== | ||
* {{medline-title | |||
|title=Testicular gene expression of steroidogenesis-related factors in prepubertal, postpubertal, and aging dogs. | |||
|date=01.03.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28166986 | |||
|full-text-url=https://sci-hub.do/10.1016/j.theriogenology.2016.11.007 | |||
}} | |||
* {{medline-title | |||
|title=Role of the steroidogenic acute regulatory protein in health and disease. | |||
|date=01.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26271515 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4707056 | |||
}} | |||
==STAT4== | |||
* {{medline-title | |||
|title=Neonatal T Follicular Helper Cells Are Lodged in a Pre-T Follicular Helper Stage Favoring Innate Over Adaptive Germinal Center Responses. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31456798 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700230 | |||
}} | |||
* {{medline-title | |||
|title=RNA-Seq analysis reveals new evidence for inflammation-related changes in aged kidney. | |||
|date=24.05.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27153548 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5058662 | |||
}} | |||
==STAT5A== | |||
* {{medline-title | * {{medline-title | ||
Строка 6138: | Строка 6834: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27552481 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27552481 | ||
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2016.07.003 | |full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2016.07.003 | ||
}} | }} | ||
==SURF1== | ==SURF1== | ||
Строка 6166: | Строка 6848: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24911525 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24911525 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4145821 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4145821 | ||
}} | }} | ||
==SV2A== | ==SV2A== | ||
Строка 6194: | Строка 6862: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29713895 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29713895 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6129247 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6129247 | ||
}} | |||
==SYNC== | |||
* {{medline-title | |||
|title=Alpha-synuclein expression patterns in the colonic submucosal plexus of the aging Fischer 344 rat: implications for biopsies in aging and neurodegenerative disorders? | |||
|date=09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23809578 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3735646 | |||
}} | |||
* {{medline-title | |||
|title=Macrophages are unsuccessful in clearing aggregated alpha-synuclein from the gastrointestinal tract of healthy aged Fischer 344 rats. | |||
|date=04.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23441091 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3851024 | |||
}} | }} | ||
==SYNJ1== | ==SYNJ1== | ||
Строка 6209: | Строка 6891: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567 | ||
}} | }} | ||
== | ==TACR3== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Association of a neurokinin 3 receptor polymorphism with the anterior basal forebrain. | ||
|date=06.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25976010 | |||
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2014.12.031 | |||
|date= | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |||
|full-text-url=https://sci-hub.do/10.1016/j. | |||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Neurokinin3 receptor as a target to predict and improve learning and memory in the aged organism. | ||
|date=10.09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23983264 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773732 | |||
|date= | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |||
}} | }} | ||
==TAS2R16== | ==TAS2R16== | ||
Строка 6265: | Строка 6919: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387736 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387736 | ||
}} | }} | ||
== | ==TBC1D4== | ||
* {{medline-title | * {{medline-title | ||
|title=[[TBC1D5]]-Catalyzed Cycling of Rab7 Is Required for Retromer-Mediated Human Papillomavirus Trafficking during Virus Entry. | |title=Effects of Exercise Training on Regulation of Skeletal Muscle Glucose Metabolism in Elderly Men. | ||
|date=09.06.2020 | |date=07.2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25991826 | |||
|full-text-url=https://sci-hub.do/10.1093/gerona/glv012 | |||
}} | |||
* {{medline-title | |||
|title=AMPK and insulin action--responses to ageing and high fat diet. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23671593 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3645997 | |||
}} | |||
==TBC1D5== | |||
* {{medline-title | |||
|title=[[TBC1D5]]-Catalyzed Cycling of Rab7 Is Required for Retromer-Mediated Human Papillomavirus Trafficking during Virus Entry. | |||
|date=09.06.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32521275 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32521275 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7339955 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7339955 | ||
Строка 6279: | Строка 6947: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719456 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719456 | ||
}} | }} | ||
== | ==TBX21== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Association of Epigenetic Age and p16INK4a With Markers of T-Cell Composition in a Healthy Cohort. | ||
|date= | |date=13.11.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32361724 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662168 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title=[ | |title=[Study of gene expression of transcription factors T cells during aging]. | ||
|date= | |date=2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28509479 | ||
}} | }} | ||
==TCF7== | ==TCF7== | ||
Строка 6306: | Строка 6974: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26286994 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26286994 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541364 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541364 | ||
}} | }} | ||
==TDP1== | ==TDP1== | ||
Строка 6334: | Строка 6988: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25331878 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25331878 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226126 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226126 | ||
}} | |||
==TDRD7== | |||
* {{medline-title | |||
|title=Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice. | |||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31472347 | |||
|full-text-url=https://sci-hub.do/10.1016/j.chemosphere.2019.124650 | |||
}} | |||
* {{medline-title | |||
|title=RNA granule component [[TDRD7]] gene polymorphisms in a Han Chinese population with age-related cataract. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24435515 | |||
|full-text-url=https://sci-hub.do/10.1177/0300060513504702 | |||
}} | }} | ||
==TEAD1== | ==TEAD1== | ||
Строка 6348: | Строка 7016: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27720608 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27720608 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121000 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121000 | ||
}} | |||
==TEF== | |||
* {{medline-title | |||
|title=Expression of human HSP27 in yeast extends replicative lifespan and uncovers a hormetic response. | |||
|date=10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32189112 | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-020-09869-9 | |||
}} | |||
* {{medline-title | |||
|title=Relationship Between the Dose Administered, Target Tissue Dose, and Toxicity Level After Acute Oral Exposure to Bifenthrin and Tefluthrin in Young Adult Rats. | |||
|date=01.12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31573616 | |||
|full-text-url=https://sci-hub.do/10.1093/toxsci/kfz204 | |||
}} | |||
==TEN1== | |||
* {{medline-title | |||
|title=Stimulation of cell proliferation by glutathione monoethyl ester in aged bone marrow stromal cells is associated with the assistance of [[TERT]] gene expression and telomerase activity. | |||
|date=08.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27251157 | |||
|full-text-url=https://sci-hub.do/10.1007/s11626-016-0021-5 | |||
}} | |||
* {{medline-title | |||
|title=Functional characterization of human [[CTC1]] mutations reveals novel mechanisms responsible for the pathogenesis of the telomere disease Coats plus. | |||
|date=12.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23869908 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4083614 | |||
}} | }} | ||
==TERF1== | ==TERF1== | ||
Строка 6363: | Строка 7059: | ||
|full-text-url=https://sci-hub.do/10.1007/s10522-015-9551-6 | |full-text-url=https://sci-hub.do/10.1007/s10522-015-9551-6 | ||
}} | }} | ||
== | ==TERF2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. | ||
|date= | |date=05.03.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109421 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058826 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Endothelial senescence-associated secretory phenotype (SASP) is regulated by Makorin-1 ubiquitin E3 ligase. | ||
|date= | |date=11.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31476350 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059097 | ||
}} | }} | ||
== | ==TES== | ||
* {{medline-title | * {{medline-title | ||
|title=The | |title=The Effects of Electrical Stimulation Pulse Duration on Lingual Palatal Pressure Measures During Swallowing in Healthy Older Adults. | ||
|date=2019 | |date=08.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30820657 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456514 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Comparison of different extenders on the recovery and longevity of epididymal sperm from Spix's yellow-toothed cavies (Galea spixii Wagler, 1831). | ||
|date= | |date=04.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28245889 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1017/S0967199417000016 | ||
}} | }} | ||
== | ==TFRC== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Identification of reference genes for RT-qPCR data normalisation in aging studies. | ||
|date= | |date=27.09.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31562345 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764958 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[[SQSTM1]]/p62 and [[PPARGC1A]]/PGC-1alpha at the interface of autophagy and vascular senescence. | ||
|date= | |date=06.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31441382 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469683 | ||
}} | }} | ||
== | ==TGFBR2== | ||
* {{medline-title | * {{medline-title | ||
|title=Dexamethasone Induces a Specific Form of Ramified Dysfunctional Microglia. | |title=TGF-β type 2 receptor-mediated modulation of the IL-36 family can be therapeutically targeted in osteoarthritis. | ||
|date=02.2019 | |date=08.05.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29948944 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31068441 | ||
|full-text-url=https://sci-hub.do/10.1007/s12035-018-1156-z | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7102613 | ||
}} | |||
* {{medline-title | |||
|title=Serum levels of matrix metalloproteinases 2 and 9 and [[TGFBR2]] gene screening in patients with ascending aortic dilatation. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24093773 | |||
}} | |||
==TMEM119== | |||
* {{medline-title | |||
|title=Dexamethasone Induces a Specific Form of Ramified Dysfunctional Microglia. | |||
|date=02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29948944 | |||
|full-text-url=https://sci-hub.do/10.1007/s12035-018-1156-z | |||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
Строка 6419: | Строка 7129: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6057548 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6057548 | ||
}} | }} | ||
== | ==TMEM18== | ||
* {{medline-title | |||
|title=Sequence variation in [[TMEM18]] in association with body mass index: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. | |||
|date=06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24951660 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4135723 | |||
}} | |||
* {{medline-title | |||
|title=The influence of obesity-related single nucleotide polymorphisms on BMI across the life course: the PAGE study. | |||
|date=05.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23300277 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636619 | |||
}} | |||
==TNFSF10== | |||
* {{medline-title | |||
|title=Role of mitochondrial function in cell death and body metabolism. | |||
|date=01.06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27100503 | |||
|full-text-url=https://sci-hub.do/10.2741/4453 | |||
}} | |||
* {{medline-title | |||
|title=Sporadic colorectal cancer development shows rejuvenescence regarding epithelial proliferation and apoptosis. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24098334 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3789736 | |||
}} | |||
==TNNT1== | |||
* {{medline-title | |||
|title=Improved knee extensor strength with resistance training associates with muscle specific miRNAs in older adults. | |||
|date=02.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25560803 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314447 | |||
}} | |||
* {{medline-title | |||
|title=Human slow troponin T ([[TNNT1]]) pre-mRNA alternative splicing is an indicator of skeletal muscle response to resistance exercise in older adults. | |||
|date=12.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24368775 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4296115 | |||
}} | |||
==TNR== | |||
* {{medline-title | * {{medline-title | ||
|title= | |title=Estimation of effectiveness of three methods of feral cat population control by use of a simulation model. | ||
|date= | |date=15.08.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23902443 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.2460/javma.243.4.502 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=The extracellular matrix glycoprotein tenascin-R affects adult but not developmental neurogenesis in the olfactory bulb. | ||
|date= | |date=19.06.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23785146 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618594 | ||
}} | }} | ||
==TOMM20== | ==TOMM20== | ||
Строка 6460: | Строка 7212: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26748253 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26748253 | ||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2015.12.012 | |full-text-url=https://sci-hub.do/10.1016/j.exger.2015.12.012 | ||
}} | |||
==TOP2A== | |||
* {{medline-title | |||
|title=Proteomics of Long-Lived Mammals. | |||
|date=03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31737995 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7117992 | |||
}} | |||
* {{medline-title | |||
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335 | |||
}} | }} | ||
==TOX== | ==TOX== | ||
Строка 6470: | Строка 7236: | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Incidence rate of modifying or discontinuing first combined antiretroviral therapy regimen due to toxicity during the first year of treatment stratified by age. | ||
|date= | |date=01-02.2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24029435 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1016/j.bjid.2013.04.005 | ||
}} | }} | ||
== | ==TPX2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Targeting [[DTL]] induces cell cycle arrest and senescence and suppresses cell growth and colony formation through [[TPX2]] inhibition in human hepatocellular carcinoma cells. | ||
|date= | |date=2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29606879 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5868578 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. | ||
|date= | |date=2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |||
}} | }} | ||
==TREX1== | ==TREX1== | ||
Строка 6517: | Строка 7269: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5937905 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5937905 | ||
}} | }} | ||
== | ==TRIM21== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[[TRIM21]] overexpression promotes tumor progression by regulating cell proliferation, cell migration and cell senescence in human glioma. | ||
|date= | |date=2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32064156 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7017742 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[[PRMT5]]-[[TRIM21]] interaction regulates the senescence of osteosarcoma cells by targeting the [[TXNIP]]/p21 axis. | ||
|date= | |date=05.02.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32023548 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7041745 | ||
}} | }} | ||
==TRIM28== | ==TRIM28== | ||
Строка 6674: | Строка 7426: | ||
* {{medline-title | * {{medline-title | ||
|title=LncRNA [[TTN]]-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/MBTD1 axis. | |title=LncRNA [[TTN]]-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/[[MBTD1]] axis. | ||
|date=10.10.2019 | |date=10.10.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31600142 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31600142 | ||
Строка 6685: | Строка 7437: | ||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | ||
}} | }} | ||
== | ==UBB== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Different Expression Levels of Human Mutant Ubiquitin B ([[UBB]] ) Can Modify Chronological Lifespan or Stress Resistance of [i]Saccharomyces cerevisiae[/i]. | ||
|date= | |date=2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29950972 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008557 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Modeling non-hereditary mechanisms of Alzheimer disease during apoptosis in yeast. | ||
|date=03. | |date=20.03.2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28357285 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5348975 | ||
}} | }} | ||
==UGT1A1== | |||
==UGT1A1== | |||
* {{medline-title | * {{medline-title | ||
Строка 6783: | Строка 7507: | ||
|full-text-url=https://sci-hub.do/10.1016/j.mrfmmm.2015.01.001 | |full-text-url=https://sci-hub.do/10.1016/j.mrfmmm.2015.01.001 | ||
}} | }} | ||
== | ==USP10== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=The GID ubiquitin ligase complex is a regulator of AMPK activity and organismal lifespan. | ||
|date= | |date=09.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31795790 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1080/15548627.2019.1695399 | ||
}} | |||
* {{medline-title | |||
|title=Long noncoding RNA H19 mediates melatonin inhibition of premature senescence of c-kit( ) cardiac progenitor cells by promoting miR-675. | |||
|date=08.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27062045 | |||
|full-text-url=https://sci-hub.do/10.1111/jpi.12331 | |||
}} | |||
==USP14== | |||
* {{medline-title | |||
|title=Low expression of aging-related [[[[NRXN3]]]] is associated with Alzheimer disease: A systematic review and meta-analysis. | |||
|date=07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29995770 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076205 | |||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Compensatory increase in [[USP14]] activity accompanies impaired proteasomal proteolysis during aging. | ||
|date= | |date=01-02.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23291607 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3558606 | ||
}} | }} | ||
==VASH1== | ==VASH1== | ||
Строка 6838: | Строка 7576: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30622695 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30622695 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317223 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317223 | ||
}} | }} | ||
==VGF== | ==VGF== | ||
Строка 6895: | Строка 7619: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121000 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121000 | ||
}} | }} | ||
== | ==VIPR2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. | ||
|date= | |date=15.11.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Chromatin remodeling of human subtelomeres and TERRA promoters upon cellular senescence: commonalities and differences between chromosomes. | ||
|date= | |date=05.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23644601 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3741221 | ||
}} | }} | ||
==VPS29== | ==VPS29== | ||
Строка 6992: | Строка 7716: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30403914 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30403914 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526875 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526875 | ||
}} | }} | ||
==WWP1== | ==WWP1== | ||
Строка 7035: | Строка 7731: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5401563 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5401563 | ||
}} | }} | ||
== | ==YY1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Distinct Age-Related Epigenetic Signatures in [[CD4]] and CD8 T Cells. | ||
|date= | |date=2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33262764 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7686576 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Low mitochondrial DNA content associates with familial longevity: the Leiden Longevity Study. | ||
|date=06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24554339 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082602 | |||
|date= | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |||
}} | }} | ||
==ZC3H12A== | ==ZC3H12A== | ||
Строка 7104: | Строка 7772: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30479019 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30479019 | ||
|full-text-url=https://sci-hub.do/10.1002/jcp.27521 | |full-text-url=https://sci-hub.do/10.1002/jcp.27521 | ||
}} | |||
==ZFX== | |||
* {{medline-title | |||
|title=[[ZFX]] knockdown inhibits growth and migration of non-small cell lung carcinoma cell line H1299. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24228108 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816815 | |||
}} | |||
* {{medline-title | |||
|title=[[ZFX]] regulates glioma cell proliferation and survival in vitro and in vivo. | |||
|date=03.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23322077 | |||
|full-text-url=https://sci-hub.do/10.1007/s11060-012-1032-z | |||
}} | }} | ||
==ZNF521== | ==ZNF521== | ||
Строка 7118: | Строка 7800: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26008984 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26008984 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4558122 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4558122 | ||
}} | |||
==ZP2== | |||
* {{medline-title | |||
|title=Coenzyme Q10 ameliorates the quality of postovulatory aged oocytes by suppressing DNA damage and apoptosis. | |||
|date=01.11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31398498 | |||
|full-text-url=https://sci-hub.do/10.1016/j.freeradbiomed.2019.08.002 | |||
}} | |||
* {{medline-title | |||
|title=Melatonin improves the fertilization ability of post-ovulatory aged mouse oocytes by stabilizing ovastacin and Juno to promote sperm binding and fusion. | |||
|date=01.03.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28137755 | |||
|full-text-url=https://sci-hub.do/10.1093/humrep/dew362 | |||
}} | }} | ||
==ZSCAN10== | ==ZSCAN10== | ||
Строка 7148: | Строка 7844: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27103634 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27103634 | ||
|full-text-url=https://sci-hub.do/10.1124/dmd.115.068577 | |full-text-url=https://sci-hub.do/10.1124/dmd.115.068577 | ||
}} | |||
==ABCC8== | |||
* {{medline-title | |||
|title=A mouse model of human hyperinsulinism produced by the E1506K mutation in the sulphonylurea receptor SUR1. | |||
|date=11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23903354 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3806602 | |||
}} | }} | ||
==ABCE1== | ==ABCE1== | ||
Строка 7156: | Строка 7860: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30485811 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30485811 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6354779 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6354779 | ||
}} | }} | ||
==ABHD12== | ==ABHD12== | ||
Строка 7204: | Строка 7892: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29529016 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29529016 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5893385 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5893385 | ||
}} | |||
==ABRA== | |||
* {{medline-title | |||
|title=[[LMX1B]] is essential for the maintenance of differentiated podocytes in adult kidneys. | |||
|date=11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23990680 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810075 | |||
}} | }} | ||
==ACAA2== | ==ACAA2== | ||
Строка 7229: | Строка 7925: | ||
|full-text-url=https://sci-hub.do/10.1016/j.jfma.2017.08.008 | |full-text-url=https://sci-hub.do/10.1016/j.jfma.2017.08.008 | ||
}} | }} | ||
== | ==ACER2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Alkaline ceramidase family: The first two decades. | ||
|date= | |date=01.12.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33271224 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.cellsig.2020.109860 | ||
}} | }} | ||
==ACKR2== | ==ACKR2== | ||
Строка 7252: | Строка 7948: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30356218 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30356218 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448761 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448761 | ||
}} | |||
==ACO2== | |||
* {{medline-title | |||
|title=Thioredoxin protects mitochondrial structure, function and biogenesis in myocardial ischemia-reperfusion via redox-dependent activation of AKT-CREB- PGC1α pathway in aged mice. | |||
|date=13.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33049718 | |||
|full-text-url=https://sci-hub.do/10.18632/aging.104071 | |||
}} | }} | ||
==ACP2== | ==ACP2== | ||
Строка 7260: | Строка 7964: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24951664 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24951664 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066205 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066205 | ||
}} | |||
==ACSL1== | |||
* {{medline-title | |||
|title=The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32729662 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511879 | |||
}} | }} | ||
==ACSL5== | ==ACSL5== | ||
Строка 7309: | Строка 8021: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136502 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136502 | ||
}} | }} | ||
== | ==ADAM22== | ||
* {{medline-title | * {{medline-title | ||
|title=Increased [[ADAMTS1]] mediates [[SPARC]]-dependent collagen deposition in the aging myocardium. | |title=Expression of NgR1-antagonizing proteins decreases with aging and cognitive decline in rat hippocampus. | ||
|date=05.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23525710 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651369 | |||
}} | |||
==ADAM9== | |||
* {{medline-title | |||
|title=[The effect of PNS on the content and activity of alpha-secretase in the brains of SAMP8 mice with alzheimer's disease]. | |||
|date=11.2012 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23627094 | |||
}} | |||
==ADAMTS1== | |||
* {{medline-title | |||
|title=Increased [[ADAMTS1]] mediates [[SPARC]]-dependent collagen deposition in the aging myocardium. | |||
|date=01.06.2016 | |date=01.06.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27143554 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27143554 | ||
Строка 7340: | Строка 8068: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28728848 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28728848 | ||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2017.07.094 | |full-text-url=https://sci-hub.do/10.1016/j.bbrc.2017.07.094 | ||
}} | |||
==ADAMTS7== | |||
* {{medline-title | |||
|title=Identification of cardiovascular health gene variants related to longevity in a Chinese population. | |||
|date=07.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32897244 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521493 | |||
}} | }} | ||
==ADAR== | ==ADAR== | ||
Строка 7412: | Строка 8148: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31386624 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31386624 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710058 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710058 | ||
}} | }} | ||
==AGO1== | ==AGO1== | ||
Строка 7464: | Строка 8192: | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. | ||
|date= | |date=2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31733664 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939615 | ||
}} | }} | ||
==AKAP11== | ==AKAP11== | ||
Строка 7532: | Строка 8260: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24597284 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24597284 | ||
}} | }} | ||
==ALAD== | ==ALAD== | ||
Строка 7565: | Строка 8285: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4757025 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4757025 | ||
}} | }} | ||
== | ==ALCAM== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Zebrafish brain RNA sequencing reveals that cell adhesion molecules are critical in brain aging. | ||
|date= | |date=10.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32629311 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2020.04.017 | ||
}} | }} | ||
==ALDH1L1== | ==ALDH1L1== | ||
Строка 7589: | Строка 8309: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382415 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382415 | ||
}} | }} | ||
== | ==ALDH4A1== | ||
* {{medline-title | * {{medline-title | ||
|title=An | |title=An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. | ||
|date= | |date=12.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31531781 | ||
|full-text-url=https://sci-hub.do/10.1007/ | |full-text-url=https://sci-hub.do/10.1007/s00425-019-03272-6 | ||
}} | }} | ||
==ALKBH1== | ==ALKBH1== | ||
Строка 7621: | Строка 8341: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242692 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242692 | ||
}} | }} | ||
== | ==ALOX15B== | ||
* {{medline-title | |||
|title=Monocytes present age-related changes in phospholipid concentration and decreased energy metabolism. | |||
|date=04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32107839 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189998 | |||
}} | |||
==ALPL== | |||
* {{medline-title | * {{medline-title | ||
|title= | |title=Physiological blood-brain transport is impaired with age by a shift in transcytosis. | ||
|date= | |date=07.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32612231 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1038/s41586-020-2453-z | ||
}} | }} | ||
==ALS2== | ==ALS2== | ||
Строка 7636: | Строка 8364: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24702731 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24702731 | ||
|full-text-url=https://sci-hub.do/10.1111/gtc.12146 | |full-text-url=https://sci-hub.do/10.1111/gtc.12146 | ||
}} | |||
==ALX4== | |||
* {{medline-title | |||
|title=Age-associated genes in human mammary gland drive human breast cancer progression. | |||
|date=15.06.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32539762 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7294649 | |||
}} | }} | ||
==AMBRA1== | ==AMBRA1== | ||
Строка 7652: | Строка 8388: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31247458 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31247458 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6732241 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6732241 | ||
}} | }} | ||
==ANGPT1== | ==ANGPT1== | ||
Строка 7724: | Строка 8452: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30373163 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30373163 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274848 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274848 | ||
}} | |||
==ANXA2== | |||
* {{medline-title | |||
|title=Quantitative proteomic profiling of tumor cell response to telomere dysfunction using isotope-coded protein labeling (ICPL) reveals interaction network of candidate senescence markers. | |||
|date=08.10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23969227 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jprot.2013.08.007 | |||
}} | |||
==AOC1== | |||
* {{medline-title | |||
|title=Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence. | |||
|date=12.09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24028154 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847160 | |||
}} | }} | ||
==AOX1== | ==AOX1== | ||
Строка 7748: | Строка 8492: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26194614 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26194614 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4625986 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4625986 | ||
}} | |||
==APLN== | |||
* {{medline-title | |||
|title=Relationship of age and body mass index to the expression of obesity and osteoarthritis-related genes in human meniscus. | |||
|date=09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23318714 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3751987 | |||
}} | }} | ||
==APLNR== | ==APLNR== | ||
Строка 7789: | Строка 8541: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4527288 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4527288 | ||
}} | }} | ||
== | ==APOH== | ||
* {{medline-title | * {{medline-title | ||
|title=Genome-wide significant results identified for plasma apolipoprotein H levels in middle-aged and older adults. | |||
|date=31.03.2016 | |||
|title=Genome-wide significant results identified for plasma apolipoprotein H levels in middle-aged and older adults. | |||
|date=31.03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27030319 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27030319 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814826 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814826 | ||
Строка 7812: | Строка 8556: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31539648 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31539648 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960343 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960343 | ||
}} | }} | ||
==AQP9== | ==AQP9== | ||
Строка 7868: | Строка 8604: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29044508 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29044508 | ||
|full-text-url=https://sci-hub.do/10.1002/jcp.26227 | |full-text-url=https://sci-hub.do/10.1002/jcp.26227 | ||
}} | |||
==ARID5B== | |||
* {{medline-title | |||
|title=Monocytes present age-related changes in phospholipid concentration and decreased energy metabolism. | |||
|date=04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32107839 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189998 | |||
}} | }} | ||
==ARIH2== | ==ARIH2== | ||
Строка 7885: | Строка 8629: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6381253 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6381253 | ||
}} | }} | ||
== | ==ARL4C== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[[LMX1B]] is essential for the maintenance of differentiated podocytes in adult kidneys. | ||
|date= | |date=11.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23990680 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810075 | ||
}} | }} | ||
==ARNTL2== | ==ARNTL2== | ||
Строка 7932: | Строка 8676: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33251222 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33251222 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7674779 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7674779 | ||
}} | |||
==ASF1A== | |||
* {{medline-title | |||
|title=Meta-analysis on blood transcriptomic studies identifies consistently coexpressed protein-protein interaction modules as robust markers of human aging. | |||
|date=04.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24119000 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331790 | |||
}} | |||
==ASIC2== | |||
* {{medline-title | |||
|title=Acidotoxicity and acid-sensing ion channels contribute to motoneuron degeneration. | |||
|date=04.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23306556 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3595486 | |||
}} | }} | ||
==ASIP== | ==ASIP== | ||
Строка 8013: | Строка 8773: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5147016 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5147016 | ||
}} | }} | ||
== | ==ATP13A2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Atp13a2-deficient mice exhibit neuronal ceroid lipofuscinosis, limited α-synuclein accumulation and age-dependent sensorimotor deficits. | ||
|date= | |date=15.05.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23393156 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633373 | ||
}} | }} | ||
==ATP1A3== | ==ATP1A3== | ||
Строка 8052: | Строка 8812: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28346404 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28346404 | ||
|full-text-url=https://sci-hub.do/10.1038/nchembio.2342 | |full-text-url=https://sci-hub.do/10.1038/nchembio.2342 | ||
}} | |||
==ATP7B== | |||
* {{medline-title | |||
|title=[Copper intoxication decreases lifespan and induces neurologic alterations in Drosophila melanogaster]. | |||
|date=03.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23781712 | |||
}} | }} | ||
==ATXN1== | ==ATXN1== | ||
Строка 8061: | Строка 8829: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974201 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974201 | ||
}} | }} | ||
== | ==AURKB== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Aurora kinase mRNA expression is reduced with increasing gestational age and in severe early onset fetal growth restriction. | ||
|date= | |date=06.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32452402 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.placenta.2020.04.012 | ||
}} | }} | ||
== | ==AURKC== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Aurora kinase mRNA expression is reduced with increasing gestational age and in severe early onset fetal growth restriction. | ||
|date= | |date=06.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32452402 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.placenta.2020.04.012 | ||
}} | }} | ||
==AVPR1A== | ==AVPR1A== | ||
Строка 8092: | Строка 8860: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26625814 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26625814 | ||
|full-text-url=https://sci-hub.do/10.7314/apjcp.2015.16.17.7875 | |full-text-url=https://sci-hub.do/10.7314/apjcp.2015.16.17.7875 | ||
}} | |||
==BAAT== | |||
* {{medline-title | |||
|title=Prevalence and associated metabolic factors of fatty liver disease in the elderly. | |||
|date=08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23721951 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2013.05.059 | |||
}} | }} | ||
==BACE2== | ==BACE2== | ||
Строка 8100: | Строка 8876: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24530026 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24530026 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4205206 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4205206 | ||
}} | }} | ||
==BAG2== | ==BAG2== | ||
Строка 8116: | Строка 8884: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28042827 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28042827 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5297704 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5297704 | ||
}} | |||
==BAG5== | |||
* {{medline-title | |||
|title=miR-155 inhibits mitophagy through suppression of [[BAG5]], a partner protein of [[PINK1]]. | |||
|date=12.03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31948758 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2020.01.022 | |||
}} | }} | ||
==BAP1== | ==BAP1== | ||
Строка 8140: | Строка 8916: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32103178 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32103178 | ||
|full-text-url=https://sci-hub.do/10.1038/s41586-020-2037-y | |full-text-url=https://sci-hub.do/10.1038/s41586-020-2037-y | ||
}} | |||
==BBC3== | |||
* {{medline-title | |||
|title=The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. | |||
|date=29.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32997995 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527782 | |||
}} | }} | ||
==BBS5== | ==BBS5== | ||
Строка 8156: | Строка 8940: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30760648 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30760648 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382415 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382415 | ||
}} | }} | ||
==BCL2L11== | ==BCL2L11== | ||
Строка 8205: | Строка 8981: | ||
|full-text-url=https://sci-hub.do/10.12659/aot.898007 | |full-text-url=https://sci-hub.do/10.12659/aot.898007 | ||
}} | }} | ||
== | ==BIRC5== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. | ||
|date= | |date=2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335 | ||
}} | |||
==BLVRA== | |||
* {{medline-title | |||
|title=Attenuation of epigenetic regulator [[SMARCA4]] and ERK-ETS signaling suppresses aging-related dopaminergic degeneration. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32749068 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511865 | |||
}} | }} | ||
==BMP5== | ==BMP5== | ||
Строка 8221: | Строка 9005: | ||
|full-text-url=https://sci-hub.do/10.1016/j.neuroscience.2014.07.057 | |full-text-url=https://sci-hub.do/10.1016/j.neuroscience.2014.07.057 | ||
}} | }} | ||
==BNC1== | |||
==BNC1== | |||
* {{medline-title | * {{medline-title | ||
Строка 8285: | Строка 9061: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3928644 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3928644 | ||
}} | }} | ||
== | ==BSG== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients. | ||
|date= | |date=03.09.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31560770 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1167/iovs.19-27921 | ||
}} | }} | ||
==BTG3== | ==BTG3== | ||
Строка 8356: | Строка 9132: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24496748 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24496748 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209016 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209016 | ||
}} | |||
==CA10== | |||
* {{medline-title | |||
|title=Genome wide association study of age at menarche in the Japanese population. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23667675 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646805 | |||
}} | }} | ||
==CABLES1== | ==CABLES1== | ||
Строка 8372: | Строка 9156: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31254144 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31254144 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733812 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733812 | ||
}} | }} | ||
==CACNA1F== | ==CACNA1F== | ||
Строка 8421: | Строка 9197: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4542651 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4542651 | ||
}} | }} | ||
== | ==CAMK2A== | ||
* {{medline-title | |||
|title=Nodes and biological processes identified on the basis of network analysis in the brain of the senescence accelerated mice as an Alzheimer's disease animal model. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24194717 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810591 | |||
}} | |||
==CAMKK2== | |||
* {{medline-title | * {{medline-title | ||
|title= | |title=The GID ubiquitin ligase complex is a regulator of AMPK activity and organismal lifespan. | ||
|date= | |date=09.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31795790 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1080/15548627.2019.1695399 | ||
}} | }} | ||
==CAMP== | ==CAMP== | ||
Строка 8444: | Строка 9228: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30210331 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30210331 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6119720 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6119720 | ||
}} | |||
==CAP1== | |||
* {{medline-title | |||
|title=Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31733664 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939615 | |||
}} | }} | ||
==CAP2== | ==CAP2== | ||
Строка 8477: | Строка 9269: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4560317 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4560317 | ||
}} | }} | ||
== | ==CARMIL1== | ||
* {{medline-title | |||
|title=Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. | |||
|date=05.03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109421 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058826 | |||
}} | |||
==CASP2== | |||
* {{medline-title | * {{medline-title | ||
|title= | |title=Dual role of the caspase enzymes in satellite cells from aged and young subjects. | ||
|date= | |date=12.12.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24336075 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877545 | ||
}} | }} | ||
==CASP5== | ==CASP5== | ||
Строка 8493: | Строка 9293: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596365 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596365 | ||
}} | }} | ||
== | ==CASP6== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Dual role of the caspase enzymes in satellite cells from aged and young subjects. | ||
|date= | |date=12.12.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24336075 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877545 | ||
}} | }} | ||
== | ==CASP9== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Dual role of the caspase enzymes in satellite cells from aged and young subjects. | ||
|date= | |date=12.12.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24336075 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877545 | ||
}} | }} | ||
== | ==CBR1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Age-related changes in hepatic activity and expression of detoxification enzymes in male rats. | ||
|date= | |date=2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23971034 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736498 | ||
}} | }} | ||
==CBSL== | ==CBSL== | ||
Строка 8525: | Строка 9325: | ||
|full-text-url=https://sci-hub.do/10.1111/jgs.14968 | |full-text-url=https://sci-hub.do/10.1111/jgs.14968 | ||
}} | }} | ||
== | ==CBX1== | ||
* {{medline-title | * {{medline-title | ||
Строка 8533: | Строка 9333: | ||
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659 | |full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659 | ||
}} | }} | ||
== | ==CBX2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. | ||
|date= | |date=24.09.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540 | ||
|full-text-url=https://sci-hub.do/10.1016/j. | |full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659 | ||
}} | |||
==CBX3== | |||
* {{medline-title | |||
|title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. | |||
|date=24.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659 | |||
}} | }} | ||
==CBX5== | ==CBX5== | ||
Строка 8548: | Строка 9356: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28100769 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28100769 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5339756 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5339756 | ||
}} | |||
==CBX6== | |||
* {{medline-title | |||
|title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. | |||
|date=24.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659 | |||
}} | }} | ||
==CCAR2== | ==CCAR2== | ||
Строка 8580: | Строка 9396: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24951662 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24951662 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112104 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112104 | ||
}} | |||
==CCDC85A== | |||
* {{medline-title | |||
|title=Genome wide association study of age at menarche in the Japanese population. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23667675 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646805 | |||
}} | }} | ||
==CCDC88A== | ==CCDC88A== | ||
Строка 8588: | Строка 9412: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29196338 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29196338 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795392 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795392 | ||
}} | }} | ||
==CCL18== | ==CCL18== | ||
Строка 8604: | Строка 9420: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30685456 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30685456 | ||
|full-text-url=https://sci-hub.do/10.1016/j.jaci.2019.01.015 | |full-text-url=https://sci-hub.do/10.1016/j.jaci.2019.01.015 | ||
}} | |||
==CCL23== | |||
* {{medline-title | |||
|title=Systemic Inflammation and the Increased Risk of Inflamm-Aging and Age-Associated Diseases in People Living With HIV on Long Term Suppressive Antiretroviral Therapy. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31507593 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718454 | |||
}} | |||
==CCL25== | |||
* {{medline-title | |||
|title=Age-related chemokine alterations affect IgA secretion and gut immunity in female mice. | |||
|date=10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32277312 | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-020-09877-9 | |||
}} | }} | ||
==CCL26== | ==CCL26== | ||
Строка 8620: | Строка 9452: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32277312 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32277312 | ||
|full-text-url=https://sci-hub.do/10.1007/s10522-020-09877-9 | |full-text-url=https://sci-hub.do/10.1007/s10522-020-09877-9 | ||
}} | }} | ||
==CCL8== | ==CCL8== | ||
Строка 8644: | Строка 9468: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25966944 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25966944 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4640319 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4640319 | ||
}} | |||
==CCN4== | |||
* {{medline-title | |||
|title=CCN proteins as potential actionable targets in scleroderma. | |||
|date=01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30329180 | |||
|full-text-url=https://sci-hub.do/10.1111/exd.13806 | |||
}} | }} | ||
==CCNA1== | ==CCNA1== | ||
Строка 8652: | Строка 9484: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28920919 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28920919 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617654 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617654 | ||
}} | |||
==CCNB2== | |||
* {{medline-title | |||
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335 | |||
}} | }} | ||
==CCND2== | ==CCND2== | ||
Строка 8668: | Строка 9508: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32727592 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32727592 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392710 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392710 | ||
}} | |||
==CCNE1== | |||
* {{medline-title | |||
|title=Hepatoprotective effects of hydroxysafflor yellow A in D-galactose-treated aging mice. | |||
|date=15.08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32454116 | |||
|full-text-url=https://sci-hub.do/10.1016/j.ejphar.2020.173214 | |||
}} | |||
==CCNE2== | |||
* {{medline-title | |||
|title=Circular RNA CircCCNB1 sponges micro RNA-449a to inhibit cellular senescence by targeting [[CCNE2]]. | |||
|date=25.11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31767812 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6914408 | |||
}} | |||
==CCNI== | |||
* {{medline-title | |||
|title=Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. | |||
|date=15.08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23707792 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mce.2013.05.003 | |||
}} | |||
==CCNI2== | |||
* {{medline-title | |||
|title=Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. | |||
|date=15.08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23707792 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mce.2013.05.003 | |||
}} | }} | ||
==CCR1== | ==CCR1== | ||
Строка 8701: | Строка 9573: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133698 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133698 | ||
}} | }} | ||
== | ==CD207== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Neurogenic factor-induced Langerhans cell activation in diabetic mice with mechanical allodynia. | ||
|date= | |date=14.05.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23672639 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685572 | ||
}} | }} | ||
==CD226== | ==CD226== | ||
Строка 8716: | Строка 9588: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29349889 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29349889 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5847879 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5847879 | ||
}} | |||
==CD244== | |||
* {{medline-title | |||
|title=Association of Epigenetic Age and p16INK4a With Markers of T-Cell Composition in a Healthy Cohort. | |||
|date=13.11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32361724 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662168 | |||
}} | }} | ||
==CD3G== | ==CD3G== | ||
Строка 8781: | Строка 9661: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4801471 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4801471 | ||
}} | }} | ||
== | ==CD8A== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Systemic Inflammation and the Increased Risk of Inflamm-Aging and Age-Associated Diseases in People Living With HIV on Long Term Suppressive Antiretroviral Therapy. | ||
|date= | |date=2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31507593 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718454 | ||
}} | }} | ||
==CDC6== | ==CD8B== | ||
* {{medline-title | |||
|title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. | |||
|date=31.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708 | |||
}} | |||
==CDC20== | |||
* {{medline-title | |||
|title=Premature aging syndrome showing random chromosome number instabilities with [[CDC20]] mutation. | |||
|date=11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33094908 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7681047 | |||
}} | |||
==CDC5L== | |||
* {{medline-title | |||
|title=Comparative transcriptome analysis of Parkinson's disease and Hutchinson-Gilford progeria syndrome reveals shared susceptible cellular network processes. | |||
|date=18.08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32811487 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7437934 | |||
}} | |||
==CDC6== | |||
* {{medline-title | * {{medline-title | ||
Строка 8796: | Строка 9700: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29321003 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29321003 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763532 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763532 | ||
}} | |||
==CDC7== | |||
* {{medline-title | |||
|title=CHO cell culture longevity and recombinant protein yield are enhanced by depletion of miR-7 activity via sponge decoy vectors. | |||
|date=03.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24166820 | |||
|full-text-url=https://sci-hub.do/10.1002/biot.201300325 | |||
}} | }} | ||
==CDC73== | ==CDC73== | ||
Строка 8812: | Строка 9724: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28487093 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28487093 | ||
|full-text-url=https://sci-hub.do/10.1016/j.jtho.2017.04.018 | |full-text-url=https://sci-hub.do/10.1016/j.jtho.2017.04.018 | ||
}} | |||
==CDCA4== | |||
* {{medline-title | |||
|title=A multidimensional systems biology analysis of cellular senescence in aging and disease. | |||
|date=07.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264951 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333371 | |||
}} | }} | ||
==CDH2== | ==CDH2== | ||
Строка 8820: | Строка 9740: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30102368 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30102368 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6265269 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6265269 | ||
}} | |||
==CDH23== | |||
* {{medline-title | |||
|title=Compound heterozygosity of the functionally null Cdh23(v-ngt) and hypomorphic Cdh23(ahl) alleles leads to early-onset progressive hearing loss in mice. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24172198 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4160959 | |||
}} | |||
==CDK16== | |||
* {{medline-title | |||
|title=Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. | |||
|date=15.08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23707792 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mce.2013.05.003 | |||
}} | |||
==CDK18== | |||
* {{medline-title | |||
|title=Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. | |||
|date=15.08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23707792 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mce.2013.05.003 | |||
}} | |||
==CDK3== | |||
* {{medline-title | |||
|title=Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. | |||
|date=15.08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23707792 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mce.2013.05.003 | |||
}} | |||
==CDK8== | |||
* {{medline-title | |||
|title=Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. | |||
|date=15.08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23707792 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mce.2013.05.003 | |||
}} | |||
==CDK9== | |||
* {{medline-title | |||
|title=Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. | |||
|date=15.08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23707792 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mce.2013.05.003 | |||
}} | |||
==CDKN2C== | |||
* {{medline-title | |||
|title=Elevated circulating HtrA4 in preeclampsia may alter endothelial expression of senescence genes. | |||
|date=15.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32056555 | |||
|full-text-url=https://sci-hub.do/10.1016/j.placenta.2019.12.012 | |||
}} | }} | ||
==CDO1== | ==CDO1== | ||
Строка 8836: | Строка 9812: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28459000 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28459000 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5397580 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5397580 | ||
}} | |||
==CEACAM1== | |||
* {{medline-title | |||
|title=Aging-related carcinoembryonic antigen-related cell adhesion molecule 1 signaling promotes vascular dysfunction. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31389127 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826129 | |||
}} | |||
==CEBPA== | |||
* {{medline-title | |||
|title=Permanent cystathionine-β-Synthase gene knockdown promotes inflammation and oxidative stress in immortalized human adipose-derived mesenchymal stem cells, enhancing their adipogenic capacity. | |||
|date=02.08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32800520 | |||
|full-text-url=https://sci-hub.do/10.1016/j.redox.2020.101668 | |||
}} | }} | ||
==CEBPD== | ==CEBPD== | ||
Строка 8844: | Строка 9836: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31254144 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31254144 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733812 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733812 | ||
}} | |||
==CEBPE== | |||
* {{medline-title | |||
|title=Identification and genomic analysis of pedigrees with exceptional longevity identifies candidate rare variants. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32574725 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7461696 | |||
}} | }} | ||
==CELSR2== | ==CELSR2== | ||
Строка 8852: | Строка 9852: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27329260 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27329260 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013013 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013013 | ||
}} | |||
==CEP55== | |||
* {{medline-title | |||
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335 | |||
}} | |||
==CEP57== | |||
* {{medline-title | |||
|title=BubR1 allelic effects drive phenotypic heterogeneity in mosaic-variegated aneuploidy progeria syndrome. | |||
|date=02.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31738183 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934189 | |||
}} | }} | ||
==CEP95== | ==CEP95== | ||
Строка 8861: | Строка 9877: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894567 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894567 | ||
}} | }} | ||
== | ==CERK== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=MicroRNA-34a causes ceramide accumulation and effects insulin signaling pathway by targeting ceramide kinase ([[CERK]]) in aging skeletal muscle. | ||
|date= | |date=06.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32056304 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1002/jcb.29312 | ||
}} | |||
==CFL2== | |||
* {{medline-title | |||
|title=Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31733664 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939615 | |||
}} | }} | ||
==CFLAR== | ==CFLAR== | ||
Строка 8885: | Строка 9909: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3994432 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3994432 | ||
}} | }} | ||
== | ==CHMP1B== | ||
* {{medline-title | * {{medline-title | ||
|title=Overexpression of [[CHMP7]] from rapeseed and Arabidopsis causes dwarfism and premature senescence in Arabidopsis. | |||
|title=Overexpression of [[CHMP7]] from rapeseed and Arabidopsis causes dwarfism and premature senescence in Arabidopsis. | |||
|date=01.10.2016 | |date=01.10.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27497741 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27497741 | ||
Строка 8924: | Строка 9924: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26912063 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26912063 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765225 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765225 | ||
}} | |||
==CHMP4C== | |||
* {{medline-title | |||
|title=Silencing of human papillomavirus (HPV) E6/E7 oncogene expression affects both the contents and the amounts of extracellular microvesicles released from HPV-positive cancer cells. | |||
|date=01.10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23526637 | |||
|full-text-url=https://sci-hub.do/10.1002/ijc.28164 | |||
}} | }} | ||
==CHMP7== | ==CHMP7== | ||
Строка 8940: | Строка 9948: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26955889 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26955889 | ||
|full-text-url=https://sci-hub.do/10.1089/ten.TEA.2015.0366 | |full-text-url=https://sci-hub.do/10.1089/ten.TEA.2015.0366 | ||
}} | |||
==CHRFAM7A== | |||
* {{medline-title | |||
|title=Acetylcholinesterase inhibitors targeting the cholinergic anti-inflammatory pathway: a new therapeutic perspective in aging-related disorders. | |||
|date=03.10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31583530 | |||
|full-text-url=https://sci-hub.do/10.1007/s40520-019-01359-4 | |||
}} | |||
==CHRM2== | |||
* {{medline-title | |||
|title=Aging-related changes in the gene expression profile of human lungs. | |||
|date=09.11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33168785 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695411 | |||
}} | }} | ||
==CHRM4== | ==CHRM4== | ||
Строка 8980: | Строка 10 004: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28100275 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28100275 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5241920 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5241920 | ||
}} | }} | ||
==CILP== | ==CILP== | ||
Строка 9012: | Строка 10 028: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30681437 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30681437 | ||
|full-text-url=https://sci-hub.do/10.1097/WAD.0000000000000294 | |full-text-url=https://sci-hub.do/10.1097/WAD.0000000000000294 | ||
}} | }} | ||
==CITED2== | ==CITED2== | ||
Строка 9036: | Строка 10 044: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29154038 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29154038 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5877805 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5877805 | ||
}} | |||
==CKAP2== | |||
* {{medline-title | |||
|title=A multidimensional systems biology analysis of cellular senescence in aging and disease. | |||
|date=07.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264951 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333371 | |||
}} | }} | ||
==CLCN6== | ==CLCN6== | ||
Строка 9053: | Строка 10 069: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821569 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821569 | ||
}} | }} | ||
== | ==CLPTM1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Two-stage Bayesian GWAS of 9576 individuals identifies SNP regions that are targeted by miRNAs inversely expressed in Alzheimer's and cancer. | ||
|date= | |date=01.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31914222 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1002/alz.12003 | ||
}} | }} | ||
==CMA1== | ==CMA1== | ||
Строка 9068: | Строка 10 084: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28325852 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28325852 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827 | ||
}} | |||
==CMKLR1== | |||
* {{medline-title | |||
|title=Chemerin facilitates intervertebral disc degeneration via [[TLR4]] and [[CMKLR1]] and activation of NF-kB signaling pathway. | |||
|date=11.06.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32526705 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343479 | |||
}} | }} | ||
==CNGA3== | ==CNGA3== | ||
Строка 9076: | Строка 10 100: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28419903 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28419903 | ||
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.04.006 | |full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.04.006 | ||
}} | |||
==CNKSR3== | |||
* {{medline-title | |||
|title=Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31508907 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6903450 | |||
}} | }} | ||
==CNOT6== | ==CNOT6== | ||
Строка 9084: | Строка 10 116: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26792405 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26792405 | ||
|full-text-url=https://sci-hub.do/10.1016/j.bbamcr.2016.01.005 | |full-text-url=https://sci-hub.do/10.1016/j.bbamcr.2016.01.005 | ||
}} | |||
==CNTNAP4== | |||
* {{medline-title | |||
|title=A common copy number variation (CNV) polymorphism in the [[CNTNAP4]] gene: association with aging in females. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24223195 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819343 | |||
}} | }} | ||
==CNTRL== | ==CNTRL== | ||
Строка 9092: | Строка 10 132: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26318758 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26318758 | ||
|full-text-url=https://sci-hub.do/10.1016/j.meatsci.2015.07.026 | |full-text-url=https://sci-hub.do/10.1016/j.meatsci.2015.07.026 | ||
}} | |||
==COG1== | |||
* {{medline-title | |||
|title=PRX2 and PRX25, peroxidases regulated by [[COG1]], are involved in seed longevity in Arabidopsis. | |||
|date=02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31600827 | |||
|full-text-url=https://sci-hub.do/10.1111/pce.13656 | |||
}} | }} | ||
==COL12A1== | ==COL12A1== | ||
Строка 9140: | Строка 10 188: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26309782 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26309782 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4497626 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4497626 | ||
}} | |||
==COL9A1== | |||
* {{medline-title | |||
|title=Enhanced tissue regeneration potential of juvenile articular cartilage. | |||
|date=11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24043472 | |||
|full-text-url=https://sci-hub.do/10.1177/0363546513502945 | |||
}} | }} | ||
==COQ5== | ==COQ5== | ||
Строка 9164: | Строка 10 220: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30228311 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30228311 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143522 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143522 | ||
}} | |||
==COX5A== | |||
* {{medline-title | |||
|title=[[COX5A]] Plays a Vital Role in Memory Impairment Associated With Brain Aging [i]via[/i] the [[BDNF]]/ERK1/2 Signaling Pathway. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32754029 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7365906 | |||
}} | }} | ||
==COX7A2== | ==COX7A2== | ||
Строка 9189: | Строка 10 253: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878003 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878003 | ||
}} | }} | ||
== | ==CPSF1== | ||
* {{medline-title | * {{medline-title | ||
|title=Genome-wide association study for lactation persistency, female fertility, longevity, and lifetime profit index traits in Holstein dairy cattle. | |||
|date=02.2017 | |||
|title=Genome-wide association study for lactation persistency, female fertility, longevity, and lifetime profit index traits in Holstein dairy cattle. | |||
|date=02.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27889128 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27889128 | ||
|full-text-url=https://sci-hub.do/10.3168/jds.2016-11770 | |full-text-url=https://sci-hub.do/10.3168/jds.2016-11770 | ||
Строка 9212: | Строка 10 268: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31900237 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31900237 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941254 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941254 | ||
}} | |||
==CR2== | |||
* {{medline-title | |||
|title=Age-related but not longevity-related genes are found by weighted gene co-expression network analysis in the peripheral blood cells of humans. | |||
|date=19.01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30541985 | |||
|full-text-url=https://sci-hub.do/10.1266/ggs.17-00052 | |||
}} | |||
==CRB1== | |||
* {{medline-title | |||
|title=[[MPP3]] regulates levels of PALS1 and adhesion between photoreceptors and Müller cells. | |||
|date=10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23893895 | |||
|full-text-url=https://sci-hub.do/10.1002/glia.22545 | |||
}} | }} | ||
==CRBN== | ==CRBN== | ||
Строка 9245: | Строка 10 317: | ||
|full-text-url=https://sci-hub.do/10.1016/j.bbadis.2014.05.027 | |full-text-url=https://sci-hub.do/10.1016/j.bbadis.2014.05.027 | ||
}} | }} | ||
== | ==CRIP2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Transcriptomics of cortical gray matter thickness decline during normal aging. | ||
|date= | |date=15.11.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23707588 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759649 | ||
}} | }} | ||
==CRISPLD2== | ==CRISPLD2== | ||
Строка 9284: | Строка 10 356: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26695409 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26695409 | ||
|full-text-url=https://sci-hub.do/10.1007/s00394-015-1134-4 | |full-text-url=https://sci-hub.do/10.1007/s00394-015-1134-4 | ||
}} | |||
==CRX== | |||
* {{medline-title | |||
|title=Transcription coactivators p300 and CBP are necessary for photoreceptor-specific chromatin organization and gene expression. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23922782 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724885 | |||
}} | }} | ||
==CRYAA== | ==CRYAA== | ||
Строка 9324: | Строка 10 404: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30040071 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30040071 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6256814 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6256814 | ||
}} | |||
==CSGALNACT1== | |||
* {{medline-title | |||
|title=Alterations in the chondroitin sulfate chain in human osteoarthritic cartilage of the knee. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24280246 | |||
|full-text-url=https://sci-hub.do/10.1016/j.joca.2013.11.010 | |||
}} | }} | ||
==CSN2== | ==CSN2== | ||
Строка 9340: | Строка 10 428: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28254385 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28254385 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5392537 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5392537 | ||
}} | |||
==CSNK1G2== | |||
* {{medline-title | |||
|title=Casein kinase 1G2 suppresses necroptosis-promoted testis aging by inhibiting receptor-interacting kinase 3. | |||
|date=18.11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33206046 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673785 | |||
}} | }} | ||
==CST3== | ==CST3== | ||
Строка 9348: | Строка 10 444: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26911903 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26911903 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766395 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766395 | ||
}} | |||
==CST5== | |||
* {{medline-title | |||
|title=Systemic Inflammation and the Increased Risk of Inflamm-Aging and Age-Associated Diseases in People Living With HIV on Long Term Suppressive Antiretroviral Therapy. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31507593 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718454 | |||
}} | }} | ||
==CSTF2T== | ==CSTF2T== | ||
Строка 9380: | Строка 10 484: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26912063 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26912063 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765225 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765225 | ||
}} | }} | ||
==CTSK== | ==CTSK== | ||
Строка 9404: | Строка 10 500: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29234488 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29234488 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724804 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724804 | ||
}} | |||
==CTU2== | |||
* {{medline-title | |||
|title=Chromosomal alterations among age-related haematopoietic clones in Japan. | |||
|date=08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32581364 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7489641 | |||
}} | |||
==CTXND1== | |||
* {{medline-title | |||
|title=Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. | |||
|date=03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109663 | |||
|full-text-url=https://sci-hub.do/10.1016/j.atherosclerosis.2020.02.005 | |||
}} | }} | ||
==CUBN== | ==CUBN== | ||
Строка 9460: | Строка 10 572: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30710528 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30710528 | ||
|full-text-url=https://sci-hub.do/10.1053/j.gastro.2019.01.247 | |full-text-url=https://sci-hub.do/10.1053/j.gastro.2019.01.247 | ||
}} | |||
==CXXC1== | |||
* {{medline-title | |||
|title=The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. | |||
|date=29.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32997995 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527782 | |||
}} | }} | ||
==CXXC5== | ==CXXC5== | ||
Строка 9476: | Строка 10 596: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29706024 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29706024 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052403 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052403 | ||
}} | |||
==CYBA== | |||
* {{medline-title | |||
|title=[Association between 242C > T polymorphism of NADPH oxidase p22phox gene ([[CYBA]]) and longevity in Russian population]. | |||
|date=03.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23755540 | |||
|full-text-url=https://sci-hub.do/10.7868/s0016675813020136 | |||
}} | }} | ||
==CYCS== | ==CYCS== | ||
Строка 9540: | Строка 10 668: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26388416 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26388416 | ||
|full-text-url=https://sci-hub.do/10.1017/S0007114515003517 | |full-text-url=https://sci-hub.do/10.1017/S0007114515003517 | ||
}} | |||
==CYSLTR2== | |||
* {{medline-title | |||
|title=Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. | |||
|date=03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109663 | |||
|full-text-url=https://sci-hub.do/10.1016/j.atherosclerosis.2020.02.005 | |||
}} | }} | ||
==DAPK2== | ==DAPK2== | ||
Строка 9548: | Строка 10 684: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31277379 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31277379 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651490 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651490 | ||
}} | }} | ||
==DCAF17== | ==DCAF17== | ||
Строка 9612: | Строка 10 740: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31260804 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31260804 | ||
|full-text-url=https://sci-hub.do/10.1016/j.reprotox.2019.06.011 | |full-text-url=https://sci-hub.do/10.1016/j.reprotox.2019.06.011 | ||
}} | |||
==DCXR== | |||
* {{medline-title | |||
|title=Dicarbonyl/l-xylulose reductase ([[DCXR]]): The multifunctional pentosuria enzyme. | |||
|date=11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23988570 | |||
|full-text-url=https://sci-hub.do/10.1016/j.biocel.2013.08.010 | |||
}} | }} | ||
==DDI2== | ==DDI2== | ||
Строка 9637: | Строка 10 773: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6363044 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6363044 | ||
}} | }} | ||
== | ==DDX25== | ||
* {{medline-title | * {{medline-title | ||
|title=Association of Polymorphisms in Innate Immunity Genes [[TLR9]] and [[DEFB1]] with Human Longevity. | |title=Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice. | ||
|date=05.2015 | |date=01.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31472347 | |||
|full-text-url=https://sci-hub.do/10.1016/j.chemosphere.2019.124650 | |||
}} | |||
==DEFB1== | |||
* {{medline-title | |||
|title=Association of Polymorphisms in Innate Immunity Genes [[TLR9]] and [[DEFB1]] with Human Longevity. | |||
|date=05.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26028230 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26028230 | ||
|full-text-url=https://sci-hub.do/10.1007/s10517-015-2894-9 | |full-text-url=https://sci-hub.do/10.1007/s10517-015-2894-9 | ||
}} | |||
==DEFB4B== | |||
* {{medline-title | |||
|title=Different expression of Defensin-B gene in the endometrium of mares of different age during the breeding season. | |||
|date=21.12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31864349 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925900 | |||
}} | |||
==DEK== | |||
* {{medline-title | |||
|title=Altered miRNA and mRNA Expression in Sika Deer Skeletal Muscle with Age. | |||
|date=06.02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32041309 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073773 | |||
}} | |||
==DEPDC1== | |||
* {{medline-title | |||
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335 | |||
}} | }} | ||
==DEPDC5== | ==DEPDC5== | ||
Строка 9676: | Строка 10 844: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26776442 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26776442 | ||
|full-text-url=https://sci-hub.do/10.1016/j.jsbmb.2016.01.005 | |full-text-url=https://sci-hub.do/10.1016/j.jsbmb.2016.01.005 | ||
}} | }} | ||
==DHRS2== | ==DHRS2== | ||
Строка 9725: | Строка 10 885: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795392 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795392 | ||
}} | }} | ||
== | ==DLG1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Altered expression of genes for Kir ion channels in dilated cardiomyopathy. | ||
|date= | |date=08.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23889090 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1139/cjpp-2012-0413 | ||
}} | }} | ||
==DLGAP2== | ==DLGAP2== | ||
Строка 9740: | Строка 10 900: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32877673 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32877673 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7502175 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7502175 | ||
}} | |||
==DLK1== | |||
* {{medline-title | |||
|title=Dual role of delta-like 1 homolog ([[DLK1]]) in skeletal muscle development and adult muscle regeneration. | |||
|date=09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23946446 | |||
|full-text-url=https://sci-hub.do/10.1242/dev.095810 | |||
}} | }} | ||
==DLL1== | ==DLL1== | ||
Строка 9804: | Строка 10 972: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29503614 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29503614 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5820363 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5820363 | ||
}} | |||
==DNM1L== | |||
* {{medline-title | |||
|title=Aberrant mitochondrial morphology and function associated with impaired mitophagy and [[DNM1L]]-MAPK/ERK signaling are found in aged mutant Parkinsonian [[LRRK2]] mice. | |||
|date=10.12.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33300446 | |||
|full-text-url=https://sci-hub.do/10.1080/15548627.2020.1850008 | |||
}} | }} | ||
==DNM2== | ==DNM2== | ||
Строка 9820: | Строка 10 996: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32195249 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32195249 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064442 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064442 | ||
}} | |||
==DOCK7== | |||
* {{medline-title | |||
|title=Altered thermogenesis and impaired bone remodeling in Misty mice. | |||
|date=09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23553822 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3743939 | |||
}} | }} | ||
==DPP6== | ==DPP6== | ||
Строка 9844: | Строка 11 028: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29234488 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29234488 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724804 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724804 | ||
}} | }} | ||
==DSC1== | ==DSC1== | ||
Строка 9860: | Строка 11 036: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29561322 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29561322 | ||
|full-text-url=https://sci-hub.do/10.1097/HCO.0000000000000508 | |full-text-url=https://sci-hub.do/10.1097/HCO.0000000000000508 | ||
}} | |||
==DSC2== | |||
* {{medline-title | |||
|title=Age-dependent clinical and genetic characteristics in Japanese patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23514727 | |||
|full-text-url=https://sci-hub.do/10.1253/circj.cj-12-1446 | |||
}} | }} | ||
==DSG1== | ==DSG1== | ||
Строка 9868: | Строка 11 052: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24629169 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24629169 | ||
|full-text-url=https://sci-hub.do/10.1111/gbb.12132 | |full-text-url=https://sci-hub.do/10.1111/gbb.12132 | ||
}} | }} | ||
==DTL== | ==DTL== | ||
Строка 9940: | Строка 11 108: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32348937 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32348937 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191129 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191129 | ||
}} | }} | ||
==DUSP6== | ==DUSP6== | ||
Строка 9980: | Строка 11 140: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27884142 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27884142 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5123374 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5123374 | ||
}} | |||
==DYNC1H1== | |||
* {{medline-title | |||
|title=Dynein mutations associated with hereditary motor neuropathies impair mitochondrial morphology and function with age. | |||
|date=10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23742762 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3748180 | |||
}} | }} | ||
==DYNC2H1== | ==DYNC2H1== | ||
Строка 9989: | Строка 11 157: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6280794 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6280794 | ||
}} | }} | ||
== | ==DYNLT3== | ||
* {{medline-title | * {{medline-title | ||
|title=Ferulic Acid Suppresses Amyloid [i]β[/i] Production in the Human Lens Epithelial Cell Stimulated with Hydrogen Peroxide. | |title=Age-associated genes in human mammary gland drive human breast cancer progression. | ||
|date=2017 | |date=15.06.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32539762 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7294649 | |||
}} | |||
==ECE1== | |||
* {{medline-title | |||
|title=Ferulic Acid Suppresses Amyloid [i]β[/i] Production in the Human Lens Epithelial Cell Stimulated with Hydrogen Peroxide. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28409157 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28409157 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376927 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376927 | ||
Строка 10 037: | Строка 11 213: | ||
|full-text-url=https://sci-hub.do/10.1093/pcp/pcaa145 | |full-text-url=https://sci-hub.do/10.1093/pcp/pcaa145 | ||
}} | }} | ||
== | ==EDNRA== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Variation in genes in the endothelin pathway and endothelium-dependent and endothelium-independent vasodilation in an elderly population. | ||
|date= | |date=05.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23336501 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1111/apha.12068 | ||
}} | }} | ||
== | ==EEA1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Quantitative Immunoblotting Analyses Reveal that the Abundance of Actin, Tubulin, Synaptophysin and [[EEA1]] Proteins is Altered in the Brains of Aged Mice. | ||
|date= | |date=21.08.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32652177 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.neuroscience.2020.06.044 | ||
}} | }} | ||
==EEF1A1== | ==EEF1A1== | ||
Строка 10 100: | Строка 11 268: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26980243 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26980243 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791873 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791873 | ||
}} | |||
==EGFEM1P== | |||
* {{medline-title | |||
|title=Identifying blood-specific age-related DNA methylation markers on the Illumina MethylationEPIC® BeadChip. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31546163 | |||
|full-text-url=https://sci-hub.do/10.1016/j.forsciint.2019.109944 | |||
}} | }} | ||
==EGR2== | ==EGR2== | ||
Строка 10 108: | Строка 11 284: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24644060 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24644060 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4258100 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4258100 | ||
}} | |||
==EHMT1== | |||
* {{medline-title | |||
|title=Two conserved epigenetic regulators prevent healthy ageing. | |||
|date=03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32103178 | |||
|full-text-url=https://sci-hub.do/10.1038/s41586-020-2037-y | |||
}} | }} | ||
==EID3== | ==EID3== | ||
Строка 10 116: | Строка 11 300: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30114644 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30114644 | ||
|full-text-url=https://sci-hub.do/10.1016/j.biopha.2018.08.022 | |full-text-url=https://sci-hub.do/10.1016/j.biopha.2018.08.022 | ||
}} | |||
==EIF2AK3== | |||
* {{medline-title | |||
|title=The unfolded protein response is activated in disease-affected brain regions in progressive supranuclear palsy and Alzheimer's disease. | |||
|date=06.07.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24252572 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893579 | |||
}} | }} | ||
==EIF2B2== | ==EIF2B2== | ||
Строка 10 148: | Строка 11 340: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32424344 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32424344 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235038 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235038 | ||
}} | |||
==EIF4EBP1== | |||
* {{medline-title | |||
|title=Peripheral Circulating Exosomal miRNAs Potentially Contribute to the Regulation of Molecular Signaling Networks in Aging. | |||
|date=11.03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32168775 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139634 | |||
}} | }} | ||
==ELANE== | ==ELANE== | ||
Строка 10 213: | Строка 11 413: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827 | ||
}} | }} | ||
== | ==ENTPD1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Ecto-NTPDase CD39 is a negative checkpoint that inhibits follicular helper cell generation. | ||
|date= | |date=01.07.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32452837 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324201 | ||
}} | }} | ||
==EPG5== | ==EPG5== | ||
Строка 10 228: | Строка 11 428: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29486404 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29486404 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882010 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882010 | ||
}} | |||
==EPHA3== | |||
* {{medline-title | |||
|title=A high-content cellular senescence screen identifies candidate tumor suppressors, including [[EPHA3]]. | |||
|date=15.02.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23324396 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3594263 | |||
}} | |||
==EPHA7== | |||
* {{medline-title | |||
|title=Impact of host ageing on the metastatic phenotype. | |||
|date=03.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23403123 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2013.02.001 | |||
}} | }} | ||
==ERAP1== | ==ERAP1== | ||
Строка 10 252: | Строка 11 468: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30566395 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30566395 | ||
|full-text-url=https://sci-hub.do/10.1096/fj.201801690R | |full-text-url=https://sci-hub.do/10.1096/fj.201801690R | ||
}} | |||
==ERCC2== | |||
* {{medline-title | |||
|title=The genetic component of human longevity: New insights from the analysis of pathway-based SNP-SNP interactions. | |||
|date=06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29577582 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946073 | |||
}} | }} | ||
==ERCC5== | ==ERCC5== | ||
Строка 10 260: | Строка 11 484: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30838033 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30838033 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383105 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383105 | ||
}} | }} | ||
==ERCC8== | ==ERCC8== | ||
Строка 10 284: | Строка 11 500: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25786490 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25786490 | ||
|full-text-url=https://sci-hub.do/10.1071/RD14472 | |full-text-url=https://sci-hub.do/10.1071/RD14472 | ||
}} | |||
==ERVK-7== | |||
* {{medline-title | |||
|title=Effect of aging on the transcriptomic changes associated with the expression of the HERV-K (HML-2) provirus at 1q22. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32435269 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218820 | |||
}} | }} | ||
==ESCO1== | ==ESCO1== | ||
Строка 10 317: | Строка 11 541: | ||
|full-text-url=https://sci-hub.do/10.1530/EJE-14-0006 | |full-text-url=https://sci-hub.do/10.1530/EJE-14-0006 | ||
}} | }} | ||
== | ==ETNK2== | ||
* {{medline-title | * {{medline-title | ||
|title=miR-19b-3p induces cell proliferation and reduces heterochromatin-mediated senescence through PLZF in goat male germline stem cells. | |title=In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. | ||
|date=06.2018 | |date=12.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29171024 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31520345 | ||
|full-text-url=https://sci-hub.do/10.1002/jcp.26231 | |full-text-url=https://sci-hub.do/10.1007/s10522-019-09834-1 | ||
}} | |||
==ETV1== | |||
* {{medline-title | |||
|title=Survival analyses in Holstein cows considering direct disease diagnoses and specific SNP marker effects. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32684467 | |||
|full-text-url=https://sci-hub.do/10.3168/jds.2020-18174 | |||
}} | |||
==ETV5== | |||
* {{medline-title | |||
|title=miR-19b-3p induces cell proliferation and reduces heterochromatin-mediated senescence through PLZF in goat male germline stem cells. | |||
|date=06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29171024 | |||
|full-text-url=https://sci-hub.do/10.1002/jcp.26231 | |||
}} | }} | ||
==ETV6== | ==ETV6== | ||
Строка 10 389: | Строка 11 629: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5380955 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5380955 | ||
}} | }} | ||
== | ==EZH1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. | ||
|date= | |date=24.09.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659 | ||
}} | }} | ||
==F10== | ==F10== | ||
Строка 10 404: | Строка 11 644: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30097108 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30097108 | ||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.06.008 | |full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.06.008 | ||
}} | |||
==F11== | |||
* {{medline-title | |||
|title=A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. | |||
|date=07.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23650146 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990406 | |||
}} | }} | ||
==F11R== | ==F11R== | ||
Строка 10 420: | Строка 11 668: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30508263 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30508263 | ||
|full-text-url=https://sci-hub.do/10.1002/etc.4307 | |full-text-url=https://sci-hub.do/10.1002/etc.4307 | ||
}} | }} | ||
==FA2H== | ==FA2H== | ||
Строка 10 436: | Строка 11 676: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30184537 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30184537 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428043 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428043 | ||
}} | }} | ||
==FADS2== | ==FADS2== | ||
Строка 10 476: | Строка 11 700: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29930218 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29930218 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6046246 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6046246 | ||
}} | }} | ||
==FAT4== | ==FAT4== | ||
Строка 10 508: | Строка 11 724: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27720640 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27720640 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5080600 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5080600 | ||
}} | |||
==FBXO33== | |||
* {{medline-title | |||
|title=Quantitative and Qualitative Role of Antagonistic Heterogeneity in Genetics of Blood Lipids. | |||
|date=25.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31566214 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518561 | |||
}} | }} | ||
==FBXO46== | ==FBXO46== | ||
Строка 10 612: | Строка 11 836: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26687232 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26687232 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916041 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916041 | ||
}} | |||
==FGF7== | |||
* {{medline-title | |||
|title=Prostatic microenvironment in senescence: fibroblastic growth factors × hormonal imbalance. | |||
|date=05.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24362909 | |||
|full-text-url=https://sci-hub.do/10.1007/s00418-013-1173-y | |||
}} | |||
==FGF8== | |||
* {{medline-title | |||
|title=Prostatic microenvironment in senescence: fibroblastic growth factors × hormonal imbalance. | |||
|date=05.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24362909 | |||
|full-text-url=https://sci-hub.do/10.1007/s00418-013-1173-y | |||
}} | }} | ||
==FGFBP1== | ==FGFBP1== | ||
Строка 10 621: | Строка 11 861: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5214636 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5214636 | ||
}} | }} | ||
== | ==FGFR3== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=New evidence for positive selection helps explain the paternal age effect observed in achondroplasia. | ||
|date=10. | |date=15.10.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23740942 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781639 | ||
}} | }} | ||
==FGL2== | ==FGL2== | ||
Строка 10 636: | Строка 11 876: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28063478 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28063478 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5267323 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5267323 | ||
}} | |||
==FICD== | |||
* {{medline-title | |||
|title=Defining the limits of normal conjunctival fornix anatomy in a healthy South Asian population. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24314841 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991394 | |||
}} | }} | ||
==FIG4== | ==FIG4== | ||
Строка 10 653: | Строка 11 901: | ||
|full-text-url=https://sci-hub.do/10.3109/19396368.2015.1077903 | |full-text-url=https://sci-hub.do/10.3109/19396368.2015.1077903 | ||
}} | }} | ||
== | ==FKBP1A== | ||
* {{medline-title | * {{medline-title | ||
|title=Progressive Dystrophic Pathology in Diaphragm and Impairment of Cardiac Function in [[FKRP]] P448L Mutant Mice. | |title=The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. | ||
|date=29.07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32727592 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392710 | |||
}} | |||
==FKBP1B== | |||
* {{medline-title | |||
|title=The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. | |||
|date=29.07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32727592 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392710 | |||
}} | |||
==FKRP== | |||
* {{medline-title | |||
|title=Progressive Dystrophic Pathology in Diaphragm and Impairment of Cardiac Function in [[FKRP]] P448L Mutant Mice. | |||
|date=2016 | |date=2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27711214 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27711214 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053477 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053477 | ||
}} | |||
==FLCN== | |||
* {{medline-title | |||
|title=Loss of the Birt-Hogg-Dubé gene product folliculin induces longevity in a hypoxia-inducible factor-dependent manner. | |||
|date=08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23566034 | |||
|full-text-url=https://sci-hub.do/10.1111/acel.12081 | |||
}} | }} | ||
==FLNA== | ==FLNA== | ||
Строка 10 676: | Строка 11 948: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28978821 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28978821 | ||
|full-text-url=https://sci-hub.do/10.11406/rinketsu.58.1828 | |full-text-url=https://sci-hub.do/10.11406/rinketsu.58.1828 | ||
}} | |||
==FLT4== | |||
* {{medline-title | |||
|title=Impact of Aging on the Phenotype of Invariant Natural Killer T Cells in Mouse Thymus. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33193368 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662090 | |||
}} | }} | ||
==FMN2== | ==FMN2== | ||
Строка 10 720: | Строка 12 000: | ||
* {{medline-title | * {{medline-title | ||
|title=LncRNA GUARDIN suppresses cellular senescence through a LRP130-PGC1α-FOXO4-p21-dependent signaling axis. | |title=LncRNA GUARDIN suppresses cellular senescence through a LRP130-PGC1α-[[FOXO4]]-p21-dependent signaling axis. | ||
|date=03.04.2020 | |date=03.04.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32149459 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32149459 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132339 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132339 | ||
}} | |||
==FOXA3== | |||
* {{medline-title | |||
|title=Glucose restriction delays senescence and promotes proliferation of HUVECs via the AMPK/[[SIRT1]]-[[FOXA3]]-Beclin1 pathway. | |||
|date=01.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32768436 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2020.111053 | |||
}} | }} | ||
==FOXD1== | ==FOXD1== | ||
Строка 10 732: | Строка 12 020: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30225541 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30225541 | ||
|full-text-url=https://sci-hub.do/10.1007/s00432-018-2745-y | |full-text-url=https://sci-hub.do/10.1007/s00432-018-2745-y | ||
}} | }} | ||
==FOXP4== | ==FOXP4== | ||
Строка 10 781: | Строка 12 061: | ||
|full-text-url=https://sci-hub.do/10.1017/S2040174419000060 | |full-text-url=https://sci-hub.do/10.1017/S2040174419000060 | ||
}} | }} | ||
== | ==FSHB== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. | ||
|date= | |date=29.09.2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26416764 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598835 | ||
}} | }} | ||
==FSTL5== | ==FSTL5== | ||
Строка 10 796: | Строка 12 076: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27878761 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27878761 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441979 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441979 | ||
}} | |||
==FTL== | |||
* {{medline-title | |||
|title=Noncoding variation of the gene for ferritin light chain in hereditary and age-related cataract. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23592921 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3626299 | |||
}} | }} | ||
==FZD1== | ==FZD1== | ||
Строка 10 861: | Строка 12 149: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5764388 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5764388 | ||
}} | }} | ||
== | ==GABRR3== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Discovery of novel non-synonymous SNP variants in 988 candidate genes from 6 centenarians by target capture and next-generation sequencing. | ||
|date= | |date=10.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23376243 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787996 | ||
}} | }} | ||
==GADD45B== | ==GADD45B== | ||
Строка 10 893: | Строка 12 181: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5453174 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5453174 | ||
}} | }} | ||
== | ==GAGE10== | ||
* {{medline-title | |||
|title=An epigenome-wide association study of sex-specific chronological ageing. | |||
|date=31.12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31892350 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938636 | |||
}} | |||
==GALNT18== | |||
* {{medline-title | * {{medline-title | ||
|title= | |title=Genome-wide association study identifies [i]SIAH3[/i] locus influencing the rate of ventricular enlargement in non-demented elders. | ||
|date= | |date=11.11.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31711042 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874439 | ||
}} | }} | ||
== | ==GAR1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Pseudouridylation defect due to [i]DKC1[/i] and [i][[NOP10]][/i] mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis. | ||
|date= | |date=30.06.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32554502 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334496 | ||
}} | }} | ||
==GART== | ==GART== | ||
Строка 10 940: | Строка 12 236: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31299382 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31299382 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6708771 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6708771 | ||
}} | |||
==GBA2== | |||
* {{medline-title | |||
|title=Reduced sphingolipid hydrolase activities, substrate accumulation and ganglioside decline in Parkinson's disease. | |||
|date=08.11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31703585 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842240 | |||
}} | }} | ||
==GBF1== | ==GBF1== | ||
Строка 10 964: | Строка 12 268: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27871051 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27871051 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209269 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209269 | ||
}} | }} | ||
==GCNT2== | ==GCNT2== | ||
Строка 11 140: | Строка 12 436: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24936415 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24936415 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053639 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053639 | ||
}} | |||
==GNA11== | |||
* {{medline-title | |||
|title=[[GNAQ]] expression initiated in multipotent neural crest cells drives aggressive melanoma of the central nervous system. | |||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31680437 | |||
|full-text-url=https://sci-hub.do/10.1111/pcmr.12843 | |||
}} | }} | ||
==GNA14== | ==GNA14== | ||
Строка 11 149: | Строка 12 453: | ||
|full-text-url=https://sci-hub.do/10.4238/gmr16029091 | |full-text-url=https://sci-hub.do/10.4238/gmr16029091 | ||
}} | }} | ||
==GNG11== | |||
==GNG11== | |||
* {{medline-title | * {{medline-title | ||
Строка 11 180: | Строка 12 476: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30128650 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30128650 | ||
|full-text-url=https://sci-hub.do/10.1007/s12035-018-1307-2 | |full-text-url=https://sci-hub.do/10.1007/s12035-018-1307-2 | ||
}} | |||
==GNPDA2== | |||
* {{medline-title | |||
|title=The influence of obesity-related single nucleotide polymorphisms on BMI across the life course: the PAGE study. | |||
|date=05.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23300277 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636619 | |||
}} | }} | ||
==GNRH2== | ==GNRH2== | ||
Строка 11 204: | Строка 12 508: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29995770 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29995770 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076205 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076205 | ||
}} | |||
==GOT2== | |||
* {{medline-title | |||
|title=An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31531781 | |||
|full-text-url=https://sci-hub.do/10.1007/s00425-019-03272-6 | |||
}} | }} | ||
==GP1BA== | ==GP1BA== | ||
Строка 11 213: | Строка 12 525: | ||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | ||
}} | }} | ||
== | ==GP9== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. | ||
|date= | |date=31.01.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708 | ||
}} | }} | ||
==GPBAR1== | ==GPBAR1== | ||
Строка 11 268: | Строка 12 580: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29163355 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29163355 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5663685 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5663685 | ||
}} | }} | ||
==GPR173== | ==GPR173== | ||
Строка 11 308: | Строка 12 612: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29656342 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29656342 | ||
|full-text-url=https://sci-hub.do/10.1007/s00441-018-2835-9 | |full-text-url=https://sci-hub.do/10.1007/s00441-018-2835-9 | ||
}} | |||
==GPR4== | |||
* {{medline-title | |||
|title=The proton-activated receptor [[GPR4]] modulates glucose homeostasis by increasing insulin sensitivity. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24296356 | |||
|full-text-url=https://sci-hub.do/10.1159/000356578 | |||
}} | }} | ||
==GPR6== | ==GPR6== | ||
Строка 11 316: | Строка 12 628: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32959881 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32959881 | ||
|full-text-url=https://sci-hub.do/10.1093/infdis/jiaa599 | |full-text-url=https://sci-hub.do/10.1093/infdis/jiaa599 | ||
}} | |||
==GPR78== | |||
* {{medline-title | |||
|title=A meta-analysis of genome-wide association studies identifies multiple longevity genes. | |||
|date=14.08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31413261 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6694136 | |||
}} | }} | ||
==GPRC5C== | ==GPRC5C== | ||
Строка 11 340: | Строка 12 660: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29659168 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29659168 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052468 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052468 | ||
}} | }} | ||
==GREM1== | ==GREM1== | ||
Строка 11 432: | Строка 12 744: | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=A new approach to quantifying the EEG during walking: Initial evidence of gait related potentials and their changes with aging and dual tasking. | ||
|date= | |date=15.10.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31449852 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.exger.2019.110709 | ||
}} | }} | ||
==GRPR== | ==GRPR== | ||
Строка 11 452: | Строка 12 764: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30240538 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30240538 | ||
|full-text-url=https://sci-hub.do/10.1002/tox.22651 | |full-text-url=https://sci-hub.do/10.1002/tox.22651 | ||
}} | }} | ||
==GSTA3== | ==GSTA3== | ||
Строка 11 468: | Строка 12 772: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25001375 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25001375 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150915 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150915 | ||
}} | }} | ||
==GSTM2== | ==GSTM2== | ||
Строка 11 500: | Строка 12 796: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30444463 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30444463 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748684 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748684 | ||
}} | |||
==GTF3C4== | |||
* {{medline-title | |||
|title=A multidimensional systems biology analysis of cellular senescence in aging and disease. | |||
|date=07.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264951 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333371 | |||
}} | }} | ||
==GTSF1== | ==GTSF1== | ||
Строка 11 516: | Строка 12 820: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32232569 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32232569 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367712 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367712 | ||
}} | |||
==GUSB== | |||
* {{medline-title | |||
|title=Identification of reference genes for RT-qPCR data normalisation in aging studies. | |||
|date=27.09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31562345 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764958 | |||
}} | }} | ||
==GYS2== | ==GYS2== | ||
Строка 11 572: | Строка 12 884: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30622695 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30622695 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317223 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317223 | ||
}} | |||
==HAMP== | |||
* {{medline-title | |||
|title=A potent tilapia secreted granulin peptide enhances the survival of transgenic zebrafish infected by Vibrio vulnificus via modulation of innate immunity. | |||
|date=04.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29408220 | |||
|full-text-url=https://sci-hub.do/10.1016/j.fsi.2018.01.044 | |||
}} | }} | ||
==HAP1== | ==HAP1== | ||
Строка 11 581: | Строка 12 901: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6009585 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6009585 | ||
}} | }} | ||
== | ==HAUS4== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=A multidimensional systems biology analysis of cellular senescence in aging and disease. | ||
|date= | |date=07.04.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264951 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333371 | ||
}} | }} | ||
==HAX1== | ==HAX1== | ||
Строка 11 613: | Строка 12 933: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4926181 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4926181 | ||
}} | }} | ||
== | ==HDAC10== | ||
* {{medline-title | * {{medline-title | ||
|title=Middle-aged female rats lack changes in histone H3 acetylation in the anterior hypothalamus observed in young females on the day of a luteinizing hormone surge. | |||
|title=Middle-aged female rats lack changes in histone H3 acetylation in the anterior hypothalamus observed in young females on the day of a luteinizing hormone surge. | |||
|date=17.09.2019 | |date=17.09.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31434815 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31434815 | ||
Строка 11 644: | Строка 12 956: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29951776 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29951776 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096771 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096771 | ||
}} | }} | ||
==HDC== | ==HDC== | ||
Строка 11 668: | Строка 12 972: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28105936 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28105936 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5249001 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5249001 | ||
}} | }} | ||
==HEPN1== | ==HEPN1== | ||
Строка 11 740: | Строка 13 036: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27314075 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27314075 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4909421 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4909421 | ||
}} | |||
==HJURP== | |||
* {{medline-title | |||
|title=[[HJURP]] regulates cellular senescence in human fibroblasts and endothelial cells via a p53-dependent pathway. | |||
|date=08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23292286 | |||
|full-text-url=https://sci-hub.do/10.1093/gerona/gls257 | |||
}} | }} | ||
==HJV== | ==HJV== | ||
Строка 11 748: | Строка 13 052: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30884219 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30884219 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596404 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596404 | ||
}} | }} | ||
==HLA-DMA== | ==HLA-DMA== | ||
Строка 11 820: | Строка 13 116: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28178143 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28178143 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5313000 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5313000 | ||
}} | }} | ||
==HMGCS2== | ==HMGCS2== | ||
Строка 11 836: | Строка 13 124: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24597284 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24597284 | ||
}} | |||
==HMGN2== | |||
* {{medline-title | |||
|title=FAM96B inhibits the senescence of dental pulp stem cells. | |||
|date=05.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32039527 | |||
|full-text-url=https://sci-hub.do/10.1002/cbin.11319 | |||
}} | }} | ||
==HMMR== | ==HMMR== | ||
Строка 11 853: | Строка 13 149: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5249001 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5249001 | ||
}} | }} | ||
== | ==HNF1A== | ||
* {{medline-title | |||
|title=The Impact of Biomarker Screening and Cascade Genetic Testing on the Cost-Effectiveness of MODY Genetic Testing. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31558549 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868460 | |||
}} | |||
==HNMT== | |||
* {{medline-title | * {{medline-title | ||
|title= | |title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. | ||
|date= | |date=31.01.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708 | ||
}} | }} | ||
==HNRNPA0== | ==HNRNPA0== | ||
Строка 11 909: | Строка 13 213: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718529 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718529 | ||
}} | }} | ||
== | ==HOXA9== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Co-regulation of senescence-associated genes by oncogenic homeobox proteins and polycomb repressive complexes. | ||
|date= | |date=15.07.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24067365 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3755069 | ||
}} | }} | ||
==HOXB7== | ==HOXB7== | ||
Строка 11 956: | Строка 13 260: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24486986 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24486986 | ||
|full-text-url=https://sci-hub.do/10.1088/1748-6041/9/2/025001 | |full-text-url=https://sci-hub.do/10.1088/1748-6041/9/2/025001 | ||
}} | }} | ||
==HPSE== | ==HPSE== | ||
Строка 11 988: | Строка 13 284: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30074739 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30074739 | ||
}} | }} | ||
==HS2ST1== | ==HS2ST1== | ||
Строка 12 028: | Строка 13 316: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29341299 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29341299 | ||
|full-text-url=https://sci-hub.do/10.1111/bpa.12586 | |full-text-url=https://sci-hub.do/10.1111/bpa.12586 | ||
}} | }} | ||
==HSPA13== | ==HSPA13== | ||
Строка 12 052: | Строка 13 332: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31965731 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31965731 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059143 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059143 | ||
}} | |||
==HSPA4== | |||
* {{medline-title | |||
|title=Assessment of the risk of blastomere biopsy during preimplantation genetic diagnosis in a mouse model: reducing female ovary function with an increase in age by proteomics method. | |||
|date=06.12.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24156634 | |||
|full-text-url=https://sci-hub.do/10.1021/pr400366j | |||
}} | }} | ||
==HSPA5== | ==HSPA5== | ||
Строка 12 084: | Строка 13 372: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26636753 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26636753 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4670163 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4670163 | ||
}} | |||
==HTR1B== | |||
* {{medline-title | |||
|title=Polymorphic variants of neurotransmitter receptor genes may affect sexual function in aging males: data from the HALS study. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23485949 | |||
|full-text-url=https://sci-hub.do/10.1159/000350324 | |||
}} | }} | ||
==HTR2A== | ==HTR2A== | ||
Строка 12 116: | Строка 13 412: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26636753 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26636753 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4670163 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4670163 | ||
}} | |||
==HTRA2== | |||
* {{medline-title | |||
|title=A novel role for the mitochondrial [[HTRA2]]/OMI protease in aging. | |||
|date=03.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23242108 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3590264 | |||
}} | }} | ||
==HYOU1== | ==HYOU1== | ||
Строка 12 149: | Строка 13 453: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031079 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031079 | ||
}} | }} | ||
== | ==IFI27== | ||
* {{medline-title | * {{medline-title | ||
|title=Ultraviolet B irradiation-induced keratinocyte senescence and impaired development of 3D epidermal reconstruct. | |||
|date=01.06.2021 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33151171 | |||
|title=Ultraviolet B irradiation-induced keratinocyte senescence and impaired development of 3D epidermal reconstruct. | |||
|date=01.06.2021 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33151171 | |||
|full-text-url=https://sci-hub.do/10.2478/acph-2021-0011 | |full-text-url=https://sci-hub.do/10.2478/acph-2021-0011 | ||
}} | }} | ||
Строка 12 180: | Строка 13 468: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29066255 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29066255 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821569 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821569 | ||
}} | }} | ||
==IFNAR2== | ==IFNAR2== | ||
Строка 12 220: | Строка 13 492: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25866968 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25866968 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4463211 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4463211 | ||
}} | }} | ||
==IFT140== | ==IFT140== | ||
Строка 12 260: | Строка 13 524: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29080277 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29080277 | ||
|full-text-url=https://sci-hub.do/10.1111/rda.13091 | |full-text-url=https://sci-hub.do/10.1111/rda.13091 | ||
}} | }} | ||
==IGHG2== | ==IGHG2== | ||
Строка 12 292: | Строка 13 548: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26638776 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26638776 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686820 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686820 | ||
}} | }} | ||
==IKBKB== | ==IKBKB== | ||
Строка 12 324: | Строка 13 572: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25878031 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25878031 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5175450 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5175450 | ||
}} | |||
==IL12B== | |||
* {{medline-title | |||
|title=Association and Interaction Effects of Interleukin-12 Related Genes and Physical Activity on Cognitive Aging in Old Adults in the Taiwanese Population. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31649612 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6795278 | |||
}} | }} | ||
==IL13RA1== | ==IL13RA1== | ||
Строка 12 356: | Строка 13 612: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29039977 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29039977 | ||
|full-text-url=https://sci-hub.do/10.1080/07420528.2017.1361436 | |full-text-url=https://sci-hub.do/10.1080/07420528.2017.1361436 | ||
}} | |||
==IL17RB== | |||
* {{medline-title | |||
|title=Identification of genes associated with endometrial cell aging. | |||
|date=01.12.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33258951 | |||
|full-text-url=https://sci-hub.do/10.1093/molehr/gaaa078 | |||
}} | }} | ||
==IL17RC== | ==IL17RC== | ||
Строка 12 364: | Строка 13 628: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25089247 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25089247 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117863 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117863 | ||
}} | }} | ||
==IL18RAP== | ==IL18RAP== | ||
Строка 12 380: | Строка 13 636: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26281980 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26281980 | ||
|full-text-url=https://sci-hub.do/10.1007/s00586-015-4181-x | |full-text-url=https://sci-hub.do/10.1007/s00586-015-4181-x | ||
}} | |||
==IL1R2== | |||
* {{medline-title | |||
|title=Lower levels of interleukin-1β gene expression are associated with impaired Langerhans' cell migration in aged human skin. | |||
|date=01.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28777886 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5721243 | |||
}} | }} | ||
==IL1RN== | ==IL1RN== | ||
Строка 12 436: | Строка 13 700: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26351429 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26351429 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4560317 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4560317 | ||
}} | |||
==IL5== | |||
* {{medline-title | |||
|title=Low Molecular Weight Hyaluronan Induces an Inflammatory Response in Ovarian Stromal Cells and Impairs Gamete Development In Vitro. | |||
|date=04.02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32033185 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036885 | |||
}} | }} | ||
==IL6ST== | ==IL6ST== | ||
Строка 12 445: | Строка 13 717: | ||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2019.02.014 | |full-text-url=https://sci-hub.do/10.1016/j.exger.2019.02.014 | ||
}} | }} | ||
==IMMP2L== | |||
==IMMP2L== | |||
* {{medline-title | * {{medline-title | ||
Строка 12 460: | Строка 13 724: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29808012 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29808012 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993829 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993829 | ||
}} | |||
==IMMT== | |||
* {{medline-title | |||
|title=A multidimensional systems biology analysis of cellular senescence in aging and disease. | |||
|date=07.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264951 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333371 | |||
}} | }} | ||
==IMPA1== | ==IMPA1== | ||
Строка 12 476: | Строка 13 748: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26168237 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26168237 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567 | ||
}} | }} | ||
==INHBA== | ==INHBA== | ||
Строка 12 524: | Строка 13 788: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26168237 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26168237 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567 | ||
}} | }} | ||
==IP6K1== | ==IP6K1== | ||
Строка 12 556: | Строка 13 812: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30744060 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30744060 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410091 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410091 | ||
}} | |||
==IRAK1== | |||
* {{medline-title | |||
|title=Age-associated changes in microRNA expression in bone marrow derived dendritic cells. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23252865 | |||
|full-text-url=https://sci-hub.do/10.3109/08820139.2012.717328 | |||
}} | }} | ||
==IRAK4== | ==IRAK4== | ||
Строка 12 580: | Строка 13 844: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28905935 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28905935 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5672072 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5672072 | ||
}} | |||
==IRF9== | |||
* {{medline-title | |||
|title=Bioinformatic characterization of angiotensin-converting enzyme 2, the entry receptor for SARS-CoV-2. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33112891 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7592753 | |||
}} | }} | ||
==IRX2== | ==IRX2== | ||
Строка 12 588: | Строка 13 860: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28105936 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28105936 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5249001 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5249001 | ||
}} | }} | ||
==ISG20== | ==ISG20== | ||
Строка 12 604: | Строка 13 868: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27764096 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27764096 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072625 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072625 | ||
}} | }} | ||
==ISYNA1== | ==ISYNA1== | ||
Строка 12 660: | Строка 13 916: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30063456 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30063456 | ||
|full-text-url=https://sci-hub.do/10.1080/17446651.2017.1312341 | |full-text-url=https://sci-hub.do/10.1080/17446651.2017.1312341 | ||
}} | |||
==ITGA8== | |||
* {{medline-title | |||
|title=Comparative Analysis of Gene Expression Patterns for Oral Epithelium-Related Functions with Aging. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31732940 | |||
|full-text-url=https://sci-hub.do/10.1007/978-3-030-28524-1_11 | |||
}} | }} | ||
==ITGB1== | ==ITGB1== | ||
Строка 12 668: | Строка 13 932: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29599141 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29599141 | ||
|full-text-url=https://sci-hub.do/10.1161/ATVBAHA.117.310685 | |full-text-url=https://sci-hub.do/10.1161/ATVBAHA.117.310685 | ||
}} | }} | ||
==ITGB4== | ==ITGB4== | ||
Строка 12 764: | Строка 14 020: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29123987 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29123987 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666393 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666393 | ||
}} | |||
==JHY== | |||
* {{medline-title | |||
|title=Disruption of the mouse Jhy gene causes abnormal ciliary microtubule patterning and juvenile hydrocephalus. | |||
|date=01.10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23906841 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783533 | |||
}} | |||
==JMJD1C== | |||
* {{medline-title | |||
|title=[[JMJD1C]], a JmjC domain-containing protein, is required for long-term maintenance of male germ cells in mice. | |||
|date=10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24006281 | |||
|full-text-url=https://sci-hub.do/10.1095/biolreprod.113.108597 | |||
}} | }} | ||
==JUNB== | ==JUNB== | ||
Строка 12 836: | Строка 14 108: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24850809 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24850809 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4141024 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4141024 | ||
}} | |||
==KCNE1== | |||
* {{medline-title | |||
|title=Delayed pharyngeal repolarization promotes abnormal calcium buildup in aging muscle. | |||
|date=12.04.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23510998 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2013.03.011 | |||
}} | }} | ||
==KCNE3== | ==KCNE3== | ||
Строка 12 861: | Строка 14 141: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472403 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472403 | ||
}} | }} | ||
== | ==KCNJ10== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Compromised potassium recycling in the cochlea contributes to conservation of endocochlear potential in a mouse model of age-related hearing loss. | ||
|date= | |date=25.10.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24055606 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.neulet.2013.09.028 | ||
}} | }} | ||
== | ==KCNJ11== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=A mouse model of human hyperinsulinism produced by the E1506K mutation in the sulphonylurea receptor SUR1. | ||
|date= | |date=11.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23903354 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3806602 | ||
}} | }} | ||
==KCNK4== | ==KCNJ12== | ||
* {{medline-title | |||
|title=Altered expression of genes for Kir ion channels in dilated cardiomyopathy. | |||
|date=08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23889090 | |||
|full-text-url=https://sci-hub.do/10.1139/cjpp-2012-0413 | |||
}} | |||
==KCNJ14== | |||
* {{medline-title | |||
|title=Altered expression of genes for Kir ion channels in dilated cardiomyopathy. | |||
|date=08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23889090 | |||
|full-text-url=https://sci-hub.do/10.1139/cjpp-2012-0413 | |||
}} | |||
==KCNJ2== | |||
* {{medline-title | |||
|title=Altered expression of genes for Kir ion channels in dilated cardiomyopathy. | |||
|date=08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23889090 | |||
|full-text-url=https://sci-hub.do/10.1139/cjpp-2012-0413 | |||
}} | |||
==KCNJ4== | |||
* {{medline-title | |||
|title=Altered expression of genes for Kir ion channels in dilated cardiomyopathy. | |||
|date=08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23889090 | |||
|full-text-url=https://sci-hub.do/10.1139/cjpp-2012-0413 | |||
}} | |||
==KCNJ6== | |||
* {{medline-title | |||
|title=Genetic correlates of the development of theta event related oscillations in adolescents and young adults. | |||
|date=05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27847216 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456461 | |||
}} | |||
==KCNK2== | |||
* {{medline-title | |||
|title=Brain age prediction using deep learning uncovers associated sequence variants. | |||
|date=27.11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31776335 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6881321 | |||
}} | |||
==KCNK4== | |||
* {{medline-title | * {{medline-title | ||
Строка 12 888: | Строка 14 216: | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Compromised potassium recycling in the cochlea contributes to conservation of endocochlear potential in a mouse model of age-related hearing loss. | ||
|date= | |date=25.10.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24055606 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1016/j.neulet.2013.09.028 | ||
}} | }} | ||
==KCNQ1DN== | ==KCNQ1DN== | ||
Строка 12 916: | Строка 14 244: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32327991 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32327991 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7160671 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7160671 | ||
}} | |||
==KCNS3== | |||
* {{medline-title | |||
|title=Vitamin D-responsive [[SGPP2]] variants associated with lung cell expression and lung function. | |||
|date=25.11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24274704 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907038 | |||
}} | }} | ||
==KCP== | ==KCP== | ||
Строка 12 940: | Строка 14 276: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28463974 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28463974 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413005 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413005 | ||
}} | |||
==KDM1A== | |||
* {{medline-title | |||
|title=Modulation of [[KDM1A]] with vafidemstat rescues memory deficit and behavioral alterations. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32469975 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259601 | |||
}} | }} | ||
==KDM2A== | ==KDM2A== | ||
* {{medline-title | * {{medline-title | ||
|title=SIRT6 mono-ADP ribosylates [[KDM2A]] to locally increase H3K36me2 at DNA damage sites to inhibit transcription and promote repair. | |title=[[SIRT6]] mono-ADP ribosylates [[KDM2A]] to locally increase H3K36me2 at DNA damage sites to inhibit transcription and promote repair. | ||
|date=25.06.2020 | |date=25.06.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32584788 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32584788 | ||
Строка 12 956: | Строка 14 300: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30650517 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30650517 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6360022 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6360022 | ||
}} | }} | ||
==KDM5A== | ==KDM5A== | ||
Строка 13 004: | Строка 14 332: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28334068 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28334068 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5905272 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5905272 | ||
}} | |||
==KIAA0930== | |||
* {{medline-title | |||
|title=Genetics of facial telangiectasia in the Rotterdam Study: a genome-wide association study and candidate gene approach. | |||
|date=23.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33095951 | |||
|full-text-url=https://sci-hub.do/10.1111/jdv.17014 | |||
}} | |||
==KIAA1755== | |||
* {{medline-title | |||
|title=Identifying blood-specific age-related DNA methylation markers on the Illumina MethylationEPIC® BeadChip. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31546163 | |||
|full-text-url=https://sci-hub.do/10.1016/j.forsciint.2019.109944 | |||
}} | }} | ||
==KIF11== | ==KIF11== | ||
Строка 13 028: | Строка 14 372: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24728190 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24728190 | ||
|full-text-url=https://sci-hub.do/10.1093/hmg/ddu166 | |full-text-url=https://sci-hub.do/10.1093/hmg/ddu166 | ||
}} | |||
==KIF4A== | |||
* {{medline-title | |||
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335 | |||
}} | }} | ||
==KIF5C== | ==KIF5C== | ||
Строка 13 044: | Строка 14 396: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26772723 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26772723 | ||
|full-text-url=https://sci-hub.do/10.1016/j.cca.2016.01.005 | |full-text-url=https://sci-hub.do/10.1016/j.cca.2016.01.005 | ||
}} | |||
==KIR3DL2== | |||
* {{medline-title | |||
|title=Expression of aberrant HLA-B27 molecules is dependent on B27 dosage and peptide supply. | |||
|date=04.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23625978 | |||
|full-text-url=https://sci-hub.do/10.1136/annrheumdis-2012-203080 | |||
}} | }} | ||
==KLB== | ==KLB== | ||
Строка 13 072: | Строка 14 432: | ||
* {{medline-title | * {{medline-title | ||
|title=[[KLF2]] induces the senescence of pancreatic cancer cells by cooperating with FOXO4 to upregulate p21. | |title=[[KLF2]] induces the senescence of pancreatic cancer cells by cooperating with [[FOXO4]] to upregulate p21. | ||
|date=01.03.2020 | |date=01.03.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31866399 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31866399 | ||
|full-text-url=https://sci-hub.do/10.1016/j.yexcr.2019.111784 | |full-text-url=https://sci-hub.do/10.1016/j.yexcr.2019.111784 | ||
}} | }} | ||
==KLHL13== | ==KLHL13== | ||
Строка 13 165: | Строка 14 509: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393366 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393366 | ||
}} | }} | ||
==L3MBTL1== | ==KY== | ||
* {{medline-title | |||
|title=Combination of acupuncture and Chinese herbal formula for elderly adults with mild cognitive impairment: protocol for a randomized controlled trial. | |||
|date=11.02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30744676 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6371495 | |||
}} | |||
==L3MBTL1== | |||
* {{medline-title | * {{medline-title | ||
Строка 13 220: | Строка 14 572: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24597284 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24597284 | ||
}} | |||
==LDLRAD4== | |||
* {{medline-title | |||
|title=Epigenetics of neuroinflammation: Immune response, inflammatory response and cholinergic synaptic involvement evidenced by genome-wide DNA methylation analysis of delirious inpatients. | |||
|date=10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32590150 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486988 | |||
}} | }} | ||
==LEF1== | ==LEF1== | ||
Строка 13 228: | Строка 14 588: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29520849 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29520849 | ||
|full-text-url=https://sci-hub.do/10.1002/jcb.26738 | |full-text-url=https://sci-hub.do/10.1002/jcb.26738 | ||
}} | |||
==LGALS1== | |||
* {{medline-title | |||
|title=Quantitative proteomic profiling of tumor cell response to telomere dysfunction using isotope-coded protein labeling (ICPL) reveals interaction network of candidate senescence markers. | |||
|date=08.10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23969227 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jprot.2013.08.007 | |||
}} | }} | ||
==LGALS3== | ==LGALS3== | ||
Строка 13 236: | Строка 14 604: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30270325 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30270325 | ||
|full-text-url=https://sci-hub.do/10.1248/bpb.b18-00217 | |full-text-url=https://sci-hub.do/10.1248/bpb.b18-00217 | ||
}} | }} | ||
==LGR6== | ==LGR6== | ||
Строка 13 252: | Строка 14 612: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32614135 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32614135 | ||
|full-text-url=https://sci-hub.do/10.1111/jocd.13424 | |full-text-url=https://sci-hub.do/10.1111/jocd.13424 | ||
}} | }} | ||
==LIMK2== | ==LIMK2== | ||
Строка 13 276: | Строка 14 620: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27678468 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27678468 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5227678 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5227678 | ||
}} | }} | ||
==LINC00862== | ==LINC00862== | ||
Строка 13 293: | Строка 14 629: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441979 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441979 | ||
}} | }} | ||
== | ==LIPC== | ||
* {{medline-title | |||
|title=Quantitative and Qualitative Role of Antagonistic Heterogeneity in Genetics of Blood Lipids. | |||
|date=25.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31566214 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518561 | |||
}} | |||
==LIPG== | |||
* {{medline-title | * {{medline-title | ||
|title= | |title=Quantitative and Qualitative Role of Antagonistic Heterogeneity in Genetics of Blood Lipids. | ||
|date= | |date=25.09.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31566214 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518561 | ||
}} | }} | ||
==LMNB2== | ==LMNB2== | ||
Строка 13 324: | Строка 14 668: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30318292 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30318292 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234859 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234859 | ||
}} | |||
==LMX1B== | |||
* {{medline-title | |||
|title=[[LMX1B]] is essential for the maintenance of differentiated podocytes in adult kidneys. | |||
|date=11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23990680 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810075 | |||
}} | }} | ||
==LOXL4== | ==LOXL4== | ||
Строка 13 372: | Строка 14 724: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31269452 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31269452 | ||
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2019.06.002 | |full-text-url=https://sci-hub.do/10.1016/j.celrep.2019.06.002 | ||
}} | |||
==LRRC23== | |||
* {{medline-title | |||
|title=Common genetic variants in [[ARNTL]] and [[NPAS2]] and at chromosome 12p13 are associated with objectively measured sleep traits in the elderly. | |||
|date=01.03.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23449886 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571755 | |||
}} | }} | ||
==LRRC34== | ==LRRC34== | ||
Строка 13 436: | Строка 14 796: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29750252 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29750252 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696723 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696723 | ||
}} | |||
==MACROD2== | |||
* {{medline-title | |||
|title=Survival analyses in Holstein cows considering direct disease diagnoses and specific SNP marker effects. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32684467 | |||
|full-text-url=https://sci-hub.do/10.3168/jds.2020-18174 | |||
}} | }} | ||
==MADD== | ==MADD== | ||
Строка 13 460: | Строка 14 828: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26206181 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26206181 | ||
|full-text-url=https://sci-hub.do/10.1016/j.jprot.2015.07.010 | |full-text-url=https://sci-hub.do/10.1016/j.jprot.2015.07.010 | ||
}} | |||
==MAK== | |||
* {{medline-title | |||
|title=Age-dependent autophagy induction after injury promotes axon regeneration by limiting NOTCH. | |||
|date=11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31920157 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595581 | |||
}} | |||
==MANBA== | |||
* {{medline-title | |||
|title=A meta-analysis of genome-wide association studies of epigenetic age acceleration. | |||
|date=11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31738745 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6886870 | |||
}} | }} | ||
==MANF== | ==MANF== | ||
Строка 13 468: | Строка 14 852: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24462098 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24462098 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4863472 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4863472 | ||
}} | |||
==MAOB== | |||
* {{medline-title | |||
|title=Modulation of [[KDM1A]] with vafidemstat rescues memory deficit and behavioral alterations. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32469975 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259601 | |||
}} | }} | ||
==MAP2K3== | ==MAP2K3== | ||
Строка 13 549: | Строка 14 941: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651490 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651490 | ||
}} | }} | ||
==MAS1== | ==MARK4== | ||
* {{medline-title | |||
|title=Two-stage Bayesian GWAS of 9576 individuals identifies SNP regions that are targeted by miRNAs inversely expressed in Alzheimer's and cancer. | |||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31914222 | |||
|full-text-url=https://sci-hub.do/10.1002/alz.12003 | |||
}} | |||
==MAS1== | |||
* {{medline-title | * {{medline-title | ||
Строка 13 556: | Строка 14 956: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29667931 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29667931 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940107 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940107 | ||
}} | |||
==MASP1== | |||
* {{medline-title | |||
|title=Polymorphisms in the [[MASP1]] gene are associated with serum levels of MASP-1, MASP-3, and MAp44. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24023860 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759447 | |||
}} | |||
==MATN2== | |||
* {{medline-title | |||
|title=Mice Lacking the Matrilin Family of Extracellular Matrix Proteins Develop Mild Skeletal Abnormalities and Are Susceptible to Age-Associated Osteoarthritis. | |||
|date=19.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31963938 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013758 | |||
}} | }} | ||
==MATN3== | ==MATN3== | ||
* {{medline-title | |||
|title=Mice Lacking the Matrilin Family of Extracellular Matrix Proteins Develop Mild Skeletal Abnormalities and Are Susceptible to Age-Associated Osteoarthritis. | |||
|date=19.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31963938 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013758 | |||
}} | |||
==MATN4== | |||
* {{medline-title | * {{medline-title | ||
Строка 13 581: | Строка 15 005: | ||
|full-text-url=https://sci-hub.do/10.1007/s11596-019-2001-y | |full-text-url=https://sci-hub.do/10.1007/s11596-019-2001-y | ||
}} | }} | ||
== | ==MBOAT2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. | ||
|date= | |date=03.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109663 | ||
|full-text-url=https://sci-hub.do/10.1016/j. | |full-text-url=https://sci-hub.do/10.1016/j.atherosclerosis.2020.02.005 | ||
}} | }} | ||
== | ==MBTD1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=LncRNA [[TTN]]-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/[[MBTD1]] axis. | ||
|date= | |date=10.10.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31600142 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814585 | ||
}} | }} | ||
==MCF2L== | ==MCF2L== | ||
Строка 13 605: | Строка 15 029: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058387 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058387 | ||
}} | }} | ||
== | ==MCM3AP== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Nodes and biological processes identified on the basis of network analysis in the brain of the senescence accelerated mice as an Alzheimer's disease animal model. | ||
|date= | |date=2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24194717 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810591 | ||
}} | }} | ||
==MCM5== | ==MCM5== | ||
Строка 13 644: | Строка 15 068: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31219803 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31219803 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628988 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628988 | ||
}} | }} | ||
==MDN1== | ==MDN1== | ||
Строка 13 692: | Строка 15 108: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26195288 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26195288 | ||
|full-text-url=https://sci-hub.do/10.1007/s00709-015-0853-y | |full-text-url=https://sci-hub.do/10.1007/s00709-015-0853-y | ||
}} | }} | ||
==MEIS2== | ==MEIS2== | ||
Строка 13 709: | Строка 15 117: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4958316 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4958316 | ||
}} | }} | ||
== | ==MEPE== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Remodeling process in bone of aged rats in response to resistance training. | ||
|date= | |date=01.09.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32593709 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.lfs.2020.118008 | ||
}} | }} | ||
==MERTK== | ==MERTK== | ||
Строка 13 756: | Строка 15 164: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31861865 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31861865 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981746 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981746 | ||
}} | }} | ||
==MICB== | ==MICB== | ||
Строка 13 780: | Строка 15 180: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31377553 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31377553 | ||
|full-text-url=https://sci-hub.do/10.1016/j.ceca.2019.102055 | |full-text-url=https://sci-hub.do/10.1016/j.ceca.2019.102055 | ||
}} | |||
==MIPEP== | |||
* {{medline-title | |||
|title=[Metabolic Alteration in Aging Process: Metabolic Remodeling in White Adipose Tissue by Caloric Restriction]. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32115557 | |||
|full-text-url=https://sci-hub.do/10.1248/yakushi.19-00193-2 | |||
}} | |||
==MKRN1== | |||
* {{medline-title | |||
|title=Endothelial senescence-associated secretory phenotype (SASP) is regulated by Makorin-1 ubiquitin E3 ligase. | |||
|date=11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31476350 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059097 | |||
}} | }} | ||
==MLH3== | ==MLH3== | ||
Строка 13 797: | Строка 15 213: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4740877 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4740877 | ||
}} | }} | ||
== | ==MMP20== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Identification of the effects of aging-related gene-matrix metalloproteinase on allograft outcomes in kidney transplantation. | ||
|date= | |date=07-08.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23953525 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.transproceed.2013.03.020 | ||
}} | }} | ||
== | ==MOB1B== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. | ||
|date=05.03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109421 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058826 | |||
|date=05. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |||
}} | }} | ||
==MOG== | ==MOG== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Efficacy of vitamin D in treating multiple sclerosis-like neuroinflammation depends on developmental stage. | ||
|date= | |date=11.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23954214 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1016/j.expneurol.2013.08.002 | ||
}} | }} | ||
==MORF4L1== | ==MORF4L1== | ||
Строка 13 868: | Строка 15 276: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28948454 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28948454 | ||
|full-text-url=https://sci-hub.do/10.1007/s11899-017-0411-0 | |full-text-url=https://sci-hub.do/10.1007/s11899-017-0411-0 | ||
}} | |||
==MPP3== | |||
* {{medline-title | |||
|title=[[MPP3]] regulates levels of PALS1 and adhesion between photoreceptors and Müller cells. | |||
|date=10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23893895 | |||
|full-text-url=https://sci-hub.do/10.1002/glia.22545 | |||
}} | }} | ||
==MPP4== | ==MPP4== | ||
Строка 13 892: | Строка 15 308: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25861990 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25861990 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447960 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447960 | ||
}} | |||
==MR1== | |||
* {{medline-title | |||
|title=Human blood MAIT cell subsets defined using [[MR1]] tetramers. | |||
|date=05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29437263 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446826 | |||
}} | }} | ||
==MRC1== | ==MRC1== | ||
Строка 13 956: | Строка 15 380: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26193622 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26193622 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4853027 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4853027 | ||
}} | }} | ||
==MSN== | ==MSN== | ||
Строка 14 020: | Строка 15 436: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28118095 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28118095 | ||
|full-text-url=https://sci-hub.do/10.1089/omi.2016.0157 | |full-text-url=https://sci-hub.do/10.1089/omi.2016.0157 | ||
}} | |||
==MTCH2== | |||
* {{medline-title | |||
|title=The influence of obesity-related single nucleotide polymorphisms on BMI across the life course: the PAGE study. | |||
|date=05.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23300277 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636619 | |||
}} | |||
==MTHFD2== | |||
* {{medline-title | |||
|title=A multidimensional systems biology analysis of cellular senescence in aging and disease. | |||
|date=07.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264951 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333371 | |||
}} | }} | ||
==MTNR1A== | ==MTNR1A== | ||
Строка 14 029: | Строка 15 461: | ||
|full-text-url=https://sci-hub.do/10.1016/j.anireprosci.2014.07.022 | |full-text-url=https://sci-hub.do/10.1016/j.anireprosci.2014.07.022 | ||
}} | }} | ||
== | ==MTTP== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Active vitamin D supplementation alleviates initiation and progression of nonalcoholic fatty liver disease by repressing the p53 pathway. | ||
|date= | |date=15.01.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31756344 | ||
|full-text-url=https://sci-hub.do/10.1016/j.lfs.2019.117086 | |||
}} | }} | ||
==MUC7== | ==MUC7== | ||
Строка 14 061: | Строка 15 493: | ||
|full-text-url=https://sci-hub.do/10.1002/jhbp.256 | |full-text-url=https://sci-hub.do/10.1002/jhbp.256 | ||
}} | }} | ||
== | ==MVP== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Reexamining the minimum viable population concept for long-lived species. | ||
|date= | |date=06.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23458501 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1111/cobi.12028 | ||
}} | }} | ||
==MYBBP1A== | ==MYBBP1A== | ||
Строка 14 076: | Строка 15 508: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27699588 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27699588 | ||
|full-text-url=https://sci-hub.do/10.1007/s11010-016-2836-5 | |full-text-url=https://sci-hub.do/10.1007/s11010-016-2836-5 | ||
}} | }} | ||
==MYBPC1== | ==MYBPC1== | ||
Строка 14 096: | Строка 15 520: | ||
* {{medline-title | * {{medline-title | ||
|title=Silencing of AURKA augments the antitumor efficacy of the AURKA inhibitor MLN8237 on neuroblastoma cells. | |title=Silencing of [[AURKA]] augments the antitumor efficacy of the [[AURKA]] inhibitor MLN8237 on neuroblastoma cells. | ||
|date=2020 | |date=2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31920463 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31920463 | ||
Строка 14 140: | Строка 15 564: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24478790 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24478790 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894567 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894567 | ||
}} | |||
==MYO18B== | |||
* {{medline-title | |||
|title=A common variant in myosin-18B contributes to mathematical abilities in children with dyslexia and intraparietal sulcus variability in adults. | |||
|date=19.02.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23423138 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591001 | |||
}} | }} | ||
==MYO1F== | ==MYO1F== | ||
Строка 14 164: | Строка 15 596: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30389787 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30389787 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311499 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311499 | ||
}} | }} | ||
==MYOF== | ==MYOF== | ||
Строка 14 212: | Строка 15 636: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31699646 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31699646 | ||
|full-text-url=https://sci-hub.do/10.1016/j.wem.2019.06.016 | |full-text-url=https://sci-hub.do/10.1016/j.wem.2019.06.016 | ||
}} | |||
==NAF1== | |||
* {{medline-title | |||
|title=Telomere length and aging-related outcomes in humans: A Mendelian randomization study in 261,000 older participants. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31444995 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826144 | |||
}} | }} | ||
==NAIP== | ==NAIP== | ||
Строка 14 229: | Строка 15 661: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861859 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861859 | ||
}} | }} | ||
== | ==NCAPD2== | ||
* {{medline-title | |||
|title=[[KDM3A]] and [[KDM4C]] Regulate Mesenchymal Stromal Cell Senescence and Bone Aging via Condensin-mediated Heterochromatin Reorganization. | |||
|date=22.11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31704649 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888768 | |||
}} | |||
==NCAPG2== | |||
* {{medline-title | * {{medline-title | ||
|title= | |title=[[KDM3A]] and [[KDM4C]] Regulate Mesenchymal Stromal Cell Senescence and Bone Aging via Condensin-mediated Heterochromatin Reorganization. | ||
|date= | |date=22.11.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31704649 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888768 | ||
}} | }} | ||
==NCK2== | ==NCK2== | ||
Строка 14 252: | Строка 15 692: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30045751 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30045751 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058387 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058387 | ||
}} | |||
==NCSTN== | |||
* {{medline-title | |||
|title=The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. | |||
|date=29.07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32727592 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392710 | |||
}} | }} | ||
==NDN== | ==NDN== | ||
Строка 14 268: | Строка 15 716: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27911302 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27911302 | ||
|full-text-url=https://sci-hub.do/10.3233/JAD-160655 | |full-text-url=https://sci-hub.do/10.3233/JAD-160655 | ||
}} | |||
==NDUFA8== | |||
* {{medline-title | |||
|title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. | |||
|date=31.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708 | |||
}} | }} | ||
==NDUFA9== | ==NDUFA9== | ||
Строка 14 285: | Строка 15 741: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795392 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795392 | ||
}} | }} | ||
== | ==NDUFS4== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Low abundance of [[NDUFV2]] and [[NDUFS4]] subunits of the hydrophilic complex I domain and [[VDAC1]] predicts mammalian longevity. | ||
|date= | |date=07.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32353747 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191849 | ||
}} | }} | ||
==NDUFS7== | ==NDUFS7== | ||
Строка 14 325: | Строка 15 781: | ||
|full-text-url=https://sci-hub.do/10.1517/14712598.2014.960387 | |full-text-url=https://sci-hub.do/10.1517/14712598.2014.960387 | ||
}} | }} | ||
== | ==NEDD4L== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=DP1 Activation Reverses Age-Related Hypertension Via [[NEDD4L]]-Mediated T-Bet Degradation in T Cells. | ||
|date= | |date=25.02.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31893939 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1161/CIRCULATIONAHA.119.042532 | ||
}} | }} | ||
== | ==NEGR1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=The influence of obesity-related single nucleotide polymorphisms on BMI across the life course: the PAGE study. | ||
|date= | |date=05.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23300277 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636619 | ||
}} | }} | ||
==NEIL3== | ==NEIL3== | ||
Строка 14 348: | Строка 15 804: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31167196 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31167196 | ||
|full-text-url=https://sci-hub.do/10.1159/000500091 | |full-text-url=https://sci-hub.do/10.1159/000500091 | ||
}} | }} | ||
==NEK9== | ==NEK9== | ||
Строка 14 428: | Строка 15 876: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28031022 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28031022 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5198498 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5198498 | ||
}} | |||
==NHP2== | |||
* {{medline-title | |||
|title=Pseudouridylation defect due to [i]DKC1[/i] and [i][[NOP10]][/i] mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis. | |||
|date=30.06.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32554502 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334496 | |||
}} | }} | ||
==NIN== | ==NIN== | ||
Строка 14 436: | Строка 15 892: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24709042 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24709042 | ||
|full-text-url=https://sci-hub.do/10.1016/j.neuroscience.2014.03.040 | |full-text-url=https://sci-hub.do/10.1016/j.neuroscience.2014.03.040 | ||
}} | |||
==NIPA2== | |||
* {{medline-title | |||
|title=A multidimensional systems biology analysis of cellular senescence in aging and disease. | |||
|date=07.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264951 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333371 | |||
}} | }} | ||
==NKAP== | ==NKAP== | ||
Строка 14 476: | Строка 15 940: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31500828 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31500828 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6768570 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6768570 | ||
}} | }} | ||
==NLRP5== | ==NLRP5== | ||
Строка 14 524: | Строка 15 980: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30283350 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30283350 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156423 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156423 | ||
}} | |||
==NMU== | |||
* {{medline-title | |||
|title=[Medicinal Chemistry Focused on Mid-sized Peptides Derived from Biomolecules]. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31685733 | |||
|full-text-url=https://sci-hub.do/10.1248/yakushi.19-00149 | |||
}} | }} | ||
==NMUR1== | ==NMUR1== | ||
* {{medline-title | |||
|title=[Medicinal Chemistry Focused on Mid-sized Peptides Derived from Biomolecules]. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31685733 | |||
|full-text-url=https://sci-hub.do/10.1248/yakushi.19-00149 | |||
}} | |||
==NMUR2== | |||
* {{medline-title | * {{medline-title | ||
Строка 14 572: | Строка 16 044: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31920157 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31920157 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595581 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595581 | ||
}} | |||
==NPB== | |||
* {{medline-title | |||
|title=The Role of the IGF-1 Signaling Cascade in Muscle Protein Synthesis and Anabolic Resistance in Aging Skeletal Muscle. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31552262 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6746962 | |||
}} | }} | ||
==NPBWR1== | ==NPBWR1== | ||
Строка 14 613: | Строка 16 093: | ||
|full-text-url=https://sci-hub.do/10.1038/s41586-018-0128-9 | |full-text-url=https://sci-hub.do/10.1038/s41586-018-0128-9 | ||
}} | }} | ||
== | ==NPSR1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Variants of asthma and chronic obstructive pulmonary disease genes and lung function decline in aging. | ||
|date= | |date=07.2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24253534 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111635 | ||
}} | }} | ||
==NPY2R== | ==NPY2R== | ||
Строка 14 628: | Строка 16 108: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25765287 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25765287 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475460 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475460 | ||
}} | }} | ||
==NQO2== | ==NQO2== | ||
Строка 14 644: | Строка 16 116: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28346733 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28346733 | ||
|full-text-url=https://sci-hub.do/10.1002/jbt.21921 | |full-text-url=https://sci-hub.do/10.1002/jbt.21921 | ||
}} | |||
==NR1D1== | |||
* {{medline-title | |||
|title=Quercetin, caffeic acid and resveratrol regulate circadian clock genes and aging-related genes in young and old human lung fibroblast cells. | |||
|date=02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31773385 | |||
|full-text-url=https://sci-hub.do/10.1007/s11033-019-05194-8 | |||
}} | }} | ||
==NR1H3== | ==NR1H3== | ||
Строка 14 660: | Строка 16 140: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24702179 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24702179 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4042077 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4042077 | ||
}} | |||
==NR2F2== | |||
* {{medline-title | |||
|title=Fine mapping genetic variants associated with age at puberty and sow fertility using SowPro90 genotyping array. | |||
|date=01.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32888012 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568434 | |||
}} | }} | ||
==NR5A2== | ==NR5A2== | ||
Строка 14 676: | Строка 16 164: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30274778 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30274778 | ||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2018.09.045 | |full-text-url=https://sci-hub.do/10.1016/j.bbrc.2018.09.045 | ||
}} | }} | ||
==NRSN2== | ==NRSN2== | ||
Строка 14 708: | Строка 16 180: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28013231 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28013231 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5654756 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5654756 | ||
}} | |||
==NSD1== | |||
* {{medline-title | |||
|title=Screening for genes that accelerate the epigenetic aging clock in humans reveals a role for the H3K36 methyltransferase [[NSD1]]. | |||
|date=14.08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31409373 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693144 | |||
}} | }} | ||
==NSF== | ==NSF== | ||
Строка 14 773: | Строка 16 253: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6280426 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6280426 | ||
}} | }} | ||
== | ==NTNG2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. | ||
|date= | |date=03.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109663 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.atherosclerosis.2020.02.005 | ||
}} | }} | ||
==NUBP2== | ==NUBP2== | ||
Строка 14 796: | Строка 16 276: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31906085 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31906085 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019235 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019235 | ||
}} | |||
==NUDT12== | |||
* {{medline-title | |||
|title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. | |||
|date=31.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708 | |||
}} | }} | ||
==NUPR1== | ==NUPR1== | ||
Строка 14 804: | Строка 16 292: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29130426 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29130426 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5959327 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5959327 | ||
}} | |||
==NUSAP1== | |||
* {{medline-title | |||
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335 | |||
}} | }} | ||
==NVL== | ==NVL== | ||
Строка 14 812: | Строка 16 308: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25345635 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25345635 | ||
}} | |||
==NXF1== | |||
* {{medline-title | |||
|title=[[WRN]] modulates translation by influencing nuclear mRNA export in HeLa cancer cells. | |||
|date=14.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33054770 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557079 | |||
}} | |||
==OAS1== | |||
* {{medline-title | |||
|title=Fine mapping genetic variants associated with age at puberty and sow fertility using SowPro90 genotyping array. | |||
|date=01.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32888012 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568434 | |||
}} | |||
==OASL== | |||
* {{medline-title | |||
|title=Effect of age on the pathogenesis of DHV-1 in Pekin ducks and on the innate immune responses of ducks to infection. | |||
|date=05.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24162826 | |||
|full-text-url=https://sci-hub.do/10.1007/s00705-013-1900-7 | |||
}} | |||
==OAZ1== | |||
* {{medline-title | |||
|title=Identification of reference genes for RT-qPCR data normalisation in aging studies. | |||
|date=27.09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31562345 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764958 | |||
}} | }} | ||
==OCLN== | ==OCLN== | ||
Строка 14 829: | Строка 16 357: | ||
|full-text-url=https://sci-hub.do/10.1007/s00467-016-3535-x | |full-text-url=https://sci-hub.do/10.1007/s00467-016-3535-x | ||
}} | }} | ||
== | ==ODC1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=The curious case of polyamines: spermidine drives reversal of B cell senescence. | ||
|date= | |date=03.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31795807 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999633 | ||
}} | }} | ||
== | ==OGDH== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. | ||
|date= | |date=12.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31531781 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1007/s00425-019-03272-6 | ||
}} | |||
==OGFOD1== | |||
* {{medline-title | |||
|title=2-Oxoglutarate-dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process. | |||
|date=10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26118662 | |||
|full-text-url=https://sci-hub.do/10.1007/s00018-015-1978-z | |||
}} | }} | ||
==OLFML3== | ==OLFML3== | ||
Строка 14 861: | Строка 16 397: | ||
|full-text-url=https://sci-hub.do/10.1016/j.molmed.2016.02.007 | |full-text-url=https://sci-hub.do/10.1016/j.molmed.2016.02.007 | ||
}} | }} | ||
== | ==ONECUT1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Survival analyses in Holstein cows considering direct disease diagnoses and specific SNP marker effects. | ||
|date= | |date=09.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32684467 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.3168/jds.2020-18174 | ||
}} | }} | ||
==OOEP== | ==OOEP== | ||
Строка 14 877: | Строка 16 413: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6085769 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6085769 | ||
}} | }} | ||
== | ==OPLAH== | ||
* {{medline-title | |||
|title=An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31531781 | |||
|full-text-url=https://sci-hub.do/10.1007/s00425-019-03272-6 | |||
}} | |||
==OPRD1== | |||
* {{medline-title | * {{medline-title | ||
|title= | |title=A commonly carried genetic variant in the delta opioid receptor gene, [[OPRD1]], is associated with smaller regional brain volumes: replication in elderly and young populations. | ||
|date= | |date=04.2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23427138 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046708 | ||
}} | }} | ||
==OR2AG1== | ==OR2AG1== | ||
Строка 14 909: | Строка 16 453: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217014 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217014 | ||
}} | }} | ||
== | ==ORC1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=The hyperornithinemia-hyperammonemia-homocitrullinuria syndrome. | ||
|date= | |date=11.03.2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25874378 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358699 | ||
}} | }} | ||
== | ==ORMDL3== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. | ||
|date=12. | |date=12.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31508907 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6903450 | ||
}} | }} | ||
==OSCAR== | ==OSCAR== | ||
* {{medline-title | * {{medline-title | ||
|title=Awareness tool for safe and responsible driving ([[ | |title=Awareness tool for safe and responsible driving ([[OSCAR]]): a potential educational intervention for increasing interest, openness and knowledge about the abilities required and compensatory strategies among older drivers. | ||
|date=2015 | |date=2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25802971 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25802971 | ||
Строка 14 940: | Строка 16 484: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30975089 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30975089 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458604 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458604 | ||
}} | |||
==OTUD7A== | |||
* {{medline-title | |||
|title=A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. | |||
|date=07.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23650146 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990406 | |||
}} | |||
==OXT== | |||
* {{medline-title | |||
|title=Medial amygdala lesions modify aggressive behavior and immediate early gene expression in oxytocin and vasopressin neurons during intermale exposure. | |||
|date=15.05.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23403283 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbr.2013.02.002 | |||
}} | |||
==P2RX3== | |||
* {{medline-title | |||
|title=Fine mapping genetic variants associated with age at puberty and sow fertility using SowPro90 genotyping array. | |||
|date=01.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32888012 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568434 | |||
}} | |||
==P2RX4== | |||
* {{medline-title | |||
|title=A rare functional haplotype of the [[P2RX4]] and [[P2RX7]] genes leads to loss of innate phagocytosis and confers increased risk of age-related macular degeneration. | |||
|date=04.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23303206 | |||
|full-text-url=https://sci-hub.do/10.1096/fj.12-215368 | |||
}} | }} | ||
==P2RY10== | ==P2RY10== | ||
Строка 14 996: | Строка 16 572: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26794818 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26794818 | ||
|full-text-url=https://sci-hub.do/10.7417/T.2015.1902 | |full-text-url=https://sci-hub.do/10.7417/T.2015.1902 | ||
}} | }} | ||
==PALM== | ==PALM== | ||
Строка 15 021: | Строка 16 589: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894567 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894567 | ||
}} | }} | ||
== | ==PARN== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=CD8 T-cell senescence and skewed lymphocyte subsets in young Dyskeratosis Congenita patients with [[PARN]] and [[DKC1]] mutations. | ||
|date= | |date=09.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32452087 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521304 | |||
}} | }} | ||
==PARP2== | ==PARP2== | ||
Строка 15 076: | Строка 16 644: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31518338 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31518338 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6781991 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6781991 | ||
}} | |||
==PBX4== | |||
* {{medline-title | |||
|title=Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31508907 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6903450 | |||
}} | }} | ||
==PCBP2== | ==PCBP2== | ||
Строка 15 117: | Строка 16 693: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294724 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294724 | ||
}} | }} | ||
== | ==PCGF2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. | ||
|date= | |date=24.09.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659 | ||
}} | }} | ||
== | ==PCGF3== | ||
* {{medline-title | * {{medline-title | ||
|title=Genome-wide association study and annotating candidate gene networks affecting age at first calving in Nellore cattle. | |title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. | ||
|date=12.2017 | |date=24.09.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28994157 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540 | ||
|full-text-url=https://sci-hub.do/10.1111/jbg.12299 | |full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659 | ||
}} | |||
==PCGF5== | |||
* {{medline-title | |||
|title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. | |||
|date=24.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659 | |||
}} | |||
==PCK1== | |||
* {{medline-title | |||
|title=[[PCK1]] is negatively regulated by bta-miR-26a, and a single-nucleotide polymorphism in the 3' untranslated region is involved in semen quality and longevity of Holstein bulls. | |||
|date=03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26725319 | |||
|full-text-url=https://sci-hub.do/10.1002/mrd.22613 | |||
}} | |||
==PCMTD1== | |||
* {{medline-title | |||
|title=Genome-wide association study and annotating candidate gene networks affecting age at first calving in Nellore cattle. | |||
|date=12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28994157 | |||
|full-text-url=https://sci-hub.do/10.1111/jbg.12299 | |||
}} | }} | ||
==PCP4== | ==PCP4== | ||
Строка 15 141: | Строка 16 741: | ||
|full-text-url=https://sci-hub.do/10.1016/j.brainres.2016.06.003 | |full-text-url=https://sci-hub.do/10.1016/j.brainres.2016.06.003 | ||
}} | }} | ||
== | ==PDE11A== | ||
* {{medline-title | |||
|title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653 | |||
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007 | |||
}} | |||
==PDE1B== | |||
* {{medline-title | |||
|title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653 | |||
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007 | |||
}} | |||
==PDE3B== | |||
* {{medline-title | |||
|title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653 | |||
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007 | |||
}} | |||
==PDE4A== | |||
* {{medline-title | |||
|title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653 | |||
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007 | |||
}} | |||
==PDE7A== | |||
* {{medline-title | * {{medline-title | ||
|title= | |title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. | ||
|date= | |date=02.2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653 | ||
|full-text-url=https://sci-hub.do/10.1016/j. | |full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007 | ||
}} | }} | ||
== | ==PDE7B== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. | ||
|date= | |date=02.2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007 | ||
}} | }} | ||
== | ==PDE8A== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. | ||
|date= | |date=02.2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007 | ||
}} | }} | ||
== | ==PDE8B== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. | ||
|date= | |date=02.2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007 | ||
}} | }} | ||
==PDGFRA== | ==PDGFRA== | ||
Строка 15 180: | Строка 16 812: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27579614 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27579614 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342491 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342491 | ||
}} | }} | ||
==PDP1== | ==PDP1== | ||
Строка 15 260: | Строка 16 884: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26802463 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26802463 | ||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2016.01.114 | |full-text-url=https://sci-hub.do/10.1016/j.bbrc.2016.01.114 | ||
}} | }} | ||
==PGAP1== | ==PGAP1== | ||
Строка 15 300: | Строка 16 916: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24439372 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24439372 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3928474 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3928474 | ||
}} | |||
==PGLYRP2== | |||
* {{medline-title | |||
|title=Innate immune response to LPS in airway epithelium is dependent on chronological age and antecedent exposures. | |||
|date=11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23600597 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931090 | |||
}} | }} | ||
==PGM1== | ==PGM1== | ||
Строка 15 309: | Строка 16 933: | ||
|full-text-url=https://sci-hub.do/10.1016/j.jprot.2019.03.004 | |full-text-url=https://sci-hub.do/10.1016/j.jprot.2019.03.004 | ||
}} | }} | ||
==PHF19== | ==PHAX== | ||
* {{medline-title | |||
|title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. | |||
|date=31.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708 | |||
}} | |||
==PHF19== | |||
* {{medline-title | * {{medline-title | ||
Строка 15 356: | Строка 16 988: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26001726 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26001726 | ||
|full-text-url=https://sci-hub.do/10.1016/j.freeradbiomed.2015.05.019 | |full-text-url=https://sci-hub.do/10.1016/j.freeradbiomed.2015.05.019 | ||
}} | |||
==PIAS1== | |||
* {{medline-title | |||
|title=Age-Dependent and -Independent Effects of Perivascular Adipose Tissue and Its Paracrine Activities during Neointima Formation. | |||
|date=31.12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31906225 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981748 | |||
}} | }} | ||
==PICK1== | ==PICK1== | ||
Строка 15 380: | Строка 17 020: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30641220 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30641220 | ||
|full-text-url=https://sci-hub.do/10.1016/j.gene.2018.12.063 | |full-text-url=https://sci-hub.do/10.1016/j.gene.2018.12.063 | ||
}} | |||
==PIK3C2B== | |||
* {{medline-title | |||
|title=In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31520345 | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-019-09834-1 | |||
}} | }} | ||
==PIK3C3== | ==PIK3C3== | ||
Строка 15 436: | Строка 17 084: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28058013 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28058013 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5175245 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5175245 | ||
}} | }} | ||
==PKD1== | ==PKD1== | ||
Строка 15 469: | Строка 17 109: | ||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2016.01.114 | |full-text-url=https://sci-hub.do/10.1016/j.bbrc.2016.01.114 | ||
}} | }} | ||
== | ==PKNOX1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=The effects of environmental stressors on candidate aging associated genes. | ||
|date= | |date=08.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32344118 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1016/j.exger.2020.110952 | ||
}} | }} | ||
==PLA2G4A== | ==PLA2G4A== | ||
Строка 15 484: | Строка 17 124: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24963629 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24963629 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070994 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070994 | ||
}} | |||
==PLA2G4B== | |||
* {{medline-title | |||
|title=Monocytes present age-related changes in phospholipid concentration and decreased energy metabolism. | |||
|date=04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32107839 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189998 | |||
}} | |||
==PLA2G7== | |||
* {{medline-title | |||
|title=Elevated [[PLA2G7]] gene promoter methylation as a gender-specific marker of aging increases the risk of coronary heart disease in females. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23555769 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3610900 | |||
}} | }} | ||
==PLAGL1== | ==PLAGL1== | ||
Строка 15 532: | Строка 17 188: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24496748 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24496748 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209016 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209016 | ||
}} | |||
==PLEKHA6== | |||
* {{medline-title | |||
|title=In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31520345 | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-019-09834-1 | |||
}} | }} | ||
==PLEKHO1== | ==PLEKHO1== | ||
Строка 15 548: | Строка 17 212: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28555711 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28555711 | ||
|full-text-url=https://sci-hub.do/10.14283/jfa.2017.13 | |full-text-url=https://sci-hub.do/10.14283/jfa.2017.13 | ||
}} | }} | ||
==PLK2== | ==PLK2== | ||
Строка 15 564: | Строка 17 220: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27032368 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27032368 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890980 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890980 | ||
}} | |||
==PLP1== | |||
* {{medline-title | |||
|title=Age-related changes in a patient with Pelizaeus-Merzbacher disease determined by repeated 1H-magnetic resonance spectroscopy. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24056155 | |||
|full-text-url=https://sci-hub.do/10.1177/0883073813499635 | |||
}} | |||
==PLTP== | |||
* {{medline-title | |||
|title=[[PLTP]] deficiency impairs learning and memory capabilities partially due to alteration of amyloid-β metabolism in old mice. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24121956 | |||
|full-text-url=https://sci-hub.do/10.3233/JAD-130812 | |||
}} | }} | ||
==PLXNA4== | ==PLXNA4== | ||
Строка 15 580: | Строка 17 252: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26940433 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26940433 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4892659 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4892659 | ||
}} | }} | ||
==PMS1== | ==PMS1== | ||
* {{medline-title | * {{medline-title | ||
Строка 15 688: | Строка 17 344: | ||
* {{medline-title | * {{medline-title | ||
|title=[Genotype and allele frequencies of | |title=[Genotype and allele frequencies of UCP and PPAR gene families in residents of besieged Leningrad and in the control group]. | ||
|date=2014 | |date=2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25826986 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25826986 | ||
}} | |||
==PPCDC== | |||
* {{medline-title | |||
|title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. | |||
|date=31.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708 | |||
}} | }} | ||
==PPFIA1== | ==PPFIA1== | ||
Строка 15 725: | Строка 17 389: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861946 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861946 | ||
}} | }} | ||
==PPP1R3C== | ==PPP1R15B== | ||
* {{medline-title | |||
|title=In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31520345 | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-019-09834-1 | |||
}} | |||
==PPP1R1B== | |||
* {{medline-title | |||
|title=Effects of [[PPP1R1B]] (DARPP-32) Polymorphism on Feedback-Related Brain Potentials Across the Life Span. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23459765 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586677 | |||
}} | |||
==PPP1R3C== | |||
* {{medline-title | * {{medline-title | ||
Строка 15 757: | Строка 17 437: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6413667 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6413667 | ||
}} | }} | ||
== | ==PPT1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Neuroprotection and lifespan extension in Ppt1(-/-) mice by NtBuHA: therapeutic implications for INCL. | ||
|date= | |date=11.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24056696 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812271 | ||
}} | }} | ||
==PRDM1== | ==PRDM1== | ||
Строка 15 780: | Строка 17 460: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32819411 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32819411 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439574 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439574 | ||
}} | |||
==PRDX2== | |||
* {{medline-title | |||
|title=Regulation of [[PRDX1]] peroxidase activity by Pin1. | |||
|date=15.03.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23421996 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637353 | |||
}} | |||
==PRDX5== | |||
* {{medline-title | |||
|title=The antioxidant icariin protects porcine oocytes from age-related damage in vitro. | |||
|date=12.05.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32777912 | |||
|full-text-url=https://sci-hub.do/10.5713/ajas.20.0046 | |||
}} | }} | ||
==PRG2== | ==PRG2== | ||
Строка 15 788: | Строка 17 484: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28439450 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28439450 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391678 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391678 | ||
}} | }} | ||
==PRKAA1== | ==PRKAA1== | ||
Строка 15 805: | Строка 17 493: | ||
|full-text-url=https://sci-hub.do/10.1016/j.clnesp.2018.10.003 | |full-text-url=https://sci-hub.do/10.1016/j.clnesp.2018.10.003 | ||
}} | }} | ||
== | ==PRKACA== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Intratumoral heterogeneity of the tumor cells based on in situ cortisol excess in cortisol-producing adenomas; ∼An association among morphometry, genotype and cellular senescence∼. | ||
|date= | |date=11.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33002589 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1016/j.jsbmb.2020.105764 | ||
}} | }} | ||
==PRKCB== | ==PRKCB== | ||
Строка 15 884: | Строка 17 572: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28264926 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28264926 | ||
|full-text-url=https://sci-hub.do/10.1242/jcs.196469 | |full-text-url=https://sci-hub.do/10.1242/jcs.196469 | ||
}} | }} | ||
==PRR9== | ==PRR9== | ||
Строка 15 900: | Строка 17 580: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30065116 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30065116 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6099856 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6099856 | ||
}} | |||
==PRRC2A== | |||
* {{medline-title | |||
|title=Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. | |||
|date=05.03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109421 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058826 | |||
}} | }} | ||
==PRRX1== | ==PRRX1== | ||
Строка 15 948: | Строка 17 636: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24393841 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24393841 | ||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2013.12.113 | |full-text-url=https://sci-hub.do/10.1016/j.bbrc.2013.12.113 | ||
}} | }} | ||
==PSMB9== | ==PSMB9== | ||
Строка 15 996: | Строка 17 676: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29570707 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29570707 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884551 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884551 | ||
}} | |||
==PSTK== | |||
* {{medline-title | |||
|title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. | |||
|date=31.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708 | |||
}} | }} | ||
==PTCH1== | ==PTCH1== | ||
Строка 16 004: | Строка 17 692: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30391523 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30391523 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6342483 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6342483 | ||
}} | }} | ||
==PTGDR== | ==PTGDR== | ||
Строка 16 060: | Строка 17 740: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24930376 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24930376 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203112 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203112 | ||
}} | }} | ||
==PTP4A3== | ==PTP4A3== | ||
Строка 16 077: | Строка 17 749: | ||
|full-text-url=https://sci-hub.do/10.1002/adbi.202000044 | |full-text-url=https://sci-hub.do/10.1002/adbi.202000044 | ||
}} | }} | ||
==PTPN7== | |||
==PTPN7== | |||
* {{medline-title | * {{medline-title | ||
Строка 16 124: | Строка 17 788: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28077804 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28077804 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5310665 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5310665 | ||
}} | }} | ||
==PUM1== | ==PUM1== | ||
Строка 16 156: | Строка 17 812: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29027019 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29027019 | ||
|full-text-url=https://sci-hub.do/10.1007/s00702-017-1796-6 | |full-text-url=https://sci-hub.do/10.1007/s00702-017-1796-6 | ||
}} | |||
==RAB10== | |||
* {{medline-title | |||
|title=Aberrant mitochondrial morphology and function associated with impaired mitophagy and [[DNM1L]]-MAPK/ERK signaling are found in aged mutant Parkinsonian [[LRRK2]] mice. | |||
|date=10.12.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33300446 | |||
|full-text-url=https://sci-hub.do/10.1080/15548627.2020.1850008 | |||
}} | }} | ||
==RAB1B== | ==RAB1B== | ||
Строка 16 164: | Строка 17 828: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30837897 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30837897 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390296 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390296 | ||
}} | |||
==RAB27A== | |||
* {{medline-title | |||
|title=Reduced expression level of the cyclic adenosine monophosphate response element-binding protein contributes to lung aging. | |||
|date=01.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23991634 | |||
|full-text-url=https://sci-hub.do/10.1165/rcmb.2013-0057OC | |||
}} | }} | ||
==RAC3== | ==RAC3== | ||
Строка 16 188: | Строка 17 860: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30837897 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30837897 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390296 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390296 | ||
}} | }} | ||
==RAD51C== | ==RAD51C== | ||
Строка 16 228: | Строка 17 892: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26010764 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26010764 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933107 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933107 | ||
}} | |||
==RAMP2== | |||
* {{medline-title | |||
|title=Vascular endothelial adrenomedullin-[[RAMP2]] system is essential for vascular integrity and organ homeostasis. | |||
|date=19.02.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23355623 | |||
|full-text-url=https://sci-hub.do/10.1161/CIRCULATIONAHA.112.000756 | |||
}} | }} | ||
==RAPGEF2== | ==RAPGEF2== | ||
Строка 16 268: | Строка 17 940: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24409144 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24409144 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3867747 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3867747 | ||
}} | }} | ||
==RB1CC1== | ==RB1CC1== | ||
Строка 16 292: | Строка 17 956: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26491019 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26491019 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705941 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705941 | ||
}} | |||
==RBFOX1== | |||
* {{medline-title | |||
|title=Genetics of Gene Expression in the Aging Human Brain Reveal TDP-43 Proteinopathy Pathophysiology. | |||
|date=05.08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32526197 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416464 | |||
}} | }} | ||
==RBL1== | ==RBL1== | ||
Строка 16 316: | Строка 17 988: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30399610 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30399610 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311128 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311128 | ||
}} | |||
==RBM34== | |||
* {{medline-title | |||
|title=The association between poverty and gene expression within peripheral blood mononuclear cells in a diverse Baltimore City cohort. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32970748 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514036 | |||
}} | }} | ||
==RBM38== | ==RBM38== | ||
Строка 16 349: | Строка 18 029: | ||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2019.06.151 | |full-text-url=https://sci-hub.do/10.1016/j.bbrc.2019.06.151 | ||
}} | }} | ||
== | ==RC3H2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. | ||
|date= | |date=29.07.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32727592 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392710 | ||
}} | |||
==RDX== | |||
* {{medline-title | |||
|title=Toxicity of the conventional energetics TNT and [[RDX]] relative to new insensitive munitions constituents DNAN and NTO in Rana pipiens tadpoles. | |||
|date=04.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25586961 | |||
|full-text-url=https://sci-hub.do/10.1002/etc.2890 | |||
}} | }} | ||
== | ==REEP4== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Chromosome Missegregation in Single Human Oocytes Is Related to the Age and Gene Expression Profile. | ||
|date= | |date=12.03.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32178390 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139522 | ||
}} | }} | ||
==REL== | ==REL== | ||
Строка 16 388: | Строка 18 076: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33168727 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33168727 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7682577 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7682577 | ||
}} | |||
==RFWD3== | |||
* {{medline-title | |||
|title=Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. | |||
|date=05.03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109421 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058826 | |||
}} | }} | ||
==RGL1== | ==RGL1== | ||
Строка 16 396: | Строка 18 092: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28735023 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28735023 | ||
|full-text-url=https://sci-hub.do/10.1016/j.molp.2017.07.008 | |full-text-url=https://sci-hub.do/10.1016/j.molp.2017.07.008 | ||
}} | }} | ||
==RGS10== | ==RGS10== | ||
Строка 16 436: | Строка 18 124: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31170090 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31170090 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594797 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594797 | ||
}} | |||
==RHD== | |||
* {{medline-title | |||
|title=Suppression and narrative time shifts in adults with right-hemisphere brain damage. | |||
|date=05.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23695902 | |||
|full-text-url=https://sci-hub.do/10.1044/1058-0360(2012/12-0072) | |||
}} | }} | ||
==RHEBL1== | ==RHEBL1== | ||
Строка 16 525: | Строка 18 221: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6732230 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6732230 | ||
}} | }} | ||
== | ==RORB== | ||
* {{medline-title | * {{medline-title | ||
|title=Effects of circadian clock genes and environmental factors on cognitive aging in old adults in a Taiwanese population. | |||
|date=11.04.2017 | |||
|title=Effects of circadian clock genes and environmental factors on cognitive aging in old adults in a Taiwanese population. | |||
|date=11.04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28412756 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28412756 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421829 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421829 | ||
Строка 16 549: | Строка 18 237: | ||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | ||
}} | }} | ||
== | ==RPA1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. | ||
|date= | |date=31.01.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708 | ||
}} | }} | ||
==RPA2== | ==RPA2== | ||
Строка 16 564: | Строка 18 252: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28841467 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28841467 | ||
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.07.015 | |full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.07.015 | ||
}} | }} | ||
==RPL13== | ==RPL13== | ||
Строка 16 582: | Строка 18 262: | ||
}} | }} | ||
==RPL18== | ==RPL18== | ||
* {{medline-title | * {{medline-title | ||
Строка 16 612: | Строка 18 284: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30915334 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30915334 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421261 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421261 | ||
}} | }} | ||
==RPL36== | ==RPL36== | ||
Строка 16 660: | Строка 18 324: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32659678 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32659678 | ||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2020.153275 | |full-text-url=https://sci-hub.do/10.1016/j.phymed.2020.153275 | ||
}} | }} | ||
==RPS6KA1== | ==RPS6KA1== | ||
Строка 16 716: | Строка 18 356: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30391675 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30391675 | ||
|full-text-url=https://sci-hub.do/10.1016/j.freeradbiomed.2018.10.457 | |full-text-url=https://sci-hub.do/10.1016/j.freeradbiomed.2018.10.457 | ||
}} | }} | ||
==RRM2B== | ==RRM2B== | ||
Строка 16 820: | Строка 18 452: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30216632 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30216632 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6260923 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6260923 | ||
}} | }} | ||
==RYR3== | ==RYR3== | ||
Строка 16 836: | Строка 18 460: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24423397 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24423397 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898238 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898238 | ||
}} | |||
==S100A10== | |||
* {{medline-title | |||
|title=Age-related and depot-specific changes in white adipose tissue of growth hormone receptor-null mice. | |||
|date=01.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23873966 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3859361 | |||
}} | }} | ||
==S100A13== | ==S100A13== | ||
Строка 16 844: | Строка 18 476: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30670674 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30670674 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6366962 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6366962 | ||
}} | }} | ||
==S100A7== | ==S100A7== | ||
Строка 16 972: | Строка 18 596: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25761685 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25761685 | ||
|full-text-url=https://sci-hub.do/10.1134/S0006297915030062 | |full-text-url=https://sci-hub.do/10.1134/S0006297915030062 | ||
}} | |||
==SCN1A== | |||
* {{medline-title | |||
|title=Effects of normal aging and [[SCN1A]] risk-gene expression on brain metabolites: evidence for an association between [[SCN1A]] and myo-inositol. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24357141 | |||
|full-text-url=https://sci-hub.do/10.1002/nbm.3057 | |||
}} | }} | ||
==SCN2A== | ==SCN2A== | ||
Строка 17 005: | Строка 18 637: | ||
|full-text-url=https://sci-hub.do/10.1007/978-1-0716-0471-7_12 | |full-text-url=https://sci-hub.do/10.1007/978-1-0716-0471-7_12 | ||
}} | }} | ||
== | ==SCPEP1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Structural and kinetic evidence of aging after organophosphate inhibition of human Cathepsin A. | ||
|date= | |date=07.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32305437 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.bcp.2020.113980 | ||
}} | }} | ||
==SCRIB== | ==SCRIB== | ||
Строка 17 045: | Строка 18 677: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627677 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627677 | ||
}} | }} | ||
== | ==SDHAF2== | ||
* {{medline-title | |||
|title=Long-term prognosis of patients with pediatric pheochromocytoma. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24169644 | |||
|full-text-url=https://sci-hub.do/10.1530/ERC-13-0415 | |||
}} | |||
==SDHD== | |||
* {{medline-title | * {{medline-title | ||
|title= | |title=Long-term prognosis of patients with pediatric pheochromocytoma. | ||
|date=02. | |date=02.2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24169644 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1530/ERC-13-0415 | ||
}} | }} | ||
==SEC23A== | ==SEC23A== | ||
Строка 17 164: | Строка 18 804: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32827359 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32827359 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7576240 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7576240 | ||
}} | |||
==SENP7== | |||
* {{medline-title | |||
|title=Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. | |||
|date=05.03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109421 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058826 | |||
}} | }} | ||
==SERPINA1== | ==SERPINA1== | ||
Строка 17 173: | Строка 18 821: | ||
|full-text-url=https://sci-hub.do/10.1111/rda.13091 | |full-text-url=https://sci-hub.do/10.1111/rda.13091 | ||
}} | }} | ||
== | ==SERPINB3== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[[SERPINB3]] is associated with longer survival in transgenic mice. | ||
|date= | |date=28.10.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24162160 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808827 | ||
}} | }} | ||
==SESN1== | ==SESN1== | ||
Строка 17 229: | Строка 18 877: | ||
|full-text-url=https://sci-hub.do/10.1136/bjsports-2014-094073 | |full-text-url=https://sci-hub.do/10.1136/bjsports-2014-094073 | ||
}} | }} | ||
== | ==SGPP2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Vitamin D-responsive [[SGPP2]] variants associated with lung cell expression and lung function. | ||
|date= | |date=25.11.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24274704 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907038 | ||
}} | }} | ||
==SGSH== | ==SGSH== | ||
Строка 17 268: | Строка 18 916: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26802937 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26802937 | ||
|full-text-url=https://sci-hub.do/10.1016/j.plefa.2015.10.006 | |full-text-url=https://sci-hub.do/10.1016/j.plefa.2015.10.006 | ||
}} | |||
==SHCBP1== | |||
* {{medline-title | |||
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335 | |||
}} | }} | ||
==SHD== | ==SHD== | ||
Строка 17 380: | Строка 19 036: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26373937 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26373937 | ||
|full-text-url=https://sci-hub.do/10.1007/s00425-015-2402-5 | |full-text-url=https://sci-hub.do/10.1007/s00425-015-2402-5 | ||
}} | |||
==SLAMF1== | |||
* {{medline-title | |||
|title=Systemic Inflammation and the Increased Risk of Inflamm-Aging and Age-Associated Diseases in People Living With HIV on Long Term Suppressive Antiretroviral Therapy. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31507593 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718454 | |||
}} | }} | ||
==SLAMF7== | ==SLAMF7== | ||
Строка 17 388: | Строка 19 052: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24708744 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24708744 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4234188 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4234188 | ||
}} | |||
==SLC11A1== | |||
* {{medline-title | |||
|title=The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. | |||
|date=29.07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32727592 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392710 | |||
}} | }} | ||
==SLC12A5== | ==SLC12A5== | ||
Строка 17 396: | Строка 19 068: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28419903 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28419903 | ||
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.04.006 | |full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.04.006 | ||
}} | |||
==SLC12A8== | |||
* {{medline-title | |||
|title=Identifying blood-specific age-related DNA methylation markers on the Illumina MethylationEPIC® BeadChip. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31546163 | |||
|full-text-url=https://sci-hub.do/10.1016/j.forsciint.2019.109944 | |||
}} | }} | ||
==SLC15A1== | ==SLC15A1== | ||
Строка 17 413: | Строка 19 093: | ||
|full-text-url=https://sci-hub.do/10.1007/s11010-018-3413-x | |full-text-url=https://sci-hub.do/10.1007/s11010-018-3413-x | ||
}} | }} | ||
== | ==SLC16A10== | ||
* {{medline-title | |||
|title=The SLC16 gene family - structure, role and regulation in health and disease. | |||
|date=04-06.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23506875 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mam.2012.05.003 | |||
}} | |||
==SLC16A2== | |||
* {{medline-title | |||
|title=The SLC16 gene family - structure, role and regulation in health and disease. | |||
|date=04-06.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23506875 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mam.2012.05.003 | |||
}} | |||
==SLC16A3== | |||
* {{medline-title | * {{medline-title | ||
|title= | |title=The SLC16 gene family - structure, role and regulation in health and disease. | ||
|date= | |date=04-06.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23506875 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1016/j.mam.2012.05.003 | ||
}} | }} | ||
==SLC17A3== | ==SLC17A3== | ||
Строка 17 444: | Строка 19 140: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30909319 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30909319 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6516164 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6516164 | ||
}} | |||
==SLC22A12== | |||
* {{medline-title | |||
|title=[[ABCG2]] rs2231142 variant in hyperuricemia is modified by [[SLC2A9]] and [[SLC22A12]] polymorphisms and cardiovascular risk factors in an elderly community-dwelling population. | |||
|date=17.03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32183743 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7077001 | |||
}} | }} | ||
==SLC22A14== | ==SLC22A14== | ||
Строка 17 468: | Строка 19 172: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29384103 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29384103 | ||
|full-text-url=https://sci-hub.do/10.1051/medsci/20183401020 | |full-text-url=https://sci-hub.do/10.1051/medsci/20183401020 | ||
}} | }} | ||
==SLC25A15== | ==SLC25A15== | ||
Строка 17 484: | Строка 19 180: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25874378 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25874378 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358699 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358699 | ||
}} | }} | ||
==SLC27A1== | ==SLC27A1== | ||
Строка 17 501: | Строка 19 189: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5480610 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5480610 | ||
}} | }} | ||
== | ==SLC2A4RG== | ||
* {{medline-title | * {{medline-title | ||
|title=Genome-wide association study for lactation persistency, female fertility, longevity, and lifetime profit index traits in Holstein dairy cattle. | |||
|date=02.2017 | |||
|title=Genome-wide association study for lactation persistency, female fertility, longevity, and lifetime profit index traits in Holstein dairy cattle. | |||
|date=02.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27889128 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27889128 | ||
|full-text-url=https://sci-hub.do/10.3168/jds.2016-11770 | |full-text-url=https://sci-hub.do/10.3168/jds.2016-11770 | ||
}} | }} | ||
==SLC30A1== | ==SLC30A1== | ||
Строка 17 564: | Строка 19 236: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28083894 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28083894 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5334531 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5334531 | ||
}} | |||
==SLC39A5== | |||
* {{medline-title | |||
|title=Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients. | |||
|date=03.09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31560770 | |||
|full-text-url=https://sci-hub.do/10.1167/iovs.19-27921 | |||
}} | }} | ||
==SLC39A6== | ==SLC39A6== | ||
Строка 17 580: | Строка 19 260: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31076559 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31076559 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535063 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535063 | ||
}} | |||
==SLC4A7== | |||
* {{medline-title | |||
|title=Multivariate genomic scan implicates novel loci and haem metabolism in human ageing. | |||
|date=16.07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32678081 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366647 | |||
}} | }} | ||
==SLC52A2== | ==SLC52A2== | ||
Строка 17 596: | Строка 19 284: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29053833 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29053833 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5808726 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5808726 | ||
}} | |||
==SLCO1B1== | |||
* {{medline-title | |||
|title=The [[SLCO1B1]] c.521T>C polymorphism is associated with dose decrease or switching during statin therapy in the Rotterdam Study. | |||
|date=01.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24263182 | |||
|full-text-url=https://sci-hub.do/10.1097/FPC.0000000000000018 | |||
}} | }} | ||
==SLCO1B3== | ==SLCO1B3== | ||
Строка 17 636: | Строка 19 332: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28321525 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28321525 | ||
|full-text-url=https://sci-hub.do/10.1007/s10695-017-0360-5 | |full-text-url=https://sci-hub.do/10.1007/s10695-017-0360-5 | ||
}} | }} | ||
==SMARCA5== | ==SMARCA5== | ||
Строка 17 708: | Строка 19 396: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28302748 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28302748 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5450844 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5450844 | ||
}} | |||
==SMG1== | |||
* {{medline-title | |||
|title=[[SMG1]] heterozygosity exacerbates haematopoietic cancer development in Atm null mice by increasing persistent DNA damage and oxidative stress. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31565865 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850945 | |||
}} | }} | ||
==SMG6== | ==SMG6== | ||
Строка 17 717: | Строка 19 413: | ||
|full-text-url=https://sci-hub.do/10.1159/000438900 | |full-text-url=https://sci-hub.do/10.1159/000438900 | ||
}} | }} | ||
== | ==SMPD3== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Endoplasmic Reticulum Stress Mediates Vascular Smooth Muscle Cell Calcification via Increased Release of Grp78-Loaded Extracellular Vesicles. | ||
|date= | |date=10.12.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33297752 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1161/ATVBAHA.120.315506 | ||
}} | }} | ||
==SMURF2== | ==SMURF2== | ||
Строка 17 772: | Строка 19 468: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27049449 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27049449 | ||
|full-text-url=https://sci-hub.do/10.1016/j.jvoice.2016.02.019 | |full-text-url=https://sci-hub.do/10.1016/j.jvoice.2016.02.019 | ||
}} | |||
==SNRPE== | |||
* {{medline-title | |||
|title=In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31520345 | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-019-09834-1 | |||
}} | |||
==SNRPN== | |||
* {{medline-title | |||
|title=Age-associated changes in gene expression of goat oocytes. | |||
|date=01.09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23746875 | |||
|full-text-url=https://sci-hub.do/10.1016/j.theriogenology.2013.04.019 | |||
}} | }} | ||
==SNX15== | ==SNX15== | ||
Строка 17 812: | Строка 19 524: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30669571 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30669571 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356397 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356397 | ||
}} | |||
==SOX1== | |||
* {{medline-title | |||
|title=The [[APOE]] gene cluster responds to air pollution factors in mice with coordinated expression of genes that differs by age in humans. | |||
|date=20.11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33215813 | |||
|full-text-url=https://sci-hub.do/10.1002/alz.12230 | |||
}} | }} | ||
==SOX10== | ==SOX10== | ||
Строка 17 844: | Строка 19 564: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28381471 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28381471 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472005 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472005 | ||
}} | |||
==SOX6== | |||
* {{medline-title | |||
|title=Gene expression markers in horse articular chondrocytes: Chondrogenic differentiaton IN VITRO depends on the proliferative potential and ageing. Implication for tissue engineering of cartilage. | |||
|date=02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31778851 | |||
|full-text-url=https://sci-hub.do/10.1016/j.rvsc.2019.10.024 | |||
}} | }} | ||
==SP2== | ==SP2== | ||
Строка 17 852: | Строка 19 580: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28791483 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28791483 | ||
|full-text-url=https://sci-hub.do/10.1007/s00484-017-1415-0 | |full-text-url=https://sci-hub.do/10.1007/s00484-017-1415-0 | ||
}} | }} | ||
==SP7== | ==SP7== | ||
Строка 17 900: | Строка 19 612: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30585438 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30585438 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6818258 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6818258 | ||
}} | |||
==SPG11== | |||
* {{medline-title | |||
|title=[i]Malassezia[/i] and Parkinson's Disease. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31396143 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6667642 | |||
}} | }} | ||
==SPG21== | ==SPG21== | ||
Строка 17 941: | Строка 19 661: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066205 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066205 | ||
}} | }} | ||
== | ==SPO11== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title="Mitotic Slippage" and Extranuclear DNA in Cancer Chemoresistance: A Focus on Telomeres. | ||
|date= | |date=16.04.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32316332 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7215480 | ||
}} | }} | ||
==SPX== | ==SPX== | ||
Строка 17 957: | Строка 19 677: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253468 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253468 | ||
}} | }} | ||
==SRL== | ==SREBF1== | ||
* {{medline-title | |||
|title=The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. | |||
|date=29.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32997995 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527782 | |||
}} | |||
==SRI== | |||
* {{medline-title | |||
|title=The Role of Aging, Drug Dependence, and Hepatitis C Comorbidity in Alcoholism Cortical Compromise. | |||
|date=01.05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29541774 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5875381 | |||
}} | |||
==SRL== | |||
* {{medline-title | * {{medline-title | ||
Строка 18 037: | Строка 19 773: | ||
|full-text-url=https://sci-hub.do/10.4268/cjcmm20160724 | |full-text-url=https://sci-hub.do/10.4268/cjcmm20160724 | ||
}} | }} | ||
== | ==STAT5B== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Reductions in serum IGF-1 during aging impair health span. | ||
|date= | |date=06.2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24341939 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326899 | ||
}} | }} | ||
==STC1== | ==STC1== | ||
Строка 18 056: | Строка 19 792: | ||
* {{medline-title | * {{medline-title | ||
|title=Genome-wide Associations Reveal Human-Mouse Genetic Convergence and Modifiers of Myogenesis, CPNE1 and [[STC2]]. | |title=Genome-wide Associations Reveal Human-Mouse Genetic Convergence and Modifiers of Myogenesis, [[CPNE1]] and [[STC2]]. | ||
|date=05.12.2019 | |date=05.12.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31761296 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31761296 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904802 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904802 | ||
}} | |||
==STIP1== | |||
* {{medline-title | |||
|title=The E3 ubiquitin ligase [[STUB1]] attenuates cell senescence by promoting the ubiquitination and degradation of the core circadian regulator BMAL1. | |||
|date=03.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32041778 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7135990 | |||
}} | }} | ||
==STK11== | ==STK11== | ||
Строка 18 100: | Строка 19 844: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27189978 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27189978 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4970611 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4970611 | ||
}} | |||
==STX16== | |||
* {{medline-title | |||
|title=Clinical characterization and molecular classification of 12 Korean patients with pseudohypoparathyroidism and pseudopseudohypoparathyroidism. | |||
|date=10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24127307 | |||
|full-text-url=https://sci-hub.do/10.1055/s-0033-1349867 | |||
}} | }} | ||
==STX17== | ==STX17== | ||
Строка 18 108: | Строка 19 860: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31251987 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31251987 | ||
|full-text-url=https://sci-hub.do/10.1016/j.bbadis.2019.05.017 | |full-text-url=https://sci-hub.do/10.1016/j.bbadis.2019.05.017 | ||
}} | |||
==SUCLA2== | |||
* {{medline-title | |||
|title=An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31531781 | |||
|full-text-url=https://sci-hub.do/10.1007/s00425-019-03272-6 | |||
}} | }} | ||
==SUCNR1== | ==SUCNR1== | ||
Строка 18 140: | Строка 19 900: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28153492 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28153492 | ||
|full-text-url=https://sci-hub.do/10.1016/j.dmpk.2016.10.409 | |full-text-url=https://sci-hub.do/10.1016/j.dmpk.2016.10.409 | ||
}} | |||
==SULT2A1== | |||
* {{medline-title | |||
|title=Sex-, age-, and race/ethnicity-dependent variations in drug-processing and NRF2-regulated genes in human livers. | |||
|date=08.11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33162398 | |||
|full-text-url=https://sci-hub.do/10.1124/dmd.120.000181 | |||
}} | }} | ||
==SUMO1== | ==SUMO1== | ||
Строка 18 172: | Строка 19 940: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30808750 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30808750 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397528 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397528 | ||
}} | |||
==SUSD1== | |||
* {{medline-title | |||
|title=A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. | |||
|date=07.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23650146 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990406 | |||
}} | |||
==SUSD2== | |||
* {{medline-title | |||
|title=Comparing the Effect of TGF-β Receptor Inhibition on Human Perivascular Mesenchymal Stromal Cells Derived from Endometrium, Bone Marrow and Adipose Tissues. | |||
|date=01.12.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33271899 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712261 | |||
}} | }} | ||
==SV2B== | ==SV2B== | ||
Строка 18 220: | Строка 20 004: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31741263 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31741263 | ||
|full-text-url=https://sci-hub.do/10.1007/s11033-019-05184-w | |full-text-url=https://sci-hub.do/10.1007/s11033-019-05184-w | ||
}} | |||
==SYNE2== | |||
* {{medline-title | |||
|title=Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. | |||
|date=03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109663 | |||
|full-text-url=https://sci-hub.do/10.1016/j.atherosclerosis.2020.02.005 | |||
}} | }} | ||
==SYNJ2== | ==SYNJ2== | ||
Строка 18 268: | Строка 20 060: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25765287 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25765287 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475460 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475460 | ||
}} | }} | ||
==TAF15== | ==TAF15== | ||
Строка 18 300: | Строка 20 084: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31065688 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31065688 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052986 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052986 | ||
}} | |||
==TANK== | |||
* {{medline-title | |||
|title=Aging aggravated liver ischemia and reperfusion injury by promoting STING-mediated [[NLRP3]] activation in macrophages. | |||
|date=08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32666684 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431827 | |||
}} | |||
==TAP1== | |||
* {{medline-title | |||
|title=Age-associated methylation change of [[TAP1]] promoter in piglet. | |||
|date=15.11.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26169022 | |||
|full-text-url=https://sci-hub.do/10.1016/j.gene.2015.07.026 | |||
}} | }} | ||
==TAP2== | ==TAP2== | ||
Строка 18 317: | Строка 20 117: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6213100 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6213100 | ||
}} | }} | ||
== | ==TBC1D2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Genome-wide association study identifies [i]SIAH3[/i] locus influencing the rate of ventricular enlargement in non-demented elders. | ||
|date= | |date=11.11.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31711042 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874439 | ||
}} | }} | ||
==TBR1== | ==TBR1== | ||
Строка 18 332: | Строка 20 132: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28419903 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28419903 | ||
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.04.006 | |full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.04.006 | ||
}} | }} | ||
==TBX3== | ==TBX3== | ||
Строка 18 372: | Строка 20 164: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29748384 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29748384 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6016453 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6016453 | ||
}} | }} | ||
==TCF7L1== | ==TCF7L1== | ||
Строка 18 389: | Строка 20 173: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5438253 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5438253 | ||
}} | }} | ||
==TCTA== | ==TCP1== | ||
* {{medline-title | |||
|title=Proteometabolomic characterization of apical bud maturation in Pinus pinaster. | |||
|date=01.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32870277 | |||
|full-text-url=https://sci-hub.do/10.1093/treephys/tpaa111 | |||
}} | |||
==TCTA== | |||
* {{medline-title | * {{medline-title | ||
Строка 18 397: | Строка 20 189: | ||
|full-text-url=https://sci-hub.do/10.1021/acsami.7b15034 | |full-text-url=https://sci-hub.do/10.1021/acsami.7b15034 | ||
}} | }} | ||
== | ==TDRD1== | ||
* {{medline-title | |||
|title=Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice. | |||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31472347 | |||
|full-text-url=https://sci-hub.do/10.1016/j.chemosphere.2019.124650 | |||
}} | |||
==TDRD6== | |||
* {{medline-title | |||
|title=Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice. | |||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31472347 | |||
|full-text-url=https://sci-hub.do/10.1016/j.chemosphere.2019.124650 | |||
}} | |||
==TEAD4== | |||
* {{medline-title | * {{medline-title | ||
|title= | |title=Clinical, polysomnographic and genome-wide association analyses of narcolepsy with cataplexy: a European Narcolepsy Network study. | ||
|date= | |date=10.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23496005 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1111/jsr.12044 | ||
}} | }} | ||
==TECPR2== | ==TECPR2== | ||
Строка 18 413: | Строка 20 221: | ||
|full-text-url=https://sci-hub.do/10.1097/WAD.0000000000000294 | |full-text-url=https://sci-hub.do/10.1097/WAD.0000000000000294 | ||
}} | }} | ||
== | ==TEP1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[Influence of Age on the Susceptibility of Anopheles stephensi to Plasmodium berghei Infection]. | ||
|date= | |date=12.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30141604 | ||
}} | }} | ||
== | ==TERF2IP== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Endothelial senescence-associated secretory phenotype (SASP) is regulated by Makorin-1 ubiquitin E3 ligase. | ||
|date= | |date=11.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31476350 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059097 | ||
}} | }} | ||
== | ==TESC== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Clonogenic Culture of Mouse Thymic Epithelial Cells. | ||
|date= | |date=2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31396938 | ||
|full-text-url=https://sci-hub.do/10.1007/978-1-4939-9728-2_15 | |||
}} | }} | ||
==TFAP2A== | ==TFAP2A== | ||
Строка 18 444: | Строка 20 252: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25763115 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25763115 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356053 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356053 | ||
}} | |||
==TFE3== | |||
* {{medline-title | |||
|title=Towards Age-Related Anti-Inflammatory Therapy: Klotho Suppresses Activation of ER and Golgi Stress Response in Senescent Monocytes. | |||
|date=21.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31972978 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072557 | |||
}} | |||
==TFG== | |||
* {{medline-title | |||
|title=[[TFG]]-maintaining stability of overlooked [[FANCD2]] confers early DNA-damage response. | |||
|date=24.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33099537 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7655164 | |||
}} | }} | ||
==TFPI== | ==TFPI== | ||
Строка 18 462: | Строка 20 286: | ||
}} | }} | ||
==TGFB2== | ==TGFB2== | ||
* {{medline-title | * {{medline-title | ||
Строка 18 484: | Строка 20 300: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29948944 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29948944 | ||
|full-text-url=https://sci-hub.do/10.1007/s12035-018-1156-z | |full-text-url=https://sci-hub.do/10.1007/s12035-018-1156-z | ||
}} | }} | ||
==TGM2== | ==TGM2== | ||
Строка 18 540: | Строка 20 348: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27239547 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27239547 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4879650 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4879650 | ||
}} | |||
==TIE1== | |||
* {{medline-title | |||
|title=Cerebrovascular Senescence Is Associated With Tau Pathology in Alzheimer's Disease. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33041998 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7525127 | |||
}} | |||
==TIMP3== | |||
* {{medline-title | |||
|title=Enhanced tissue regeneration potential of juvenile articular cartilage. | |||
|date=11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24043472 | |||
|full-text-url=https://sci-hub.do/10.1177/0363546513502945 | |||
}} | }} | ||
==TINF2== | ==TINF2== | ||
Строка 18 557: | Строка 20 381: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6900071 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6900071 | ||
}} | }} | ||
== | ==TLR10== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Innate immune response to LPS in airway epithelium is dependent on chronological age and antecedent exposures. | ||
|date= | |date=11.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23600597 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931090 | ||
}} | }} | ||
==TM9SF1== | ==TM9SF1== | ||
Строка 18 572: | Строка 20 396: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28286171 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28286171 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501279 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501279 | ||
}} | |||
==TMEM127== | |||
* {{medline-title | |||
|title=Long-term prognosis of patients with pediatric pheochromocytoma. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24169644 | |||
|full-text-url=https://sci-hub.do/10.1530/ERC-13-0415 | |||
}} | }} | ||
==TMEM135== | ==TMEM135== | ||
Строка 18 581: | Строка 20 413: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5117855 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5117855 | ||
}} | }} | ||
== | ==TMEM38B== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Genome wide association study of age at menarche in the Japanese population. | ||
|date= | |date=2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23667675 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646805 | ||
}} | }} | ||
==TMEM51== | ==TMEM51== | ||
Строка 18 596: | Строка 20 428: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28130229 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28130229 | ||
|full-text-url=https://sci-hub.do/10.1093/bioinformatics/btx040 | |full-text-url=https://sci-hub.do/10.1093/bioinformatics/btx040 | ||
}} | |||
==TNFAIP3== | |||
* {{medline-title | |||
|title=[[TNFAIP3]] Plays a Role in Aging of the Hematopoietic System. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33224133 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7670064 | |||
}} | }} | ||
==TNFRSF11B== | ==TNFRSF11B== | ||
Строка 18 612: | Строка 20 452: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28163108 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28163108 | ||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2017.01.011 | |full-text-url=https://sci-hub.do/10.1016/j.mad.2017.01.011 | ||
}} | }} | ||
==TNFSF13== | ==TNFSF13== | ||
Строка 18 644: | Строка 20 476: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28631188 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28631188 | ||
|full-text-url=https://sci-hub.do/10.1007/s12035-017-0547-x | |full-text-url=https://sci-hub.do/10.1007/s12035-017-0547-x | ||
}} | |||
==TNKS2== | |||
* {{medline-title | |||
|title=Gene expression in human mesenchymal stem cell aging cultures: modulation by short peptides. | |||
|date=06.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32399807 | |||
|full-text-url=https://sci-hub.do/10.1007/s11033-020-05506-3 | |||
}} | }} | ||
==TNNI1== | ==TNNI1== | ||
Строка 18 652: | Строка 20 492: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30820991 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30820991 | ||
|full-text-url=https://sci-hub.do/10.1113/EP087564 | |full-text-url=https://sci-hub.do/10.1113/EP087564 | ||
}} | }} | ||
==TNP1== | ==TNP1== | ||
Строка 18 692: | Строка 20 524: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27329260 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27329260 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013013 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013013 | ||
}} | |||
==TOP3A== | |||
* {{medline-title | |||
|title=Replication Stress at Telomeric and Mitochondrial DNA: Common Origins and Consequences on Ageing. | |||
|date=08.10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31597307 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6801922 | |||
}} | }} | ||
==TOR2A== | ==TOR2A== | ||
Строка 18 732: | Строка 20 572: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28912086 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28912086 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5944352 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5944352 | ||
}} | |||
==TPCN1== | |||
* {{medline-title | |||
|title=Effect of aging on calcium signaling in C57Bl6J mouse cerebral arteries. | |||
|date=06.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23238969 | |||
|full-text-url=https://sci-hub.do/10.1007/s00424-012-1195-7 | |||
}} | }} | ||
==TPP2== | ==TPP2== | ||
Строка 18 748: | Строка 20 596: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30975089 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30975089 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458604 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458604 | ||
}} | }} | ||
==TRAV1-2== | ==TRAV1-2== | ||
Строка 18 804: | Строка 20 628: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25545807 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25545807 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461024 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461024 | ||
}} | |||
==TRHR== | |||
* {{medline-title | |||
|title=Association between polymorphisms in the [[TRHR]] gene, fat-free mass, and muscle strength in older women. | |||
|date=12.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23543262 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3824979 | |||
}} | }} | ||
==TRIB2== | ==TRIB2== | ||
Строка 18 820: | Строка 20 652: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30025493 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30025493 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152528 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152528 | ||
}} | }} | ||
==TRIM27== | ==TRIM27== | ||
Строка 18 844: | Строка 20 668: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27764096 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27764096 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072625 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072625 | ||
}} | }} | ||
==TRPC1== | ==TRPC1== | ||
Строка 18 924: | Строка 20 740: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28419903 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28419903 | ||
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.04.006 | |full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.04.006 | ||
}} | |||
==TTF1== | |||
* {{medline-title | |||
|title=Senescence and autophagy in usual interstitial pneumonia of different etiology. | |||
|date=27.08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32851507 | |||
|full-text-url=https://sci-hub.do/10.1007/s00428-020-02917-2 | |||
}} | |||
==TUBA1A== | |||
* {{medline-title | |||
|title=Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31733664 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939615 | |||
}} | |||
==TUBAL3== | |||
* {{medline-title | |||
|title=Identification of biomarkers of human skin ageing in both genders. Wnt signalling - a label of skin ageing? | |||
|date=2012 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23226273 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3511529 | |||
}} | }} | ||
==TWIST2== | ==TWIST2== | ||
Строка 18 988: | Строка 20 828: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28093506 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28093506 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451163 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451163 | ||
}} | |||
==TYRP1== | |||
* {{medline-title | |||
|title=Thymocid , a Standardized Black Cumin ([i]Nigella sativa[/i]) Seed Extract, Modulates Collagen Cross-Linking, Collagenase and Elastase Activities, and Melanogenesis in Murine B16F10 Melanoma Cells. | |||
|date=19.07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32707654 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400895 | |||
}} | }} | ||
==UACA== | ==UACA== | ||
Строка 19 012: | Строка 20 860: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30915334 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30915334 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421261 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421261 | ||
}} | |||
==UBE2C== | |||
* {{medline-title | |||
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335 | |||
}} | }} | ||
==UBE2D2== | ==UBE2D2== | ||
Строка 19 037: | Строка 20 893: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4321442 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4321442 | ||
}} | }} | ||
==UBE4B== | ==UBE2T== | ||
* {{medline-title | |||
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335 | |||
}} | |||
==UBE4B== | |||
* {{medline-title | * {{medline-title | ||
Строка 19 084: | Строка 20 948: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28994181 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28994181 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5676066 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5676066 | ||
}} | |||
==UBXN2B== | |||
* {{medline-title | |||
|title=Clinical, polysomnographic and genome-wide association analyses of narcolepsy with cataplexy: a European Narcolepsy Network study. | |||
|date=10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23496005 | |||
|full-text-url=https://sci-hub.do/10.1111/jsr.12044 | |||
}} | }} | ||
==UCHL3== | ==UCHL3== | ||
Строка 19 204: | Строка 21 076: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30084918 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30084918 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6454504 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6454504 | ||
}} | }} | ||
==USP15== | ==USP15== | ||
Строка 19 268: | Строка 21 124: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28277545 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28277545 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386568 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386568 | ||
}} | |||
==UVRAG== | |||
* {{medline-title | |||
|title=Essential role for [[UVRAG]] in autophagy and maintenance of cardiac function. | |||
|date=01.01.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24081163 | |||
|full-text-url=https://sci-hub.do/10.1093/cvr/cvt223 | |||
}} | }} | ||
==UVSSA== | ==UVSSA== | ||
Строка 19 316: | Строка 21 180: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29397922 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29397922 | ||
|full-text-url=https://sci-hub.do/10.1016/j.cryobiol.2018.01.014 | |full-text-url=https://sci-hub.do/10.1016/j.cryobiol.2018.01.014 | ||
}} | |||
==VCPIP1== | |||
* {{medline-title | |||
|title=Tandem Deubiquitination and Acetylation of [[SPRTN]] Promotes DNA-Protein Crosslink Repair and Protects against Aging. | |||
|date=03.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32649882 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7484104 | |||
}} | }} | ||
==VDAC3== | ==VDAC3== | ||
Строка 19 349: | Строка 21 221: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5664652 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5664652 | ||
}} | }} | ||
== | ==VIT== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Autophagy-mediated longevity is modulated by lipoprotein biogenesis. | ||
|date= | |date=2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26671266 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4836030 | ||
}} | }} | ||
==VPREB3== | ==VPREB3== | ||
Строка 19 396: | Строка 21 268: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27922854 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27922854 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5263111 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5263111 | ||
}} | |||
==VPS4A== | |||
* {{medline-title | |||
|title=The expression changes of vacuolar protein sorting 4B ([[VPS4B]]) following middle cerebral artery occlusion (MCAO) in adult rats brain hippocampus. | |||
|date=01.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24077878 | |||
|full-text-url=https://sci-hub.do/10.1007/s10571-013-9989-5 | |||
}} | |||
==VPS4B== | |||
* {{medline-title | |||
|title=The expression changes of vacuolar protein sorting 4B ([[VPS4B]]) following middle cerebral artery occlusion (MCAO) in adult rats brain hippocampus. | |||
|date=01.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24077878 | |||
|full-text-url=https://sci-hub.do/10.1007/s10571-013-9989-5 | |||
}} | |||
==VRK2== | |||
* {{medline-title | |||
|title=Accelerated Epigenetic Aging and Methylation Disruptions Occur in Human Immunodeficiency Virus Infection Prior to Antiretroviral Therapy. | |||
|date=22.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32959881 | |||
|full-text-url=https://sci-hub.do/10.1093/infdis/jiaa599 | |||
}} | }} | ||
==VSIG4== | ==VSIG4== | ||
Строка 19 412: | Строка 21 308: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27267879 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27267879 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897877 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897877 | ||
}} | |||
==WAC== | |||
* {{medline-title | |||
|title=Implementation of Writing Across the Curriculum ([[WAC]]) learning approaches in social work and sociology gerontology courses. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23383857 | |||
|full-text-url=https://sci-hub.do/10.1080/02701960.2012.718011 | |||
}} | }} | ||
==WASL== | ==WASL== | ||
Строка 19 420: | Строка 21 324: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32434991 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32434991 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259520 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259520 | ||
}} | |||
==WBP11== | |||
* {{medline-title | |||
|title=Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of mRNA splicing relevant proteins in aging HSPCs. | |||
|date=05.03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32141009 | |||
|full-text-url=https://sci-hub.do/10.1007/s40520-020-01509-z | |||
}} | }} | ||
==WDR48== | ==WDR48== | ||
Строка 19 500: | Строка 21 412: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29431914 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29431914 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5827750 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5827750 | ||
}} | |||
==WNT5B== | |||
* {{medline-title | |||
|title=Dysregulation of the Wnt Signaling Pathway and Synovial Stem Cell Dysfunction in Osteoarthritis Development. | |||
|date=01.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31964233 | |||
|full-text-url=https://sci-hub.do/10.1089/scd.2019.0260 | |||
}} | }} | ||
==WNT7A== | ==WNT7A== | ||
Строка 19 508: | Строка 21 428: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32436833 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32436833 | ||
|full-text-url=https://sci-hub.do/10.2174/1871520620666200521114100 | |full-text-url=https://sci-hub.do/10.2174/1871520620666200521114100 | ||
}} | |||
==WWC1== | |||
* {{medline-title | |||
|title=[[WWC1]] genotype modulates age-related decline in episodic memory function across the adult life span. | |||
|date=01.05.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24290728 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3989426 | |||
}} | }} | ||
==XAF1== | ==XAF1== | ||
Строка 19 516: | Строка 21 444: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26802028 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26802028 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4868675 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4868675 | ||
}} | }} | ||
==XG== | ==XG== | ||
Строка 19 548: | Строка 21 468: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29768192 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29768192 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5991088 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5991088 | ||
}} | |||
==XRCC2== | |||
* {{medline-title | |||
|title=Copy neutral loss of heterozygosity is more frequent in older ovarian cancer patients. | |||
|date=09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23716468 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3767172 | |||
}} | |||
==XRCC5== | |||
* {{medline-title | |||
|title=Repairing DNA damage by [[XRCC6]]/KU70 reverses [[TLR4]]-deficiency-worsened HCC development via restoring senescence and autophagic flux. | |||
|date=01.06.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23518600 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3672303 | |||
}} | }} | ||
==YBX2== | ==YBX2== | ||
Строка 19 564: | Строка 21 500: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30341976 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30341976 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6224233 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6224233 | ||
}} | }} | ||
==ZAP70== | ==ZAP70== | ||
Строка 19 588: | Строка 21 516: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27532432 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27532432 | ||
|full-text-url=https://sci-hub.do/10.1080/10495398.2016.1212060 | |full-text-url=https://sci-hub.do/10.1080/10495398.2016.1212060 | ||
}} | |||
==ZBTB7A== | |||
* {{medline-title | |||
|title=The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. | |||
|date=29.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32997995 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527782 | |||
}} | |||
==ZC3H11A== | |||
* {{medline-title | |||
|title=In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31520345 | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-019-09834-1 | |||
}} | }} | ||
==ZFHX3== | ==ZFHX3== | ||
Строка 19 612: | Строка 21 556: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | ||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | ||
}} | |||
==ZIC1== | |||
* {{medline-title | |||
|title=The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. | |||
|date=29.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32997995 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527782 | |||
}} | }} | ||
==ZNF14== | ==ZNF14== | ||
Строка 19 628: | Строка 21 580: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29196338 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29196338 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795392 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795392 | ||
}} | |||
==ZNF211== | |||
* {{medline-title | |||
|title=Genetics of facial telangiectasia in the Rotterdam Study: a genome-wide association study and candidate gene approach. | |||
|date=23.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33095951 | |||
|full-text-url=https://sci-hub.do/10.1111/jdv.17014 | |||
}} | }} | ||
==ZNF367== | ==ZNF367== | ||
Строка 19 652: | Строка 21 612: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | ||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | ||
}} | |||
==ZNF483== | |||
* {{medline-title | |||
|title=Genome wide association study of age at menarche in the Japanese population. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23667675 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646805 | |||
}} | |||
==ZNF518B== | |||
* {{medline-title | |||
|title=The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. | |||
|date=29.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32997995 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527782 | |||
}} | }} | ||
==ZNF616== | ==ZNF616== | ||
Строка 19 660: | Строка 21 636: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26029164 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26029164 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432801 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432801 | ||
}} | |||
==ZNF619== | |||
* {{medline-title | |||
|title=Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31508907 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6903450 | |||
}} | |||
==ZNF644== | |||
* {{medline-title | |||
|title=Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients. | |||
|date=03.09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31560770 | |||
|full-text-url=https://sci-hub.do/10.1167/iovs.19-27921 | |||
}} | }} | ||
==ZNF704== | ==ZNF704== | ||
Строка 19 669: | Строка 21 661: | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506316 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506316 | ||
}} | }} | ||
== | ==ZPBP2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Sex- and age-dependent DNA methylation at the 17q12-q21 locus associated with childhood asthma. | ||
|date= | |date=07.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23546690 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1007/s00439-013-1298-z | ||
}} | }} | ||
==ZRSR2== | ==ZRSR2== | ||
Строка 19 684: | Строка 21 676: | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27147278 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27147278 | ||
|full-text-url=https://sci-hub.do/10.1111/ejh.12771 | |full-text-url=https://sci-hub.do/10.1111/ejh.12771 | ||
}} | |||
==ZSCAN4== | |||
* {{medline-title | |||
|title=Genetics of facial telangiectasia in the Rotterdam Study: a genome-wide association study and candidate gene approach. | |||
|date=23.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33095951 | |||
|full-text-url=https://sci-hub.do/10.1111/jdv.17014 | |||
}} | |||
==ZW10== | |||
* {{medline-title | |||
|title=Multivariate genomic scan implicates novel loci and haem metabolism in human ageing. | |||
|date=16.07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32678081 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366647 | |||
}} | }} |
Текущая версия от 16:42, 29 апреля 2021
- Genes with 300 and more publications
- Genes with 200-299 publications
- Genes with 100-199 publications
- Genes with 90-99 publications
- Genes with 80-89 publications
- Genes with 70-79 publications
- Genes with 60-69 publications
- Genes with 50-59 publications
- Genes with 40-49 publications
- Genes with 30-39 publications
- Genes with 20-29 publications
- Genes with 10-19 publications
- Genes with 5-9 publications
- Genes with 3-4 publications
- Genes with 1-2 publications
- Aging_genes_A-Z_table
AACS[править]
- Sex differences in subjective age-associated changes in sleep: a prospective elderly cohort study. / 07.11.2020 / PubMed / Full text
- Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text
ABCC2[править]
- Proteomic Analysis of the Developmental Trajectory of Human Hepatic Membrane Transporter Proteins in the First Three Months of Life. / 07.2016 / PubMed / Full text
- Developmental characteristics of urinary coproporphyrin I/(I III) ratio. / 10.2016 / PubMed / Full text
ABCG1[править]
- Disrupted cholesterol metabolism promotes age-related photoreceptor neurodegeneration. / 08.2018 / PubMed / Full text
- Elevated COX2 expression and PGE2 production by downregulation of RXRα in senescent macrophages. / 11.10.2013 / PubMed / Full text
ABCG5[править]
- 2, 3, 4', 5-tetrahydroxystilbene-2-0-β-d Glycoside Attenuates Age- and Diet-Associated Non-Alcoholic Steatohepatitis and Atherosclerosis in LDL Receptor Knockout Mice and Its Possible Mechanisms. / 01.04.2019 / PubMed / Full text
- Genetic determinants of macular pigments in women of the Carotenoids in Age-Related Eye Disease Study. / 28.03.2013 / PubMed / Full text
ABI3[править]
- Arabidopsis seed-specific vacuolar aquaporins are involved in maintaining seed longevity under the control of ABSCISIC ACID INSENSITIVE 3. / 08.2015 / PubMed / Full text
- A forward genetic approach in Arabidopsis thaliana identifies a RING-type ubiquitin ligase as a novel determinant of seed longevity. / 02.2014 / PubMed / Full text
ACACA[править]
- Expression of lipogenic markers is decreased in subcutaneous adipose tissue and adipocytes of older women and is negatively linked to GDF15 expression. / 08.2019 / PubMed / Full text
- GH prevents adipogenic differentiation of mesenchymal stromal stem cells derived from human trabecular bone via canonical Wnt signaling. / 07.2018 / PubMed / Full text
ACAT2[править]
- Cholesterol Homeostasis: An In Silico Investigation into How Aging Disrupts Its Key Hepatic Regulatory Mechanisms. / 30.09.2020 / PubMed / Full text
- Serum starvation of ARPE-19 changes the cellular distribution of cholesterol and Fibulin3 in patterns reminiscent of age-related macular degeneration. / 15.12.2017 / PubMed / Full text
ACTA1[править]
- Explaining meat quality of bulls and steers by differential proteome and phosphoproteome analysis of skeletal muscle. / 15.05.2019 / PubMed / Full text
- Serum starvation of ARPE-19 changes the cellular distribution of cholesterol and Fibulin3 in patterns reminiscent of age-related macular degeneration. / 15.12.2017 / PubMed / Full text
ACTB[править]
- Selection of a Real-Time PCR Housekeeping Gene Panel in Human Endothelial Colony Forming Cells for Cellular Senescence Studies. / 2019 / PubMed / Full text
- WNT-activated bone grafts repair osteonecrotic lesions in aged animals. / 27.10.2017 / PubMed / Full text
ACVR1[править]
- Fibrodysplasia Ossificans Progressiva (FOP): A Segmental Progeroid Syndrome. / 2019 / PubMed / Full text
- BMP-SMAD-ID promotes reprogramming to pluripotency by inhibiting p16/INK4A-dependent senescence. / 15.11.2016 / PubMed / Full text
ADAMTS4[править]
- Influences of circulatory factors on intervertebral disc aging phenotype. / 11.06.2020 / PubMed / Full text
- Genotoxic stress accelerates age-associated degenerative changes in intervertebral discs. / 01-02.2013 / PubMed / Full text
ADH5[править]
- Can Serum Nitrosoproteome Predict Longevity of Aged Women? / 27.11.2020 / PubMed / Full text
- Denitrosylate and live longer: how ADH5/GSNOR links mitophagy to aging. / 2018 / PubMed / Full text
ADIPOR1[править]
- A Novel [i]Dnmt3a1[/i] Transcript Inhibits Adipogenesis. / 2018 / PubMed / Full text
- Contribution of adiponectin and its type 1 receptor to age-related hearing impairment. / 06.2015 / PubMed / Full text
ADNP[править]
- ADNP differentially interact with genes/proteins in correlation with aging: a novel marker for muscle aging. / 06.2019 / PubMed / Full text
- ADNP: A major autism mutated gene is differentially distributed (age and gender) in the songbird brain. / 10.2015 / PubMed / Full text
ADRA2B[править]
- Aging and the Combined effects of ADRA2B and CB1 deletions on Affective Working Memory. / 11.03.2019 / PubMed / Full text
- Aging and the genetic road towards the positivity effect in memory. / 09.2016 / PubMed / Full text
ADRB2[править]
- Interactions between social/ behavioral factors and ADRB2 genotypes may be associated with health at advanced ages in China. / 09.09.2013 / PubMed / Full text
- ADRB2, brain white matter integrity and cognitive ageing in the Lothian Birth Cohort 1936. / 01.2013 / PubMed / Full text
AGO2[править]
- Profiling of m6A RNA modifications identified an age-associated regulation of AGO2 mRNA stability. / 06.2018 / PubMed / Full text
- miRNA processing gene polymorphisms, blood DNA methylation age and long-term ambient PM exposure in elderly men. / 12.2017 / PubMed / Full text
AHCY[править]
- Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. / 11.2018 / PubMed / Full text
- Tissue-specific down-regulation of S-adenosyl-homocysteine via suppression of dAhcyL1/dAhcyL2 extends health span and life span in Drosophila. / 15.06.2016 / PubMed / Full text
AIDA[править]
- Identification of Postharvest Senescence Regulators Through Map-Based Cloning Using Detached Arabidopsis Inflorescences as a Model Tissue. / 2018 / PubMed / Full text
- Interaction of DHPG-LTD and synaptic-LTD at senescent CA3-CA1 hippocampal synapses. / 04.2014 / PubMed / Full text
AKT2[править]
- A conserved role of the insulin-like signaling pathway in diet-dependent uric acid pathologies in Drosophila melanogaster. / 08.2019 / PubMed / Full text
- Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats. / 02.2019 / PubMed / Full text
AKT3[править]
- Oxidative stress-induced miRNAs modulate AKT signaling and promote cellular senescence in uterine leiomyoma. / 10.2018 / PubMed / Full text
- MicroRNA-22 induces endothelial progenitor cell senescence by targeting AKT3. / 2014 / PubMed / Full text
AKTIP[править]
- Mice with reduced expression of the telomere-associated protein Ft1 develop p53-sensitive progeroid traits. / 08.2018 / PubMed / Full text
- The telomeric protein AKTIP interacts with A- and B-type lamins and is involved in regulation of cellular senescence. / 08.2016 / PubMed / Full text
ALDOA[править]
- Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. / 2019 / PubMed / Full text
- An Adult Drosophila Glioma Model for Studying Pathometabolic Pathways of Gliomagenesis. / 06.2019 / PubMed / Full text
ALKBH8[править]
- Loss of epitranscriptomic control of selenocysteine utilization engages senescence and mitochondrial reprogramming . / 01.2020 / PubMed / Full text
- ALKB-8, a 2-Oxoglutarate-Dependent Dioxygenase and S-Adenosine Methionine-Dependent Methyltransferase Modulates Metabolic Events Linked to Lysosome-Related Organelles and Aging in C. elegans. / 2018 / PubMed
ALOX5[править]
- Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis. / 19.12.2019 / PubMed / Full text
- Functional Characterization of Knock-In Mice Expressing a 12/15-Lipoxygenating Alox5 Mutant Instead of the 5-Lipoxygenating Wild-Type Enzyme. / 01.01.2020 / PubMed / Full text
ANK1[править]
- Alzheimer's Disease Associated Genes Ankyrin and Tau Cause Shortened Lifespan and Memory Loss in [i]Drosophila[/i]. / 2019 / PubMed / Full text
- DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. / 25.07.2018 / PubMed / Full text
ANK3[править]
- Age-related atrophy of cortical thickness and genetic effect of ANK3 gene in first episode MDD patients. / 26.08.2020 / PubMed / Full text
- Mood, stress and longevity: convergence on ANK3. / 08.2016 / PubMed / Full text
AP2B1[править]
- Circular RNA NF1-419 enhances autophagy to ameliorate senile dementia by binding Dynamin-1 and Adaptor protein 2 B1 in AD-like mice. / 20.12.2019 / PubMed / Full text
- Investigating the specific core genetic-and-epigenetic networks of cellular mechanisms involved in human aging in peripheral blood mononuclear cells. / 23.02.2016 / PubMed / Full text
APOD[править]
- Identification of reference genes for RT-qPCR data normalisation in aging studies. / 27.09.2019 / PubMed / Full text
- Apolipoprotein D takes center stage in the stress response of the aging and degenerative brain. / 07.2014 / PubMed / Full text
APOL1[править]
- APOL1 Risk Alleles Are Associated with Exaggerated Age-Related Changes in Glomerular Number and Volume in African-American Adults: An Autopsy Study. / 12.2015 / PubMed / Full text
- Apolipoprotein L1, income and early kidney damage. / 10.02.2015 / PubMed / Full text
APPL2[править]
- The reversal effect of physical exercise on aging-related increases in APPL2 content in skeletal muscle. / 01.10.2018 / PubMed / Full text
- Adaptor Protein APPL2 Affects Adult Antidepressant Behaviors and Hippocampal Neurogenesis via Regulating the Sensitivity of Glucocorticoid Receptor. / 07.2018 / PubMed / Full text
AQP2[править]
- A bell-shaped pattern of urinary aquaporin-2-bearing extracellular vesicle release in an experimental model of nephronophthisis. / 05.2019 / PubMed / Full text
- Nitric oxide and AQP2 in hypothyroid rats: a link between aging and water homeostasis. / 09.2013 / PubMed / Full text
AQP3[править]
- Transbuccal platform for delivery of lipogenic actives to facial skin: Because fat matters. / 08.2020 / PubMed / Full text
- [Age-related changes of water transport by corneal endothelial cells in rats.] / 2017 / PubMed
ARID1B[править]
- A 69-year-old woman with Coffin-Siris syndrome. / 08.2018 / PubMed / Full text
- SWI/SNF regulates a transcriptional program that induces senescence to prevent liver cancer. / 01.10.2016 / PubMed / Full text
ARX[править]
- Converting Adult Pancreatic Islet α Cells into β Cells by Targeting Both Dnmt1 and Arx. / 07.03.2017 / PubMed / Full text
- Acacetin 7-O-α-l-rhamnopyranosyl (1-2) β-D-xylopyranoside Elicits Life-span Extension and Stress Resistance in Caenorhabditis elegans. / 09.2016 / PubMed / Full text
ASXL2[править]
- Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. / 10.2016 / PubMed / Full text
- The BAP1/ASXL2 Histone H2A Deubiquitinase Complex Regulates Cell Proliferation and Is Disrupted in Cancer. / 27.11.2015 / PubMed / Full text
ATF2[править]
- Transcriptional regulation of stress kinase JNK2 in pro-arrhythmic CaMKIIδ expression in the aged atrium. / 01.04.2018 / PubMed / Full text
- Prmt7 Deficiency Causes Reduced Skeletal Muscle Oxidative Metabolism and Age-Related Obesity. / 07.2016 / PubMed / Full text
ATF7[править]
- Stress-induced and ATF7-dependent epigenetic change influences cellular senescence. / 09.2019 / PubMed / Full text
- Identification of ATF-7 and the insulin signaling pathway in the regulation of metallothionein in C. elegans suggests roles in aging and reactive oxygen species. / 2017 / PubMed / Full text
ATG9A[править]
- SIRT1 protects cochlear hair cell and delays age-related hearing loss via autophagy. / 08.2019 / PubMed / Full text
- Activation of miR-34a impairs autophagic flux and promotes cochlear cell death via repressing ATG9A: implications for age-related hearing loss. / 05.10.2017 / PubMed / Full text
ATOH1[править]
- In Vivo Interplay between p27 , GATA3, ATOH1, and POU4F3 Converts Non-sensory Cells to Hair Cells in Adult Mice. / 11.04.2017 / PubMed / Full text
- A new mutation of the Atoh1 gene in mice with normal life span allows analysis of inner ear and cerebellar phenotype in aging. / 2013 / PubMed / Full text
ATP1A2[править]
- SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text
- The Influence of Na( ), K( )-ATPase on Glutamate Signaling in Neurodegenerative Diseases and Senescence. / 2016 / PubMed / Full text
ATP6V1E1[править]
- Low expression of aging-related [[NRXN3]] is associated with Alzheimer disease: A systematic review and meta-analysis. / 07.2018 / PubMed / Full text
- Chemical screening identifies ATM as a target for alleviating senescence. / 06.2017 / PubMed / Full text
ATP7A[править]
- Adipocyte-specific disruption of ATPase copper transporting α in mice accelerates lipoatrophy. / 12.2019 / PubMed / Full text
- TAp73 regulates ATP7A: possible implications for ageing-related diseases. / 08.12.2018 / PubMed / Full text
ATXN3[править]
- Rescue of ATXN3 neuronal toxicity in [i]Caenorhabditis[/i][i]elegans[/i] by chemical modification of endoplasmic reticulum stress. / 19.12.2017 / PubMed / Full text
- Sodium valproate alleviates neurodegeneration in SCA3/MJD via suppressing apoptosis and rescuing the hypoacetylation levels of histone H3 and H4. / 2013 / PubMed / Full text
AXL[править]
- Extracellular acidosis triggers a senescence-like phenotype in human melanoma cells. / 01.2020 / PubMed / Full text
- CSF protein changes associated with hippocampal sclerosis risk gene variants highlight impact of GRN/PGRN. / 04.2017 / PubMed / Full text
B4GALT1[править]
- Expression of β-1,4-galactosyltransferases during Aging in Caenorhabditis elegans. / 2020 / PubMed / Full text
- Glycobiology of Aging. / 2018 / PubMed / Full text
BACH2[править]
- Age-related changes in the BACH2 and PRDM1 genes in lymphocytes from healthy donors and chronic lymphocytic leukemia patients. / 17.01.2019 / PubMed / Full text
- BACH2: a marker of DNA damage and ageing. / 11.2013 / PubMed / Full text
BAG3[править]
- Nrf2 mediates the expression of BAG3 and autophagy cargo adaptor proteins and tau clearance in an age-dependent manner. / 03.2018 / PubMed / Full text
- Age-related obesity and type 2 diabetes dysregulate neuronal associated genes and proteins in humans. / 06.10.2015 / PubMed / Full text
BANF1[править]
- An additional case of Néstor-Guillermo progeria syndrome diagnosed in early childhood. / 10.2020 / PubMed / Full text
- Néstor-Guillermo Progeria Syndrome: a biochemical insight into Barrier-to-Autointegration Factor 1, alanine 12 threonine mutation. / 12.12.2014 / PubMed / Full text
BARD1[править]
- BRCA1 and BARD1 mediate apoptotic resistance but not longevity upon mitochondrial stress in [i]Caenorhabditis elegans[/i]. / 12.2018 / PubMed / Full text
- The Histone Variant MacroH2A1 Is a BRCA1 Ubiquitin Ligase Substrate. / 30.05.2017 / PubMed / Full text
BCL11B[править]
- Responders and non-responders to influenza vaccination: A DNA methylation approach on blood cells. / 05.2018 / PubMed / Full text
- Age-related profiling of DNA methylation in CD8 T cells reveals changes in immune response and transcriptional regulator genes. / 19.08.2015 / PubMed / Full text
BCL2L1[править]
- The transcription factor ETS1 promotes apoptosis resistance of senescent cholangiocytes by epigenetically up-regulating the apoptosis suppressor BCL2L1. / 06.12.2019 / PubMed / Full text
- SIRT6 histone deacetylase functions as a potential oncogene in human melanoma. / 09.2017 / PubMed / Full text
BMPR1B[править]
- Growth hormone during in vitro fertilization in older women modulates the density of receptors in granulosa cells, with improved pregnancy outcomes. / 12.2018 / PubMed / Full text
- Dysregulation of granulosal bone morphogenetic protein receptor 1B density is associated with reduced ovarian reserve and the age-related decline in human fertility. / 15.04.2016 / PubMed / Full text
BMX[править]
- Inducible Activation of FGFR2 in Adult Mice Promotes Bone Formation After Bone Marrow Ablation. / 11.2017 / PubMed / Full text
- Enhanced activity of an angiotensin-(1-7) neuropeptidase in glucocorticoid-induced fetal programming. / 02.2014 / PubMed / Full text
BRD2[править]
- Brd2 haploinsufficiency extends lifespan and healthspan in C57B6/J mice. / 2020 / PubMed / Full text
- Genetic architecture differences between pediatric and adult-onset inflammatory bowel diseases in the Polish population. / 23.12.2016 / PubMed / Full text
BTC[править]
- Behavioral tagging and capture: long-term memory decline in middle-aged rats. / 07.2018 / PubMed / Full text
- Estimates of genetic parameters for content of boar taint compounds in adipose tissue of intact males at 160 and 220 days of age. / 09.2015 / PubMed / Full text
BTG1[править]
- Effects of hydrogen peroxide, doxorubicin and ultraviolet irradiation on senescence of human dental pulp stem cells. / 09.2020 / PubMed / Full text
- Tumor cell escape from therapy-induced senescence. / 04.2019 / PubMed / Full text
BTK[править]
- Amelioration of age-related brain function decline by Bruton's tyrosine kinase inhibition. / 01.2020 / PubMed / Full text
- BTK suppresses myeloma cellular senescence through activating AKT/P27/Rb signaling. / 22.08.2017 / PubMed / Full text
BTLA[править]
- Combinatorial approach to cancer immunotherapy: strength in numbers. / 08.2016 / PubMed / Full text
- BTLA expression declines on B cells of the aged and is associated with low responsiveness to the trivalent influenza vaccine. / 14.08.2015 / PubMed / Full text
CA12[править]
- Co-culturing nucleus pulposus mesenchymal stem cells with notochordal cell-rich nucleus pulposus explants attenuates tumor necrosis factor-α-induced senescence. / 26.06.2018 / PubMed / Full text
- Notochordal and nucleus pulposus marker expression is maintained by sub-populations of adult human nucleus pulposus cells through aging and degeneration. / 04.05.2017 / PubMed / Full text
CACNA1C[править]
- Profiling gene expression in the human dentate gyrus granule cell layer reveals insights into schizophrenia and its genetic risk. / 04.2020 / PubMed / Full text
- Epigenetic regulation of L-type voltage-gated Ca channels in mesenteric arteries of aging hypertensive rats. / 05.2017 / PubMed / Full text
CALR[править]
- Elevated circulating HtrA4 in preeclampsia may alter endothelial expression of senescence genes. / 15.01.2020 / PubMed / Full text
- Molecular Pathogenesis of Myeloproliferative Neoplasms: Influence of Age and Gender. / 10.2017 / PubMed / Full text
CASK[править]
- Integrated study on comparative transcriptome and skeletal muscle function in aged rats. / 01.2018 / PubMed / Full text
- Neurexins 1-3 Each Have a Distinct Pattern of Expression in the Early Developing Human Cerebral Cortex. / 01.01.2017 / PubMed / Full text
CASP1[править]
- White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy. / 02.2020 / PubMed / Full text
- Gene expression of inflammasome components in peripheral blood mononuclear cells (PBMC) of vascular patients increases with age. / 2015 / PubMed / Full text
CASP7[править]
- Global Characteristics of CSIG-Associated Gene Expression Changes in Human HEK293 Cells and the Implications for CSIG Regulating Cell Proliferation and Senescence. / 2015 / PubMed / Full text
- Dual role of the caspase enzymes in satellite cells from aged and young subjects. / 12.12.2013 / PubMed / Full text
CASP8[править]
- Crucial role of the terminal complement complex in chondrocyte death and hypertrophy after cartilage trauma. / 05.2020 / PubMed / Full text
- [Association of polymorphic markers of CASP8, BCL2 and BAX genes with aging and longevity]. / 2012 / PubMed
CASQ2[править]
- Single delivery of an adeno-associated viral construct to transfer the CASQ2 gene to knock-in mice affected by catecholaminergic polymorphic ventricular tachycardia is able to cure the disease from birth to advanced age. / 24.06.2014 / PubMed / Full text
- The role of mutant protein level in autosomal recessive catecholamine dependent polymorphic ventricular tachycardia (CPVT2). / 01.12.2013 / PubMed / Full text
CAST[править]
- Cytomatrix proteins CAST and ELKS regulate retinal photoreceptor development and maintenance. / 05.11.2018 / PubMed / Full text
- Short Telomeres Induce p53 and Autophagy and Modulate Age-Associated Changes in Cardiac Progenitor Cell Fate. / 06.2018 / PubMed / Full text
CAV1[править]
- Candesartan Neuroprotection in Rat Primary Neurons Negatively Correlates with Aging and Senescence: a Transcriptomic Analysis. / 03.2020 / PubMed / Full text
- Broad range metabolomics coupled with network analysis for explaining possible mechanisms of Er-Zhi-Wan in treating liver-kidney Yin deficiency syndrome of Traditional Chinese medicine. / 24.04.2019 / PubMed / Full text
CBX4[править]
- Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text
- Maintenance of Nucleolar Homeostasis by CBX4 Alleviates Senescence and Osteoarthritis. / 26.03.2019 / PubMed / Full text
CBX8[править]
- PIM1-catalyzed CBX8 phosphorylation promotes the oncogene-induced senescence of human diploid fibroblast. / 27.06.2018 / PubMed / Full text
- CBX8 antagonizes the effect of Sirtinol on premature senescence through the AKT-RB-E2F1 pathway in K562 leukemia cells. / 22.01.2016 / PubMed / Full text
CCL13[править]
- Age-specific changes in the molecular phenotype of patients with moderate-to-severe atopic dermatitis. / 07.2019 / PubMed / Full text
- Differential Gene Expression Profiles Reflecting Macrophage Polarization in Aging and Periodontitis Gingival Tissues. / 2015 / PubMed / Full text
CCL17[править]
- Aging and chronic high-fat feeding negatively affects kidney size, function, and gene expression in CTRP1-deficient mice. / 21.10.2020 / PubMed / Full text
- Senescent thyrocytes and thyroid tumor cells induce M2-like macrophage polarization of human monocytes via a PGE2-dependent mechanism. / 21.05.2019 / PubMed / Full text
CCL24[править]
- Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner. / 2019 / PubMed / Full text
- Anserine/Carnosine Supplementation Suppresses the Expression of the Inflammatory Chemokine CCL24 in Peripheral Blood Mononuclear Cells from Elderly People. / 31.10.2017 / PubMed / Full text
CCL7[править]
- Increased cardiovascular and atherosclerosis markers in blood of older patients with atopic dermatitis. / 01.2020 / PubMed / Full text
- Advanced atherosclerosis is associated with inflammation, vascular dysfunction and oxidative stress, but not hypertension. / 02.2017 / PubMed / Full text
CCNG2[править]
- A Novel [i]Dnmt3a1[/i] Transcript Inhibits Adipogenesis. / 2018 / PubMed / Full text
- Hypoxia-inducible transcription factors, HIF1A and HIF2A, increase in aging mucosal tissues. / 07.2018 / PubMed / Full text
CCR4[править]
- mTOR regulates the expression of DNA damage response enzymes in long-lived Snell dwarf, GHRKO, and PAPPA-KO mice. / 02.2017 / PubMed / Full text
- Circulating T helper and T regulatory subsets in untreated early rheumatoid arthritis and healthy control subjects. / 10.2016 / PubMed / Full text
CD209[править]
- Senescence in Monocytes Facilitates Dengue Virus Infection by Increasing Infectivity. / 2020 / PubMed / Full text
- Comparative analysis of microbial sensing molecules in mucosal tissues with aging. / 03.2018 / PubMed / Full text
CD46[править]
- Soluble forms of CD46 are detected in Bos taurus plasma and neutralize BVDV, the bovine pestivirus. / 12.2016 / PubMed / Full text
- Brain innate immunity in the regulation of neuroinflammation: therapeutic strategies by modulating CD200-CD200R interaction involve the cannabinoid system. / 2014 / PubMed / Full text
CD70[править]
- CD70 contributes to age-associated T cell defects and overwhelming inflammatory responses. / 19.06.2020 / PubMed / Full text
- Molecular mechanisms involved in the aging of the T-cell immune response. / 12.2012 / PubMed / Full text
CDH1[править]
- Cdc6 as a novel target in cancer: Oncogenic potential, senescence and subcellular localisation. / 15.09.2020 / PubMed / Full text
- A Multigene Test Could Cost-Effectively Help Extend Life Expectancy for Women at Risk of Hereditary Breast Cancer. / 04.2017 / PubMed / Full text
CDKN1B[править]
- A Novel [i]Dnmt3a1[/i] Transcript Inhibits Adipogenesis. / 2018 / PubMed / Full text
- RNA methyltransferase NSUN2 promotes stress-induced HUVEC senescence. / 12.04.2016 / PubMed / Full text
CDKN1C[править]
- Human iPSC-derived MSCs (iMSCs) from aged individuals acquire a rejuvenation signature. / 18.03.2019 / PubMed / Full text
- Expansion of adipose tissue-derived stromal cells at "physiologic" hypoxia attenuates replicative senescence. / 06.2017 / PubMed / Full text
CDR1[править]
- Two Distinct Pathways in Mice Generate Antinuclear Antigen-Reactive B Cell Repertoires. / 2018 / PubMed / Full text
- Neuro-degeneration profile of Alzheimer's patients: A brain morphometry study. / 2017 / PubMed / Full text
CDX2[править]
- Maternal ageing impairs mitochondrial DNA kinetics during early embryogenesis in mice. / 08.07.2019 / PubMed / Full text
- Autophagic homeostasis is required for the pluripotency of cancer stem cells. / 02.2017 / PubMed / Full text
CEBPB[править]
- Integrative Analysis of Hippocampus Gene Expression Profiles Identifies Network Alterations in Aging and Alzheimer's Disease. / 2018 / PubMed / Full text
- The microRNA miR-17-3p inhibits mouse cardiac fibroblast senescence by targeting Par4. / 15.01.2015 / PubMed / Full text
CELF1[править]
- Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text
- Gene-based aggregate SNP associations between candidate AD genes and cognitive decline. / 04.2016 / PubMed / Full text
CHEK1[править]
- Candesartan Neuroprotection in Rat Primary Neurons Negatively Correlates with Aging and Senescence: a Transcriptomic Analysis. / 03.2020 / PubMed / Full text
- The Ubiquitin-like with PHD and Ring Finger Domains 1 (UHRF1)/DNA Methyltransferase 1 (DNMT1) Axis Is a Primary Regulator of Cell Senescence. / 03.03.2017 / PubMed / Full text
CHEK2[править]
- Elevated circulating HtrA4 in preeclampsia may alter endothelial expression of senescence genes. / 15.01.2020 / PubMed / Full text
- A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass. / 20.06.2019 / PubMed / Full text
CHI3L1[править]
- Postsynaptic damage and microglial activation in AD patients could be linked CXCR4/CXCL12 expression levels. / 15.12.2020 / PubMed / Full text
- Sex difference in CHI3L1 expression levels in human brain aging and in Alzheimer's disease. / 01.10.2019 / PubMed / Full text
CHIA[править]
- Lipoprotein Profile in Aged Rats Fed Chia Oil- or Hydroxytyrosol-Enriched Pork in High Cholesterol/High Saturated Fat Diets. / 26.11.2018 / PubMed / Full text
- Chia Oil-Enriched Restructured Pork Effects on Oxidative and Inflammatory Status of Aged Rats Fed High Cholesterol/High Fat Diets. / 05.2017 / PubMed / Full text
CHL1[править]
- Close Homolog of L1 Regulates Dendritic Spine Density in the Mouse Cerebral Cortex Through Semaphorin 3B. / 07.08.2019 / PubMed / Full text
- Age-dependent loss of parvalbumin-expressing hippocampal interneurons in mice deficient in CHL1, a mental retardation and schizophrenia susceptibility gene. / 11.2015 / PubMed / Full text
CHM[править]
- [Molecular regulative mechanisms of aging and interventional effects of Chinese herbal medicine]. / 08.2017 / PubMed / Full text
- [Molecular mechanisms of autophagy in regulating renal aging and interventional effects of Chinese herbal medicine]. / 11.2016 / PubMed / Full text
CIDEA[править]
- Growth hormone receptor expression in human gluteal versus abdominal subcutaneous adipose tissue: Association with body shape. / 05.2016 / PubMed / Full text
- The developmental transition of ovine adipose tissue through early life. / 01.2014 / PubMed / Full text
CIP2A[править]
- Long-lived mice with reduced growth hormone signaling have a constitutive upregulation of hepatic chaperone-mediated autophagy. / 12.02.2020 / PubMed / Full text
- Inhibition of CIP2A attenuates tumor progression by inducing cell cycle arrest and promoting cellular senescence in hepatocellular carcinoma. / 08.01.2018 / PubMed / Full text
CLC[править]
- Impact of Intervention to Improve Nursing Home Resident-Staff Interactions and Engagement. / 13.07.2018 / PubMed / Full text
- Effect of cholesterol loaded cyclodextrin on semen cryopreservation of Aksaray Malakli shepherd dogs of different ages. / 06.2018 / PubMed / Full text
CLEC3B[править]
- CLEC3B p.S106G Mutant in a Caucasian Population of Successful Neurological Aging. / 16.09.2020 / PubMed / Full text
- Exome-wide Association Study Identifies CLEC3B Missense Variant p.S106G as Being Associated With Extreme Longevity in East Asian Populations. / 01.03.2017 / PubMed / Full text
CLPP[править]
- Mitochondrial unfolded protein response: a stress response with implications for fertility and reproductive aging. / 02.2019 / PubMed / Full text
- Mitochondrial unfolded protein response gene Clpp is required to maintain ovarian follicular reserve during aging, for oocyte competence, and development of pre-implantation embryos. / 08.2018 / PubMed / Full text
CLSTN2[править]
- Investigating the influence of KIBRA and CLSTN2 genetic polymorphisms on cross-sectional and longitudinal measures of memory performance and hippocampal volume in older individuals. / 11.2015 / PubMed / Full text
- Genetic effects on old-age cognitive functioning: a population-based study. / 03.2013 / PubMed / Full text
CNP[править]
- Environmental Enrichment Elicits a Transient Rise of Bioactive C-Type Natriuretic Peptide in Young but Not Aged Rats. / 2018 / PubMed / Full text
- In aging, the vulnerability of rat brain mitochondria is enhanced due to reduced level of 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNP) and subsequently increased permeability transition in brain mitochondria in old animals. / 01.2015 / PubMed / Full text
CNTF[править]
- Absence of axonal sprouting following unilateral lesion in 125-day-old rat supraoptic nucleus may be due to age-dependent decrease in protein levels of ciliary neurotrophic factor receptor alpha. / 01.10.2019 / PubMed / Full text
- Maintenance of membrane organization in the aging mouse brain as the determining factor for preventing receptor dysfunction and for improving response to anti-Alzheimer treatments. / 06.2017 / PubMed / Full text
CNTNAP2[править]
- Selective molecular biomarkers to predict biologic behavior in pituitary tumors. / 05.2017 / PubMed / Full text
- A common copy number variation polymorphism in the CNTNAP2 gene: sexual dimorphism in association with healthy aging and disease. / 2015 / PubMed / Full text
COPE[править]
- Patterns and characteristics of cognitive functioning in older patients approaching end stage kidney disease, the COPE-study. / 09.04.2020 / PubMed / Full text
- Falls self-efficacy and falls incidence in community-dwelling older people: the mediating role of coping. / 05.2018 / PubMed / Full text
COQ7[править]
- Reduction in the levels of CoQ biosynthetic proteins is related to an increase in lifespan without evidence of hepatic mitohormesis. / 18.09.2018 / PubMed / Full text
- Gene expression differences in relation to age and social environment in queen and worker bumble bees. / 05.2016 / PubMed / Full text
COX5B[править]
- Role of Mitochondrial Complex IV in Age-Dependent Obesity. / 13.09.2016 / PubMed / Full text
- Loss of COX5B inhibits proliferation and promotes senescence via mitochondrial dysfunction in breast cancer. / 22.12.2015 / PubMed / Full text
CPNE1[править]
- Prevalent intron retention fine-tunes gene expression and contributes to cellular senescence. / 04.12.2020 / PubMed / Full text
- Genome-wide Associations Reveal Human-Mouse Genetic Convergence and Modifiers of Myogenesis, CPNE1 and STC2. / 05.12.2019 / PubMed / Full text
CPQ[править]
- A Spanish Adaptation of the Computer and Mobile Device Proficiency Questionnaires (CPQ and MDPQ) for Older Adults. / 2019 / PubMed / Full text
- Protective Effect of Semisynthetic and Natural Flavonoid on Aged Rat Microglia-enriched Cultures. / 11.2019 / PubMed / Full text
CPT1B[править]
- Effects of carnitine palmitoyltransferases on cancer cellular senescence. / 02.2019 / PubMed / Full text
- Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone. / 07.2014 / PubMed / Full text
CPT2[править]
- The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats. / 09.2020 / PubMed / Full text
- Glial β-oxidation regulates Drosophila energy metabolism. / 15.01.2015 / PubMed / Full text
CRABP2[править]
- Preconception resveratrol intake against infertility: Friend or foe? / 04.2020 / PubMed / Full text
- Cross platform analysis of transcriptomic data identifies ageing has distinct and opposite effects on tendon in males and females. / 31.10.2017 / PubMed / Full text
CREB5[править]
- Cellular senescence induces replication stress with almost no affect on DNA replication timing. / 2018 / PubMed / Full text
- Transcriptomic and epigenetic analyses reveal a gender difference in aging-associated inflammation: the Vitality 90 study. / 08.2015 / PubMed / Full text
CREBBP[править]
- Systems biology and network pharmacology of frailty reveal novel epigenetic targets and mechanisms. / 22.07.2019 / PubMed / Full text
- Genetic variants in a 'cAMP element binding protein' (CREB)-dependent histone acetylation pathway influence memory performance in cognitively healthy elderly individuals. / 12.2014 / PubMed / Full text
CRYAB[править]
- Binding of a glaucoma-associated myocilin variant to the αB-crystallin chaperone impedes protein clearance in trabecular meshwork cells. / 28.12.2018 / PubMed / Full text
- Quantitative proteomics analysis by iTRAQ in human nuclear cataracts of different ages and normal lens nuclei. / 08.2015 / PubMed / Full text
CSRP1[править]
- FOXO3, a Molecular Search for the Fountain of Youth. / 07.03.2019 / PubMed / Full text
- FOXO3-Engineered Human ESC-Derived Vascular Cells Promote Vascular Protection and Regeneration. / 07.03.2019 / PubMed / Full text
CYB5A[править]
- 11-Oxygenated C19 Steroids Do Not Decline With Age in Women. / 01.07.2019 / PubMed / Full text
- 3βHSD and CYB5A double positive adrenocortical cells during adrenal development/aging. / 2015 / PubMed / Full text
CYP11B2[править]
- Expression of aldosterone synthase CYP11B2 was inversely correlated with longevity. / 07.2019 / PubMed / Full text
- Age-Related Autonomous Aldosteronism. / 25.07.2017 / PubMed / Full text
CYP27A1[править]
- Prenatal betaine exposure alleviates corticosterone-induced inhibition of CYP27A1 expression in the liver of juvenile chickens associated with its promoter DNA methylation. / 15.05.2017 / PubMed / Full text
- Synergic hypocholesterolaemic effect of n-3 PUFA and oestrogen by modulation of hepatic cholesterol metabolism in female rats. / 14.12.2015 / PubMed / Full text
CYP2A6[править]
- Analysis of the variability of the pharmacokinetics of multiple drugs in young adult and elderly subjects and its implications for acceptable daily exposures and cleaning validation limits. / 06.2017 / PubMed / Full text
- Sex- and age-dependent gene expression in human liver: An implication for drug-metabolizing enzymes. / 02.2017 / PubMed / Full text
CYP2C8[править]
- Paclitaxel-induced sensory peripheral neuropathy is associated with an ABCB1 single nucleotide polymorphism and older age in Japanese. / 06.2017 / PubMed / Full text
- Determination of Human Hepatic CYP2C8 and CYP1A2 Age-Dependent Expression to Support Human Health Risk Assessment for Early Ages. / 05.2017 / PubMed / Full text
CYP3A7[править]
- Dynamics of Cytosine Methylation in the Proximal Promoters of CYP3A4 and CYP3A7 in Pediatric and Prenatal Livers. / 07.2016 / PubMed / Full text
- Predicting the "First dose in children" of CYP3A-metabolized drugs: Evaluation of scaling approaches and insights into the CYP3A7-CYP3A4 switch at young ages. / 09.2014 / PubMed / Full text
DAO[править]
- Age- and gender-dependent D-amino acid oxidase activity in mouse brain and peripheral tissues: implication for aging and neurodegeneration. / 01.08.2019 / PubMed / Full text
- Blood levels of D-amino acid oxidase vs. D-amino acids in reflecting cognitive aging. / 01.11.2017 / PubMed / Full text
DAPK1[править]
- SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text
- Degradation of Caytaxin Causes Learning and Memory Deficits via Activation of DAPK1 in Aging. / 05.2019 / PubMed / Full text
DAZL[править]
- DAZL Regulates Germ Cell Survival through a Network of PolyA-Proximal mRNA Interactions. / 30.10.2018 / PubMed / Full text
- No evidence for neo-oogenesis may link to ovarian senescence in adult monkey. / 11.2013 / PubMed / Full text
DBT[править]
- Diurnal rhythms of heart and respiratory rates in donkeys of different age groups during the cold-dry and hot-dry seasons in a tropical savannah. / 09.2018 / PubMed / Full text
- Anodal Transcranial Direct Current Stimulation Does Not Facilitate Dynamic Balance Task Learning in Healthy Old Adults. / 2017 / PubMed / Full text
DCTN3[править]
- Dynactin pathway-related gene expression is altered by aging, but not by vitrification. / 09.2019 / PubMed / Full text
- Alteration of Motor Protein Expression Involved in Bidirectional Transport in Peripheral Blood Mononuclear Cells of Patients with Amyotrophic Lateral Sclerosis. / 2016 / PubMed / Full text
DDAH1[править]
- Dimethylarginine Dimethylaminohydrolase 1 Deficiency Induces the Epithelial to Mesenchymal Transition in Renal Proximal Tubular Epithelial Cells and Exacerbates Kidney Damage in Aged and Diabetic Mice. / 01.12.2017 / PubMed / Full text
- Epigallocatechin-3-gallate ameliorates erectile function in aged rats via regulation of PRMT1/DDAH/ADMA/NOS metabolism pathway. / 05-06.2017 / PubMed / Full text
DDAH2[править]
- Epigallocatechin-3-gallate ameliorates erectile function in aged rats via regulation of PRMT1/DDAH/ADMA/NOS metabolism pathway. / 05-06.2017 / PubMed / Full text
- Regulation of endothelial progenitor cell differentiation and function by dimethylarginine dimethylaminohydrolase 2 in an asymmetric dimethylarginine-independent manner. / 09.2014 / PubMed / Full text
DDB1[править]
- DCAF1 regulates Treg senescence via the ROS axis during immunological aging. / 02.11.2020 / PubMed / Full text
- Deletion of DDB1- and CUL4- associated factor-17 (Dcaf17) gene causes spermatogenesis defects and male infertility in mice. / 15.06.2018 / PubMed / Full text
DDR2[править]
- Selective Role of Discoidin Domain Receptor 2 in Murine Temporomandibular Joint Development and Aging. / 03.2018 / PubMed / Full text
- Type I collagen aging impairs discoidin domain receptor 2-mediated tumor cell growth suppression. / 03.05.2016 / PubMed / Full text
DDX41[править]
- Salidroside influences the cellular cross-talk of human fetal lung diploid fibroblasts: A proteomic approach. / 03.2018 / PubMed / Full text
- Sequential acquisition of mutations in myelodysplastic syndromes. / 2017 / PubMed / Full text
DEGS1[править]
- [Frailty: Prevalence in the Resident Population of Germany 70 - 79 Years of Age - a Population-Based Approach]. / 11.2017 / PubMed / Full text
- Physical exercise and cognitive function across the life span: Results of a nationwide population-based study. / 05.2018 / PubMed / Full text
DHFR[править]
- Excessive folic acid intake and relation to adverse health outcome. / 07.2016 / PubMed / Full text
- Increase in tetrahydrobiopterin concentration with aging in the cerebral cortex of the senescence-accelerated mouse prone 10 strain caused by abnormal regulation of tetrahydrobiopterin biosynthesis. / 10.2013 / PubMed / Full text
DHX9[править]
- The biology of DHX9 and its potential as a therapeutic target. / 05.07.2016 / PubMed / Full text
- Suppression of the DHX9 helicase induces premature senescence in human diploid fibroblasts in a p53-dependent manner. / 15.08.2014 / PubMed / Full text
DIAPH1[править]
- Diaphanous 1 (DIAPH1) is Highly Expressed in the Aged Human Medial Temporal Cortex and Upregulated in Myeloid Cells During Alzheimer's Disease. / 2018 / PubMed / Full text
- The multiple faces of RAGE--opportunities for therapeutic intervention in aging and chronic disease. / 2016 / PubMed / Full text
DIRAS3[править]
- Silencing of the small GTPase DIRAS3 induces cellular senescence in human white adipose stromal/progenitor cells. / 17.03.2017 / PubMed / Full text
- Weight Loss Upregulates the Small GTPase DIRAS3 in Human White Adipose Progenitor Cells, Which Negatively Regulates Adipogenesis and Activates Autophagy via Akt-mTOR Inhibition. / 04.2016 / PubMed / Full text
DKK2[править]
- Low Serum Levels of DKK2 Predict Incident Low-Impact Fracture in Older Women. / 07.2019 / PubMed / Full text
- Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text
DLC1[править]
- Resveratrol promotes oxidative stress to drive DLC1 mediated cellular senescence in cancer cells. / 15.09.2018 / PubMed / Full text
- Depletion of the transcriptional coactivators megakaryoblastic leukaemia 1 and 2 abolishes hepatocellular carcinoma xenograft growth by inducing oncogene-induced senescence. / 09.2013 / PubMed / Full text
DLX5[править]
- Inhibition of microRNA-27b-3p relieves osteoarthritis pain via regulation of KDM4B-dependent DLX5. / 09.2020 / PubMed / Full text
- Detection and evaluation of DNA methylation markers found at SCGN and KLF14 loci to estimate human age. / 11.2017 / PubMed / Full text
DNA2[править]
- 53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination. / 02.01.2020 / PubMed / Full text
- Replication Stress at Telomeric and Mitochondrial DNA: Common Origins and Consequences on Ageing. / 08.10.2019 / PubMed / Full text
DNAJC5[править]
- Gene Therapy of Adult Neuronal Ceroid Lipofuscinoses with CRISPR/Cas9 in Zebrafish. / 07.2017 / PubMed / Full text
- Caenorhabditis elegans dnj-14, the orthologue of the DNAJC5 gene mutated in adult onset neuronal ceroid lipofuscinosis, provides a new platform for neuroprotective drug screening and identifies a SIR-2.1-independent action of resveratrol. / 15.11.2014 / PubMed / Full text
DOCK11[править]
- [Immunosenescence: The Forefront of Infection and Trophic Control]. / 2020 / PubMed / Full text
- Genetic correlation and genome-wide association study (GWAS) of the length of productive life, days open, and 305-days milk yield in crossbred Holstein dairy cattle. / 29.06.2017 / PubMed / Full text
DOT1L[править]
- Metformin regulates mitochondrial biogenesis and senescence through AMPK mediated H3K79 methylation: Relevance in age-associated vascular dysfunction. / 04.2018 / PubMed / Full text
- NF-κB activation impairs somatic cell reprogramming in ageing. / 08.2015 / PubMed / Full text
DRAM1[править]
- Genome-wide meta-analysis of macronutrient intake of 91,114 European ancestry participants from the cohorts for heart and aging research in genomic epidemiology consortium. / 12.2019 / PubMed / Full text
- Di-retinoid-pyridinium-ethanolamine (A2E) Accumulation and the Maintenance of the Visual Cycle Are Independent of Atg7-mediated Autophagy in the Retinal Pigmented Epithelium. / 27.11.2015 / PubMed / Full text
DRD1[править]
- Impact of dopamine-related genetic variants on physical activity in old age - a cohort study. / 24.05.2020 / PubMed / Full text
- Maternal deprivation enhances behavioral vulnerability to stress associated with miR-504 expression in nucleus accumbens of rats. / 2013 / PubMed / Full text
DROSHA[править]
- Profiling of m6A RNA modifications identified an age-associated regulation of AGO2 mRNA stability. / 06.2018 / PubMed / Full text
- Centenarians maintain miRNA biogenesis pathway while it is impaired in octogenarians. / 12.2017 / PubMed / Full text
DSCAM[править]
- Age- and speed-dependent modulation of gaits in DSCAM mutant mice. / 01.02.2018 / PubMed / Full text
- Developmentally dynamic colocalization patterns of DSCAM with adhesion and synaptic proteins in the mouse retina. / 2014 / PubMed / Full text
DSG2[править]
- Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text
- Age-dependent clinical and genetic characteristics in Japanese patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. / 2013 / PubMed / Full text
DSPP[править]
- Effects of [i]p[/i]-Cresol on Senescence, Survival, Inflammation, and Odontoblast Differentiation in Canine Dental Pulp Stem Cells. / 21.09.2020 / PubMed / Full text
- GREM1 inhibits osteogenic differentiation, senescence and BMP transcription of adipose-derived stem cells. / 09.03.2020 / PubMed / Full text
DUSP2[править]
- The association between poverty and gene expression within peripheral blood mononuclear cells in a diverse Baltimore City cohort. / 2020 / PubMed / Full text
- Aging Increases Hippocampal DUSP2 by a Membrane Cholesterol Loss-Mediated RTK/p38MAPK Activation Mechanism. / 2019 / PubMed / Full text
E2F2[править]
- MicroRNA-31a-5p from aging BMSCs links bone formation and resorption in the aged bone marrow microenvironment. / 08.2018 / PubMed / Full text
- In situ regeneration of retinal pigment epithelium by gene transfer of E2F2: a potential strategy for treatment of macular degenerations. / 12.2017 / PubMed / Full text
EBF1[править]
- Genome-wide Association Study of Parental Life Span. / 01.10.2017 / PubMed / Full text
- Non-Lethal Ionizing Radiation Promotes Aging-Like Phenotypic Changes of Human Hematopoietic Stem and Progenitor Cells in Humanized Mice. / 2015 / PubMed / Full text
ECM1[править]
- Novel role of extracellular matrix protein 1 (ECM1) in cardiac aging and myocardial infarction. / 2019 / PubMed / Full text
- Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text
EDNRB[править]
- Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. / 03.03.2016 / PubMed / Full text
- Variation in genes in the endothelin pathway and endothelium-dependent and endothelium-independent vasodilation in an elderly population. / 05.2013 / PubMed / Full text
EED[править]
- Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text
- Economic evaluations of eHealth technologies: A systematic review. / 2018 / PubMed / Full text
EIF2B1[править]
- Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of CSF1R and NOTCH3. / 06.2018 / PubMed / Full text
- Infantile onset Vanishing White Matter disease associated with a novel EIF2B5 variant, remarkably long life span, severe epilepsy, and hypopituitarism. / 04.2015 / PubMed / Full text
EIF2B5[править]
- Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of CSF1R and NOTCH3. / 06.2018 / PubMed / Full text
- Infantile onset Vanishing White Matter disease associated with a novel EIF2B5 variant, remarkably long life span, severe epilepsy, and hypopituitarism. / 04.2015 / PubMed / Full text
EIF5A[править]
- The curious case of polyamines: spermidine drives reversal of B cell senescence. / 03.2020 / PubMed / Full text
- Polyamines reverse immune senescence via the translational control of autophagy. / 01.2020 / PubMed / Full text
EN1[править]
- Electrochemically detecting DNA methylation in the EN1 gene promoter: implications for understanding ageing and disease. / 27.11.2020 / PubMed / Full text
- The role of DNA methylation in ageing and cancer. / 11.2018 / PubMed / Full text
ENC1[править]
- Selective molecular biomarkers to predict biologic behavior in pituitary tumors. / 05.2017 / PubMed / Full text
- Identification of genes associated with dissociation of cognitive performance and neuropathological burden: Multistep analysis of genetic, epigenetic, and transcriptional data. / 04.2017 / PubMed / Full text
ENTPD7[править]
- Inhibition of lung cancer cells and Ras/Raf/MEK/ERK signal transduction by ectonucleoside triphosphate phosphohydrolase-7 (ENTPD7). / 23.08.2019 / PubMed / Full text
- SWI/SNF regulates a transcriptional program that induces senescence to prevent liver cancer. / 01.10.2016 / PubMed / Full text
EOMES[править]
- Association of Epigenetic Age and p16INK4a With Markers of T-Cell Composition in a Healthy Cohort. / 13.11.2020 / PubMed / Full text
- Eomesodermin Expression in CD4 T Cells Restricts Peripheral Foxp3 Induction. / 15.11.2015 / PubMed / Full text
EPHA2[править]
- Germ-line and somatic EPHA2 coding variants in lens aging and cataract. / 2017 / PubMed / Full text
- EPHA2 Polymorphisms in Estonian Patients with Age-Related Cataract. / 2016 / PubMed / Full text
EPM2A[править]
- Inflammation in Lafora Disease: Evolution with Disease Progression in Laforin and Malin Knock-out Mouse Models. / 07.2017 / PubMed / Full text
- Loss of GABAergic cortical neurons underlies the neuropathology of Lafora disease. / 28.01.2014 / PubMed / Full text
ERBB2[править]
- The biological age linked to oxidative stress modifies breast cancer aggressiveness. / 20.05.2018 / PubMed / Full text
- Identification of human age-associated gene co-expressions in functional modules using liquid association. / 02.01.2018 / PubMed / Full text
ERCC6[править]
- Two Cockayne Syndrome patients with a novel splice site mutation - clinical and metabolic analyses. / 10.2018 / PubMed / Full text
- The associations between single nucleotide polymorphisms of DNA repair genes, DNA damage, and age-related cataract: Jiangsu Eye Study. / 01.02.2013 / PubMed / Full text
ETS2[править]
- FOXO3 targets are reprogrammed as Huntington's disease neural cells and striatal neurons face senescence with p16 increase. / 11.2020 / PubMed / Full text
- The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. / 29.09.2020 / PubMed / Full text
EWSR1[править]
- EWSR1, a multifunctional protein, regulates cellular function and aging via genetic and epigenetic pathways. / 01.07.2019 / PubMed / Full text
- EWSR1/ELF5 induces acute myeloid leukemia by inhibiting p53/p21 pathway. / 12.2016 / PubMed / Full text
EZR[править]
- Proteomic analysis of six- and twelve-month hippocampus and cerebellum in a murine Down syndrome model. / 03.2018 / PubMed / Full text
- Genetic variations and polymorphisms in the ezrin gene are associated with age-related cataract. / 2013 / PubMed / Full text
F8[править]
- The Pattern of Mu Rhythm Modulation During Emotional Destination Memory: Comparison Between Mild Cognitive Impairment Patients and Healthy Controls. / 2019 / PubMed / Full text
- Correlations between the signal complexity of cerebral and cardiac electrical activity: a multiscale entropy analysis. / 2014 / PubMed / Full text
F9[править]
- Hypermaintenance and hypofunction of aged spermatogonia: insight from age-related increase of Plzf expression. / 30.06.2015 / PubMed / Full text
- eHealth literacy and Web 2.0 health information seeking behaviors among baby boomers and older adults. / 17.03.2015 / PubMed / Full text
FABP1[править]
- The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats. / 09.2020 / PubMed / Full text
- Expression of digestive enzyme and intestinal transporter genes during chronic heat stress in the thermally manipulated broiler chicken. / 01.09.2019 / PubMed / Full text
FADS1[править]
- Aging and FADS1 polymorphisms decrease the biosynthetic capacity of long-chain PUFAs: A human trial using [U- C]linoleic acid. / 09.2019 / PubMed / Full text
- Genetic determinants of macular pigments in women of the Carotenoids in Age-Related Eye Disease Study. / 28.03.2013 / PubMed / Full text
FAHD1[править]
- Oxaloacetate decarboxylase FAHD1 - a new regulator of mitochondrial function and senescence. / 01.2019 / PubMed / Full text
- Depletion of oxaloacetate decarboxylase FAHD1 inhibits mitochondrial electron transport and induces cellular senescence in human endothelial cells. / 06.2017 / PubMed / Full text
FANCD2[править]
- TFG-maintaining stability of overlooked FANCD2 confers early DNA-damage response. / 24.10.2020 / PubMed / Full text
- FANCD2 and DNA Damage. / 19.08.2017 / PubMed / Full text
FAR2[править]
- FAR2 is associated with kidney disease in mice and humans. / 01.08.2018 / PubMed / Full text
- Genetic analysis of mesangial matrix expansion in aging mice and identification of Far2 as a candidate gene. / 12.2013 / PubMed / Full text
FBN1[править]
- Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text
- Muscle and Bone Impairment in Children With Marfan Syndrome: Correlation With Age and FBN1 Genotype. / 08.2015 / PubMed / Full text
FBN2[править]
- Assessment of Human Skin Gene Expression by Different Blends of Plant Extracts with Implications to Periorbital Skin Aging. / 26.10.2018 / PubMed / Full text
- Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text
FBXO31[править]
- The SCF ubiquitin ligase complex mediates degradation of the tumor suppressor FBXO31 and thereby prevents premature cellular senescence. / 19.10.2018 / PubMed / Full text
- Solutions to Peto's paradox revealed by mathematical modelling and cross-species cancer gene analysis. / 19.07.2015 / PubMed / Full text
FGF6[править]
- Genome-wide associations and detection of potential candidate genes for direct genetic and maternal genetic effects influencing dairy cattle body weight at different ages. / 06.02.2019 / PubMed / Full text
- Regulation of skeletal muscle stem cells by fibroblast growth factors. / 05.2017 / PubMed / Full text
FGG[править]
- Candidate SNP associations of optimism and resilience in older adults: exploratory study of 935 community-dwelling adults. / 10.2014 / PubMed / Full text
- A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. / 07.2013 / PubMed / Full text
FHL1[править]
- The forkhead-like transcription factor (Fhl1p) maintains yeast replicative lifespan by regulating ribonucleotide reductase 1 (RNR1) gene transcription. / 17.06.2017 / PubMed / Full text
- Transcription factor genes essential for cell proliferation and replicative lifespan in budding yeast. / 31.07.2015 / PubMed / Full text
FLT1[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
- Analysis of Polymorphisms in 59 Potential Candidate Genes for Association With Human Longevity. / 08.10.2018 / PubMed / Full text
FOXA2[править]
- Induced Pluripotent Stem Cell-Derived Dopaminergic Neurons from Adult Common Marmoset Fibroblasts. / 01.09.2017 / PubMed / Full text
- Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. / 03.2015 / PubMed / Full text
FOXC1[править]
- Identification of key genes and transcription factors in aging mesenchymal stem cells by DNA microarray data. / 15.04.2019 / PubMed / Full text
- FOXC1 maintains the hair follicle stem cell niche and governs stem cell quiescence to preserve long-term tissue-regenerating potential. / 15.03.2016 / PubMed / Full text
FOXF1[править]
- Functional CRISPR screen identifies AP1-associated enhancer regulating FOXF1 to modulate oncogene-induced senescence. / 17.08.2018 / PubMed / Full text
- Co-culturing nucleus pulposus mesenchymal stem cells with notochordal cell-rich nucleus pulposus explants attenuates tumor necrosis factor-α-induced senescence. / 26.06.2018 / PubMed / Full text
FOXP2[править]
- Identification of the neurotransmitter profile of AmFoxP expressing neurons in the honeybee brain using double-label in situ hybridization. / 06.11.2018 / PubMed / Full text
- Human skin keratinocytes can be reprogrammed to express neuronal genes and proteins after a single treatment with decitabine. / 06.2013 / PubMed / Full text
FSTL1[править]
- Blocking the FSTL1-DIP2A Axis Improves Anti-tumor Immunity. / 14.08.2018 / PubMed / Full text
- Vitamin D-responsive SGPP2 variants associated with lung cell expression and lung function. / 25.11.2013 / PubMed / Full text
FXN[править]
- Two different pathogenic mechanisms, dying-back axonal neuropathy and pancreatic senescence, are present in the YG8R mouse model of Friedreich's ataxia. / 01.06.2016 / PubMed / Full text
- Mitochondrial dysfunction induced by frataxin deficiency is associated with cellular senescence and abnormal calcium metabolism. / 2014 / PubMed / Full text
GABARAP[править]
- Age-dependent loss of adipose Rubicon promotes metabolic disorders via excess autophagy. / 18.08.2020 / PubMed / Full text
- Age-dependent autophagy induction after injury promotes axon regeneration by limiting NOTCH. / 11.2020 / PubMed / Full text
GAK[править]
- Auxilin Underlies Progressive Locomotor Deficits and Dopaminergic Neuron Loss in a Drosophila Model of Parkinson's Disease. / 31.01.2017 / PubMed / Full text
- Disruption of clathrin-mediated trafficking causes centrosome overduplication and senescence. / 01.2014 / PubMed / Full text
GAS6[править]
- Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner. / 2019 / PubMed / Full text
- Red blood cell distribution width: Genetic evidence for aging pathways in 116,666 volunteers. / 2017 / PubMed / Full text
GATA2[править]
- GATA2 hypomorphism induces chronic myelomonocytic leukemia in mice. / 04.2019 / PubMed / Full text
- Sequential acquisition of mutations in myelodysplastic syndromes. / 2017 / PubMed / Full text
GCAT[править]
- Impairing L-Threonine Catabolism Promotes Healthspan through Methylglyoxal-Mediated Proteohormesis. / 03.04.2018 / PubMed / Full text
- Epigenetic regulation of the nuclear-coded GCAT and SHMT2 genes confers human age-associated mitochondrial respiration defects. / 22.05.2015 / PubMed / Full text
GDF3[править]
- In vivo GDF3 administration abrogates aging related muscle regeneration delay following acute sterile injury. / 10.2018 / PubMed / Full text
- Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. / 05.10.2017 / PubMed / Full text
GIT1[править]
- GIT2-A keystone in ageing and age-related disease. / 05.2018 / PubMed / Full text
- GluN3A promotes dendritic spine pruning and destabilization during postnatal development. / 09.07.2014 / PubMed / Full text
GLI1[править]
- Sonic hedgehog regulation of cavernous nerve regeneration and neurite formation in aged pelvic plexus. / 02.2019 / PubMed / Full text
- GLI1 progenitor cells in the adrenal capsule of the adult mouse give rise to heterotopic gonadal-like tissue. / 05.02.2017 / PubMed / Full text
GLRX[править]
- Gender- and region-dependent changes of redox biomarkers in the brain of successfully aging LOU/C rats. / 07.2015 / PubMed / Full text
- Contribution of genetic polymorphisms on functional status at very old age: a gene-based analysis of 38 genes (311 SNPs) in the oxidative stress pathway. / 04.2014 / PubMed / Full text
GNAQ[править]
- Active notch protects MAPK activated melanoma cell lines from MEK inhibitor cobimetinib. / 14.11.2020 / PubMed / Full text
- GNAQ expression initiated in multipotent neural crest cells drives aggressive melanoma of the central nervous system. / 01.2020 / PubMed / Full text
GNAS[править]
- Intratumoral heterogeneity of the tumor cells based on in situ cortisol excess in cortisol-producing adenomas; ∼An association among morphometry, genotype and cellular senescence∼. / 11.2020 / PubMed / Full text
- Clinical characterization and molecular classification of 12 Korean patients with pseudohypoparathyroidism and pseudopseudohypoparathyroidism. / 10.2013 / PubMed / Full text
GNG3[править]
- Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex. / 2018 / PubMed / Full text
- Low expression of aging-related [[NRXN3]] is associated with Alzheimer disease: A systematic review and meta-analysis. / 07.2018 / PubMed / Full text
GNRH1[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
- Elucidating the genetic architecture of reproductive ageing in the Japanese population. / 17.05.2018 / PubMed / Full text
GP6[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
- Estimation of human age using N-glycan profiles from bloodstains. / 09.2015 / PubMed / Full text
GPER1[править]
- 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Nongenomic effects via the mineralocorticoid receptor. / 07.2017 / PubMed / Full text
- Diverse Synaptic Distributions of G Protein-coupled Estrogen Receptor 1 in Monkey Prefrontal Cortex with Aging and Menopause. / 01.03.2017 / PubMed / Full text
GPR158[править]
- Identifying blood-specific age-related DNA methylation markers on the Illumina MethylationEPIC® BeadChip. / 10.2019 / PubMed / Full text
- RbAp48 Protein Is a Critical Component of GPR158/OCN Signaling and Ameliorates Age-Related Memory Loss. / 23.10.2018 / PubMed / Full text
GPR17[править]
- Pharmaceutical Rejuvenation of Age-Associated Decline in Spatial Memory. / 12.2016 / PubMed / Full text
- Structural and functional rejuvenation of the aged brain by an approved anti-asthmatic drug. / 27.10.2015 / PubMed / Full text
GPR3[править]
- Mice lacking GPR3 receptors display late-onset obese phenotype due to impaired thermogenic function in brown adipose tissue. / 12.10.2015 / PubMed / Full text
- Effects of aging on gene expression and mitochondrial DNA in the equine oocyte and follicle cells. / 07.2015 / PubMed / Full text
GPR39[править]
- Zinc-mediated Neurotransmission in Alzheimer's Disease: A Potential Role of the GPR39 in Dementia. / 2020 / PubMed / Full text
- GPR39 agonist TC-G 1008 ameliorates IL-1β-induced chondrocyte senescence. / 12.2019 / PubMed / Full text
GRB10[править]
- De-silencing [i]Grb10[/i] contributes to acute ER stress-induced steatosis in mouse liver. / 05.2018 / PubMed / Full text
- Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. / 12.2015 / PubMed / Full text
GRB2[править]
- Fucoidan⁻Fucoxanthin Ameliorated Cardiac Function via IRS1/GRB2/ SOS1, GSK3β/CREB Pathways and Metabolic Pathways in Senescent Mice. / 21.01.2019 / PubMed / Full text
- The different expression profiles of microRNAs in elderly and young human dental pulp and the role of miR-433 in human dental pulp cells. / 03.2015 / PubMed / Full text
GRIA2[править]
- The EpiTect Methyl qPCR Assay as novel age estimation method in forensic biology. / 07.2016 / PubMed / Full text
- Evaluation of DNA methylation markers and their potential to predict human aging. / 08.2015 / PubMed / Full text
GRIK2[править]
- Senescence of Normal Human Fibroblasts Relates to the Expression of Ionotropic Glutamate Receptor GluR6/Grik2. / 11-12.2020 / PubMed / Full text
- Isoforms of Ionotropic Glutamate Receptor GRIK2 Induce Senescence of Carcinoma Cells. / 01-02.2019 / PubMed / Full text
GRIN2B[править]
- Medial temporal lobe atrophy relates more strongly to sleep-wake rhythm fragmentation than to age or any other known risk. / 04.2019 / PubMed / Full text
- Gene Expression Switching of Receptor Subunits in Human Brain Development. / 12.2015 / PubMed / Full text
GRM3[править]
- Profiling gene expression in the human dentate gyrus granule cell layer reveals insights into schizophrenia and its genetic risk. / 04.2020 / PubMed / Full text
- Hippocampal proteomics defines pathways associated with memory decline and resilience in normal aging and Alzheimer's disease mouse models. / 30.03.2017 / PubMed / Full text
GRSF1[править]
- GRSF1 is an age-related regulator of senescence. / 03.04.2019 / PubMed / Full text
- GRSF1 suppresses cell senescence. / 07.08.2018 / PubMed / Full text
GSTA2[править]
- The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats. / 09.2020 / PubMed / Full text
- The age-related change of glutathione antioxidant system in mice liver. / 07.2013 / PubMed / Full text
GSTA4[править]
- Impaired enzymatic reactive aldehyde-detoxifying capacity and glutathione peroxidase activity in the aged human arterial tissue. / 02.2019 / PubMed / Full text
- Age-associated changes in GSH S-transferase gene/proteins in livers of rats. / 12.2018 / PubMed / Full text
GSTK1[править]
- Age-associated changes in GSH S-transferase gene/proteins in livers of rats. / 12.2018 / PubMed / Full text
- Growth hormone alters the glutathione S-transferase and mitochondrial thioredoxin systems in long-living Ames dwarf mice. / 10.2014 / PubMed / Full text
GSTM3[править]
- Age-associated changes in GSH S-transferase gene/proteins in livers of rats. / 12.2018 / PubMed / Full text
- Relationship Between the Altered Expression and Epigenetics of GSTM3 and Age-Related Cataract. / 01.09.2016 / PubMed / Full text
GSTZ1[править]
- Age-associated changes in GSH S-transferase gene/proteins in livers of rats. / 12.2018 / PubMed / Full text
- Effects of insulin-like growth factor 1 on glutathione S-transferases and thioredoxin in growth hormone receptor knockout mice. / 2014 / PubMed / Full text
HAPLN1[править]
- Remodeling of the Collagen Matrix in Aging Skin Promotes Melanoma Metastasis and Affects Immune Cell Motility. / 01.2019 / PubMed / Full text
- Age-Related Changes in HAPLN1 Increase Lymphatic Permeability and Affect Routes of Melanoma Metastasis. / 01.2019 / PubMed / Full text
HAS1[править]
- A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass. / 20.06.2019 / PubMed / Full text
- Age-related changes in cyclic phosphatidic acid-induced hyaluronic acid synthesis in human fibroblasts. / 01.2018 / PubMed / Full text
HAS3[править]
- Microneedle fractional radiofrequency increases epidermal hyaluronan and reverses age-related epidermal dysfunction. / 02.2016 / PubMed / Full text
- Age-associated changes in gene expression of goat oocytes. / 01.09.2013 / PubMed / Full text
HAT1[править]
- Activation of p53 by spermine mediates induction of autophagy in HT1080 cells. / 02.2014 / PubMed / Full text
- Age-associated changes in gene expression of goat oocytes. / 01.09.2013 / PubMed / Full text
HBD[править]
- Impact of reproductive aging on the vaginal microbiome and soluble immune mediators in women living with and at-risk for HIV infection. / 2019 / PubMed / Full text
- Differences in Cytokine Production during Aging and Its Relationship with Antimicrobial Peptides Production. / 01.2017 / PubMed / Full text
HCN3[править]
- Characteristics of hyperpolarization-activated cyclic nucleotide-gated channels in dorsal root ganglion neurons at different ages and sizes. / 11.11.2015 / PubMed / Full text
- Integromics network meta-analysis on cardiac aging offers robust multi-layer modular signatures and reveals micronome synergism. / 04.03.2015 / PubMed / Full text
HCRT[править]
- Age-related central regulation of orexin and NPY in the short-lived African killifish Nothobranchius furzeri. / 15.05.2019 / PubMed / Full text
- Sleep and cardiovascular phenotype in middle-aged hypocretin-deficient narcoleptic mice. / 02.2014 / PubMed / Full text
HELLS[править]
- The Ubiquitin-like with PHD and Ring Finger Domains 1 (UHRF1)/DNA Methyltransferase 1 (DNMT1) Axis Is a Primary Regulator of Cell Senescence. / 03.03.2017 / PubMed / Full text
- Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text
HGD[править]
- High-glucose diets induce mitochondrial dysfunction in Caenorhabditis elegans. / 2019 / PubMed / Full text
- A high glucose diet induces autophagy in a HLH-30/TFEB-dependent manner and impairs the normal lifespan of [i]C. elegans[/i]. / 05.10.2018 / PubMed / Full text
HIF1A[править]
- Hypoxia-inducible transcription factors, HIF1A and HIF2A, increase in aging mucosal tissues. / 07.2018 / PubMed / Full text
- Role of Mitochondrial Complex IV in Age-Dependent Obesity. / 13.09.2016 / PubMed / Full text
HK2[править]
- Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury. / 11.01.2018 / PubMed / Full text
- Differentially expressed microRNAs in bone marrow mesenchymal stem cell-derived microvesicles in young and older rats and their effect on tumor growth factor-β1-mediated epithelial-mesenchymal transition in HK2 cells. / 28.09.2015 / PubMed / Full text
HLA-A[править]
- Reduced expression of the lncRNA NRON is a potential hallmark of the CMV-amplified CD8 T cell accumulations commonly seen in older humans. / 01.2019 / PubMed / Full text
- Cytomegalovirus-Specific T Cells Restricted by HLA-Cw*0702 Increase Markedly with Age and Dominate the CD8 T-Cell Repertoire in Older People. / 2017 / PubMed / Full text
HLA-B[править]
- Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. / 10.2019 / PubMed / Full text
- Cytomegalovirus-Specific T Cells Restricted by HLA-Cw*0702 Increase Markedly with Age and Dominate the CD8 T-Cell Repertoire in Older People. / 2017 / PubMed / Full text
HLA-C[править]
- Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. / 10.2019 / PubMed / Full text
- Cytomegalovirus-Specific T Cells Restricted by HLA-Cw*0702 Increase Markedly with Age and Dominate the CD8 T-Cell Repertoire in Older People. / 2017 / PubMed / Full text
HLA-DPB1[править]
- 17th IHIW component "Immunogenetics of Ageing" - New NGS data. / 09.2019 / PubMed / Full text
- Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. / 10.2019 / PubMed / Full text
HLA-DQA1[править]
- 17th IHIW component "Immunogenetics of Ageing" - New NGS data. / 09.2019 / PubMed / Full text
- [Clinical and genetic characteristics of long-livers in Moscow region]. / 2013 / PubMed
HLA-DQB1[править]
- Identification of new genetic variants of HLA-DQB1 associated with human longevity and lipid homeostasis-a cross-sectional study in a Chinese population. / 10.11.2017 / PubMed / Full text
- [Clinical and genetic characteristics of long-livers in Moscow region]. / 2013 / PubMed
HMGCS1[править]
- The Age-dependent Elevation of miR-335-3p Leads to Reduced Cholesterol and Impaired Memory in Brain. / 15.10.2018 / PubMed / Full text
- Controlled sumoylation of the mevalonate pathway enzyme HMGS-1 regulates metabolism during aging. / 16.09.2014 / PubMed / Full text
HNF4A[править]
- The Impact of Biomarker Screening and Cascade Genetic Testing on the Cost-Effectiveness of MODY Genetic Testing. / 12.2019 / PubMed / Full text
- Hepatocyte Nuclear Factor-4α P2 Promoter Variants Are Associated With the Risk of Metabolic Syndrome and Testosterone Deficiency in Aging Taiwanese Men. / 11.2018 / PubMed / Full text
HNRNPA1[править]
- HNRNPA1-mediated 3' UTR length changes of [i]HN1[/i] contributes to cancer- and senescence-associated phenotypes. / 30.06.2019 / PubMed / Full text
- Changes in the expression of splicing factor transcripts and variations in alternative splicing are associated with lifespan in mice and humans. / 10.2016 / PubMed / Full text
HOPX[править]
- Combinations of differentiation markers distinguish subpopulations of alveolar epithelial cells in adult lung. / 15.01.2016 / PubMed / Full text
- HOPX is methylated and exerts tumour-suppressive function through Ras-induced senescence in human lung cancer. / 02.2015 / PubMed / Full text
HOXC4[править]
- Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. / 11.2017 / PubMed / Full text
- Differential DNA Methylation in Relation to Age and Health Risks of Obesity. / 24.07.2015 / PubMed / Full text
HPD[править]
- Protein-Amino Acid Metabolism Disarrangements: The Hidden Enemy of Chronic Age-Related Conditions. / 22.03.2018 / PubMed / Full text
- Post-weaning parental care increases fitness but is not heritable in North American red squirrels. / 06.2015 / PubMed / Full text
HRG[править]
- Chronic dietary ginseng extract administration ameliorates antioxidant and cholinergic systems in the brains of aged mice. / 10.2017 / PubMed / Full text
- Heregulin, a new regulator of telomere length in human cells. / 24.11.2015 / PubMed / Full text
HSD3B2[править]
- 11-Oxygenated C19 Steroids Do Not Decline With Age in Women. / 01.07.2019 / PubMed / Full text
- Testicular gene expression of steroidogenesis-related factors in prepubertal, postpubertal, and aging dogs. / 01.03.2017 / PubMed / Full text
HSF4[править]
- Effect of HSF4b on age related cataract may through its novel downstream target Hif1α. / 24.10.2014 / PubMed / Full text
- Copy number variations of DNA repair genes and the age-related cataract: Jiangsu Eye Study. / 01.02.2013 / PubMed / Full text
HSP90AA1[править]
- SIRT6 histone deacetylase functions as a potential oncogene in human melanoma. / 09.2017 / PubMed / Full text
- Integration-independent Transgenic Huntington Disease Fragment Mouse Models Reveal Distinct Phenotypes and Life Span in Vivo. / 31.07.2015 / PubMed / Full text
HSPB1[править]
- The beneficial effects of 15 units of high-intensity circuit training in women is modified by age, baseline insulin resistance and physical capacity. / 06.2019 / PubMed / Full text
- Chicken heat shock protein HSPB1 increases and interacts with αB-crystallin in aged skeletal muscle. / 2015 / PubMed / Full text
HSPB6[править]
- Lifelong Football Training: Effects on Autophagy and Healthy Longevity Promotion. / 2019 / PubMed / Full text
- Apoptosis in muscle-to-meat aging process: The omic witness. / 01.07.2015 / PubMed / Full text
HUS1[править]
- Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes. / 19.10.2015 / PubMed / Full text
- [Role of DNA repair genes in radiation-induced changes of lifespan of Drosophila melanogaster]. / 09-10.2014 / PubMed
IAPP[править]
- Protein aggregates and proteostasis in aging: Amylin and β-cell function. / 01.2019 / PubMed / Full text
- Causative factors for formation of toxic islet amyloid polypeptide oligomer in type 2 diabetes mellitus. / 2015 / PubMed / Full text
ID2[править]
- Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. / 10.2019 / PubMed / Full text
- Ablation of the ID2 gene results in altered circadian feeding behavior, and sex-specific enhancement of insulin sensitivity and elevated glucose uptake in skeletal muscle and brown adipose tissue. / 2013 / PubMed / Full text
ID3[править]
- Transcription factor networks in aged naïve CD4 T cells bias lineage differentiation. / 08.2019 / PubMed / Full text
- Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. / 02.2018 / PubMed / Full text
IDO1[править]
- Different expression of Defensin-B gene in the endometrium of mares of different age during the breeding season. / 21.12.2019 / PubMed / Full text
- Advanced age negatively impacts survival in an experimental brain tumor model. / 06.09.2016 / PubMed / Full text
IFIT1[править]
- Sirtuin 1-Chromatin-Binding Dynamics Points to a Common Mechanism Regulating Inflammatory Targets in SIV Infection and in the Aging Brain. / 06.2018 / PubMed / Full text
- Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation. / 02.08.2017 / PubMed / Full text
IFIT3[править]
- Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation. / 02.08.2017 / PubMed / Full text
- Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text
IFITM1[править]
- White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy. / 02.2020 / PubMed / Full text
- Age-Associated Changes in the Respiratory Epithelial Response to Influenza Infection. / 10.11.2018 / PubMed / Full text
IFITM3[править]
- Blood DNA methylation sites predict death risk in a longitudinal study of 12, 300 individuals. / 22.07.2020 / PubMed / Full text
- Small Extracellular Vesicles Are Key Regulators of Non-cell Autonomous Intercellular Communication in Senescence via the Interferon Protein IFITM3. / 25.06.2019 / PubMed / Full text
IFNAR1[править]
- Suppression of Type I Interferon Signaling Overcomes Oncogene-Induced Senescence and Mediates Melanoma Development and Progression. / 05.04.2016 / PubMed / Full text
- Type 1 interferons contribute to the clearance of senescent cell. / 2015 / PubMed / Full text
IGFBP4[править]
- Quantitative iTRAQ-based proteomic analysis of differentially expressed proteins in aging in human and monkey. / 11.10.2019 / PubMed / Full text
- Age-Related Insulin-Like Growth Factor Binding Protein-4 Overexpression Inhibits Osteogenic Differentiation of Rat Mesenchymal Stem Cells. / 2017 / PubMed / Full text
IGHD[править]
- Growth Hormone Deficiency: Health and Longevity. / 01.04.2019 / PubMed / Full text
- Lifetime, untreated isolated GH deficiency due to a GH-releasing hormone receptor mutation has beneficial consequences on bone status in older individuals, and does not influence their abdominal aorta calcification. / 09.2014 / PubMed / Full text
IGSF1[править]
- Age-related gene and miRNA expression changes in airways of healthy individuals. / 06.03.2019 / PubMed / Full text
- The IGSF1 deficiency syndrome: characteristics of male and female patients. / 12.2013 / PubMed / Full text
IHH[править]
- Indian Hedgehog regulates senescence in bone marrow-derived mesenchymal stem cell through modulation of ROS/mTOR/4EBP1, p70S6K1/2 pathway. / 01.04.2020 / PubMed / Full text
- Transfection of the IHH gene into rabbit BMSCs in a simulated microgravity environment promotes chondrogenic differentiation and inhibits cartilage aging. / 27.09.2016 / PubMed / Full text
IL18[править]
- p53 and p53-related mediators PAI-1 and IGFBP-3 are downregulated in peripheral blood mononuclear cells of HIV-patients exposed to non-nucleoside reverse transcriptase inhibitors. / 06.2020 / PubMed / Full text
- Aging and the Inflammasomes. / 2018 / PubMed / Full text
IL9[править]
- A novel multi-marker discovery approach identifies new serum biomarkers for Parkinson's disease in older people: an EXosomes in PArkiNson Disease (EXPAND) ancillary study. / 10.2020 / PubMed / Full text
- Transcription factor networks in aged naïve CD4 T cells bias lineage differentiation. / 08.2019 / PubMed / Full text
ILDR1[править]
- Genome-wide association meta-analysis identifies five novel loci for age-related hearing impairment. / 23.10.2019 / PubMed / Full text
- A Large Genome-Wide Association Study of Age-Related Hearing Impairment Using Electronic Health Records. / 10.2016 / PubMed / Full text
ING1[править]
- Impaired DNA demethylation of C/EBP sites causes premature aging. / 01.06.2018 / PubMed / Full text
- The tumor suppressor ING1b is a novel corepressor for the androgen receptor and induces cellular senescence in prostate cancer cells. / 06.2016 / PubMed / Full text
INPP5A[править]
- DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. / 25.07.2018 / PubMed / Full text
- Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text
INSR[править]
- Proteomics of Long-Lived Mammals. / 03.2020 / PubMed / Full text
- The Ubiquitin Ligase CHIP Integrates Proteostasis and Aging by Regulation of Insulin Receptor Turnover. / 20.04.2017 / PubMed / Full text
IRF4[править]
- Transcription factor networks in aged naïve CD4 T cells bias lineage differentiation. / 08.2019 / PubMed / Full text
- Age-related differences in interferon regulatory factor-4 and -5 signaling in ischemic brains of mice. / 11.2017 / PubMed / Full text
IRGM[править]
- SIRT6 histone deacetylase functions as a potential oncogene in human melanoma. / 09.2017 / PubMed / Full text
- Bt Cry1Ie Toxin Does Not Impact the Survival and Pollen Consumption of Chinese Honey Bees, Apis cerana cerana (Hymenoptera, Apidae). / 01.12.2016 / PubMed / Full text
ISG15[править]
- White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy. / 02.2020 / PubMed / Full text
- Transcriptome analysis reveals immune-related gene expression changes with age in giant panda ([i]Ailuropoda melanoleuca[/i]) blood. / 14.01.2019 / PubMed / Full text
ISL1[править]
- Aging-relevant human basal forebrain cholinergic neurons as a cell model for Alzheimer's disease. / 21.10.2020 / PubMed / Full text
- Deterioration of the Medial Olivocochlear Efferent System Accelerates Age-Related Hearing Loss in Pax2-Isl1 Transgenic Mice. / 05.2016 / PubMed / Full text
ITGAM[править]
- Comparative Analysis of Gene Expression Patterns for Oral Epithelium-Related Functions with Aging. / 2019 / PubMed / Full text
- Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. / 08.2017 / PubMed / Full text
ITGB2[править]
- Comparative Analysis of Gene Expression Patterns for Oral Epithelium-Related Functions with Aging. / 2019 / PubMed / Full text
- A Microglial Signature Directing Human Aging and Neurodegeneration-Related Gene Networks. / 2019 / PubMed / Full text
ITK[править]
- Does Tetralogy of Fallot affect brain aging? A proof-of-concept study. / 2018 / PubMed / Full text
- Phenotypic characteristics of aged CD4 CD28 T lymphocytes are determined by changes in the whole-genome DNA methylation pattern. / 04.2017 / PubMed / Full text
JAK3[править]
- Immunologic effects of chronic administration of tofacitinib, a Janus kinase inhibitor, in cynomolgus monkeys and rats - Comparison of juvenile and adult responses. / 04.2018 / PubMed / Full text
- IL-15 enhances the antitumor effect of human antigen-specific CD8 T cells by cellular senescence delay. / 2016 / PubMed / Full text
KDM2B[править]
- Identification of Structural Elements of the Lysine Specific Demethylase 2B CxxC Domain Associated with Replicative Senescence Bypass in Primary Mouse Cells. / 06.2020 / PubMed / Full text
- Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases. / 03.2016 / PubMed / Full text
KDM4B[править]
- Inhibition of microRNA-27b-3p relieves osteoarthritis pain via regulation of KDM4B-dependent DLX5. / 09.2020 / PubMed / Full text
- Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases. / 03.2016 / PubMed / Full text
KDM4C[править]
- KDM3A and KDM4C Regulate Mesenchymal Stromal Cell Senescence and Bone Aging via Condensin-mediated Heterochromatin Reorganization. / 22.11.2019 / PubMed / Full text
- Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases. / 03.2016 / PubMed / Full text
KDM6B[править]
- Histone demethylase KDM6B regulates 1,25-dihydroxyvitamin D3-induced senescence in glioma cells. / 08.2019 / PubMed / Full text
- Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases. / 03.2016 / PubMed / Full text
KIFC3[править]
- Defective recruitment of motor proteins to autophagic compartments contributes to autophagic failure in aging. / 08.2018 / PubMed / Full text
- Alteration of Motor Protein Expression Involved in Bidirectional Transport in Peripheral Blood Mononuclear Cells of Patients with Amyotrophic Lateral Sclerosis. / 2016 / PubMed / Full text
KIR2DS5[править]
- [The relationship between the polymorphism of immunity genes and both aging and age-related diseases]. / 07.2013 / PubMed / Full text
- 16(th) IHIW: immunogenetics of aging. / 02.2013 / PubMed / Full text
KISS1R[править]
- Kisspeptin across the human lifespan:evidence from animal studies and beyond. / 06.2016 / PubMed / Full text
- Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus. / 2015 / PubMed / Full text
KPNA2[править]
- Karyopherin Alpha 2-Expressing Pancreatic Duct Glands and Intra-Islet Ducts in Aged Diabetic C414A-Mutant-CRY1 Transgenic Mice. / 2019 / PubMed / Full text
- Upregulated Expression of Karyopherin α2 is Involved in Neuronal Apoptosis Following Intracerebral Hemorrhage in Adult Rats. / 07.2016 / PubMed / Full text
LAMA5[править]
- The correlation of copy number variations with longevity in a genome-wide association study of Han Chinese. / 05.06.2018 / PubMed / Full text
- Association of the Laminin, Alpha 5 (LAMA5) rs4925386 with height and longevity in an elderly population from Southern Italy. / 04.2016 / PubMed / Full text
LAMC1[править]
- Relation of size of seminal vesicles on ultrasound to premature ejaculation. / 09-10.2017 / PubMed / Full text
- Discovery and characterization of miRNA during cellular senescence in bone marrow-derived human mesenchymal stem cells. / 10.2014 / PubMed / Full text
LAT[править]
- Is the combined auriculotherapy approach superior to magneto-auriculotherapy alone in aging males with lower urinary tract symptoms? A randomized controlled trial. / 16.01.2019 / PubMed / Full text
- Intra-couple Caregiving of Older Adults Living Apart Together: Commitment and Independence. / 09.2015 / PubMed / Full text
LATS2[править]
- [Expression relationship of Hippo signaling molecules and ovarian germline stem cell markers in the ovarian aging process of women and mice]. / 25.06.2019 / PubMed
- YAP1-LATS2 feedback loop dictates senescent or malignant cell fate to maintain tissue homeostasis. / 03.2019 / PubMed / Full text
LDHA[править]
- Upregulation of lactate-inducible snail protein suppresses oncogene-mediated senescence through p16 inactivation. / 26.02.2018 / PubMed / Full text
- Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. / 05.2018 / PubMed / Full text
LDLR[править]
- Inactivation of the E3 Ubiquitin Ligase IDOL Attenuates Diet-Induced Obesity and Metabolic Dysfunction in Mice. / 08.2018 / PubMed / Full text
- Impact of age and sex on the development of atherosclerosis and expression of the related genes in apoE deficient mice. / 15.01.2016 / PubMed / Full text
LEPR[править]
- Age-related changes of leptin and leptin receptor variants in healthy elderly and long-lived adults. / 03.2015 / PubMed / Full text
- Functional polymorphisms of the leptin and leptin receptor genes are associated with longevity and with the risk of myocardial infarction and of type 2 diabetes mellitus. / 2014 / PubMed / Full text
LGI1[править]
- Antibody-associated CNS syndromes without signs of inflammation in the elderly. / 03.10.2017 / PubMed / Full text
- Expression of NgR1-antagonizing proteins decreases with aging and cognitive decline in rat hippocampus. / 05.2013 / PubMed / Full text
LGR5[править]
- Thyroid hormone activates Wnt/β-catenin signaling involved in adult epithelial development during intestinal remodeling in Xenopus laevis. / 08.2016 / PubMed / Full text
- Cancer stem cells in Helicobacter pylori infection and aging: Implications for gastric carcinogenesis. / 15.08.2014 / PubMed / Full text
LHCGR[править]
- Comparative Study of the Steroidogenic Effects of Human Chorionic Gonadotropin and Thieno[2,3-D]pyrimidine-Based Allosteric Agonist of Luteinizing Hormone Receptor in Young Adult, Aging and Diabetic Male Rats. / 11.10.2020 / PubMed / Full text
- Association between the luteinizing hormone/chorionic gonadotropin receptor (LHCGR) rs4073366 polymorphism and ovarian hyperstimulation syndrome during controlled ovarian hyperstimulation. / 25.07.2013 / PubMed / Full text
LIFR[править]
- Efficacy of leukemia inhibitory factor as a therapeutic for permanent large vessel stroke differs among aged male and female rats. / 15.03.2019 / PubMed / Full text
- Characterization of Nestin-positive stem Leydig cells as a potential source for the treatment of testicular Leydig cell dysfunction. / 12.2014 / PubMed / Full text
LIPA[править]
- Modeling the cardiometabolic benefits of sleep in older women: exploring the 24-hour day. / 13.01.2020 / PubMed / Full text
- Influence of Habitual Physical Behavior - Sleeping, Sedentarism, Physical Activity - On Bone Health in Community-Dwelling Older People. / 2019 / PubMed / Full text
LOXL1[править]
- A blackberry-dill extract combination synergistically increases skin elasticity. / 10.2020 / PubMed / Full text
- Methylation of LOXL1 Promoter by DNMT3A in Aged Human Skin Fibroblasts. / 04.2017 / PubMed / Full text
LRP4[править]
- Multiple MuSK signaling pathways and the aging neuromuscular junction. / 13.07.2020 / PubMed / Full text
- Sarcoglycan Alpha Mitigates Neuromuscular Junction Decline in Aged Mice by Stabilizing LRP4. / 10.10.2018 / PubMed / Full text
LRPPRC[править]
- The loss of LRPPRC function induces the mitochondrial unfolded protein response. / 09.2015 / PubMed / Full text
- Drosophila melanogaster LRPPRC2 is involved in coordination of mitochondrial translation. / 16.12.2014 / PubMed / Full text
LRRN3[править]
- Accelerated aging in HIV/AIDS: novel biomarkers of senescent human CD8 T cells. / 2013 / PubMed / Full text
- Transcriptomics of cortical gray matter thickness decline during normal aging. / 15.11.2013 / PubMed / Full text
LTB[править]
- Aging and Hyperglycemia Intensify Dyslipidemia-Induced Oxidative Stress and Inflammation in Rats: Assessment of Restorative Potentials of ALA and EPA DHA. / 06.2019 / PubMed / Full text
- Advanced age in mares affects endometrial secretion of arachidonic acid metabolites during equine subclinical endometritis. / 11.2017 / PubMed / Full text
LTF[править]
- Uncovering genetic mechanisms of kidney aging through transcriptomics, genomics, and epigenomics. / 03.2019 / PubMed / Full text
- Effect of age on long-term facilitation and chemosensitivity during NREM sleep. / 15.11.2015 / PubMed / Full text
MALT1[править]
- MALT-1 mediates IL-17 neural signaling to regulate C. elegans behavior, immunity and longevity. / 29.04.2020 / PubMed / Full text
- MALT1-Deficient Mice Develop Atopic-Like Dermatitis Upon Aging. / 2019 / PubMed / Full text
MAP1A[править]
- SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text
- Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging. / 21.05.2014 / PubMed / Full text
MAP1LC3B[править]
- The effect of aging on the autophagic and heat shock response in human peripheral blood mononuclear cells. / 01.09.2018 / PubMed / Full text
- Inhibition of glioma growth by flavokawain B is mediated through endoplasmic reticulum stress induced autophagy. / 2018 / PubMed / Full text
MAVS[править]
- Spontaneous activation of a MAVS-dependent antiviral signaling pathway determines high basal interferon-β expression in cardiac myocytes. / 10.2017 / PubMed / Full text
- Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation. / 02.08.2017 / PubMed / Full text
MBNL1[править]
- Compound loss of muscleblind-like function in myotonic dystrophy. / 12.2013 / PubMed / Full text
- Dysfunction of protein homeostasis in myotonic dystrophies. / 09.2013 / PubMed / Full text
MC4R[править]
- Melanocortin-4 receptor rs17782313 polymorphisms are associated with serum triglycerides in older Chinese women. / 2016 / PubMed / Full text
- Polymorphic variants of neurotransmitter receptor genes may affect sexual function in aging males: data from the HALS study. / 2013 / PubMed / Full text
MCM3[править]
- Changes in MCM2-7 proteins at senescence. / 27.07.2019 / PubMed / Full text
- Up-regulation of MCM3 Relates to Neuronal Apoptosis After Traumatic Brain Injury in Adult Rats. / 05.2017 / PubMed / Full text
MCM4[править]
- Hepatoprotective effects of hydroxysafflor yellow A in D-galactose-treated aging mice. / 15.08.2020 / PubMed / Full text
- Changes in MCM2-7 proteins at senescence. / 27.07.2019 / PubMed / Full text
MCM8[править]
- Genetic variations, reproductive aging, and breast cancer risk in African American and European American women: The Women's Circle of Health Study. / 2017 / PubMed / Full text
- MCM8 and MCM9 Nucleotide Variants in Women With Primary Ovarian Insufficiency. / 01.02.2017 / PubMed / Full text
MCM9[править]
- MCM8- and MCM9 Deficiencies Cause Lifelong Increased Hematopoietic DNA Damage Driving p53-Dependent Myeloid Tumors. / 10.09.2019 / PubMed / Full text
- MCM8 and MCM9 Nucleotide Variants in Women With Primary Ovarian Insufficiency. / 01.02.2017 / PubMed / Full text
MDH1[править]
- Oxidative Damage to the TCA Cycle Enzyme MDH1 Dysregulates Bioenergetic Enzymatic Activity in the Aged Murine Brain. / 03.04.2020 / PubMed / Full text
- Low-Dose Pesticide Mixture Induces Accelerated Mesenchymal Stem Cell Aging In Vitro. / 08.2019 / PubMed / Full text
MDM4[править]
- In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. / 12.2019 / PubMed / Full text
- Germline genetics of the p53 pathway affect longevity in a gender specific manner. / 2014 / PubMed / Full text
ME1[править]
- NADP-MALIC ENZYME 1 Affects Germination after Seed Storage in Arabidopsis thaliana. / 01.02.2019 / PubMed / Full text
- Down-regulation of malic enzyme 1 and 2: Sensitizing head and neck squamous cell carcinoma cells to therapy-induced senescence. / 04.2016 / PubMed / Full text
ME2[править]
- A small-molecule inhibitor suppresses the tumor-associated mitochondrial NAD(P) -dependent malic enzyme (ME2) and induces cellular senescence. / 21.08.2015 / PubMed / Full text
- Down-regulation of malic enzyme 1 and 2: Sensitizing head and neck squamous cell carcinoma cells to therapy-induced senescence. / 04.2016 / PubMed / Full text
MEF2D[править]
- Molecular Pathway to Protection From Age-Dependent Photoreceptor Degeneration in Mef2 Deficiency. / 01.07.2017 / PubMed / Full text
- Epigenome-wide DNA methylation in hearing ability: new mechanisms for an old problem. / 2014 / PubMed / Full text
MEFV[править]
- The grandfather's fever. / 02.2020 / PubMed / Full text
- E148Q MEFV mutation carriage and longevity in individuals of Ashkenazi origin. / 07.2013 / PubMed / Full text
MEIS1[править]
- Down-regulation of MEIS1 promotes the maturation of oxidative phosphorylation in perinatal cardiomyocytes. / 06.2019 / PubMed / Full text
- Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. / 11.2017 / PubMed / Full text
MELK[править]
- MELK-T1, a small-molecule inhibitor of protein kinase MELK, decreases DNA-damage tolerance in proliferating cancer cells. / 02.10.2015 / PubMed / Full text
- Maternal embryonic leucine zipper kinase (MELK) reduces replication stress in glioblastoma cells. / 16.08.2013 / PubMed / Full text
MEOX2[править]
- Reduced expression of microRNA-130a promotes endothelial cell senescence and age-dependent impairment of neovascularization. / 26.05.2020 / PubMed / Full text
- Meox2 haploinsufficiency increases neuronal cell loss in a mouse model of Alzheimer's disease. / 06.2016 / PubMed / Full text
MGAT1[править]
- Pathways of aging: comparative analysis of gene signatures in replicative senescence and stress induced premature senescence. / 28.12.2016 / PubMed / Full text
- Transcriptional and biochemical responses of monoacylglycerol acyltransferase-mediated oil synthesis and associated senescence-like responses in Nicotiana benthamiana. / 2014 / PubMed / Full text
MIB1[править]
- MIB1-mediated degradation of WRN promotes cellular senescence in response to camptothecin treatment. / 09.2020 / PubMed / Full text
- Immunohistochemical detection of senescence markers in human sarcomas. / 02.2020 / PubMed / Full text
MICA[править]
- Derivation and Validation of a Geriatric-Sensitive Perioperative Cardiac Risk Index. / 16.11.2017 / PubMed / Full text
- NKG2D ligands mediate immunosurveillance of senescent cells. / 02.2016 / PubMed / Full text
MLH1[править]
- The somatic mutation landscape of the human body. / 24.12.2019 / PubMed / Full text
- RNA-Seq analysis of differentially expressed genes relevant to mismatch repair in aging hematopoietic stem-progenitor cells. / 25.02.2019 / PubMed / Full text
MMP10[править]
- Astrocyte senescence may drive alterations in GFAPα, [[CDKN2A]] p14 , and TAU3 transcript expression and contribute to cognitive decline. / 10.2019 / PubMed / Full text
- Bone biology-related gingival transcriptome in ageing and periodontitis in non-human primates. / 05.2016 / PubMed / Full text
MMP14[править]
- Overexpression of microRNA-1470 promotes proliferation and migration, and inhibits senescence of esophageal squamous carcinoma cells. / 12.2017 / PubMed / Full text
- Enhanced tissue regeneration potential of juvenile articular cartilage. / 11.2013 / PubMed / Full text
MMP8[править]
- [Investigation of signal molecules in saliva: prospects of application for diagnostics of myocardial infarction and the aging rate of different age people.] / 2019 / PubMed
- Bone biology-related gingival transcriptome in ageing and periodontitis in non-human primates. / 05.2016 / PubMed / Full text
MS4A6E[править]
- Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text
- Gene-based aggregate SNP associations between candidate AD genes and cognitive decline. / 04.2016 / PubMed / Full text
MSH6[править]
- RNA-Seq analysis of differentially expressed genes relevant to mismatch repair in aging hematopoietic stem-progenitor cells. / 25.02.2019 / PubMed / Full text
- DNA mismatch repair system: repercussions in cellular homeostasis and relationship with aging. / 2012 / PubMed / Full text
MT2A[править]
- Metallothionein Prevents Age-Associated Cardiomyopathy via Inhibiting NF-κB Pathway Activation and Associated Nitrative Damage to 2-OGD. / 10.12.2016 / PubMed / Full text
- Metallothioneins and renal ageing. / 09.2016 / PubMed / Full text
MTM1[править]
- Amphiphysin 2 modulation rescues myotubular myopathy and prevents focal adhesion defects in mice. / 20.03.2019 / PubMed / Full text
- Tamoxifen prolongs survival and alleviates symptoms in mice with fatal X-linked myotubular myopathy. / 19.11.2018 / PubMed / Full text
MTRR[править]
- One-carbon metabolism gene polymorphisms are associated with cognitive trajectory among African-American adults. / 12.2019 / PubMed / Full text
- [Clinical and genetic characteristics of long-livers in Moscow region]. / 2013 / PubMed
MUC1[править]
- Sensitivity of neoplastic cells to senescence unveiled under standard cell culture conditions. / 05.2015 / PubMed
- Serum KL-6 concentrations are associated with molecular sizes and efflux behavior of KL-6/MUC1 in healthy subjects. / 23.09.2013 / PubMed / Full text
MUC2[править]
- KLF4 deletion alters gastric cell lineage and induces MUC2 expression. / 09.06.2016 / PubMed / Full text
- Early intestinal development and mucin transcription in the young poult with probiotic and mannan oligosaccharide prebiotic supplementation. / 05.2016 / PubMed / Full text
MX1[править]
- White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy. / 02.2020 / PubMed / Full text
- Age-Associated Changes in the Respiratory Epithelial Response to Influenza Infection. / 10.11.2018 / PubMed / Full text
MYBL2[править]
- A multidimensional systems biology analysis of cellular senescence in aging and disease. / 07.04.2020 / PubMed / Full text
- Molecular mechanism of G arrest and cellular senescence induced by LEE011, a novel CDK4/CDK6 inhibitor, in leukemia cells. / 2017 / PubMed / Full text
MYBPC3[править]
- Compound heterozygosity deteriorates phenotypes of hypertrophic cardiomyopathy with founder MYBPC3 mutation: evidence from patients and zebrafish models. / 01.12.2014 / PubMed / Full text
- Association of levels of fasting glucose and insulin with rare variants at the chromosome 11p11.2-MADD locus: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text
MYOCD[править]
- Aging-associated changes in microRNA expression profile of internal anal sphincter smooth muscle: Role of microRNA-133a. / 01.11.2016 / PubMed / Full text
- Transplantation of mesenchymal cells rejuvenated by the overexpression of telomerase and myocardin promotes revascularization and tissue repair in a murine model of hindlimb ischemia. / 13.09.2013 / PubMed / Full text
MYOD1[править]
- Low Six4 and Six5 gene dosage improves dystrophic phenotype and prolongs life span of mdx mice. / 08.2016 / PubMed / Full text
- Age-associated changes in DNA methylation across multiple tissues in an inbred mouse model. / 03.2016 / PubMed / Full text
NAT2[править]
- Lifestyle and clinical determinants of skin autofluorescence in a population-based cohort study. / 05.2016 / PubMed / Full text
- The ultra-slow NAT2*6A haplotype is associated with reduced higher cognitive functions in an elderly study group. / 12.2015 / PubMed / Full text
NAV2[править]
- Genetic associations with age of menopause in familial longevity. / 10.2019 / PubMed / Full text
- Low expression of aging-related [[NRXN3]] is associated with Alzheimer disease: A systematic review and meta-analysis. / 07.2018 / PubMed / Full text
NCAM1[править]
- Resistance Training Enhances Skeletal Muscle Innervation Without Modifying the Number of Satellite Cells or their Myofiber Association in Obese Older Adults. / 10.2016 / PubMed / Full text
- Human skin keratinocytes can be reprogrammed to express neuronal genes and proteins after a single treatment with decitabine. / 06.2013 / PubMed / Full text
NDNF[править]
- Effect of neuron-derived neurotrophic factor on rejuvenation of human adipose-derived stem cells for cardiac repair after myocardial infarction. / 09.2019 / PubMed / Full text
- Aged Human Multipotent Mesenchymal Stromal Cells Can Be Rejuvenated by Neuron-Derived Neurotrophic Factor and Improve Heart Function After Injury. / 12.2017 / PubMed / Full text
NDUFS1[править]
- Mapping the protein phosphorylation sites in human mitochondrial complex I (NADH: Ubiquinone oxidoreductase): A bioinformatics study with implications for brain aging and neurodegeneration. / 01.2019 / PubMed / Full text
- Contribution of genetic polymorphisms on functional status at very old age: a gene-based analysis of 38 genes (311 SNPs) in the oxidative stress pathway. / 04.2014 / PubMed / Full text
NECTIN2[править]
- Genetics of Human Longevity From Incomplete Data: New Findings From the Long Life Family Study. / 08.10.2018 / PubMed / Full text
- Apolipoprotein E region molecular signatures of Alzheimer's disease. / 08.2018 / PubMed / Full text
NEDD4[править]
- Mechanism of PRL2 phosphatase-mediated PTEN degradation and tumorigenesis. / 25.08.2020 / PubMed / Full text
- Estrogen receptor β, a regulator of androgen receptor signaling in the mouse ventral prostate. / 09.05.2017 / PubMed / Full text
NEFM[править]
- Changes in mechanoreceptors in rabbits' anterior cruciate ligaments with age. / 06.2019 / PubMed / Full text
- The Alzheimer's disease transcriptome mimics the neuroprotective signature of IGF-1 receptor-deficient neurons. / 01.07.2017 / PubMed / Full text
NEIL1[править]
- NEIL1 stimulates neurogenesis and suppresses neuroinflammation after stress. / 09.2019 / PubMed / Full text
- Neil2-null Mice Accumulate Oxidized DNA Bases in the Transcriptionally Active Sequences of the Genome and Are Susceptible to Innate Inflammation. / 09.10.2015 / PubMed / Full text
NEIL2[править]
- Mitochondrial base excision repair positively correlates with longevity in the liver and heart of mammals. / 04.2020 / PubMed / Full text
- Neil2-null Mice Accumulate Oxidized DNA Bases in the Transcriptionally Active Sequences of the Genome and Are Susceptible to Innate Inflammation. / 09.10.2015 / PubMed / Full text
NEK2[править]
- A multidimensional systems biology analysis of cellular senescence in aging and disease. / 07.04.2020 / PubMed / Full text
- Upregulation of FOXM1 leads to diminished drug sensitivity in myeloma. / 21.11.2018 / PubMed / Full text
NEO1[править]
- Neogenin-1 distinguishes between myeloid-biased and balanced [i]Hoxb5[/i] mouse long-term hematopoietic stem cells. / 10.12.2019 / PubMed / Full text
- Ionizing radiation reduces ADAM10 expression in brain microvascular endothelial cells undergoing stress-induced senescence. / 04.2017 / PubMed / Full text
NFATC1[править]
- Age-dependent human β cell proliferation induced by glucagon-like peptide 1 and calcineurin signaling. / 02.10.2017 / PubMed / Full text
- Genome-wide methylation analysis reveals differentially methylated loci that are associated with an age-dependent increase in bovine fibroblast response to LPS. / 25.05.2017 / PubMed / Full text
NFIB[править]
- Cell-type-specific expression of NFIX in the developing and adult cerebellum. / 07.2017 / PubMed / Full text
- Multipotency of Adult Hippocampal NSCs In Vivo Is Restricted by Drosha/NFIB. / 03.11.2016 / PubMed / Full text
NHLRC1[править]
- DNA methylation-based forensic age prediction using artificial neural networks and next generation sequencing. / 05.2017 / PubMed / Full text
- Loss of GABAergic cortical neurons underlies the neuropathology of Lafora disease. / 28.01.2014 / PubMed / Full text
NLRP1[править]
- NADPH oxidase 2-mediated NLRP1 inflammasome activation involves in neuronal senescence in hippocampal neurons in vitro. / 04.2019 / PubMed / Full text
- Genetic analysis of long-lived families reveals novel variants influencing high density-lipoprotein cholesterol. / 2014 / PubMed / Full text
NLRP12[править]
- Persistent DNA damage-induced NLRP12 improves hematopoietic stem cell function. / 21.05.2020 / PubMed / Full text
- Effects of aging in the expression of NOD-like receptors and inflammasome-related genes in oral mucosa. / 02.2016 / PubMed / Full text
NLRX1[править]
- NOD-like receptor X1 functions as a tumor suppressor by inhibiting epithelial-mesenchymal transition and inducing aging in hepatocellular carcinoma cells. / 26.02.2018 / PubMed / Full text
- The expression of NLRX1 in C57BL/6 mice cochlear hair cells: Possible relation to aging- and neomycin-induced deafness. / 11.03.2016 / PubMed / Full text
NMB[править]
- Deceased donor kidney allocation: an economic evaluation of contemporary longevity matching practices. / 09.10.2020 / PubMed / Full text
- Asleep versus awake: does it matter?: Pediatric regional block complications by patient state: a report from the Pediatric Regional Anesthesia Network. / 07-08.2014 / PubMed / Full text
NME8[править]
- Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text
- Gene-based aggregate SNP associations between candidate AD genes and cognitive decline. / 04.2016 / PubMed / Full text
NMNAT1[править]
- ADNP differentially interact with genes/proteins in correlation with aging: a novel marker for muscle aging. / 06.2019 / PubMed / Full text
- Genome-wide association study and annotating candidate gene networks affecting age at first calving in Nellore cattle. / 12.2017 / PubMed / Full text
NMNAT2[править]
- NMNAT2-mediated NAD generation is essential for quality control of aged oocytes. / 06.2019 / PubMed / Full text
- Sarm1 Deletion, but Not Wld , Confers Lifelong Rescue in a Mouse Model of Severe Axonopathy. / 03.10.2017 / PubMed / Full text
NMS[править]
- Uncontrolled Diabetes as an Associated Factor with Dynapenia in Adults Aged 50 Years or Older: Sex Differences. / 22.05.2020 / PubMed / Full text
- Neonatal stress affects the aging trajectory of female rats on the endocrine, temperature, and ventilatory responses to hypoxia. / 01.04.2015 / PubMed / Full text
NNMT[править]
- Small molecule nicotinamide N-methyltransferase inhibitor activates senescent muscle stem cells and improves regenerative capacity of aged skeletal muscle. / 05.2019 / PubMed / Full text
- Nicotinamide-N-methyltransferase controls behavior, neurodegeneration and lifespan by regulating neuronal autophagy. / 09.2018 / PubMed / Full text
NONO[править]
- Physiological levels of thrombospondin-1 decrease NO-dependent vasodilation in coronary microvessels from aged rats. / 01.06.2016 / PubMed / Full text
- The effects of aging on the functional and structural properties of the rat basilar artery. / 01.06.2014 / PubMed / Full text
NOP10[править]
- Pseudouridylation defect due to [i]DKC1[/i] and [i]NOP10[/i] mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis. / 30.06.2020 / PubMed / Full text
- Acute telomerase components depletion triggers oxidative stress as an early event previous to telomeric shortening. / 04.2018 / PubMed / Full text
NPTX2[править]
- Evaluation of DNA methylation markers and their potential to predict human aging. / 08.2015 / PubMed / Full text
- Developing a DNA methylation assay for human age prediction in blood and bloodstain. / 07.2015 / PubMed / Full text
NPW[править]
- Novel information processing at work across time is associated with cognitive change in later life: A 14-year longitudinal study. / 09.2020 / PubMed / Full text
- Neuropeptide W modulation of gastric vagal afferent mechanosensitivity: Impact of age and sex. / 09.2015 / PubMed / Full text
NPY1R[править]
- NPY/neuropeptide Y enhances autophagy in the hypothalamus: a mechanism to delay aging? / 2015 / PubMed / Full text
- Vulnerability imposed by diet and brain trauma for anxiety-like phenotype: implications for post-traumatic stress disorders. / 2013 / PubMed / Full text
NPY5R[править]
- Effects of age on feeding response: Focus on the rostral C1 neuron and its glucoregulatory proteins. / 01.2020 / PubMed / Full text
- NPY/neuropeptide Y enhances autophagy in the hypothalamus: a mechanism to delay aging? / 2015 / PubMed / Full text
NR3C1[править]
- Glucocorticoid receptor (NR3C1) gene polymorphisms are associated with age and blood parameters in Polish Caucasian nonagenarians and centenarians. / 02.2019 / PubMed / Full text
- Inter-Regional Variations in Gene Expression and Age-Related Cortical Thinning in the Adolescent Brain. / 01.04.2018 / PubMed / Full text
NRL[править]
- Development of a cyclophosphamide stress test to predict resilience to aging in mice. / 12.2020 / PubMed / Full text
- A Spontaneous Aggressive ERα Mammary Tumor Model Is Driven by Kras Activation. / 06.08.2019 / PubMed / Full text
NRM[править]
- Association between Clonal Hematopoiesis and Late Nonrelapse Mortality after Autologous Hematopoietic Cell Transplantation. / 12.2019 / PubMed / Full text
- Who is the better donor for older hematopoietic transplant recipients: an older-aged sibling or a young, matched unrelated volunteer? / 28.03.2013 / PubMed / Full text
NRP1[править]
- APOE ε4-specific associations of VEGF gene family expression with cognitive aging and Alzheimer's disease. / 03.2020 / PubMed / Full text
- Neuropilin 1 is essential for gastrointestinal smooth muscle contractility and motility in aged mice. / 2015 / PubMed / Full text
NRXN1[править]
- Neurexins 1-3 Each Have a Distinct Pattern of Expression in the Early Developing Human Cerebral Cortex. / 01.01.2017 / PubMed / Full text
- Neurexin 1 ([[NRXN1]]) splice isoform expression during human neocortical development and aging. / 05.2016 / PubMed / Full text
NRXN3[править]
- Low expression of aging-related [[NRXN3]] is associated with Alzheimer disease: A systematic review and meta-analysis. / 07.2018 / PubMed / Full text
- Neurexins 1-3 Each Have a Distinct Pattern of Expression in the Early Developing Human Cerebral Cortex. / 01.01.2017 / PubMed / Full text
NTF4[править]
- Subcutaneous Neurotrophin 4 Infusion Using Osmotic Pumps or Direct Muscular Injection Enhances Aging Rat Laryngeal Muscles. / 13.06.2017 / PubMed / Full text
- Enhancement of aging rat laryngeal muscles with endogenous growth factor treatment. / 05.2016 / PubMed / Full text
NTRK2[править]
- The Role of BDNF in Age-Dependent Changes of Excitatory and Inhibitory Synaptic Markers in the Human Prefrontal Cortex. / 12.2016 / PubMed / Full text
- Nodes and biological processes identified on the basis of network analysis in the brain of the senescence accelerated mice as an Alzheimer's disease animal model. / 2013 / PubMed / Full text
OAT[править]
- Opioid agonist treatment reduces losses in quality of life and quality-adjusted life expectancy in heroin users: Evidence from real world data. / 01.08.2019 / PubMed / Full text
- Strength training and aerobic exercise alter mitochondrial parameters in brown adipose tissue and equally reduce body adiposity in aged rats. / 02.2019 / PubMed / Full text
OMD[править]
- Genome-wide associations and detection of potential candidate genes for direct genetic and maternal genetic effects influencing dairy cattle body weight at different ages. / 06.02.2019 / PubMed / Full text
- Digestive capacity in weanling and mature horses. / 05.2013 / PubMed / Full text
OPTN[править]
- Autophagy receptor OPTN (optineurin) regulates mesenchymal stem cell fate and bone-fat balance during aging by clearing FABP3. / 04.11.2020 / PubMed / Full text
- Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis. / 24.02.2016 / PubMed / Full text
ORAI1[править]
- Progerin in muscle leads to thermogenic and metabolic defects via impaired calcium homeostasis. / 02.2020 / PubMed / Full text
- Calcium Dynamics of Ex Vivo Long-Term Cultured CD8 T Cells Are Regulated by Changes in Redox Metabolism. / 2016 / PubMed / Full text
P2RX7[править]
- The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. / 29.07.2020 / PubMed / Full text
- A rare functional haplotype of the P2RX4 and P2RX7 genes leads to loss of innate phagocytosis and confers increased risk of age-related macular degeneration. / 04.2013 / PubMed / Full text
PALB2[править]
- 53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination. / 02.01.2020 / PubMed / Full text
- A Multigene Test Could Cost-Effectively Help Extend Life Expectancy for Women at Risk of Hereditary Breast Cancer. / 04.2017 / PubMed / Full text
PAX5[править]
- Diminished antibody response to influenza vaccination is characterized by expansion of an age-associated B-cell population with low PAX5. / 08.2018 / PubMed / Full text
- Developmental expression of B cell molecules in equine lymphoid tissues. / 01.2017 / PubMed / Full text
PAX6[править]
- Pbx1 is required for adult subventricular zone neurogenesis. / 01.07.2016 / PubMed / Full text
- Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. / 03.2015 / PubMed / Full text
PBX1[править]
- Internalization of the TAT-PBX1 fusion protein significantly enhances the proliferation of human hair follicle-derived mesenchymal stem cells and delays their senescence. / 10.2020 / PubMed / Full text
- Pbx1 is required for adult subventricular zone neurogenesis. / 01.07.2016 / PubMed / Full text
PCDH10[править]
- Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. / 12.2017 / PubMed / Full text
- PCDH10, a novel p53 transcriptional target in regulating cell migration. / 2015 / PubMed / Full text
PDCD4[править]
- Petal abscission in roses is associated with the activation of a truncated version of the animal PDCD4 homologue, RbPCD1. / 11.2019 / PubMed / Full text
- PDCD4 Knockdown Induces Senescence in Hepatoma Cells by Up-Regulating the p21 Expression. / 2018 / PubMed / Full text
PDE2A[править]
- TAK-915, a phosphodiesterase 2A inhibitor, ameliorates the cognitive impairment associated with aging in rodent models. / 30.12.2019 / PubMed / Full text
- Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text
PDE3A[править]
- Effects of aging on gene expression and mitochondrial DNA in the equine oocyte and follicle cells. / 07.2015 / PubMed / Full text
- Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text
PDE5A[править]
- Repurposing erectile dysfunction drugs tadalafil and vardenafil to increase bone mass. / 23.06.2020 / PubMed / Full text
- Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text
PDE9A[править]
- Identification of new PDE9A isoforms and how their expression and subcellular compartmentalization in the brain change across the life span. / 05.2018 / PubMed / Full text
- Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text
PDGFB[править]
- Skin-resident stem cells and wound healing. / 2017 / PubMed / Full text
- The choroid plexus transcriptome reveals changes in type I and II interferon responses in a mouse model of Alzheimer's disease. / 10.2015 / PubMed / Full text
PDHB[править]
- Oxidative Damage to the TCA Cycle Enzyme MDH1 Dysregulates Bioenergetic Enzymatic Activity in the Aged Murine Brain. / 03.04.2020 / PubMed / Full text
- Neuron-specific knockdown of Drosophila PDHB induces reduction of lifespan, deficient locomotive ability, abnormal morphology of motor neuron terminals and photoreceptor axon targeting. / 15.05.2018 / PubMed / Full text
PDK2[править]
- Age-related impairments in skeletal muscle PDH phosphorylation and plasma lactate are indicative of metabolic inflexibility and the effects of exercise training. / 01.07.2016 / PubMed / Full text
- Effects of Exercise Training on Regulation of Skeletal Muscle Glucose Metabolism in Elderly Men. / 07.2015 / PubMed / Full text
PDK4[править]
- Putrescine delays postovulatory aging of mouse oocytes by upregulating PDK4 expression and improving mitochondrial activity. / 16.12.2018 / PubMed / Full text
- Age-related impairments in skeletal muscle PDH phosphorylation and plasma lactate are indicative of metabolic inflexibility and the effects of exercise training. / 01.07.2016 / PubMed / Full text
PENK[править]
- Aging-associated DNA methylation changes in middle-aged individuals: the Young Finns study. / 09.02.2016 / PubMed / Full text
- Genome-wide age-related changes in DNA methylation and gene expression in human PBMCs. / 06.2014 / PubMed / Full text
PES1[править]
- Transcription factor RD26 is a key regulator of metabolic reprogramming during dark-induced senescence. / 06.2018 / PubMed / Full text
- The Plastoglobule-Localized Metallopeptidase PGM48 Is a Positive Regulator of Senescence in Arabidopsis thaliana. / 12.2016 / PubMed / Full text
PFKFB3[править]
- DNA damage, metabolism and aging in pro-inflammatory T cells: Rheumatoid arthritis as a model system. / 05.2018 / PubMed / Full text
- Bioenergetic mechanisms in astrocytes may contribute to amyloid plaque deposition and toxicity. / 15.05.2015 / PubMed / Full text
PGAM1[править]
- Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. / 2019 / PubMed / Full text
- The aged testis. A good model to find proteins involved in age-related changes of testis by proteomic analysis. / 01-02.2014 / PubMed
PGR[править]
- Inter-Regional Variations in Gene Expression and Age-Related Cortical Thinning in the Adolescent Brain. / 01.04.2018 / PubMed / Full text
- Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus. / 2015 / PubMed / Full text
PHB2[править]
- Prohibitin-2 is a novel regulator of p21 induced by depletion of γ-glutamylcyclotransferase. / 29.01.2018 / PubMed / Full text
- Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor. / 12.01.2017 / PubMed / Full text
PI4KB[править]
- Differential DNA Methylation in Relation to Age and Health Risks of Obesity. / 24.07.2015 / PubMed / Full text
- Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text
PIEZO1[править]
- Niche stiffness underlies the ageing of central nervous system progenitor cells. / 09.2019 / PubMed / Full text
- On the Mechanism of Human Red Blood Cell Longevity: Roles of Calcium, the Sodium Pump, PIEZO1, and Gardos Channels. / 2017 / PubMed / Full text
PIK3R2[править]
- The senescent status of endothelial cells affects proliferation, inflammatory profile and SOX2 expression in bone marrow-derived mesenchymal stem cells. / 06.2019 / PubMed / Full text
- Gene transcripts associated with muscle strength: a CHARGE meta-analysis of 7,781 persons. / 01.2016 / PubMed / Full text
PKP2[править]
- Molecular disturbance underlies to arrhythmogenic cardiomyopathy induced by transgene content, age and exercise in a truncated PKP2 mouse model. / 01.09.2016 / PubMed / Full text
- Age-dependent clinical and genetic characteristics in Japanese patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. / 2013 / PubMed / Full text
PLA2G6[править]
- Mutations in the Drosophila homolog of human PLA2G6 give rise to age-dependent loss of psychomotor activity and neurodegeneration. / 13.02.2018 / PubMed / Full text
- iPLA2β knockout mouse, a genetic model for progressive human motor disorders, develops age-related neuropathology. / 08.2014 / PubMed / Full text
PLD3[править]
- Whole-Exome Sequencing of an Exceptional Longevity Cohort. / 16.08.2019 / PubMed / Full text
- Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text
PLK1[править]
- Dynactin pathway-related gene expression is altered by aging, but not by vitrification. / 09.2019 / PubMed / Full text
- Downregulation of Polo-like kinase 1 induces cellular senescence in human primary cells through a p53-dependent pathway. / 10.2013 / PubMed / Full text
PLK4[править]
- A novel lncRNA PLK4 up-regulated by talazoparib represses hepatocellular carcinoma progression by promoting YAP-mediated cell senescence. / 05.2020 / PubMed / Full text
- Differential expression of AURKA/PLK4 in quiescence and senescence of osteosarcoma U2OS cells. / 04.2020 / PubMed / Full text
PMP22[править]
- Role of microRNAs in senescence and its contribution to peripheral neuropathy in the arsenic exposed population of West Bengal, India. / 02.2018 / PubMed / Full text
- A molecular signature predictive of indolent prostate cancer. / 11.09.2013 / PubMed / Full text
POLD3[править]
- POLD3 Is Haploinsufficient for DNA Replication in Mice. / 01.09.2016 / PubMed / Full text
- POLD1: Central mediator of DNA replication and repair, and implication in cancer and other pathologies. / 15.09.2016 / PubMed / Full text
POLG2[править]
- An N-Ethyl-N-Nitrosourea (ENU)-Induced Tyr265Stop Mutation of the DNA Polymerase Accessory Subunit Gamma 2 (Polg2) Is Associated With Renal Calcification in Mice. / 03.2019 / PubMed / Full text
- Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text
PPARD[править]
- PPARD 294C overrepresentation in general and long-lived population in China Bama longevity area and unique relationships between PPARD 294T/C polymorphism and serum lipid profiles. / 07.03.2015 / PubMed / Full text
- [Genotype and allele frequencies of UCP and PPAR gene families in residents of besieged Leningrad and in the control group]. / 2014 / PubMed
PPM1D[править]
- Detectible mosaic truncating PPM1D mutations, age and breast cancer risk. / 06.2019 / PubMed / Full text
- Age-related remodelling of oesophageal epithelia by mutated cancer drivers. / 01.2019 / PubMed / Full text
PPP3CB[править]
- The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. / 29.07.2020 / PubMed / Full text
- Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex. / 2018 / PubMed / Full text
PPY[править]
- Delta Cell Hyperplasia in Adult Goto-Kakizaki (GK/MolTac) Diabetic Rats. / 2015 / PubMed / Full text
- Blood Protein Markers of Neocortical Amyloid-β Burden: A Candidate Study Using SOMAscan Technology. / 2015 / PubMed / Full text
PRF1[править]
- Gene transcripts associated with muscle strength: a CHARGE meta-analysis of 7,781 persons. / 01.2016 / PubMed / Full text
- Gene expression markers of age-related inflammation in two human cohorts. / 10.2015 / PubMed / Full text
PRG4[править]
- Inhibition of Wnt/β-catenin signaling ameliorates osteoarthritis in a murine model of experimental osteoarthritis. / 08.02.2018 / PubMed / Full text
- Age-related changes in structure and extracellular matrix protein expression levels in rat tendons. / 12.2013 / PubMed / Full text
PRKAA2[править]
- Study on the effect of CaMKKβ-mediated AMPK activation on the glycolysis and the quality of different altitude postmortem bovines longissimus muscle. / 11.2019 / PubMed / Full text
- Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone. / 07.2014 / PubMed / Full text
PRMT7[править]
- Regenerating muscle with arginine methylation. / 27.05.2017 / PubMed / Full text
- PRMT7 Preserves Satellite Cell Regenerative Capacity. / 16.02.2016 / PubMed / Full text
PRMT8[править]
- Arginine Methyltransferase PRMT8 Provides Cellular Stress Tolerance in Aging Motoneurons. / 29.08.2018 / PubMed / Full text
- Novel Protein Arginine Methyltransferase 8 Isoform Is Essential for Cell Proliferation. / 09.2016 / PubMed / Full text
PROX1[править]
- Molecular control of two novel migratory paths for CGE-derived interneurons in the developing mouse brain. / 15.05.2016 / PubMed / Full text
- PROX1: a lineage tracer for cortical interneurons originating in the lateral/caudal ganglionic eminence and preoptic area. / 2013 / PubMed / Full text
PSMB8[править]
- [Target protein candidates of hypothalamus in aging rats with intervention by Qiongyugao]. / 04.2016 / PubMed / Full text
- Assessment of the risk of blastomere biopsy during preimplantation genetic diagnosis in a mouse model: reducing female ovary function with an increase in age by proteomics method. / 06.12.2013 / PubMed / Full text
PTH1R[править]
- Bone-remodeling transcript levels are independent of perching in end-of-lay white leghorn chickens. / 23.01.2015 / PubMed / Full text
- Variation in the [[PTH2R]] gene is associated with age-related degenerative changes in the lumbar spine. / 01.2015 / PubMed / Full text
PTK7[править]
- Innate and adaptive immune dysregulation in critically ill ICU patients. / 05.07.2018 / PubMed / Full text
- Heterogeneity in thymic emigrants: implications for thymectomy and immunosenescence. / 2013 / PubMed / Full text
PTPN1[править]
- The genetic component of human longevity: New insights from the analysis of pathway-based SNP-SNP interactions. / 06.2018 / PubMed / Full text
- Leptin and leptin-related gene polymorphisms, obesity, and influenza A/H1N1 vaccine-induced immune responses in older individuals. / 07.02.2014 / PubMed / Full text
PTTG1[править]
- [Down-regulated PTTG1 expression promotes the senescence of human prostate cancer LNCaP-AI]. / 03.2019 / PubMed
- Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text
PUM2[править]
- PUMILIO hyperactivity drives premature aging of [i]Norad[/i]-deficient mice. / 08.02.2019 / PubMed / Full text
- The RNA-Binding Protein PUM2 Impairs Mitochondrial Dynamics and Mitophagy During Aging. / 21.02.2019 / PubMed / Full text
PYCR1[править]
- A Transcriptome Study of Progeroid Neurocutaneous Syndrome Reveals POSTN As a New Element in Proline Metabolic Disorder. / 12.2018 / PubMed / Full text
- Sublethal endoplasmic reticulum stress caused by the mutation of immunoglobulin heavy chain-binding protein induces the synthesis of a mitochondrial protein, pyrroline-5-carboxylate reductase 1. / 01.2017 / PubMed / Full text
RAD51B[править]
- Increased age-adjusted hazard of death associated with a common single nucleotide polymorphism of the human RAD52 gene in a cardiovascular cohort. / 10.2017 / PubMed / Full text
- [What's new in dermatological research?]. / 12.2012 / PubMed / Full text
RAG1[править]
- T cell senescence accelerates Angiotensin II-induced target organ damage. / 12.02.2020 / PubMed / Full text
- Aged murine hematopoietic stem cells drive aging-associated immune remodeling. / 09.08.2018 / PubMed / Full text
RAG2[править]
- Phosphate Transporter Profiles in Murine and Human Thymi Identify Thymocytes at Distinct Stages of Differentiation. / 2020 / PubMed / Full text
- Both retention and recirculation contribute to long-lived regulatory T-cell accumulation in the thymus. / 09.2014 / PubMed / Full text
RASGRP1[править]
- Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. / 12.2017 / PubMed / Full text
- PPARβ/δ promotes HRAS-induced senescence and tumor suppression by potentiating p-ERK and repressing p-AKT signaling. / 13.11.2014 / PubMed / Full text
RECQL5[править]
- RECQL5 has unique strand annealing properties relative to the other human RecQ helicase proteins. / 01.2016 / PubMed / Full text
- Senescence induced by RECQL4 dysfunction contributes to Rothmund-Thomson syndrome features in mice. / 15.05.2014 / PubMed / Full text
RNF168[править]
- 53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination. / 02.01.2020 / PubMed / Full text
- PML nuclear bodies are recruited to persistent DNA damage lesions in an RNF168-53BP1 dependent manner and contribute to DNA repair. / 06.2019 / PubMed / Full text
RPIA[править]
- Suppression of p16 Induces mTORC1-Mediated Nucleotide Metabolic Reprogramming. / 20.08.2019 / PubMed / Full text
- Ribose-5-phosphate isomerase A regulates hepatocarcinogenesis via PP2A and ERK signaling. / 01.07.2015 / PubMed / Full text
RRM1[править]
- α-Synuclein toxicity in yeast and human cells is caused by cell cycle re-entry and autophagy degradation of ribonucleotide reductase 1. / 08.2019 / PubMed / Full text
- GBM-associated mutations and altered protein expression are more common in young patients. / 25.10.2016 / PubMed / Full text
RXRG[править]
- Genetic variations, reproductive aging, and breast cancer risk in African American and European American women: The Women's Circle of Health Study. / 2017 / PubMed / Full text
- Genome wide association study of age at menarche in the Japanese population. / 2013 / PubMed / Full text
S100A12[править]
- Fetal articular cartilage regeneration versus adult fibrocartilaginous repair: secretome proteomics unravels molecular mechanisms in an ovine model. / 06.07.2018 / PubMed / Full text
- Evaluation of serum biochemical marker concentrations and survival time in dogs with protein-losing enteropathy. / 01.01.2015 / PubMed / Full text
S100A6[править]
- Sex differences in distribution of cannabinoid receptors (CB1 and CB2), S100A6 and CacyBP/SIP in human ageing hearts. / 27.11.2018 / PubMed / Full text
- S100A6 (calcyclin) is a novel marker of neural stem cells and astrocyte precursors in the subgranular zone of the adult mouse hippocampus. / 01.2014 / PubMed / Full text
S1PR3[править]
- Sexual dimorphism of metabolic and vascular dysfunction in aged mice and those lacking the sphingosine 1-phosphate receptor 3. / 01.12.2017 / PubMed / Full text
- Impact of Age and Polytherapy on Fingolimod Induced Bradycardia: a Preclinical Study. / 03.2017 / PubMed / Full text
SAA1[править]
- Naturally occurring antibodies against serum amyloid A reduce IL-6 release from peripheral blood mononuclear cells. / 2018 / PubMed / Full text
- Association between local inflammation and breast tissue age-related lobular involution among premenopausal and postmenopausal breast cancer patients. / 2017 / PubMed / Full text
SALL1[править]
- SALL1 functions as a tumor suppressor in breast cancer by regulating cancer cell senescence and metastasis through the NuRD complex. / 06.04.2018 / PubMed / Full text
- Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. / 12.2017 / PubMed / Full text
SCGN[править]
- Detection and evaluation of DNA methylation markers found at SCGN and KLF14 loci to estimate human age. / 11.2017 / PubMed / Full text
- DNA methylation-based forensic age prediction using artificial neural networks and next generation sequencing. / 05.2017 / PubMed / Full text
SCN2B[править]
- MicroRNA‑449a regulates the progression of brain aging by targeting SCN2B in SAMP8 mice. / 04.2020 / PubMed / Full text
- Sodium Channel Voltage-Gated Beta 2 Plays a Vital Role in Brain Aging Associated with Synaptic Plasticity and Expression of COX5A and FGF-2. / 03.2016 / PubMed / Full text
SCN5A[править]
- [Use of Pharmacogenetic Information for Therapeutic Drug Monitoring of an Antiarrhythmic Drug]. / 2018 / PubMed / Full text
- Sequencing of SCN5A identifies rare and common variants associated with cardiac conduction: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. / 06.2014 / PubMed / Full text
SCO2[править]
- Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients. / 03.09.2019 / PubMed / Full text
- Role of SCOX in determination of Drosophila melanogaster lifespan. / 2014 / PubMed / Full text
SDC4[править]
- Alterations in Corneal Sensory Nerves During Homeostasis, Aging, and After Injury in Mice Lacking the Heparan Sulfate Proteoglycan Syndecan-1. / 01.10.2017 / PubMed / Full text
- Metabolism and successful aging: Polymorphic variation of syndecan-4 (SDC4) gene associate with longevity and lipid profile in healthy elderly Italian subjects. / 09.2015 / PubMed / Full text
SDHC[править]
- Endogenous reactive oxygen species cause astrocyte defects and neuronal dysfunctions in the hippocampus: a new model for aging brain. / 02.2017 / PubMed / Full text
- Long-term prognosis of patients with pediatric pheochromocytoma. / 02.2014 / PubMed / Full text
SERPINB2[править]
- Elevated circulating HtrA4 in preeclampsia may alter endothelial expression of senescence genes. / 15.01.2020 / PubMed / Full text
- An Endogenous Anti-aging Factor, Sonic Hedgehog, Suppresses Endometrial Stem Cell Aging through SERPINB2. / 03.07.2019 / PubMed / Full text
SESN2[править]
- Copy Number Alterations in Papillary Thyroid Carcinomas: Does Loss of [i]SESN2[/i] Have a Role in Age-related Different Prognoses? / 09-10.2020 / PubMed / Full text
- Loss of sestrin 2 potentiates the early onset of age-related sensory cell degeneration in the cochlea. / 11.10.2017 / PubMed / Full text
SESN3[править]
- Autophagy mediators (FOXO1, SESN3 and TSC2) in Lewy body disease and aging. / 25.09.2018 / PubMed / Full text
- Age-related reduction in the expression of FOXO transcription factors and correlations with intervertebral disc degeneration. / 12.2017 / PubMed / Full text
SFRP2[править]
- [Role and alterations of DNA methylation during the aging and cancer]. / 01.2018 / PubMed / Full text
- Thyroid hormone activates Wnt/β-catenin signaling involved in adult epithelial development during intestinal remodeling in Xenopus laevis. / 08.2016 / PubMed / Full text
SGK1[править]
- Epigenetic Regulation of KL (Klotho) via H3K27me3 (Histone 3 Lysine [K] 27 Trimethylation) in Renal Tubule Cells. / 05.2020 / PubMed / Full text
- The cell survival kinase SGK1 and its targets FOXO3a and NDRG1 in aged human brain. / 10.2013 / PubMed / Full text
SIX3[править]
- CellBIC: bimodality-based top-down clustering of single-cell RNA sequencing data reveals hierarchical structure of the cell type. / 30.11.2018 / PubMed / Full text
- Age-Dependent Pancreatic Gene Regulation Reveals Mechanisms Governing Human β Cell Function. / 10.05.2016 / PubMed / Full text
SLC13A5[править]
- INDY-A New Link to Metabolic Regulation in Animals and Humans. / 2017 / PubMed / Full text
- The role of INDY in metabolism, health and longevity. / 2015 / PubMed / Full text
SLC16A7[править]
- Genetics of facial telangiectasia in the Rotterdam Study: a genome-wide association study and candidate gene approach. / 23.10.2020 / PubMed / Full text
- The SLC16 gene family - structure, role and regulation in health and disease. / 04-06.2013 / PubMed / Full text
SLC19A1[править]
- Novel drug-resistance mechanisms of pemetrexed-treated non-small cell lung cancer. / 30.03.2018 / PubMed / Full text
- Association of MTHFR, SLC19A1 Genetic Polymorphism, Serum Folate, Vitamin B and Hcy Status with Cognitive Functions in Chinese Adults. / 24.10.2016 / PubMed / Full text
SLC24A4[править]
- Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text
- Gene-based aggregate SNP associations between candidate AD genes and cognitive decline. / 04.2016 / PubMed / Full text
SLC25A24[править]
- De Novo Mutations in SLC25A24 Cause a Disorder Characterized by Early Aging, Bone Dysplasia, Characteristic Face, and Early Demise. / 02.11.2017 / PubMed / Full text
- De Novo Mutations in SLC25A24 Cause a Craniosynostosis Syndrome with Hypertrichosis, Progeroid Appearance, and Mitochondrial Dysfunction. / 02.11.2017 / PubMed / Full text
SLC26A2[править]
- Phenotypic characterization of Slc26a2 mutant mice reveals a multifactorial etiology of spondylolysis. / 01.2020 / PubMed / Full text
- Alteration of proteoglycan sulfation affects bone growth and remodeling. / 05.2013 / PubMed / Full text
SLC2A4[править]
- Permanent cystathionine-β-Synthase gene knockdown promotes inflammation and oxidative stress in immortalized human adipose-derived mesenchymal stem cells, enhancing their adipogenic capacity. / 02.08.2020 / PubMed / Full text
- Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats. / 02.2019 / PubMed / Full text
SLC2A9[править]
- ABCG2 rs2231142 variant in hyperuricemia is modified by SLC2A9 and SLC22A12 polymorphisms and cardiovascular risk factors in an elderly community-dwelling population. / 17.03.2020 / PubMed / Full text
- MicroRNA-Based Linkage between Aging and Cancer: from Epigenetics View Point. / 07-09.2016 / PubMed / Full text
SLC6A3[править]
- A variable number of tandem repeats in the 3'-untranslated region of the dopamine transporter modulates striatal function during working memory updating across the adult age span. / 08.2015 / PubMed / Full text
- Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus. / 2015 / PubMed / Full text
SLC7A11[править]
- SOCS1 regulates senescence and ferroptosis by modulating the expression of p53 target genes. / 28.10.2017 / PubMed / Full text
- Comprehensive Analysis of Interaction Networks of Telomerase Reverse Transcriptase with Multiple Bioinformatic Approaches: Deep Mining the Potential Functions of Telomere and Telomerase. / 08.2017 / PubMed / Full text
SLN[править]
- Completion Lymph Node Dissection or Observation for Melanoma Sentinel Lymph Node Metastases: A Decision Analysis. / 09.2016 / PubMed / Full text
- Age differences in brain activity related to unsuccessful declarative memory retrieval. / 01.07.2015 / PubMed / Full text
SMAD1[править]
- TGFB1-Mediated Gliosis in Multiple Sclerosis Spinal Cords Is Favored by the Regionalized Expression of HOXA5 and the Age-Dependent Decline in Androgen Receptor Ligands. / 26.11.2019 / PubMed / Full text
- BMP-SMAD-ID promotes reprogramming to pluripotency by inhibiting p16/INK4A-dependent senescence. / 15.11.2016 / PubMed / Full text
SMAD7[править]
- Forkhead Box Protein 1 (FoxO1) Inhibits Accelerated β Cell Aging in Pancreas-specific SMAD7 Mutant Mice. / 24.02.2017 / PubMed / Full text
- Granulosa cell function and oocyte competence: Super-follicles, super-moms and super-stimulation in cattle. / 09.2014 / PubMed / Full text
SMARCA4[править]
- Attenuation of epigenetic regulator SMARCA4 and ERK-ETS signaling suppresses aging-related dopaminergic degeneration. / 09.2020 / PubMed / Full text
- GBM-associated mutations and altered protein expression are more common in young patients. / 25.10.2016 / PubMed / Full text
SMO[править]
- Sonic hedgehog regulation of cavernous nerve regeneration and neurite formation in aged pelvic plexus. / 02.2019 / PubMed / Full text
- Silybum marianum oil attenuates oxidative stress and ameliorates mitochondrial dysfunction in mice treated with D-galactose. / 01.2014 / PubMed / Full text
SMOX[править]
- Skeletal Muscle Pathophysiology: The Emerging Role of Spermine Oxidase and Spermidine. / 14.02.2018 / PubMed / Full text
- Haemocytes control stem cell activity in the Drosophila intestine. / 06.2015 / PubMed / Full text
SMPD1[править]
- Alterations in Lipid Profile of the Aging Kidney Identified by MALDI Imaging Mass Spectrometry. / 05.07.2019 / PubMed / Full text
- Rare lysosomal enzyme gene SMPD1 variant (p.R591C) associates with Parkinson's disease. / 12.2013 / PubMed / Full text
SNCB[править]
- Age-related distribution and potential role of SNCB in topographically different retinal areas of the common marmoset Callithrix jacchus, including the macula. / 08.2019 / PubMed / Full text
- Age-related Beta-synuclein Alters the p53/Mdm2 Pathway and Induces the Apoptosis of Brain Microvascular Endothelial Cells In Vitro. / 05.2018 / PubMed / Full text
SOCS2[править]
- Suppressor of Cytokine Signalling 2 (SOCS2) Regulates Numbers of Mature Newborn Adult Hippocampal Neurons and Their Dendritic Spine Maturation. / 07.2017 / PubMed / Full text
- Age-independent effects of hyaluronan amide derivative and growth hormone on human osteoarthritic chondrocytes. / 11.2015 / PubMed / Full text
SPARCL1[править]
- Specific factors in blood from young but not old mice directly promote synapse formation and NMDA-receptor recruitment. / 18.06.2019 / PubMed / Full text
- SPARCL1 Accelerates Symptom Onset in Alzheimer's Disease and Influences Brain Structure and Function During Aging. / 2018 / PubMed / Full text
SPN[править]
- Parkinson's disease-related Leucine-rich repeat kinase 2 modulates nuclear morphology and genomic stability in striatal projection neurons during aging. / 19.02.2020 / PubMed / Full text
- [Identification of single nucleotide polymorphisms in centenarians]. / 05-06.2016 / PubMed / Full text
SPON1[править]
- APOE influences working memory in non-demented elderly through an interaction with SPON1 rs2618516. / 07.2018 / PubMed / Full text
- HYDRA: Revealing heterogeneity of imaging and genetic patterns through a multiple max-margin discriminative analysis framework. / 15.01.2017 / PubMed / Full text
SREBF2[править]
- The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. / 29.09.2020 / PubMed / Full text
- White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy. / 02.2020 / PubMed / Full text
SRR[править]
- Mediterranean diet and its components in relation to all-cause mortality: meta-analysis. / 11.2018 / PubMed / Full text
- Genetic Biomarkers on Age-Related Cognitive Decline. / 2017 / PubMed / Full text
SSTR1[править]
- Expression and localization of somatostatin receptor types 3, 4 and 5 in the wild-type, SSTR1 and SSTR1/SSTR2 knockout mouse cochlea. / 12.2014 / PubMed / Full text
- Upregulated expression of SSTR1 is involved in neuronal apoptosis and is coupled to the reduction of bcl-2 following intracerebral hemorrhage in adult rats. / 10.2014 / PubMed / Full text
ST6GAL1[править]
- Glycobiology of Aging. / 2018 / PubMed / Full text
- Identification of novel plasma glycosylation-associated markers of aging. / 16.02.2016 / PubMed / Full text
STAR[править]
- Testicular gene expression of steroidogenesis-related factors in prepubertal, postpubertal, and aging dogs. / 01.03.2017 / PubMed / Full text
- Role of the steroidogenic acute regulatory protein in health and disease. / 01.2016 / PubMed / Full text
STAT4[править]
- Neonatal T Follicular Helper Cells Are Lodged in a Pre-T Follicular Helper Stage Favoring Innate Over Adaptive Germinal Center Responses. / 2019 / PubMed / Full text
- RNA-Seq analysis reveals new evidence for inflammation-related changes in aged kidney. / 24.05.2016 / PubMed / Full text
STAT5A[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
- SOCS1 regulates senescence and ferroptosis by modulating the expression of p53 target genes. / 28.10.2017 / PubMed / Full text
STK3[править]
- Dual functions for OVAAL in initiation of RAF/MEK/ERK prosurvival signals and evasion of p27-mediated cellular senescence. / 11.12.2018 / PubMed / Full text
- Organ-specific alteration in caspase expression and STK3 proteolysis during the aging process. / 11.2016 / PubMed / Full text
SURF1[править]
- Lifelong reduction in complex IV induces tissue-specific metabolic effects but does not reduce lifespan or healthspan in mice. / 08.2018 / PubMed / Full text
- Complex IV-deficient Surf1(-/-) mice initiate mitochondrial stress responses. / 01.09.2014 / PubMed / Full text
SV2A[править]
- Assessing Synaptic Density in Alzheimer Disease With Synaptic Vesicle Glycoprotein 2A Positron Emission Tomographic Imaging. / 01.10.2018 / PubMed / Full text
- Mutant Huntingtin Causes a Selective Decrease in the Expression of Synaptic Vesicle Protein 2C. / 10.2018 / PubMed / Full text
SYNC[править]
- Alpha-synuclein expression patterns in the colonic submucosal plexus of the aging Fischer 344 rat: implications for biopsies in aging and neurodegenerative disorders? / 09.2013 / PubMed / Full text
- Macrophages are unsuccessful in clearing aggregated alpha-synuclein from the gastrointestinal tract of healthy aged Fischer 344 rats. / 04.2013 / PubMed / Full text
SYNJ1[править]
- Excess Synaptojanin 1 Contributes to Place Cell Dysfunction and Memory Deficits in the Aging Hippocampus in Three Types of Alzheimer's Disease. / 05.06.2018 / PubMed / Full text
- Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text
TACR3[править]
- Association of a neurokinin 3 receptor polymorphism with the anterior basal forebrain. / 06.2015 / PubMed / Full text
- Neurokinin3 receptor as a target to predict and improve learning and memory in the aged organism. / 10.09.2013 / PubMed / Full text
TAS2R16[править]
- Taste receptor polymorphisms and longevity: a systematic review and meta-analysis. / 10.11.2020 / PubMed / Full text
- Taste receptors, innate immunity and longevity: the case of TAS2R16 gene. / 2019 / PubMed / Full text
TBC1D4[править]
- Effects of Exercise Training on Regulation of Skeletal Muscle Glucose Metabolism in Elderly Men. / 07.2015 / PubMed / Full text
- AMPK and insulin action--responses to ageing and high fat diet. / 2013 / PubMed / Full text
TBC1D5[править]
- TBC1D5-Catalyzed Cycling of Rab7 Is Required for Retromer-Mediated Human Papillomavirus Trafficking during Virus Entry. / 09.06.2020 / PubMed / Full text
- Retromer and TBC1D5 maintain late endosomal RAB7 domains to enable amino acid-induced mTORC1 signaling. / 02.09.2019 / PubMed / Full text
TBX21[править]
- Association of Epigenetic Age and p16INK4a With Markers of T-Cell Composition in a Healthy Cohort. / 13.11.2020 / PubMed / Full text
- [Study of gene expression of transcription factors T cells during aging]. / 2015 / PubMed
TCF7[править]
- Osteoprotection Through the Deletion of the Transcription Factor Rorβ in Mice. / 04.2018 / PubMed / Full text
- Age-related profiling of DNA methylation in CD8 T cells reveals changes in immune response and transcriptional regulator genes. / 19.08.2015 / PubMed / Full text
TDP1[править]
- UCHL3 Regulates Topoisomerase-Induced Chromosomal Break Repair by Controlling TDP1 Proteostasis. / 12.06.2018 / PubMed / Full text
- Neuroprotection and repair of 3'-blocking DNA ends by glaikit (gkt) encoding Drosophila tyrosyl-DNA phosphodiesterase 1 (TDP1). / 04.11.2014 / PubMed / Full text
TDRD7[править]
- Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice. / 01.2020 / PubMed / Full text
- RNA granule component TDRD7 gene polymorphisms in a Han Chinese population with age-related cataract. / 02.2014 / PubMed / Full text
TEAD1[править]
- [Role of PLAT, PKHD1L1, STK38L and TEAD1 genes Alu-polymorphism for longevity]. / 2016 / PubMed
- Acetylation of VGLL4 Regulates Hippo-YAP Signaling and Postnatal Cardiac Growth. / 21.11.2016 / PubMed / Full text
TEF[править]
- Expression of human HSP27 in yeast extends replicative lifespan and uncovers a hormetic response. / 10.2020 / PubMed / Full text
- Relationship Between the Dose Administered, Target Tissue Dose, and Toxicity Level After Acute Oral Exposure to Bifenthrin and Tefluthrin in Young Adult Rats. / 01.12.2019 / PubMed / Full text
TEN1[править]
- Stimulation of cell proliferation by glutathione monoethyl ester in aged bone marrow stromal cells is associated with the assistance of TERT gene expression and telomerase activity. / 08.2016 / PubMed / Full text
- Functional characterization of human CTC1 mutations reveals novel mechanisms responsible for the pathogenesis of the telomere disease Coats plus. / 12.2013 / PubMed / Full text
TERF1[править]
- Telomere protein RAP1 levels are affected by cellular aging and oxidative stress. / 08.2016 / PubMed / Full text
- Population-specific association of genes for telomere-associated proteins with longevity in an Italian population. / 06.2015 / PubMed / Full text
TERF2[править]
- Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. / 05.03.2020 / PubMed / Full text
- Endothelial senescence-associated secretory phenotype (SASP) is regulated by Makorin-1 ubiquitin E3 ligase. / 11.2019 / PubMed / Full text
TES[править]
- The Effects of Electrical Stimulation Pulse Duration on Lingual Palatal Pressure Measures During Swallowing in Healthy Older Adults. / 08.2019 / PubMed / Full text
- Comparison of different extenders on the recovery and longevity of epididymal sperm from Spix's yellow-toothed cavies (Galea spixii Wagler, 1831). / 04.2017 / PubMed / Full text
TFRC[править]
- Identification of reference genes for RT-qPCR data normalisation in aging studies. / 27.09.2019 / PubMed / Full text
- SQSTM1/p62 and PPARGC1A/PGC-1alpha at the interface of autophagy and vascular senescence. / 06.2020 / PubMed / Full text
TGFBR2[править]
- TGF-β type 2 receptor-mediated modulation of the IL-36 family can be therapeutically targeted in osteoarthritis. / 08.05.2019 / PubMed / Full text
- Serum levels of matrix metalloproteinases 2 and 9 and TGFBR2 gene screening in patients with ascending aortic dilatation. / 2013 / PubMed
TMEM119[править]
- Dexamethasone Induces a Specific Form of Ramified Dysfunctional Microglia. / 02.2019 / PubMed / Full text
- Loss of 'homeostatic' microglia and patterns of their activation in active multiple sclerosis. / 01.07.2017 / PubMed / Full text
TMEM18[править]
- Sequence variation in TMEM18 in association with body mass index: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text
- The influence of obesity-related single nucleotide polymorphisms on BMI across the life course: the PAGE study. / 05.2013 / PubMed / Full text
TNFSF10[править]
- Role of mitochondrial function in cell death and body metabolism. / 01.06.2016 / PubMed / Full text
- Sporadic colorectal cancer development shows rejuvenescence regarding epithelial proliferation and apoptosis. / 2013 / PubMed / Full text
TNNT1[править]
- Improved knee extensor strength with resistance training associates with muscle specific miRNAs in older adults. / 02.2015 / PubMed / Full text
- Human slow troponin T (TNNT1) pre-mRNA alternative splicing is an indicator of skeletal muscle response to resistance exercise in older adults. / 12.2014 / PubMed / Full text
TNR[править]
- Estimation of effectiveness of three methods of feral cat population control by use of a simulation model. / 15.08.2013 / PubMed / Full text
- The extracellular matrix glycoprotein tenascin-R affects adult but not developmental neurogenesis in the olfactory bulb. / 19.06.2013 / PubMed / Full text
TOMM20[править]
- Effect of aging on mitochondria and metabolism of bovine granulosa cells. / 13.09.2020 / PubMed / Full text
- PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis. / 2015 / PubMed / Full text
TOP1[править]
- UCHL3 Regulates Topoisomerase-Induced Chromosomal Break Repair by Controlling TDP1 Proteostasis. / 12.06.2018 / PubMed / Full text
- mir-24 activity propagates stress-induced senescence by down regulating DNA topoisomerase 1. / 03.2016 / PubMed / Full text
TOP2A[править]
- Proteomics of Long-Lived Mammals. / 03.2020 / PubMed / Full text
- Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text
TOX[править]
- Temporal Cognitive Decline Associated With Exposure to Infectious Agents in a Population-based, Aging Cohort. / 07-09.2016 / PubMed / Full text
- Incidence rate of modifying or discontinuing first combined antiretroviral therapy regimen due to toxicity during the first year of treatment stratified by age. / 01-02.2014 / PubMed / Full text
TPX2[править]
- Targeting DTL induces cell cycle arrest and senescence and suppresses cell growth and colony formation through TPX2 inhibition in human hepatocellular carcinoma cells. / 2018 / PubMed / Full text
- Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text
TREX1[править]
- Mechanistic link between DNA damage sensing, repairing and signaling factors and immune signaling. / 2019 / PubMed / Full text
- Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of CSF1R and NOTCH3. / 06.2018 / PubMed / Full text
TRIM21[править]
- TRIM21 overexpression promotes tumor progression by regulating cell proliferation, cell migration and cell senescence in human glioma. / 2020 / PubMed / Full text
- PRMT5-TRIM21 interaction regulates the senescence of osteosarcoma cells by targeting the TXNIP/p21 axis. / 05.02.2020 / PubMed / Full text
TRIM28[править]
- Depleting Trim28 in adult mice is well tolerated and reduces levels of α-synuclein and tau. / 04.06.2018 / PubMed / Full text
- Polyphenic trait promotes liver cancer in a model of epigenetic instability in mice. / 07.2017 / PubMed / Full text
TRIP13[править]
- BubR1 allelic effects drive phenotypic heterogeneity in mosaic-variegated aneuploidy progeria syndrome. / 02.01.2020 / PubMed / Full text
- PCH-2 regulates Caenorhabditis elegans lifespan. / 01.2015 / PubMed / Full text
TRPC3[править]
- Age-dependent alpha-synuclein accumulation is correlated with elevation of mitochondrial TRPC3 in the brains of monkeys and mice. / 04.2017 / PubMed / Full text
- TRPC3 channels critically regulate hippocampal excitability and contextual fear memory. / 15.03.2015 / PubMed / Full text
TRPC5[править]
- TRPC5 channel modulates endothelial cells senescence. / 05.05.2017 / PubMed / Full text
- Benzimidazole derivative M084 extends the lifespan of Caenorhabditis elegans in a DAF-16/FOXO-dependent way. / 02.2017 / PubMed / Full text
TRPC6[править]
- Redox and mTOR-dependent regulation of plasma lamellar calcium influx controls the senescence-associated secretory phenotype. / 11.2020 / PubMed / Full text
- TRPC6 in simulated microgravity of intervertebral disc cells. / 10.2018 / PubMed / Full text
TRPM6[править]
- Role of kinase-coupled TRP channels in mineral homeostasis. / 04.2018 / PubMed / Full text
- Epithelial magnesium transport by TRPM6 is essential for prenatal development and adult survival. / 19.12.2016 / PubMed / Full text
TRPM7[править]
- mRNA expression of transient receptor potential melastatin (TRPM) channels 2 and 7 in perinatal brain development. / 10.2018 / PubMed / Full text
- Role of kinase-coupled TRP channels in mineral homeostasis. / 04.2018 / PubMed / Full text
TRPV6[править]
- Changes in expression of klotho affect physiological processes, diseases, and cancer. / 01.2018 / PubMed / Full text
- Molecular aspects of intestinal calcium absorption. / 21.06.2015 / PubMed / Full text
TSHB[править]
- Adipose TSHB in Humans and Serum TSH in Hypothyroid Rats Inform About Cellular Senescence. / 2018 / PubMed / Full text
- Loss of basal and TRH-stimulated Tshb expression in dispersed pituitary cells. / 01.2015 / PubMed / Full text
TSLP[править]
- Cloning and expression of recombinant equine interleukin-3 and its effect on sulfidoleukotriene and cytokine production by equine peripheral blood leukocytes. / 15.02.2015 / PubMed / Full text
- Accumulation of prelamin A compromises NF-κB-regulated B-lymphopoiesis in a progeria mouse model. / 2013 / PubMed / Full text
TTN[править]
- LncRNA TTN-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/MBTD1 axis. / 10.10.2019 / PubMed / Full text
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
UBB[править]
- Different Expression Levels of Human Mutant Ubiquitin B (UBB ) Can Modify Chronological Lifespan or Stress Resistance of [i]Saccharomyces cerevisiae[/i]. / 2018 / PubMed / Full text
- Modeling non-hereditary mechanisms of Alzheimer disease during apoptosis in yeast. / 20.03.2015 / PubMed / Full text
UGT1A1[править]
- Expression of UDP-Glucuronosyltransferase 1 (UGT1) and Glucuronidation Activity toward Endogenous Substances in Humanized UGT1 Mouse Brain. / 07.2015 / PubMed / Full text
- Age-related changes in mRNA levels of hepatic transporters, cytochrome P450 and UDP-glucuronosyltransferase in female rats. / 06.2015 / PubMed / Full text
ULBP2[править]
- NKG2D ligands mediate immunosurveillance of senescent cells. / 02.2016 / PubMed / Full text
- Type 1 interferons contribute to the clearance of senescent cell. / 2015 / PubMed / Full text
UMOD[править]
- The relationships between markers of tubular injury and intrarenal haemodynamic function in adults with and without type 1 diabetes: Results from the Canadian Study of Longevity in Type 1 Diabetes. / 03.2019 / PubMed / Full text
- A roadmap for the genetic analysis of renal aging. / 10.2015 / PubMed / Full text
UNG[править]
- UNG-1 and APN-1 are the major enzymes to efficiently repair 5-hydroxymethyluracil DNA lesions in C. elegans. / 01.05.2018 / PubMed / Full text
- Caenorhabditis elegans EXO-3 contributes to longevity and reproduction: differential roles in somatic cells and germ cells. / 02.2015 / PubMed / Full text
USP10[править]
- The GID ubiquitin ligase complex is a regulator of AMPK activity and organismal lifespan. / 09.2020 / PubMed / Full text
- Long noncoding RNA H19 mediates melatonin inhibition of premature senescence of c-kit( ) cardiac progenitor cells by promoting miR-675. / 08.2016 / PubMed / Full text
USP14[править]
- Low expression of aging-related [[NRXN3]] is associated with Alzheimer disease: A systematic review and meta-analysis. / 07.2018 / PubMed / Full text
- Compensatory increase in USP14 activity accompanies impaired proteasomal proteolysis during aging. / 01-02.2013 / PubMed / Full text
VASH1[править]
- Double-Face of Vasohibin-1 for the Maintenance of Vascular Homeostasis and Healthy Longevity. / 01.06.2018 / PubMed / Full text
- Age-associated downregulation of vasohibin-1 in vascular endothelial cells. / 10.2016 / PubMed / Full text
VASP[править]
- Reversal of Aging-Induced Increases in Aortic Stiffness by Targeting Cytoskeletal Protein-Protein Interfaces. / 18.07.2018 / PubMed / Full text
- In vitro anti-platelet potency of ticagrelor in blood samples from infants and children. / 09.2015 / PubMed / Full text
VCAN[править]
- Deletion of miR-126a Promotes Hepatic Aging and Inflammation in a Mouse Model of Cholestasis. / 07.06.2019 / PubMed / Full text
- Exosomes from hyperglycemia-stimulated vascular endothelial cells contain versican that regulate calcification/senescence in vascular smooth muscle cells. / 2019 / PubMed / Full text
VGF[править]
- Voluntary Running Triggers VGF-Mediated Oligodendrogenesis to Prolong the Lifespan of Snf2h-Null Ataxic Mice. / 11.10.2016 / PubMed / Full text
- Age-related obesity and type 2 diabetes dysregulate neuronal associated genes and proteins in humans. / 06.10.2015 / PubMed / Full text
VGLL3[править]
- The vgll3 Locus Controls Age at Maturity in Wild and Domesticated Atlantic Salmon (Salmo salar L.) Males. / 11.2015 / PubMed / Full text
- Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon. / 17.12.2015 / PubMed / Full text
VGLL4[править]
- The lncRNA MEG3/miR-16-5p/VGLL4 regulatory axis is involved in etoposide-induced senescence of tumor cells. / 03.11.2020 / PubMed / Full text
- Acetylation of VGLL4 Regulates Hippo-YAP Signaling and Postnatal Cardiac Growth. / 21.11.2016 / PubMed / Full text
VIPR2[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
- Chromatin remodeling of human subtelomeres and TERRA promoters upon cellular senescence: commonalities and differences between chromosomes. / 05.2013 / PubMed / Full text
VPS29[править]
- Combined Proteomic and Metabolomic Profiling of the [i]Arabidopsis thaliana vps29[/i] Mutant Reveals Pleiotropic Functions of the Retromer in Seed Development. / 16.01.2019 / PubMed / Full text
- The retromer complex system in a transgenic mouse model of AD: influence of age. / 04.2017 / PubMed / Full text
VPS35[править]
- Combined Proteomic and Metabolomic Profiling of the [i]Arabidopsis thaliana vps29[/i] Mutant Reveals Pleiotropic Functions of the Retromer in Seed Development. / 16.01.2019 / PubMed / Full text
- Vps35 haploinsufficiency results in degenerative-like deficit in mouse retinal ganglion neurons and impairment of optic nerve injury-induced gliosis. / 11.02.2014 / PubMed / Full text
WFIKKN1[править]
- Relationship of Circulating Growth and Differentiation Factors 8 and 11 and Their Antagonists as Measured Using Liquid Chromatography-Tandem Mass Spectrometry With Age and Skeletal Muscle Strength in Healthy Adults. / 01.01.2019 / PubMed / Full text
- A targeted proteomic assay for the measurement of plasma proteoforms related to human aging phenotypes. / 08.2017 / PubMed / Full text
WFIKKN2[править]
- Relationship of Circulating Growth and Differentiation Factors 8 and 11 and Their Antagonists as Measured Using Liquid Chromatography-Tandem Mass Spectrometry With Age and Skeletal Muscle Strength in Healthy Adults. / 01.01.2019 / PubMed / Full text
- A targeted proteomic assay for the measurement of plasma proteoforms related to human aging phenotypes. / 08.2017 / PubMed / Full text
WFS1[править]
- Knockdown of wfs1, a fly homolog of Wolfram syndrome 1, in the nervous system increases susceptibility to age- and stress-induced neuronal dysfunction and degeneration in Drosophila. / 01.2018 / PubMed / Full text
- A nonsynonymous mutation in the WFS1 gene in a Finnish family with age-related hearing impairment. / 11.2017 / PubMed / Full text
WIPI2[править]
- Neuronal autophagy declines substantially with age and is rescued by overexpression of WIPI2. / 02.2020 / PubMed / Full text
- The ATG5-binding and coiled coil domains of ATG16L1 maintain autophagy and tissue homeostasis in mice independently of the WD domain required for LC3-associated phagocytosis. / 04.2019 / PubMed / Full text
WWP1[править]
- The ubiquitin ligase WWP1 contributes to shifts in matrix proteolytic profiles and a myocardial aging phenotype with diastolic heart. / 01.10.2020 / PubMed / Full text
- Overexpression of miR-584-5p inhibits proliferation and induces apoptosis by targeting WW domain-containing E3 ubiquitin protein ligase 1 in gastric cancer. / 21.04.2017 / PubMed / Full text
YY1[править]
- Distinct Age-Related Epigenetic Signatures in CD4 and CD8 T Cells. / 2020 / PubMed / Full text
- Low mitochondrial DNA content associates with familial longevity: the Leiden Longevity Study. / 06.2014 / PubMed / Full text
ZC3H12A[править]
- Keratinocyte-specific ablation of Mcpip1 impairs skin integrity and promotes local and systemic inflammation. / 12.2019 / PubMed / Full text
- Prediction and characterization of human ageing-related proteins by using machine learning. / 06.03.2018 / PubMed / Full text
ZEB2[править]
- miR-200b regulates cellular senescence and inflammatory responses by targeting ZEB2 in pulmonary emphysema. / 12.2020 / PubMed / Full text
- MicroRNA-145 induces the senescence of activated hepatic stellate cells through the activation of p53 pathway by ZEB2. / 05.2019 / PubMed / Full text
ZFX[править]
- ZFX knockdown inhibits growth and migration of non-small cell lung carcinoma cell line H1299. / 2013 / PubMed / Full text
- ZFX regulates glioma cell proliferation and survival in vitro and in vivo. / 03.2013 / PubMed / Full text
ZNF521[править]
- Reduced subcutaneous adipogenesis in human hypertrophic obesity is linked to senescent precursor cells. / 21.06.2019 / PubMed / Full text
- Zinc finger factor 521 enhances adipogenic differentiation of mouse multipotent cells and human bone marrow mesenchymal stem cells. / 20.06.2015 / PubMed / Full text
ZP2[править]
- Coenzyme Q10 ameliorates the quality of postovulatory aged oocytes by suppressing DNA damage and apoptosis. / 01.11.2019 / PubMed / Full text
- Melatonin improves the fertilization ability of post-ovulatory aged mouse oocytes by stabilizing ovastacin and Juno to promote sperm binding and fusion. / 01.03.2017 / PubMed / Full text
ZSCAN10[править]
- RNA Exosome Complex-Mediated Control of Redox Status in Pluripotent Stem Cells. / 10.10.2017 / PubMed / Full text
- ZSCAN10 expression corrects the genomic instability of iPSCs from aged donors. / 09.2017 / PubMed / Full text
ABCC1[править]
- Dual pathways mediate β-amyloid stimulated glutathione release from astrocytes. / 12.2015 / PubMed / Full text
ABCC3[править]
- Proteomic Analysis of the Developmental Trajectory of Human Hepatic Membrane Transporter Proteins in the First Three Months of Life. / 07.2016 / PubMed / Full text
ABCC8[править]
- A mouse model of human hyperinsulinism produced by the E1506K mutation in the sulphonylurea receptor SUR1. / 11.2013 / PubMed / Full text
ABCE1[править]
- Widespread Accumulation of Ribosome-Associated Isolated 3' UTRs in Neuronal Cell Populations of the Aging Brain. / 27.11.2018 / PubMed / Full text
ABHD12[править]
- Elevated Levels of Arachidonic Acid-Derived Lipids Including Prostaglandins and Endocannabinoids Are Present Throughout ABHD12 Knockout Brains: Novel Insights Into the Neurodegenerative Phenotype. / 2019 / PubMed / Full text
ABI3BP[править]
- Long noncoding RNA MALAT1 potentiates growth and inhibits senescence by antagonizing ABI3BP in gallbladder cancer cells. / 07.06.2019 / PubMed / Full text
ABL1[править]
- European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. / 04.2020 / PubMed / Full text
ABLIM3[править]
- Dentate granule cell recruitment of feedforward inhibition governs engram maintenance and remote memory generalization. / 05.2018 / PubMed / Full text
ABRA[править]
- LMX1B is essential for the maintenance of differentiated podocytes in adult kidneys. / 11.2013 / PubMed / Full text
ACAA2[править]
ACAD9[править]
- Identification of a novel mitochondrial complex I assembly factor ACDH-12 in Caenorhabditis elegans. / 05.2019 / PubMed / Full text
ACADM[править]
- High fat diet aggravates atrial and ventricular remodeling of hypertensive heart disease in aging rats. / 07.2018 / PubMed / Full text
ACER2[править]
ACKR2[править]
- Atypical chemokine receptor ACKR2 mediates chemokine scavenging by primary human trophoblasts and can regulate fetal growth, placental structure, and neonatal mortality in mice. / 15.11.2014 / PubMed / Full text
ACMSD[править]
- De novo NAD synthesis enhances mitochondrial function and improves health. / 11.2018 / PubMed / Full text
ACO2[править]
- Thioredoxin protects mitochondrial structure, function and biogenesis in myocardial ischemia-reperfusion via redox-dependent activation of AKT-CREB- PGC1α pathway in aged mice. / 13.10.2020 / PubMed / Full text
ACP2[править]
- Association of levels of fasting glucose and insulin with rare variants at the chromosome 11p11.2-MADD locus: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text
ACSL1[править]
- The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats. / 09.2020 / PubMed / Full text
ACSL5[править]
- Ageing sensitized by iPLA β deficiency induces liver fibrosis and intestinal atrophy involving suppression of homeostatic genes and alteration of intestinal lipids and bile acids. / 12.2017 / PubMed / Full text
ACTA2[править]
- Tissue Taurine Depletion Induces Profibrotic Pattern of Gene Expression and Causes Aging-Related Cardiac Fibrosis in Heart in Mice. / 2018 / PubMed / Full text
ACTL7B[править]
- Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. / 12.2017 / PubMed / Full text
ACTR3B[править]
- Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex. / 2018 / PubMed / Full text
ADA2[править]
- Manganese(II) Chloride Alters Nucleotide and Nucleoside Catabolism in Zebrafish (Danio rerio) Adult Brain. / 05.2018 / PubMed / Full text
ADAM19[править]
- ADAM19 and HTR4 variants and pulmonary function: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text
ADAM22[править]
- Expression of NgR1-antagonizing proteins decreases with aging and cognitive decline in rat hippocampus. / 05.2013 / PubMed / Full text
ADAM9[править]
- [The effect of PNS on the content and activity of alpha-secretase in the brains of SAMP8 mice with alzheimer's disease]. / 11.2012 / PubMed
ADAMTS1[править]
- Increased ADAMTS1 mediates SPARC-dependent collagen deposition in the aging myocardium. / 01.06.2016 / PubMed / Full text
ADAMTS10[править]
- Influence of Age on Ocular Biomechanical Properties in a Canine Glaucoma Model with ADAMTS10 Mutation. / 2016 / PubMed / Full text
ADAMTS3[править]
- Explorative results from multistep screening for potential genetic risk loci of Alzheimer's disease in the longitudinal VITA study cohort. / 01.2018 / PubMed / Full text
ADAMTS5[править]
- Endoplasmic reticulum stress participates in the progress of senescence and apoptosis of osteoarthritis chondrocytes. / 16.09.2017 / PubMed / Full text
ADAMTS7[править]
- Identification of cardiovascular health gene variants related to longevity in a Chinese population. / 07.09.2020 / PubMed / Full text
ADAR[править]
- Enoxacin extends lifespan of C. elegans by inhibiting miR-34-5p and promoting mitohormesis. / 09.2018 / PubMed / Full text
ADCK1[править]
- Functional analysis of Aarf domain-containing kinase 1 in Drosophila melanogaster. / 09.2019 / PubMed / Full text
ADD2[править]
- SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text
ADK[править]
- Deletion of pancreatic β-cell adenosine kinase improves glucose homeostasis in young mice and ameliorates streptozotocin-induced hyperglycaemia. / 07.2019 / PubMed / Full text
ADNP2[править]
- ADNP differentially interact with genes/proteins in correlation with aging: a novel marker for muscle aging. / 06.2019 / PubMed / Full text
ADORA2B[править]
- Adenosine A2B receptor: A pathogenic factor and a therapeutic target for sensorineural hearing loss. / 12.2020 / PubMed / Full text
ADRA2A[править]
- α2A-Adrenergic Receptor Inhibits the Progression of Cervical Cancer Through Blocking PI3K/AKT/mTOR Pathway. / 2020 / PubMed / Full text
ADRM1[править]
- Androgen receptor polyglutamine expansion drives age-dependent quality control defects and muscle dysfunction. / 01.08.2018 / PubMed / Full text
AGAP2[править]
- Exosomes derived from microRNA-199a-overexpressing mesenchymal stem cells inhibit glioma progression by down-regulating AGAP2. / 05.08.2019 / PubMed / Full text
AGO1[править]
- A transcriptome-wide study on the microRNA- and the Argonaute 1-enriched small RNA-mediated regulatory networks involved in plant leaf senescence. / 03.2016 / PubMed / Full text
AGRP[править]
- Influence of Aging and Gender Differences on Feeding Behavior and Ghrelin-Related Factors during Social Isolation in Mice. / 2015 / PubMed / Full text
AHNAK[править]
- A novel atlas of gene expression in human skeletal muscle reveals molecular changes associated with aging. / 2015 / PubMed / Full text
AHSP[править]
- Relationship between Sensory Perception and Frailty in a Community-Dwelling Elderly Population. / 2017 / PubMed / Full text
AIF1[править]
- Sirtuin 1-Chromatin-Binding Dynamics Points to a Common Mechanism Regulating Inflammatory Targets in SIV Infection and in the Aging Brain. / 06.2018 / PubMed / Full text
AK1[править]
- Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. / 2019 / PubMed / Full text
AKAP11[править]
- Genetic Burden Analyses of Phenotypes Relevant to Aging in the Berlin Aging Study II (BASE-II). / 2016 / PubMed / Full text
AKAP12[править]
- A-Kinase Anchor Protein 12 Is Required for Oligodendrocyte Differentiation in Adult White Matter. / 05.2018 / PubMed / Full text
AKAP17A[править]
- The transcript expression levels of HNRNPM, HNRNPA0 and AKAP17A splicing factors may be predictively associated with ageing phenotypes in human peripheral blood. / 10.2019 / PubMed / Full text
AKIP1[править]
- Expression of potato RNA-binding proteins StUBA2a/b and StUBA2c induces hypersensitive-like cell death and early leaf senescence in Arabidopsis. / 07.2015 / PubMed / Full text
AKR1B1[править]
- Bioinformatics analysis of proteomics profiles in senescent human primary proximal tubule epithelial cells. / 01.04.2016 / PubMed / Full text
AKR1C2[править]
- Identification of a gene signature of a pre-transformation process by senescence evasion in normal human epidermal keratinocytes. / 14.06.2014 / PubMed / Full text
AKR1C3[править]
- Identification of a gene signature of a pre-transformation process by senescence evasion in normal human epidermal keratinocytes. / 14.06.2014 / PubMed / Full text
AKR7A3[править]
- The aged testis. A good model to find proteins involved in age-related changes of testis by proteomic analysis. / 01-02.2014 / PubMed
ALAD[править]
- Lead-Related Genetic Loci, Cumulative Lead Exposure and Incident Coronary Heart Disease: The Normative Aging Study. / 2016 / PubMed / Full text
ALAS1[править]
- Heterozygous disruption of ALAS1 in mice causes an accelerated age-dependent reduction in free heme, but not total heme, in skeletal muscle and liver. / 08.12.2020 / PubMed / Full text
ALAS2[править]
- Gene transcripts associated with muscle strength: a CHARGE meta-analysis of 7,781 persons. / 01.2016 / PubMed / Full text
ALCAM[править]
- Zebrafish brain RNA sequencing reveals that cell adhesion molecules are critical in brain aging. / 10.2020 / PubMed / Full text
ALDH1L1[править]
- Review: Astrocytes in Alzheimer's disease and other age-associated dementias: a supporting player with a central role. / 06.2017 / PubMed / Full text
ALDH3A1[править]
- Hallmarks of the cancer cell of origin: Comparisons with "energetic" cancer stem cells (e-CSCs). / 13.02.2019 / PubMed / Full text
ALDH4A1[править]
- An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. / 12.2019 / PubMed / Full text
ALKBH1[править]
- ALKB-8, a 2-Oxoglutarate-Dependent Dioxygenase and S-Adenosine Methionine-Dependent Methyltransferase Modulates Metabolic Events Linked to Lysosome-Related Organelles and Aging in C. elegans. / 2018 / PubMed
ALKBH2[править]
- ALKB-8, a 2-Oxoglutarate-Dependent Dioxygenase and S-Adenosine Methionine-Dependent Methyltransferase Modulates Metabolic Events Linked to Lysosome-Related Organelles and Aging in C. elegans. / 2018 / PubMed
ALOX12[править]
- Arachidonate 12-lipoxygenase and 12-hydroxyeicosatetraenoic acid contribute to stromal aging-induced progression of pancreatic cancer. / 15.05.2020 / PubMed / Full text
ALOX15B[править]
- Monocytes present age-related changes in phospholipid concentration and decreased energy metabolism. / 04.2020 / PubMed / Full text
ALPL[править]
- Physiological blood-brain transport is impaired with age by a shift in transcytosis. / 07.2020 / PubMed / Full text
ALS2[править]
- Age-dependent deterioration of locomotion in Drosophila melanogaster deficient in the homologue of amyotrophic lateral sclerosis 2. / 06.2014 / PubMed / Full text
ALX4[править]
- Age-associated genes in human mammary gland drive human breast cancer progression. / 15.06.2020 / PubMed / Full text
AMBRA1[править]
- MiR-23a-depressed autophagy is a participant in PUVA- and UVB-induced premature senescence. / 21.06.2016 / PubMed / Full text
AMFR[править]
- Mice heterozygous for the Cdh23/Ahl1 mutation show age-related deficits in auditory temporal processing. / 09.2019 / PubMed / Full text
ANGPT1[править]
ANGPT2[править]
- Systemic analysis of gene expression profiles in porcine granulosa cells during aging. / 14.11.2017 / PubMed / Full text
ANGPTL4[править]
- Involvement of ERK1/2 activation in the gene expression of senescence-associated secretory factors in human hepatic stellate cells. / 05.2019 / PubMed / Full text
ANGPTL8[править]
- Angiopoietin-like protein 8 (ANGPTL8)/betatrophin overexpression does not increase beta cell proliferation in mice. / 07.2015 / PubMed / Full text
ANK2[править]
- SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text
ANKS1B[править]
- Explorative results from multistep screening for potential genetic risk loci of Alzheimer's disease in the longitudinal VITA study cohort. / 01.2018 / PubMed / Full text
ANPEP[править]
- Aminopeptidase N expression in the endometrium could affect endometrial receptivity. / 25.06.2019 / PubMed / Full text
ANXA1[править]
- Assessment of Human Skin Gene Expression by Different Blends of Plant Extracts with Implications to Periorbital Skin Aging. / 26.10.2018 / PubMed / Full text
ANXA2[править]
- Quantitative proteomic profiling of tumor cell response to telomere dysfunction using isotope-coded protein labeling (ICPL) reveals interaction network of candidate senescence markers. / 08.10.2013 / PubMed / Full text
AOC1[править]
- Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence. / 12.09.2013 / PubMed / Full text
AOX1[править]
APAF1[править]
- Sperm-associated antigen 9 (SPAG9) promotes the survival and tumor growth of triple-negative breast cancer cells. / 10.2016 / PubMed / Full text
APBB2[править]
- GSK3β Interactions with Amyloid Genes: An Autopsy Verification and Extension. / 10.2015 / PubMed / Full text
APLN[править]
- Relationship of age and body mass index to the expression of obesity and osteoarthritis-related genes in human meniscus. / 09.2013 / PubMed / Full text
APLNR[править]
- Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin's glucose-lowering effects. / 13.09.2017 / PubMed / Full text
APOA4[править]
- No Association between Variation in Longevity Candidate Genes and Aging-related Phenotypes in Oldest-old Danes. / 06.2016 / PubMed / Full text
APOBEC1[править]
- Loss of APOBEC1 RNA-editing function in microglia exacerbates age-related CNS pathophysiology. / 12.12.2017 / PubMed / Full text
APOC1[править]
- Genetics of Human Longevity From Incomplete Data: New Findings From the Long Life Family Study. / 08.10.2018 / PubMed / Full text
APOC2[править]
- Apoc2 loss-of-function zebrafish mutant as a genetic model of hyperlipidemia. / 01.08.2015 / PubMed / Full text
APOH[править]
- Genome-wide significant results identified for plasma apolipoprotein H levels in middle-aged and older adults. / 31.03.2016 / PubMed / Full text
APPL1[править]
- Insulin and adipokine signaling and their cross-regulation in postmortem human brain. / 12.2019 / PubMed / Full text
AQP9[править]
- Seasonal and Ageing-Depending Changes of Aquaporins 1 and 9 Expression in the Genital Tract of Buffalo Bulls (Bubalus bubalis). / 08.2016 / PubMed / Full text
AQR[править]
- Synergism between soluble guanylate cyclase signaling and neuropeptides extends lifespan in the nematode Caenorhabditis elegans. / 04.2017 / PubMed / Full text
ARG1[править]
- Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text
ARG2[править]
- Arginase-2, a miR-1299 target, enhances pigmentation in melasma by reducing melanosome degradation via senescence-induced autophagy inhibition. / 01.2017 / PubMed / Full text
ARHGAP1[править]
- Targeted sequencing of genome wide significant loci associated with bone mineral density (BMD) reveals significant novel and rare variants: the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) targeted sequencing study. / 01.12.2016 / PubMed / Full text
ARID5A[править]
- Differentially regulated gene expression in quiescence versus senescence and identification of ARID5A as a quiescence associated marker. / 05.2018 / PubMed / Full text
ARID5B[править]
- Monocytes present age-related changes in phospholipid concentration and decreased energy metabolism. / 04.2020 / PubMed / Full text
ARIH2[править]
- A novel feed-forward loop between ARIH2 E3-ligase and PABPN1 regulates aging-associated muscle degeneration. / 04.2014 / PubMed / Full text
ARL13B[править]
- ARL13B, a Joubert Syndrome-Associated Protein, Is Critical for Retinogenesis and Elaboration of Mouse Photoreceptor Outer Segments. / 20.02.2019 / PubMed / Full text
ARL4C[править]
- LMX1B is essential for the maintenance of differentiated podocytes in adult kidneys. / 11.2013 / PubMed / Full text
ARNTL2[править]
- Is the aging human ovary still ticking?: Expression of clock-genes in luteinized granulosa cells of young and older women. / 21.11.2018 / PubMed / Full text
ARRB2[править]
- Age-dependent effects of dopamine receptor inactivation on cocaine-induced behaviors in male rats: Evidence of dorsal striatal D2 receptor supersensitivity. / 12.2019 / PubMed / Full text
ARSA[править]
- Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of CSF1R and NOTCH3. / 06.2018 / PubMed / Full text
ASB3[править]
- Longitudinal analysis of bronchodilator response in asthmatics and effect modification of age-related trends by genotype. / 02.2019 / PubMed / Full text
ASB7[править]
- ASB7 Is a Novel Regulator of Cytoskeletal Organization During Oocyte Maturation. / 2020 / PubMed / Full text
ASF1A[править]
- Meta-analysis on blood transcriptomic studies identifies consistently coexpressed protein-protein interaction modules as robust markers of human aging. / 04.2014 / PubMed / Full text
ASIC2[править]
- Acidotoxicity and acid-sensing ion channels contribute to motoneuron degeneration. / 04.2013 / PubMed / Full text
ASIP[править]
- Efficacy of an agonist of α-MSH, the palmitoyl tetrapeptide-20, in hair pigmentation. / 10.2018 / PubMed / Full text
ASMT[править]
- The influence of ageing on the extrapineal melatonin synthetic pathway. / 09.2018 / PubMed / Full text
ASPN[править]
- The association between higher social support and lower depressive symptoms among aging services clients is attenuated at higher levels of functional impairment. / 10.2015 / PubMed / Full text
ATG10[править]
ATG13[править]
- Rapamycin reverses age-related increases in mitochondrial ROS production at complex I, oxidative stress, accumulation of mtDNA fragments inside nuclear DNA, and lipofuscin level, and increases autophagy, in the liver of middle-aged mice. / 10.2016 / PubMed / Full text
ATG16L1[править]
- The ATG5-binding and coiled coil domains of ATG16L1 maintain autophagy and tissue homeostasis in mice independently of the WD domain required for LC3-associated phagocytosis. / 04.2019 / PubMed / Full text
ATG16L2[править]
- Epigallocatechin-3-gallate increases autophagy signaling in resting and unloaded plantaris muscles but selectively suppresses autophagy protein abundance in reloaded muscles of aged rats. / 06.2017 / PubMed / Full text
ATG4B[править]
- Impaired autophagic activity and ATG4B deficiency are associated with increased endoplasmic reticulum stress-induced lung injury. / 27.08.2018 / PubMed / Full text
ATG4D[править]
- Reduction of Aging-Induced Oxidative Stress and Activation of Autophagy by Bilberry Anthocyanin Supplementation via the AMPK-mTOR Signaling Pathway in Aged Female Rats. / 17.07.2019 / PubMed / Full text
ATMIN[править]
ATP13A2[править]
- Atp13a2-deficient mice exhibit neuronal ceroid lipofuscinosis, limited α-synuclein accumulation and age-dependent sensorimotor deficits. / 15.05.2013 / PubMed / Full text
ATP1A3[править]
- The Influence of Na( ), K( )-ATPase on Glutamate Signaling in Neurodegenerative Diseases and Senescence. / 2016 / PubMed / Full text
ATP2B1[править]
- Reduced expression of PMCA1 is associated with increased blood pressure with age which is preceded by remodelling of resistance arteries. / 10.2017 / PubMed / Full text
ATP6V0C[править]
ATP6V1G1[править]
- Chemical screening identifies ATM as a target for alleviating senescence. / 06.2017 / PubMed / Full text
ATP7B[править]
- [Copper intoxication decreases lifespan and induces neurologic alterations in Drosophila melanogaster]. / 03.2013 / PubMed
ATXN1[править]
- Integrative Analysis of Hippocampus Gene Expression Profiles Identifies Network Alterations in Aging and Alzheimer's Disease. / 2018 / PubMed / Full text
AURKB[править]
- Aurora kinase mRNA expression is reduced with increasing gestational age and in severe early onset fetal growth restriction. / 06.2020 / PubMed / Full text
AURKC[править]
- Aurora kinase mRNA expression is reduced with increasing gestational age and in severe early onset fetal growth restriction. / 06.2020 / PubMed / Full text
AVPR1A[править]
- Introduction of the human AVPR1A gene substantially alters brain receptor expression patterns and enhances aspects of social behavior in transgenic mice. / 08.2014 / PubMed / Full text
BAALC[править]
- Relation of BAALC and ERG Gene Expression with Overall Survival in Acute Myeloid Leukemia Cases. / 2015 / PubMed / Full text
BAAT[править]
- Prevalence and associated metabolic factors of fatty liver disease in the elderly. / 08.2013 / PubMed / Full text
BACE2[править]
BAG2[править]
BAG5[править]
- miR-155 inhibits mitophagy through suppression of BAG5, a partner protein of PINK1. / 12.03.2020 / PubMed / Full text
BAP1[править]
- The BAP1/ASXL2 Histone H2A Deubiquitinase Complex Regulates Cell Proliferation and Is Disrupted in Cancer. / 27.11.2015 / PubMed / Full text
BAZ1A[править]
- Chromatin remodeling factor BAZ1A regulates cellular senescence in both cancer and normal cells. / 15.07.2019 / PubMed / Full text
BAZ2B[править]
BBC3[править]
- The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. / 29.09.2020 / PubMed / Full text
BBS5[править]
- Progressive Characterization of Visual Phenotype in Bardet-Biedl Syndrome Mutant Mice. / 01.03.2019 / PubMed / Full text
BCAS1[править]
- Hallmarks of the cancer cell of origin: Comparisons with "energetic" cancer stem cells (e-CSCs). / 13.02.2019 / PubMed / Full text
BCL2L11[править]
- miRNA expression profiling uncovers a role of miR-302b-3p in regulating skin fibroblasts senescence. / 01.2020 / PubMed / Full text
BCORL1[править]
- Age-related mutations associated with clonal hematopoietic expansion and malignancies. / 12.2014 / PubMed / Full text
BFSP1[править]
- The oxidized thiol proteome in aging and cataractous mouse and human lens revealed by ICAT labeling. / 04.2017 / PubMed / Full text
BHLHE40[править]
- Thyroid hormone induces cellular senescence in prostate cancer cells through induction of DEC1. / 07.2020 / PubMed / Full text
BICD1[править]
- Kidney Allograft Telomere Length Is Not Associated with Sex, Recipient Comorbid Conditions, Post-Transplant Infections, or CMV Reactivation. / 28.06.2016 / PubMed / Full text
BIRC5[править]
- Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text
BLVRA[править]
- Attenuation of epigenetic regulator SMARCA4 and ERK-ETS signaling suppresses aging-related dopaminergic degeneration. / 09.2020 / PubMed / Full text
BMP5[править]
BNC1[править]
- Basonuclin 1 deficiency causes testicular premature aging: BNC1 cooperates with TAF7L to regulate spermatogenesis. / 22.01.2020 / PubMed / Full text
BNC2[править]
- Genetic variants associated with skin aging in the Chinese Han population. / 04.2017 / PubMed / Full text
BOC[править]
- Protein Requirements of Elderly Chinese Adults Are Higher than Current Recommendations. / 01.05.2020 / PubMed / Full text
BOK[править]
- Comparative proteomic analysis of primordial follicles from ovaries of immature and aged rats. / 2015 / PubMed / Full text
BRD3[править]
- Neuroprotective effects of targeting BET proteins for degradation with dBET1 in aged mice subjected to ischemic stroke. / 07.2019 / PubMed / Full text
BRD7[править]
- XIAP-associating factor 1, a transcriptional target of BRD7, contributes to endothelial cell senescence. / 02.02.2016 / PubMed / Full text
BRINP1[править]
- Absence of BRINP1 in mice causes increase of hippocampal neurogenesis and behavioral alterations relevant to human psychiatric disorders. / 14.02.2014 / PubMed / Full text
BSG[править]
- Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients. / 03.09.2019 / PubMed / Full text
BTG3[править]
- Investigating the specific core genetic-and-epigenetic networks of cellular mechanisms involved in human aging in peripheral blood mononuclear cells. / 23.02.2016 / PubMed / Full text
BTG4[править]
- Age-related decrease of IF5/BTG4 in oral and respiratory cavities in mice. / 2015 / PubMed / Full text
BUB1[править]
- Links between nucleolar activity, rDNA stability, aneuploidy and chronological aging in the yeast Saccharomyces cerevisiae. / 06.2014 / PubMed / Full text
C1QA[править]
- APOE Stabilization by Exercise Prevents Aging Neurovascular Dysfunction and Complement Induction. / 10.2015 / PubMed / Full text
C2CD2[править]
- Genetic variants associated with physical performance and anthropometry in old age: a genome-wide association study in the ilSIRENTE cohort. / 20.11.2017 / PubMed / Full text
C4A[править]
- Investigation of complement component C4 copy number variation in human longevity. / 2014 / PubMed / Full text
C4B[править]
- Investigation of complement component C4 copy number variation in human longevity. / 2014 / PubMed / Full text
C8orf48[править]
- Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. / 07.2014 / PubMed / Full text
CA10[править]
- Genome wide association study of age at menarche in the Japanese population. / 2013 / PubMed / Full text
CABLES1[править]
- CABLES1 Deficiency Impairs Quiescence and Stress Responses of Hematopoietic Stem Cells in Intrinsic and Extrinsic Manners. / 13.08.2019 / PubMed / Full text
CACNA1B[править]
- Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. / 10.2019 / PubMed / Full text
CACNA1F[править]
- Amyloid Precursor-Like Protein 2 deletion-induced retinal synaptopathy related to congenital stationary night blindness: structural, functional and molecular characteristics. / 08.06.2016 / PubMed / Full text
CACNA1S[править]
CACNA2D1[править]
- Pregabalin can prevent, but not treat, cognitive dysfunction following abdominal surgery in aged rats. / 01.03.2016 / PubMed / Full text
CADM2[править]
- GWAS of longevity in CHARGE consortium confirms APOE and FOXO3 candidacy. / 01.2015 / PubMed / Full text
CALHM1[править]
- CALHM1 Deletion in Mice Affects Glossopharyngeal Taste Responses, Food Intake, Body Weight, and Life Span. / 07.2015 / PubMed / Full text
CAMK2A[править]
- Nodes and biological processes identified on the basis of network analysis in the brain of the senescence accelerated mice as an Alzheimer's disease animal model. / 2013 / PubMed / Full text
CAMKK2[править]
- The GID ubiquitin ligase complex is a regulator of AMPK activity and organismal lifespan. / 09.2020 / PubMed / Full text
CAMP[править]
- [Study on effect of astragali radix polysaccharides in improving learning and memory functions in aged rats and its mechanism]. / 06.2014 / PubMed
CAMSAP1[править]
- Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex. / 2018 / PubMed / Full text
CAP1[править]
- Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. / 2019 / PubMed / Full text
CAP2[править]
- Targeting MRTF/SRF in CAP2-dependent dilated cardiomyopathy delays disease onset. / 21.03.2019 / PubMed / Full text
CAPN1[править]
- Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans. / 28.06.2016 / PubMed / Full text
CAPRIN1[править]
- Reduced Levels of the Synaptic Functional Regulator FMRP in Dentate Gyrus of the Aging Sprague-Dawley Rat. / 2017 / PubMed / Full text
CARD14[править]
- Elderly-Onset Generalized Pustular Psoriasis without a Previous History of Psoriasis Vulgaris. / 05-08.2015 / PubMed / Full text
CARMIL1[править]
- Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. / 05.03.2020 / PubMed / Full text
CASP2[править]
- Dual role of the caspase enzymes in satellite cells from aged and young subjects. / 12.12.2013 / PubMed / Full text
CASP5[править]
- Gene expression of inflammasome components in peripheral blood mononuclear cells (PBMC) of vascular patients increases with age. / 2015 / PubMed / Full text
CASP6[править]
- Dual role of the caspase enzymes in satellite cells from aged and young subjects. / 12.12.2013 / PubMed / Full text
CASP9[править]
- Dual role of the caspase enzymes in satellite cells from aged and young subjects. / 12.12.2013 / PubMed / Full text
CBR1[править]
- Age-related changes in hepatic activity and expression of detoxification enzymes in male rats. / 2013 / PubMed / Full text
CBSL[править]
- Effect of a Community-Based Service Learning Experience in Geriatrics on Internal Medicine Residents and Community Participants. / 09.2017 / PubMed / Full text
CBX1[править]
- Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text
CBX2[править]
- Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text
CBX3[править]
- Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text
CBX5[править]
- The Ubiquitin-like with PHD and Ring Finger Domains 1 (UHRF1)/DNA Methyltransferase 1 (DNMT1) Axis Is a Primary Regulator of Cell Senescence. / 03.03.2017 / PubMed / Full text
CBX6[править]
- Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text
CCAR2[править]
- CCAR-1 is a negative regulator of the heat-shock response in Caenorhabditis elegans. / 10.2018 / PubMed / Full text
CCDC102B[править]
- Development of a methylation marker set for forensic age estimation using analysis of public methylation data and the Agena Bioscience EpiTYPER system. / 09.2016 / PubMed / Full text
CCDC17[править]
CCDC71L[править]
- Sequencing of 2 subclinical atherosclerosis candidate regions in 3669 individuals: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text
CCDC85A[править]
- Genome wide association study of age at menarche in the Japanese population. / 2013 / PubMed / Full text
CCDC88A[править]
- Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. / 02.2018 / PubMed / Full text
CCL18[править]
- Age-specific changes in the molecular phenotype of patients with moderate-to-severe atopic dermatitis. / 07.2019 / PubMed / Full text
CCL23[править]
- Systemic Inflammation and the Increased Risk of Inflamm-Aging and Age-Associated Diseases in People Living With HIV on Long Term Suppressive Antiretroviral Therapy. / 2019 / PubMed / Full text
CCL25[править]
- Age-related chemokine alterations affect IgA secretion and gut immunity in female mice. / 10.2020 / PubMed / Full text
CCL26[править]
- Dendritic cells from aged subjects contribute to chronic airway inflammation by activating bronchial epithelial cells under steady state. / 11.2014 / PubMed / Full text
CCL28[править]
- Age-related chemokine alterations affect IgA secretion and gut immunity in female mice. / 10.2020 / PubMed / Full text
CCL8[править]
- Human Monocyte Subsets Are Transcriptionally and Functionally Altered in Aging in Response to Pattern Recognition Receptor Agonists. / 15.08.2017 / PubMed / Full text
CCM2[править]
CCN4[править]
CCNA1[править]
- Age-dependent human β cell proliferation induced by glucagon-like peptide 1 and calcineurin signaling. / 02.10.2017 / PubMed / Full text
CCNB2[править]
- Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text
CCND2[править]
- Oxidative stress-induced miRNAs modulate AKT signaling and promote cellular senescence in uterine leiomyoma. / 10.2018 / PubMed / Full text
CCND3[править]
- The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. / 29.07.2020 / PubMed / Full text
CCNE1[править]
- Hepatoprotective effects of hydroxysafflor yellow A in D-galactose-treated aging mice. / 15.08.2020 / PubMed / Full text
CCNE2[править]
- Circular RNA CircCCNB1 sponges micro RNA-449a to inhibit cellular senescence by targeting CCNE2. / 25.11.2019 / PubMed / Full text
CCNI[править]
- Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. / 15.08.2013 / PubMed / Full text
CCNI2[править]
- Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. / 15.08.2013 / PubMed / Full text
CCR1[править]
- Myocardial Infarction Superimposed on Aging: MMP-9 Deletion Promotes M2 Macrophage Polarization. / 04.2016 / PubMed / Full text
CCR10[править]
- Cardiac aging is initiated by matrix metalloproteinase-9-mediated endothelial dysfunction. / 15.05.2014 / PubMed / Full text
CCR9[править]
- Attenuation of migration properties of CD4 T cells from aged mice correlates with decrease in chemokine receptor expression, response to retinoic acid, and RALDH expression compared to young mice. / 2014 / PubMed / Full text
CCT8[править]
- Somatic increase of CCT8 mimics proteostasis of human pluripotent stem cells and extends C. elegans lifespan. / 28.11.2016 / PubMed / Full text
CD207[править]
- Neurogenic factor-induced Langerhans cell activation in diabetic mice with mechanical allodynia. / 14.05.2013 / PubMed / Full text
CD226[править]
- T-cell Immunoglobulin and ITIM Domain Contributes to CD8 T-cell Immunosenescence. / 04.2018 / PubMed / Full text
CD244[править]
- Association of Epigenetic Age and p16INK4a With Markers of T-Cell Composition in a Healthy Cohort. / 13.11.2020 / PubMed / Full text
CD3G[править]
- Phenotypic characteristics of aged CD4 CD28 T lymphocytes are determined by changes in the whole-genome DNA methylation pattern. / 04.2017 / PubMed / Full text
CD48[править]
- Genetic overexpression of COMP-Ang1 impairs BM microenvironment and induces senescence of BM HSCs. / 15.05.2018 / PubMed / Full text
CD55[править]
- Loss of complement regulatory proteins on uninfected erythrocytes in vivax and falciparum malaria anemia. / 15.11.2018 / PubMed / Full text
CD59[править]
- Red Blood Cell Homeostasis and Altered Vesicle Formation in Patients With Paroxysmal Nocturnal Hemoglobinuria. / 2019 / PubMed / Full text
CD6[править]
- Epigenetic age predictions based on buccal swabs are more precise in combination with cell type-specific DNA methylation signatures. / 05.2016 / PubMed / Full text
CD72[править]
- Crucial Role of Increased Arid3a at the Pre-B and Immature B Cell Stages for B1a Cell Generation. / 2019 / PubMed / Full text
CD82[править]
- Cell-surface phenotyping identifies CD36 and CD97 as novel markers of fibroblast quiescence in lung fibrosis. / 01.11.2018 / PubMed / Full text
CD83[править]
- Human mesothelioma induces defects in dendritic cell numbers and antigen-processing function which predict survival outcomes. / 02.2016 / PubMed / Full text
CD8A[править]
- Systemic Inflammation and the Increased Risk of Inflamm-Aging and Age-Associated Diseases in People Living With HIV on Long Term Suppressive Antiretroviral Therapy. / 2019 / PubMed / Full text
CD8B[править]
- Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text
CDC20[править]
- Premature aging syndrome showing random chromosome number instabilities with CDC20 mutation. / 11.2020 / PubMed / Full text
CDC5L[править]
- Comparative transcriptome analysis of Parkinson's disease and Hutchinson-Gilford progeria syndrome reveals shared susceptible cellular network processes. / 18.08.2020 / PubMed / Full text
CDC6[править]
- A prototypical non-malignant epithelial model to study genome dynamics and concurrently monitor micro-RNAs and proteins in situ during oncogene-induced senescence. / 10.01.2018 / PubMed / Full text
CDC7[править]
- CHO cell culture longevity and recombinant protein yield are enhanced by depletion of miR-7 activity via sponge decoy vectors. / 03.2014 / PubMed / Full text
CDC73[править]
- Down-regulation of cancer-associated gene CDC73 contributes to cellular senescence. / 23.05.2018 / PubMed / Full text
CDCA3[править]
- Expression of CDCA3 Is a Prognostic Biomarker and Potential Therapeutic Target in Non-Small Cell Lung Cancer. / 07.2017 / PubMed / Full text
CDCA4[править]
- A multidimensional systems biology analysis of cellular senescence in aging and disease. / 07.04.2020 / PubMed / Full text
CDH2[править]
- CellBIC: bimodality-based top-down clustering of single-cell RNA sequencing data reveals hierarchical structure of the cell type. / 30.11.2018 / PubMed / Full text
CDH23[править]
- Compound heterozygosity of the functionally null Cdh23(v-ngt) and hypomorphic Cdh23(ahl) alleles leads to early-onset progressive hearing loss in mice. / 2013 / PubMed / Full text
CDK16[править]
- Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. / 15.08.2013 / PubMed / Full text
CDK18[править]
- Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. / 15.08.2013 / PubMed / Full text
CDK3[править]
- Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. / 15.08.2013 / PubMed / Full text
CDK8[править]
- Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. / 15.08.2013 / PubMed / Full text
CDK9[править]
- Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. / 15.08.2013 / PubMed / Full text
CDKN2C[править]
- Elevated circulating HtrA4 in preeclampsia may alter endothelial expression of senescence genes. / 15.01.2020 / PubMed / Full text
CDO1[править]
- The intervention effect of licorice in d-galactose induced aging rats by regulating the taurine metabolic pathway. / 19.09.2018 / PubMed / Full text
CDR2[править]
- Neuro-degeneration profile of Alzheimer's patients: A brain morphometry study. / 2017 / PubMed / Full text
CEACAM1[править]
- Aging-related carcinoembryonic antigen-related cell adhesion molecule 1 signaling promotes vascular dysfunction. / 12.2019 / PubMed / Full text
CEBPA[править]
- Permanent cystathionine-β-Synthase gene knockdown promotes inflammation and oxidative stress in immortalized human adipose-derived mesenchymal stem cells, enhancing their adipogenic capacity. / 02.08.2020 / PubMed / Full text
CEBPD[править]
- Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. / 10.2019 / PubMed / Full text
CEBPE[править]
- Identification and genomic analysis of pedigrees with exceptional longevity identifies candidate rare variants. / 09.2020 / PubMed / Full text
CELSR2[править]
- Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. / 10.2016 / PubMed / Full text
CEP55[править]
- Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text
CEP57[править]
- BubR1 allelic effects drive phenotypic heterogeneity in mosaic-variegated aneuploidy progeria syndrome. / 02.01.2020 / PubMed / Full text
CEP95[править]
- Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text
CERK[править]
- MicroRNA-34a causes ceramide accumulation and effects insulin signaling pathway by targeting ceramide kinase (CERK) in aging skeletal muscle. / 06.2020 / PubMed / Full text
CFL2[править]
- Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. / 2019 / PubMed / Full text
CFLAR[править]
- Senescence-secreted factors activate Myc and sensitize pretransformed cells to TRAIL-induced apoptosis. / 06.2014 / PubMed / Full text
CH25H[править]
- Atherosclerosis and Alzheimer--diseases with a common cause? Inflammation, oxysterols, vasculature. / 21.03.2014 / PubMed / Full text
CHMP1B[править]
- Overexpression of CHMP7 from rapeseed and Arabidopsis causes dwarfism and premature senescence in Arabidopsis. / 01.10.2016 / PubMed / Full text
CHMP2B[править]
- Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis. / 24.02.2016 / PubMed / Full text
CHMP4C[править]
- Silencing of human papillomavirus (HPV) E6/E7 oncogene expression affects both the contents and the amounts of extracellular microvesicles released from HPV-positive cancer cells. / 01.10.2013 / PubMed / Full text
CHMP7[править]
- Overexpression of CHMP7 from rapeseed and Arabidopsis causes dwarfism and premature senescence in Arabidopsis. / 01.10.2016 / PubMed / Full text
CHRDL1[править]
- Identification of Human Juvenile Chondrocyte-Specific Factors that Stimulate Stem Cell Growth. / 04.2016 / PubMed / Full text
CHRFAM7A[править]
- Acetylcholinesterase inhibitors targeting the cholinergic anti-inflammatory pathway: a new therapeutic perspective in aging-related disorders. / 03.10.2019 / PubMed / Full text
CHRM2[править]
- Aging-related changes in the gene expression profile of human lungs. / 09.11.2020 / PubMed / Full text
CHRM4[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
CHRNA7[править]
- Associations between genetic variations and global motion perception. / 10.2019 / PubMed / Full text
CHRNE[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
CHSY1[править]
- Loss of Chondroitin Sulfate Modification Causes Inflammation and Neurodegeneration in [i]skt[/i] Mice. / 01.2020 / PubMed / Full text
CIC[править]
- Cell-in-cell structures are more potent predictors of outcome than senescence or apoptosis in head and neck squamous cell carcinomas. / 18.01.2017 / PubMed / Full text
CILP[править]
- Fibrotic-like changes in degenerate human intervertebral discs revealed by quantitative proteomic analysis. / 03.2016 / PubMed / Full text
CILP2[править]
- Fibrotic-like changes in degenerate human intervertebral discs revealed by quantitative proteomic analysis. / 03.2016 / PubMed / Full text
CINP[править]
- Neuropathology-driven Whole-genome Sequencing Study Points to Novel Candidate Genes for Healthy Brain Aging. / 01-03.2019 / PubMed / Full text
CITED2[править]
- Downregulation of CITED2 contributes to TGFβ-mediated senescence of tendon-derived stem cells. / 04.2017 / PubMed / Full text
CIZ1[править]
CKAP2[править]
- A multidimensional systems biology analysis of cellular senescence in aging and disease. / 07.04.2020 / PubMed / Full text
CLCN6[править]
- DNA methylation levels at individual age-associated CpG sites can be indicative for life expectancy. / 02.2016 / PubMed / Full text
CLEC4E[править]
- Comparative analysis of microbial sensing molecules in mucosal tissues with aging. / 03.2018 / PubMed / Full text
CLPTM1[править]
- Two-stage Bayesian GWAS of 9576 individuals identifies SNP regions that are targeted by miRNAs inversely expressed in Alzheimer's and cancer. / 01.2020 / PubMed / Full text
CMA1[править]
- Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text
CMKLR1[править]
- Chemerin facilitates intervertebral disc degeneration via TLR4 and CMKLR1 and activation of NF-kB signaling pathway. / 11.06.2020 / PubMed / Full text
CNGA3[править]
- DNA methylation-based age prediction from saliva: High age predictability by combination of 7 CpG markers. / 07.2017 / PubMed / Full text
CNKSR3[править]
- Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. / 12.2019 / PubMed / Full text
CNOT6[править]
- miR-29c-3p promotes senescence of human mesenchymal stem cells by targeting CNOT6 through p53-p21 and p16-pRB pathways. / 04.2016 / PubMed / Full text
CNTNAP4[править]
- A common copy number variation (CNV) polymorphism in the CNTNAP4 gene: association with aging in females. / 2013 / PubMed / Full text
CNTRL[править]
- Antioxidant status, lipid and color stability of aged beef from grazing steers supplemented with corn grain and increasing levels of flaxseed. / 01.2016 / PubMed / Full text
COG1[править]
- PRX2 and PRX25, peroxidases regulated by COG1, are involved in seed longevity in Arabidopsis. / 02.2020 / PubMed / Full text
COL12A1[править]
COL13A1[править]
- [Alu insertion-deletion polymorphism of COL13A1 and LAMA2 genes: The analysis of association with longevity]. / 10.2016 / PubMed
COL15A1[править]
- Smooth muscle cell-specific deletion of [i]Col15a1[/i] unexpectedly leads to impaired development of advanced atherosclerotic lesions. / 01.05.2017 / PubMed / Full text
COL17A1[править]
- Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. / 05.02.2016 / PubMed / Full text
COL4A3[править]
- Frequency of COL4A3/COL4A4 mutations amongst families segregating glomerular microscopic hematuria and evidence for activation of the unfolded protein response. Focal and segmental glomerulosclerosis is a frequent development during ageing. / 2014 / PubMed / Full text
COL7A1[править]
- Biological Effects Induced by Specific Advanced Glycation End Products in the Reconstructed Skin Model of Aging. / 2015 / PubMed / Full text
COL9A1[править]
- Enhanced tissue regeneration potential of juvenile articular cartilage. / 11.2013 / PubMed / Full text
COQ5[править]
- Reduction in the levels of CoQ biosynthetic proteins is related to an increase in lifespan without evidence of hepatic mitohormesis. / 18.09.2018 / PubMed / Full text
COQ6[править]
- Reduction in the levels of CoQ biosynthetic proteins is related to an increase in lifespan without evidence of hepatic mitohormesis. / 18.09.2018 / PubMed / Full text
COQ9[править]
- Reduction in the levels of CoQ biosynthetic proteins is related to an increase in lifespan without evidence of hepatic mitohormesis. / 18.09.2018 / PubMed / Full text
COX5A[править]
- COX5A Plays a Vital Role in Memory Impairment Associated With Brain Aging [i]via[/i] the BDNF/ERK1/2 Signaling Pathway. / 2020 / PubMed / Full text
COX7A2[править]
- Proteomics Analysis to Identify and Characterize the Biomarkers and Physical Activities of Non-Frail and Frail Older Adults. / 2017 / PubMed / Full text
CPA3[править]
- Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text
CPB2[править]
- Characterization of Clostridium perfringens in the feces of adult horses and foals with acute enterocolitis. / 01.2014 / PubMed / Full text
CPSF1[править]
- Genome-wide association study for lactation persistency, female fertility, longevity, and lifetime profit index traits in Holstein dairy cattle. / 02.2017 / PubMed / Full text
CPT1A[править]
- Alteration of fatty acid oxidation by increased CPT1A on replicative senescence of placenta-derived mesenchymal stem cells. / 03.01.2020 / PubMed / Full text
CR2[править]
- Age-related but not longevity-related genes are found by weighted gene co-expression network analysis in the peripheral blood cells of humans. / 19.01.2019 / PubMed / Full text
CRB1[править]
- MPP3 regulates levels of PALS1 and adhesion between photoreceptors and Müller cells. / 10.2013 / PubMed / Full text
CRBN[править]
- Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity. / 24.04.2020 / PubMed / Full text
CREB1[править]
- Arginine Methyltransferase PRMT8 Provides Cellular Stress Tolerance in Aging Motoneurons. / 29.08.2018 / PubMed / Full text
CREBL2[править]
- Global Characteristics of CSIG-Associated Gene Expression Changes in Human HEK293 Cells and the Implications for CSIG Regulating Cell Proliferation and Senescence. / 2015 / PubMed / Full text
CREG1[править]
- CREG1 ameliorates myocardial fibrosis associated with autophagy activation and Rab7 expression. / 02.2015 / PubMed / Full text
CRIP2[править]
- Transcriptomics of cortical gray matter thickness decline during normal aging. / 15.11.2013 / PubMed / Full text
CRISPLD2[править]
- A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass. / 20.06.2019 / PubMed / Full text
CRK[править]
CRTC1[править]
- TRPV1 pain receptors regulate longevity and metabolism by neuropeptide signaling. / 22.05.2014 / PubMed / Full text
CRTC3[править]
- A nutrigenomics approach for the study of anti-aging interventions: olive oil phenols and the modulation of gene and microRNA expression profiles in mouse brain. / 03.2017 / PubMed / Full text
CRX[править]
- Transcription coactivators p300 and CBP are necessary for photoreceptor-specific chromatin organization and gene expression. / 2013 / PubMed / Full text
CRYAA[править]
- Polymorphism rs7278468 is associated with Age-related cataract through decreasing transcriptional activity of the CRYAA promoter. / 17.03.2016 / PubMed / Full text
CRYL1[править]
- Lipid and Alzheimer's disease genes associated with healthy aging and longevity in healthy oldest-old. / 28.03.2017 / PubMed / Full text
CSAD[править]
- The intervention effect of licorice in d-galactose induced aging rats by regulating the taurine metabolic pathway. / 19.09.2018 / PubMed / Full text
CSF1[править]
- Pleiotropic effects of extended blockade of CSF1R signaling in adult mice. / 08.2014 / PubMed / Full text
CSF3R[править]
- Both Granulocytic and Non-Granulocytic Blood Cells Are Affected in Patients with Severe Congenital Neutropenia and Their Non-Neutropenic Family Members: An Evaluation of Morphology, Function, and Cell Death / 13.11.2018 / PubMed / Full text
CSGALNACT1[править]
- Alterations in the chondroitin sulfate chain in human osteoarthritic cartilage of the knee. / 02.2014 / PubMed / Full text
CSN2[править]
- Autophagic homeostasis is required for the pluripotency of cancer stem cells. / 02.2017 / PubMed / Full text
CSNK1D[править]
- DNA methylation-based forensic age prediction using artificial neural networks and next generation sequencing. / 05.2017 / PubMed / Full text
CSNK1G2[править]
- Casein kinase 1G2 suppresses necroptosis-promoted testis aging by inhibiting receptor-interacting kinase 3. / 18.11.2020 / PubMed / Full text
CST3[править]
- Improved lipids, diastolic pressure and kidney function are potential contributors to familial longevity: a study on 60 Chinese centenarian families. / 25.02.2016 / PubMed / Full text
CST5[править]
- Systemic Inflammation and the Increased Risk of Inflamm-Aging and Age-Associated Diseases in People Living With HIV on Long Term Suppressive Antiretroviral Therapy. / 2019 / PubMed / Full text
CSTF2T[править]
- Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text
CTNS[править]
- Reducing INS-IGF1 signaling protects against non-cell autonomous vesicle rupture caused by SNCA spreading. / 05.2020 / PubMed / Full text
CTSA[править]
- A CTSA-based consultation service to advance research on special and underserved populations. / 16.01.2020 / PubMed / Full text
CTSC[править]
- Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis. / 24.02.2016 / PubMed / Full text
CTSK[править]
- Transcriptome Analysis of B Cell Immune Functions in Periodontitis: Mucosal Tissue Responses to the Oral Microbiome in Aging. / 2016 / PubMed / Full text
CTSS[править]
- SIRT6 histone deacetylase functions as a potential oncogene in human melanoma. / 09.2017 / PubMed / Full text
CTU2[править]
- Chromosomal alterations among age-related haematopoietic clones in Japan. / 08.2020 / PubMed / Full text
CTXND1[править]
- Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. / 03.2020 / PubMed / Full text
CUBN[править]
CUL3[править]
- KLHL22 activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing. / 05.2018 / PubMed / Full text
CUL4B[править]
- CUL4B impedes stress-induced cellular senescence by dampening a p53-reactive oxygen species positive feedback loop. / 02.2015 / PubMed / Full text
CUX1[править]
- Identification of key genes and transcription factors in aging mesenchymal stem cells by DNA microarray data. / 15.04.2019 / PubMed / Full text
CXCL14[править]
CXCL17[править]
- [Age-related aspects of the involvement of heat shock proteins in the pathogenesis of osteoarthritis]. / 2017 / PubMed
CXCR6[править]
- CXCR6 Inhibits Hepatocarcinogenesis by Promoting Natural Killer T- and CD4 T-Cell-Dependent Control of Senescence. / 05.2019 / PubMed / Full text
CXXC1[править]
- The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. / 29.09.2020 / PubMed / Full text
CXXC5[править]
- Length of paternal lifespan is manifested in the DNA methylome of their nonagenarian progeny. / 13.10.2015 / PubMed / Full text
CYB5R3[править]
- Overexpression of CYB5R3 and NQO1, two NAD -producing enzymes, mimics aspects of caloric restriction. / 08.2018 / PubMed / Full text
CYBA[править]
- [Association between 242C > T polymorphism of NADPH oxidase p22phox gene (CYBA) and longevity in Russian population]. / 03.2013 / PubMed / Full text
CYCS[править]
- The Impact of Age and Sex in DLBCL: Systems Biology Analyses Identify Distinct Molecular Changes and Signaling Networks. / 2015 / PubMed / Full text
CYP11B1[править]
- Intratumoral heterogeneity of the tumor cells based on in situ cortisol excess in cortisol-producing adenomas; ∼An association among morphometry, genotype and cellular senescence∼. / 11.2020 / PubMed / Full text
CYP26A1[править]
- Genetics of Human Longevity From Incomplete Data: New Findings From the Long Life Family Study. / 08.10.2018 / PubMed / Full text
CYP26B1[править]
- Increased Retinoic Acid Catabolism in Olfactory Sensory Neurons Activates Dormant Tissue-Specific Stem Cells and Accelerates Age-Related Metaplasia. / 20.05.2020 / PubMed / Full text
CYP2B6[править]
- Developmental Expression of CYP2B6: A Comprehensive Analysis of mRNA Expression, Protein Content and Bupropion Hydroxylase Activity and the Impact of Genetic Variation. / 07.2016 / PubMed / Full text
CYP2U1[править]
- Genetic variants associated with lung function: the long life family study. / 01.11.2014 / PubMed / Full text
CYP4X1[править]
- Sex- and age-dependent gene expression in human liver: An implication for drug-metabolizing enzymes. / 02.2017 / PubMed / Full text
CYP8B1[править]
- Synergic hypocholesterolaemic effect of n-3 PUFA and oestrogen by modulation of hepatic cholesterol metabolism in female rats. / 14.12.2015 / PubMed / Full text
CYSLTR2[править]
- Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. / 03.2020 / PubMed / Full text
DAPK2[править]
- SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text
DCAF17[править]
- Deletion of DDB1- and CUL4- associated factor-17 (Dcaf17) gene causes spermatogenesis defects and male infertility in mice. / 15.06.2018 / PubMed / Full text
DCAF7[править]
- Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text
DCHS1[править]
- The atypical cadherin Dachsous1 localizes to the base of the ciliary apparatus in airway epithelia. / 13.05.2016 / PubMed / Full text
DCLRE1C[править]
- Polymorphisms of the DNA repair gene EXO1 modulate cognitive aging in old adults in a Taiwanese population. / 06.2019 / PubMed / Full text
DCTN1[править]
- Alteration of Motor Protein Expression Involved in Bidirectional Transport in Peripheral Blood Mononuclear Cells of Patients with Amyotrophic Lateral Sclerosis. / 2016 / PubMed / Full text
DCTN2[править]
- Dynactin pathway-related gene expression is altered by aging, but not by vitrification. / 09.2019 / PubMed / Full text
DCTN6[править]
- Dynactin pathway-related gene expression is altered by aging, but not by vitrification. / 09.2019 / PubMed / Full text
DCXR[править]
- Dicarbonyl/l-xylulose reductase (DCXR): The multifunctional pentosuria enzyme. / 11.2013 / PubMed / Full text
DDI2[править]
- Androgen receptor polyglutamine expansion drives age-dependent quality control defects and muscle dysfunction. / 01.08.2018 / PubMed / Full text
DDIT3[править]
- Inhibition of glioma growth by flavokawain B is mediated through endoplasmic reticulum stress induced autophagy. / 2018 / PubMed / Full text
DDR1[править]
- Age-related modifications of type I collagen impair DDR1-induced apoptosis in non-invasive breast carcinoma cells. / 2018 / PubMed / Full text
DDX25[править]
- Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice. / 01.2020 / PubMed / Full text
DEFB1[править]
- Association of Polymorphisms in Innate Immunity Genes TLR9 and DEFB1 with Human Longevity. / 05.2015 / PubMed / Full text
DEFB4B[править]
- Different expression of Defensin-B gene in the endometrium of mares of different age during the breeding season. / 21.12.2019 / PubMed / Full text
DEK[править]
- Altered miRNA and mRNA Expression in Sika Deer Skeletal Muscle with Age. / 06.02.2020 / PubMed / Full text
DEPDC1[править]
- Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text
DEPDC5[править]
- KLHL22 activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing. / 05.2018 / PubMed / Full text
DEPTOR[править]
DGAT2[править]
- Expression of lipogenic markers is decreased in subcutaneous adipose tissue and adipocytes of older women and is negatively linked to GDF15 expression. / 08.2019 / PubMed / Full text
DHCR7[править]
- Environmental and genetic determinants of vitamin D status among older adults in London, UK. / 11.2016 / PubMed / Full text
DHRS2[править]
- Acute HSF1 depletion induces cellular senescence through the MDM2-p53-p21 pathway in human diploid fibroblasts. / 08.05.2018 / PubMed / Full text
DHX57[править]
- Genetic variants near MLST8 and DHX57 affect the epigenetic age of the cerebellum. / 02.02.2016 / PubMed / Full text
DIP2A[править]
DKK3[править]
- Phosphatase WIP1 regulates adult neurogenesis and WNT signaling during aging. / 07.2014 / PubMed / Full text
DLAT[править]
- Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. / 02.2018 / PubMed / Full text
DLG1[править]
- Altered expression of genes for Kir ion channels in dilated cardiomyopathy. / 08.2013 / PubMed / Full text
DLGAP2[править]
- Cross-Species Analyses Identify Dlgap2 as a Regulator of Age-Related Cognitive Decline and Alzheimer's Dementia. / 01.09.2020 / PubMed / Full text
DLK1[править]
- Dual role of delta-like 1 homolog (DLK1) in skeletal muscle development and adult muscle regeneration. / 09.2013 / PubMed / Full text
DLL1[править]
- MiR-34a Enhances Chondrocyte Apoptosis, Senescence and Facilitates Development of Osteoarthritis by Targeting DLL1 and Regulating PI3K/AKT Pathway. / 2018 / PubMed / Full text
DLL4[править]
- Dynamic regulation of NOTCH1 activation and Notch ligand expression in human thymus development. / 13.08.2018 / PubMed / Full text
DLX2[править]
- A gain-of-function senescence bypass screen identifies the homeobox transcription factor DLX2 as a regulator of ATM-p53 signaling. / 01.02.2016 / PubMed / Full text
DMPK[править]
- Expanded CUG Repeats Trigger Disease Phenotype and Expression Changes through the RNAi Machinery in C. elegans. / 19.04.2019 / PubMed / Full text
DMRT1[править]
- The Jak-STAT target Chinmo prevents sex transformation of adult stem cells in the Drosophila testis niche. / 24.11.2014 / PubMed / Full text
DNAJB9[править]
- DNAJB9 Inhibits p53-Dependent Oncogene-Induced Senescence and Induces Cell Transformation. / 30.04.2020 / PubMed / Full text
DNAJC2[править]
- ZRF1 is a novel S6 kinase substrate that drives the senescence programme. / 15.03.2017 / PubMed / Full text
DNM1[править]
- Increased Degradation Rates in the Components of the Mitochondrial Oxidative Phosphorylation Chain in the Cerebellum of Old Mice. / 2018 / PubMed / Full text
DNM1L[править]
- Aberrant mitochondrial morphology and function associated with impaired mitophagy and DNM1L-MAPK/ERK signaling are found in aged mutant Parkinsonian LRRK2 mice. / 10.12.2020 / PubMed / Full text
DNM2[править]
- Tamoxifen prolongs survival and alleviates symptoms in mice with fatal X-linked myotubular myopathy. / 19.11.2018 / PubMed / Full text
DNMT3L[править]
- Transient DNMT3L Expression Reinforces Chromatin Surveillance to Halt Senescence Progression in Mouse Embryonic Fibroblast. / 2020 / PubMed / Full text
DOCK7[править]
DPP6[править]
- A novel structure associated with aging is augmented in the DPP6-KO mouse brain. / 23.11.2020 / PubMed / Full text
DPYSL2[править]
- Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. / 2019 / PubMed / Full text
DRAM2[править]
- SIRT6 histone deacetylase functions as a potential oncogene in human melanoma. / 09.2017 / PubMed / Full text
DSC1[править]
DSC2[править]
- Age-dependent clinical and genetic characteristics in Japanese patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. / 2013 / PubMed / Full text
DSG1[править]
- Genetic effects on information processing speed are moderated by age--converging results from three samples. / 06.2014 / PubMed / Full text
DTL[править]
- Targeting DTL induces cell cycle arrest and senescence and suppresses cell growth and colony formation through TPX2 inhibition in human hepatocellular carcinoma cells. / 2018 / PubMed / Full text
DTNBP1[править]
DTX1[править]
- Analysis of diarrhetic shellfish poisoning toxins and pectenotoxin-2 in the bottlenose dolphin (Tursiops truncatus) by liquid chromatography-tandem mass spectrometry. / 16.10.2015 / PubMed / Full text
DTX2[править]
- Analysis of diarrhetic shellfish poisoning toxins and pectenotoxin-2 in the bottlenose dolphin (Tursiops truncatus) by liquid chromatography-tandem mass spectrometry. / 16.10.2015 / PubMed / Full text
DUOX1[править]
- Lifespan extension by peroxidase and dual oxidase-mediated ROS signaling through pyrroloquinoline quinone in [i]C. elegans[/i]. / 01.08.2017 / PubMed / Full text
DUOX2[править]
- Lifespan extension by peroxidase and dual oxidase-mediated ROS signaling through pyrroloquinoline quinone in [i]C. elegans[/i]. / 01.08.2017 / PubMed / Full text
DUSP1[править]
DUSP6[править]
- Protection of CD4 T cells from hepatitis C virus infection-associated senescence via ΔNp63-miR-181a-Sirt1 pathway. / 11.2016 / PubMed / Full text
DUSP8[править]
- MiR-21-5p/dual-specificity phosphatase 8 signalling mediates the anti-inflammatory effect of haem oxygenase-1 in aged intracerebral haemorrhage rats. / 12.2019 / PubMed / Full text
DUT[править]
- Simultaneous liquefaction, saccharification, and fermentation of L-lactic acid using aging paddy rice with hull by an isolated thermotolerant Enterococcus faecalis DUT1805. / 09.2020 / PubMed / Full text
DVL1[править]
- DNA methylation patterns associated with oxidative stress in an ageing population. / 25.11.2016 / PubMed / Full text
DYNC1H1[править]
- Dynein mutations associated with hereditary motor neuropathies impair mitochondrial morphology and function with age. / 10.2013 / PubMed / Full text
DYNC2H1[править]
- Role for intraflagellar transport in building a functional transition zone. / 12.2018 / PubMed / Full text
DYNLT3[править]
- Age-associated genes in human mammary gland drive human breast cancer progression. / 15.06.2020 / PubMed / Full text
ECE1[править]
- Ferulic Acid Suppresses Amyloid [i]β[/i] Production in the Human Lens Epithelial Cell Stimulated with Hydrogen Peroxide. / 2017 / PubMed / Full text
ECRG4[править]
ECSIT[править]
- Longevity-related molecular pathways are subject to midlife "switch" in humans. / 08.2019 / PubMed / Full text
EDAR[править]
- Pharmacological stimulation of Edar signaling in the adult enhances sebaceous gland size and function. / 02.2015 / PubMed / Full text
EDEM1[править]
- Expression of lipogenic markers is decreased in subcutaneous adipose tissue and adipocytes of older women and is negatively linked to GDF15 expression. / 08.2019 / PubMed / Full text
EDF1[править]
- Silencing of FOREVER YOUNG FLOWER Like Genes from Phalaenopsis Orchids Promotes Flower Senescence and Abscission. / 25.11.2020 / PubMed / Full text
EDNRA[править]
- Variation in genes in the endothelin pathway and endothelium-dependent and endothelium-independent vasodilation in an elderly population. / 05.2013 / PubMed / Full text
EEA1[править]
- Quantitative Immunoblotting Analyses Reveal that the Abundance of Actin, Tubulin, Synaptophysin and EEA1 Proteins is Altered in the Brains of Aged Mice. / 21.08.2020 / PubMed / Full text
EEF1A1[править]
- Bioinformatics analysis of proteomics profiles in senescent human primary proximal tubule epithelial cells. / 01.04.2016 / PubMed / Full text
EEF2[править]
- Bioinformatics analysis of proteomics profiles in senescent human primary proximal tubule epithelial cells. / 01.04.2016 / PubMed / Full text
EFCAB5[править]
- Genetic architecture of epigenetic and neuronal ageing rates in human brain regions. / 18.05.2017 / PubMed / Full text
EFNB1[править]
- Activation of EphA4 and EphB2 Reverse Signaling Restores the Age-Associated Reduction of Self-Renewal, Migration, and Actin Turnover in Human Tendon Stem/Progenitor Cells. / 2015 / PubMed / Full text
EFNB2[править]
- Cartilage-specific deletion of ephrin-B2 in mice results in early developmental defects and an osteoarthritis-like phenotype during aging in vivo. / 15.03.2016 / PubMed / Full text
EGFEM1P[править]
- Identifying blood-specific age-related DNA methylation markers on the Illumina MethylationEPIC® BeadChip. / 10.2019 / PubMed / Full text
EGR2[править]
- Age-related impairment of bones' adaptive response to loading in mice is associated with sex-related deficiencies in osteoblasts but no change in osteocytes. / 08.2014 / PubMed / Full text
EHMT1[править]
EID3[править]
- Upregulation of EID3 sensitizes breast cancer cells to ionizing radiation-induced cellular senescence. / 11.2018 / PubMed / Full text
EIF2AK3[править]
- The unfolded protein response is activated in disease-affected brain regions in progressive supranuclear palsy and Alzheimer's disease. / 06.07.2013 / PubMed / Full text
EIF2B2[править]
- Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of CSF1R and NOTCH3. / 06.2018 / PubMed / Full text
EIF2B3[править]
- Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of CSF1R and NOTCH3. / 06.2018 / PubMed / Full text
EIF2B4[править]
- Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of CSF1R and NOTCH3. / 06.2018 / PubMed / Full text
EIF4E[править]
- Transcriptomic evidence that insulin signalling pathway regulates the ageing of subterranean termite castes. / 18.05.2020 / PubMed / Full text
EIF4EBP1[править]
- Peripheral Circulating Exosomal miRNAs Potentially Contribute to the Regulation of Molecular Signaling Networks in Aging. / 11.03.2020 / PubMed / Full text
ELANE[править]
- Both Granulocytic and Non-Granulocytic Blood Cells Are Affected in Patients with Severe Congenital Neutropenia and Their Non-Neutropenic Family Members: An Evaluation of Morphology, Function, and Cell Death / 13.11.2018 / PubMed / Full text
ELK1[править]
- Tocotrienol-rich fraction prevents cellular aging by modulating cell proliferation signaling pathways. / 2015 / PubMed / Full text
ELL[править]
- Exceptional Longevity and Polygenic Risk for Cardiovascular Health. / 18.03.2019 / PubMed / Full text
ELN[править]
- Curcumin enhances the production of major structural components of elastic fibers, elastin, and fibrillin-1, in normal human fibroblast cells. / 2015 / PubMed / Full text
ELOVL6[править]
- An Adult Drosophila Glioma Model for Studying Pathometabolic Pathways of Gliomagenesis. / 06.2019 / PubMed / Full text
EMILIN2[править]
- Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text
EML6[править]
ENPEP[править]
- Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text
ENTPD1[править]
- Ecto-NTPDase CD39 is a negative checkpoint that inhibits follicular helper cell generation. / 01.07.2020 / PubMed / Full text
EPG5[править]
- Genome-wide scan of depressive symptomatology in two representative cohorts in the United States and the United Kingdom. / 05.2018 / PubMed / Full text
EPHA3[править]
- A high-content cellular senescence screen identifies candidate tumor suppressors, including EPHA3. / 15.02.2013 / PubMed / Full text
EPHA7[править]
ERAP1[править]
- Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. / 10.2019 / PubMed / Full text
ERBB3[править]
- [The expression of differential and matrix remodelling factors in human buccal epithelium in aging]. / 2013 / PubMed
ERBB4[править]
- Overexpression of ERBB4 rejuvenates aged mesenchymal stem cells and enhances angiogenesis via PI3K/AKT and MAPK/ERK pathways. / 03.2019 / PubMed / Full text
ERCC2[править]
- The genetic component of human longevity: New insights from the analysis of pathway-based SNP-SNP interactions. / 06.2018 / PubMed / Full text
ERCC5[править]
- Identification of a ERCC5 c.2333T>C (L778P) Variant in Two Tunisian Siblings With Mild Xeroderma Pigmentosum Phenotype. / 2019 / PubMed / Full text
ERCC8[править]
- Analysis of somatic mutations identifies signs of selection during in vitro aging of primary dermal fibroblasts. / 12.2019 / PubMed / Full text
EREG[править]
- Effects of aging on gene expression and mitochondrial DNA in the equine oocyte and follicle cells. / 07.2015 / PubMed / Full text
ERVK-7[править]
- Effect of aging on the transcriptomic changes associated with the expression of the HERV-K (HML-2) provirus at 1q22. / 2020 / PubMed / Full text
ESCO1[править]
- Global Characteristics of CSIG-Associated Gene Expression Changes in Human HEK293 Cells and the Implications for CSIG Regulating Cell Proliferation and Senescence. / 2015 / PubMed / Full text
ESPL1[править]
- Identification and genomic analysis of pedigrees with exceptional longevity identifies candidate rare variants. / 09.2020 / PubMed / Full text
ESRG[править]
- MYC Releases Early Reprogrammed Human Cells from Proliferation Pause via Retinoblastoma Protein Inhibition. / 10.04.2018 / PubMed / Full text
ETFA[править]
- Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone. / 07.2014 / PubMed / Full text
ETNK2[править]
- In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. / 12.2019 / PubMed / Full text
ETV1[править]
- Survival analyses in Holstein cows considering direct disease diagnoses and specific SNP marker effects. / 09.2020 / PubMed / Full text
ETV5[править]
- miR-19b-3p induces cell proliferation and reduces heterochromatin-mediated senescence through PLZF in goat male germline stem cells. / 06.2018 / PubMed / Full text
ETV6[править]
- FOXO1 and ETV6 genes may represent novel regulators of splicing factor expression in cellular senescence. / 01.2019 / PubMed / Full text
EVC[править]
- Decreased centrality of subcortical regions during the transition to adolescence: a functional connectivity study. / 01.01.2015 / PubMed / Full text
EVL[править]
- Health Years in Total: A New Health Objective Function for Cost-Effectiveness Analysis. / 01.2020 / PubMed / Full text
EXD2[править]
- EXD2 governs germ stem cell homeostasis and lifespan by promoting mitoribosome integrity and translation. / 02.2018 / PubMed / Full text
EXOC3L2[править]
- Gene-based aggregate SNP associations between candidate AD genes and cognitive decline. / 04.2016 / PubMed / Full text
EXOC7[править]
- PTBP1-Mediated Alternative Splicing Regulates the Inflammatory Secretome and the Pro-tumorigenic Effects of Senescent Cells. / 09.07.2018 / PubMed / Full text
EYA4[править]
- A Large Genome-Wide Association Study of Age-Related Hearing Impairment Using Electronic Health Records. / 10.2016 / PubMed / Full text
EYS[править]
- Ablation of EYS in zebrafish causes mislocalisation of outer segment proteins, F-actin disruption and cone-rod dystrophy. / 05.04.2017 / PubMed / Full text
EZH1[править]
- Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text
F10[править]
- Hydroalcoholic extract of Spartium junceum L. flowers inhibits growth and melanogenesis in B16-F10 cells by inducing senescence. / 15.07.2018 / PubMed / Full text
F11[править]
- A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. / 07.2013 / PubMed / Full text
F11R[править]
- [Adhesion molecule JAM-A, its function and mechanism of epigenetic regulation]. / 2015 / PubMed
F12[править]
- Multigenerational effects of carbendazim in Daphnia magna: From a subcellular to a population level. / 02.2019 / PubMed / Full text
FA2H[править]
- C. Elegans Fatty Acid Two-Hydroxylase Regulates Intestinal Homeostasis by Affecting Heptadecenoic Acid Production. / 2018 / PubMed / Full text
FADS2[править]
FAM13A[править]
- Trade-offs in aging lung diseases: a review on shared but opposite genetic risk variants in idiopathic pulmonary fibrosis, lung cancer and chronic obstructive pulmonary disease. / 05.2018 / PubMed / Full text
FANCC[править]
- Fanconi Anemia complementation group C protein in metabolic disorders. / 21.06.2018 / PubMed / Full text
FAT4[править]
- Neuron-specific knockdown of the Drosophila fat induces reduction of life span, deficient locomotive ability, shortening of motoneuron terminal branches and defects in axonal targeting. / 07.2017 / PubMed / Full text
FBXO28[править]
FBXO32[править]
- Endophilin-A Deficiency Induces the Foxo3a-Fbxo32 Network in the Brain and Causes Dysregulation of Autophagy and the Ubiquitin-Proteasome System. / 18.10.2016 / PubMed / Full text
FBXO33[править]
- Quantitative and Qualitative Role of Antagonistic Heterogeneity in Genetics of Blood Lipids. / 25.09.2020 / PubMed / Full text
FBXO46[править]
- The SCF ubiquitin ligase complex mediates degradation of the tumor suppressor FBXO31 and thereby prevents premature cellular senescence. / 19.10.2018 / PubMed / Full text
FBXO7[править]
- The FBXO7 homologue nutcracker and binding partner PI31 in Drosophila melanogaster models of Parkinson's disease. / 01.2017 / PubMed / Full text
FBXW7[править]
FCER1G[править]
- A Microglial Signature Directing Human Aging and Neurodegeneration-Related Gene Networks. / 2019 / PubMed / Full text
FCGR2A[править]
- Impact of C-reactive protein on osteo-/chondrogenic transdifferentiation and calcification of vascular smooth muscle cells. / 03.08.2019 / PubMed / Full text
FCGR3A[править]
- Genomic regulation of senescence and innate immunity signaling in the retinal pigment epithelium. / 06.2015 / PubMed / Full text
FDPS[править]
- Targeting the phospholipase A2 receptor ameliorates premature aging phenotypes. / 12.2018 / PubMed / Full text
FDXR[править]
- The aged testis. A good model to find proteins involved in age-related changes of testis by proteomic analysis. / 01-02.2014 / PubMed
FER[править]
- Tracking the recognition of static and dynamic facial expressions of emotion across the life span. / 04.09.2018 / PubMed / Full text
FER1L6[править]
- Genome-wide association study and annotating candidate gene networks affecting age at first calving in Nellore cattle. / 12.2017 / PubMed / Full text
FEZ1[править]
- Disruption to schizophrenia-associated gene Fez1 in the hippocampus of HDAC11 knockout mice. / 19.09.2017 / PubMed / Full text
FGB[править]
- [Clinical and genetic characteristics of long-livers in Moscow region]. / 2013 / PubMed
FGF14[править]
- Fibroblast Growth Factor 14 Modulates the Neurogenesis of Granule Neurons in the Adult Dentate Gyrus. / 12.2016 / PubMed / Full text
FGF7[править]
- Prostatic microenvironment in senescence: fibroblastic growth factors × hormonal imbalance. / 05.2014 / PubMed / Full text
FGF8[править]
- Prostatic microenvironment in senescence: fibroblastic growth factors × hormonal imbalance. / 05.2014 / PubMed / Full text
FGFBP1[править]
- Muscle Fibers Secrete FGFBP1 to Slow Degeneration of Neuromuscular Synapses during Aging and Progression of ALS. / 04.01.2017 / PubMed / Full text
FGFR3[править]
- New evidence for positive selection helps explain the paternal age effect observed in achondroplasia. / 15.10.2013 / PubMed / Full text
FGL2[править]
- Developmental expression of B cell molecules in equine lymphoid tissues. / 01.2017 / PubMed / Full text
FICD[править]
- Defining the limits of normal conjunctival fornix anatomy in a healthy South Asian population. / 02.2014 / PubMed / Full text
FIG4[править]
- Knockdown of the Drosophila FIG4 induces deficient locomotive behavior, shortening of motor neuron, axonal targeting aberration, reduction of life span and defects in eye development. / 03.2016 / PubMed / Full text
FIGNL1[править]
- Comparative proteomic analysis of primordial follicles from ovaries of immature and aged rats. / 2015 / PubMed / Full text
FKBP1A[править]
- The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. / 29.07.2020 / PubMed / Full text
FKBP1B[править]
- The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. / 29.07.2020 / PubMed / Full text
FKRP[править]
- Progressive Dystrophic Pathology in Diaphragm and Impairment of Cardiac Function in FKRP P448L Mutant Mice. / 2016 / PubMed / Full text
FLCN[править]
- Loss of the Birt-Hogg-Dubé gene product folliculin induces longevity in a hypoxia-inducible factor-dependent manner. / 08.2013 / PubMed / Full text
FLNA[править]
- SQSTM1/p62 mediates crosstalk between autophagy and the UPS in DNA repair. / 02.10.2016 / PubMed / Full text
FLT3[править]
FLT4[править]
- Impact of Aging on the Phenotype of Invariant Natural Killer T Cells in Mouse Thymus. / 2020 / PubMed / Full text
FMN2[править]
- Genomic regulation of senescence and innate immunity signaling in the retinal pigment epithelium. / 06.2015 / PubMed / Full text
FMO1[править]
- Functional analysis and transcriptional output of the Göttingen minipig genome. / 14.11.2015 / PubMed / Full text
FMO3[править]
- Genetic and Nongenetic Factors Associated with Protein Abundance of Flavin-Containing Monooxygenase 3 in Human Liver. / 11.2017 / PubMed / Full text
FNTA[править]
FOSL1[править]
- RNA-Seq analysis reveals new evidence for inflammation-related changes in aged kidney. / 24.05.2016 / PubMed / Full text
FOSL2[править]
- LncRNA GUARDIN suppresses cellular senescence through a LRP130-PGC1α-FOXO4-p21-dependent signaling axis. / 03.04.2020 / PubMed / Full text
FOXA3[править]
- Glucose restriction delays senescence and promotes proliferation of HUVECs via the AMPK/SIRT1-FOXA3-Beclin1 pathway. / 01.10.2020 / PubMed / Full text
FOXD1[править]
- MicroRNA-338-5p plays a tumor suppressor role in glioma through inhibition of the MAPK-signaling pathway by binding to FOXD1. / 12.2018 / PubMed / Full text
FOXP4[править]
- Identification of the neurotransmitter profile of AmFoxP expressing neurons in the honeybee brain using double-label in situ hybridization. / 06.11.2018 / PubMed / Full text
FRAS1[править]
- FRAS1-related extracellular matrix 3 (FREM3) single-nucleotide polymorphism effects on gene expression, amygdala reactivity and perceptual processing speed: An accelerated aging pathway of depression risk. / 2015 / PubMed / Full text
FREM3[править]
- FRAS1-related extracellular matrix 3 (FREM3) single-nucleotide polymorphism effects on gene expression, amygdala reactivity and perceptual processing speed: An accelerated aging pathway of depression risk. / 2015 / PubMed / Full text
FRG1[править]
- Intergenerational response of steroidogenesis-related genes to maternal malnutrition. / 10.2019 / PubMed / Full text
FRG2[править]
- Intergenerational response of steroidogenesis-related genes to maternal malnutrition. / 10.2019 / PubMed / Full text
FSHB[править]
- Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. / 29.09.2015 / PubMed / Full text
FSTL5[править]
- Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. / 12.2017 / PubMed / Full text
FTL[править]
- Noncoding variation of the gene for ferritin light chain in hereditary and age-related cataract. / 2013 / PubMed / Full text
FZD1[править]
FZD4[править]
- MiR-1292 Targets FZD4 to Regulate Senescence and Osteogenic Differentiation of Stem Cells in TE/SJ/Mesenchymal Tissue System via the Wnt/β-catenin Pathway. / 12.2018 / PubMed / Full text
G0S2[править]
- Investigating the specific core genetic-and-epigenetic networks of cellular mechanisms involved in human aging in peripheral blood mononuclear cells. / 23.02.2016 / PubMed / Full text
G3BP1[править]
- Dissecting the molecular mechanisms that impair stress granule formation in aging cells. / 03.2017 / PubMed / Full text
G6PC[править]
- Detection of a novel, primate-specific 'kill switch' tumor suppression mechanism that may fundamentally control cancer risk in humans: an unexpected twist in the basic biology of TP53. / 11.2018 / PubMed / Full text
G6PC2[править]
- Genome-wide association study identifies common loci influencing circulating glycated hemoglobin (HbA1c) levels in non-diabetic subjects: the Long Life Family Study (LLFS). / 04.2014 / PubMed / Full text
G6PC3[править]
- Both Granulocytic and Non-Granulocytic Blood Cells Are Affected in Patients with Severe Congenital Neutropenia and Their Non-Neutropenic Family Members: An Evaluation of Morphology, Function, and Cell Death / 13.11.2018 / PubMed / Full text
GAB2[править]
- Age-related gene expression changes, and transcriptome wide association study of physical and cognitive aging traits, in the Lothian Birth Cohort 1936. / 01.12.2017 / PubMed / Full text
GABRR3[править]
- Discovery of novel non-synonymous SNP variants in 988 candidate genes from 6 centenarians by target capture and next-generation sequencing. / 10.2013 / PubMed / Full text
GADD45B[править]
- Are There Common Mechanisms Between the Hutchinson-Gilford Progeria Syndrome and Natural Aging? / 2019 / PubMed / Full text
GADD45G[править]
- SIP1 is a downstream effector of GADD45G in senescence induction and growth inhibition of liver tumor cells. / 20.10.2015 / PubMed / Full text
GADD45GIP1[править]
- Nucleus accumbens-1/GADD45GIP1 axis mediates cisplatin resistance through cellular senescence in ovarian cancer. / 06.2017 / PubMed / Full text
GAGE10[править]
- An epigenome-wide association study of sex-specific chronological ageing. / 31.12.2019 / PubMed / Full text
GALNT18[править]
- Genome-wide association study identifies [i]SIAH3[/i] locus influencing the rate of ventricular enlargement in non-demented elders. / 11.11.2019 / PubMed / Full text
GAR1[править]
- Pseudouridylation defect due to [i]DKC1[/i] and [i]NOP10[/i] mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis. / 30.06.2020 / PubMed / Full text
GART[править]
- Maintaining the continuity of HIV-care records for patients transferring care between centers: challenges, workloads, needs and risks. / 08.2016 / PubMed / Full text
GAS2[править]
- Truncated HBx-dependent silencing of GAS2 promotes hepatocarcinogenesis through deregulation of cell cycle, senescence and p53-mediated apoptosis. / 09.2015 / PubMed / Full text
GAST[править]
- The effects of age and muscle contraction on AMPK activity and heterotrimer composition. / 07.2014 / PubMed / Full text
GATA1[править]
- Aging negatively impacts the ability of megakaryocytes to stimulate osteoblast proliferation and bone mass. / 10.2019 / PubMed / Full text
GBA2[править]
- Reduced sphingolipid hydrolase activities, substrate accumulation and ganglioside decline in Parkinson's disease. / 08.11.2019 / PubMed / Full text
GBF1[править]
- Phosphorylation Affects DNA-Binding of the Senescence-Regulating bZIP Transcription Factor GBF1. / 16.09.2015 / PubMed / Full text
GCGR[править]
- Population pharmacokinetics and pharmacodynamics of IONIS-GCGR , an antisense oligonucleotide for type 2 diabetes mellitus: a red blood cell lifespan model. / 06.2017 / PubMed / Full text
GCH1[править]
- Aging modifies the effect of GCH1 RS11158026 on DAT uptake and Parkinson's disease clinical severity. / 02.2017 / PubMed / Full text
GCNT2[править]
- Human iPSC-derived MSCs (iMSCs) from aged individuals acquire a rejuvenation signature. / 18.03.2019 / PubMed / Full text
GDA[править]
- Comparison of the Shear Bond Strength of Metal Orthodontic Brackets Bonded to Long-term Water-aged and Fresh Porcelain and Composite Surfaces. / 03.2019 / PubMed / Full text
GDF5[править]
- An embryonic CaVβ1 isoform promotes muscle mass maintenance via GDF5 signaling in adult mouse. / 06.11.2019 / PubMed / Full text
GEN1[править]
- US acculturation and poor sleep among an intergenerational cohort of adult Latinos in Sacramento, California. / 01.03.2019 / PubMed / Full text
GFRA1[править]
- Determination phase at transition of gonocytes to spermatogonial stem cells improves establishment efficiency of spermatogonial stem cells in domestic cats. / 2015 / PubMed / Full text
GFRAL[править]
- Growth differentiation factor 15 (GDF15): A survival protein with therapeutic potential in metabolic diseases. / 06.2019 / PubMed / Full text
GGA3[править]
- The pathological roles of NDRG2 in Alzheimer's disease, a study using animal models and APPwt-overexpressed cells. / 08.2017 / PubMed / Full text
GGCX[править]
- Multiple Modes of Vitamin K Actions in Aging-Related Musculoskeletal Disorders. / 11.06.2019 / PubMed / Full text
GGT1[править]
- Relation of size of seminal vesicles on ultrasound to premature ejaculation. / 09-10.2017 / PubMed / Full text
GIGYF1[править]
- Drosophila Gyf/GRB10 interacting GYF protein is an autophagy regulator that controls neuron and muscle homeostasis. / 2015 / PubMed / Full text
GIGYF2[править]
- Drosophila Gyf/GRB10 interacting GYF protein is an autophagy regulator that controls neuron and muscle homeostasis. / 2015 / PubMed / Full text
GJA3[править]
- Down-regulation of GJA3 is associated with lens epithelial cell apoptosis and age-related cataract. / 26.02.2017 / PubMed / Full text
GJA8[править]
GJB2[править]
- Reduced expression of Connexin26 and its DNA promoter hypermethylation in the inner ear of mimetic aging rats induced by d-galactose. / 26.09.2014 / PubMed / Full text
GJC2[править]
- Zebrafish brain RNA sequencing reveals that cell adhesion molecules are critical in brain aging. / 10.2020 / PubMed / Full text
GLP1R[править]
- A nutrigenomics approach for the study of anti-aging interventions: olive oil phenols and the modulation of gene and microRNA expression profiles in mouse brain. / 03.2017 / PubMed / Full text
GLRA1[править]
- Age-associated changes in DNA methylation across multiple tissues in an inbred mouse model. / 03.2016 / PubMed / Full text
GLRA2[править]
- Gene Expression Switching of Receptor Subunits in Human Brain Development. / 12.2015 / PubMed / Full text
GLRA3[править]
- Gene Expression Switching of Receptor Subunits in Human Brain Development. / 12.2015 / PubMed / Full text
GMDS[править]
- Validity and clinical utilization of the Chinese version of the Gotland Male Depression Scale at a men's health polyclinic. / 2014 / PubMed / Full text
GML[править]
- Age independently affects myelin integrity as detected by magnetization transfer magnetic resonance imaging in multiple sclerosis. / 2014 / PubMed / Full text
GNA11[править]
- GNAQ expression initiated in multipotent neural crest cells drives aggressive melanoma of the central nervous system. / 01.2020 / PubMed / Full text
GNA14[править]
- Genetic correlation and genome-wide association study (GWAS) of the length of productive life, days open, and 305-days milk yield in crossbred Holstein dairy cattle. / 29.06.2017 / PubMed / Full text
GNG11[править]
- GNG11 (G-protein subunit γ 11) suppresses cell growth with induction of reactive oxygen species and abnormal nuclear morphology in human SUSM-1 cells. / 08.2017 / PubMed / Full text
GNG4[править]
- Neurotransmitter Pathway Genes in Cognitive Decline During Aging: Evidence for GNG4 and KCNQ2 Genes. / 05.2018 / PubMed / Full text
GNPAT[править]
- Plasmalogens Inhibit Endocytosis of Toll-like Receptor 4 to Attenuate the Inflammatory Signal in Microglial Cells. / 05.2019 / PubMed / Full text
GNPDA2[править]
- The influence of obesity-related single nucleotide polymorphisms on BMI across the life course: the PAGE study. / 05.2013 / PubMed / Full text
GNRH2[править]
- Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus. / 2015 / PubMed / Full text
GORAB[править]
- Examining tissue composition, whole-bone morphology and mechanical behavior of Gorab mice tibiae: A mouse model of premature aging. / 08.12.2017 / PubMed / Full text
GOT1[править]
- Low expression of aging-related [[NRXN3]] is associated with Alzheimer disease: A systematic review and meta-analysis. / 07.2018 / PubMed / Full text
GOT2[править]
- An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. / 12.2019 / PubMed / Full text
GP1BA[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
GP9[править]
- Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text
GPBAR1[править]
- Activation of the bile acid receptor GPBAR1 (TGR5) ameliorates interleukin-1β (IL-1β)- induced chondrocytes senescence. / 10.2018 / PubMed / Full text
GPC1[править]
- Decreased expression of GPC1 in human skin keratinocytes and epidermis during ageing. / 15.10.2019 / PubMed / Full text
GPD1[править]
- The phenotype of a knockout mouse identifies flavin-containing monooxygenase 5 (FMO5) as a regulator of metabolic ageing. / 01.08.2015 / PubMed / Full text
GPD2[править]
- Switching off IMMP2L signaling drives senescence via simultaneous metabolic alteration and blockage of cell death. / 06.2018 / PubMed / Full text
GPR1[править]
- The Arabidopsis GPR1 Gene Negatively Affects Pollen Germination, Pollen Tube Growth, and Gametophyte Senescence. / 21.06.2017 / PubMed / Full text
GPR101[править]
- Regulation of Gonadotropin-Releasing Hormone-(1-5) Signaling Genes by Estradiol Is Age Dependent. / 2017 / PubMed / Full text
GPR173[править]
- Regulation of Gonadotropin-Releasing Hormone-(1-5) Signaling Genes by Estradiol Is Age Dependent. / 2017 / PubMed / Full text
GPR19[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
GPR37[править]
- Prosaposin and its receptors are differentially expressed in the salivary glands of male and female rats. / 08.2018 / PubMed / Full text
GPR37L1[править]
- Prosaposin and its receptors are differentially expressed in the salivary glands of male and female rats. / 08.2018 / PubMed / Full text
GPR4[править]
- The proton-activated receptor GPR4 modulates glucose homeostasis by increasing insulin sensitivity. / 2013 / PubMed / Full text
GPR6[править]
- Accelerated Epigenetic Aging and Methylation Disruptions Occur in Human Immunodeficiency Virus Infection Prior to Antiretroviral Therapy. / 22.09.2020 / PubMed / Full text
GPR78[править]
- A meta-analysis of genome-wide association studies identifies multiple longevity genes. / 14.08.2019 / PubMed / Full text
GPRC5C[править]
- Anti-diabetic action of all-trans retinoic acid and the orphan G protein coupled receptor GPRC5C in pancreatic β-cells. / 31.03.2017 / PubMed / Full text
GPX3[править]
- Long noncoding RNA glutathione peroxidase 3-antisense inhibits lens epithelial cell apoptosis by upregulating glutathione peroxidase 3 expression in age-related cataract. / 2019 / PubMed / Full text
GPX7[править]
- Metformin alleviates human cellular aging by upregulating the endoplasmic reticulum glutathione peroxidase 7. / 08.2018 / PubMed / Full text
GREM1[править]
- GREM1 inhibits osteogenic differentiation, senescence and BMP transcription of adipose-derived stem cells. / 09.03.2020 / PubMed / Full text
GREM2[править]
- Increase of gremlin 2 with age in human adipose-derived stromal/stem cells and its inhibitory effect on adipogenesis. / 12.2019 / PubMed / Full text
GRIA1[править]
- Hippocampal proteomics defines pathways associated with memory decline and resilience in normal aging and Alzheimer's disease mouse models. / 30.03.2017 / PubMed / Full text
GRID1[править]
- Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. / 03.2020 / PubMed / Full text
GRIN2A[править]
- Gene Expression Switching of Receptor Subunits in Human Brain Development. / 12.2015 / PubMed / Full text
GRINA[править]
- Genome-wide association study for lactation persistency, female fertility, longevity, and lifetime profit index traits in Holstein dairy cattle. / 02.2017 / PubMed / Full text
GRK4[править]
- G protein-coupled receptor kinase 4-induced cellular senescence and its senescence-associated gene expression profiling. / 15.11.2017 / PubMed / Full text
GRK6[править]
- Age-dependent effects of dopamine receptor inactivation on cocaine-induced behaviors in male rats: Evidence of dorsal striatal D2 receptor supersensitivity. / 12.2019 / PubMed / Full text
GRM2[править]
- Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. / 11.2017 / PubMed / Full text
GRM6[править]
- Amyloid Precursor-Like Protein 2 deletion-induced retinal synaptopathy related to congenital stationary night blindness: structural, functional and molecular characteristics. / 08.06.2016 / PubMed / Full text
GRP[править]
- A new approach to quantifying the EEG during walking: Initial evidence of gait related potentials and their changes with aging and dual tasking. / 15.10.2019 / PubMed / Full text
GRPR[править]
- Gastrin-Releasing Peptide Receptor Knockdown Induces Senescence in Glioblastoma Cells. / 03.2017 / PubMed / Full text
GSN[править]
- Oral administration of alcalase potato protein hydrolysate-APPH attenuates high fat diet-induced cardiac complications via TGF-β/GSN axis in aging rats. / 01.2019 / PubMed / Full text
GSTA3[править]
- Effects of insulin-like growth factor 1 on glutathione S-transferases and thioredoxin in growth hormone receptor knockout mice. / 2014 / PubMed / Full text
GSTM2[править]
- Small Extracellular Vesicles Have GST Activity and Ameliorate Senescence-Related Tissue Damage. / 07.07.2020 / PubMed / Full text
GSTO1[править]
- Age-associated changes in GSH S-transferase gene/proteins in livers of rats. / 12.2018 / PubMed / Full text
GSTT2[править]
- Age-associated changes in GSH S-transferase gene/proteins in livers of rats. / 12.2018 / PubMed / Full text
GTF3C4[править]
- A multidimensional systems biology analysis of cellular senescence in aging and disease. / 07.04.2020 / PubMed / Full text
GTSF1[править]
- Postovulatory aging affects dynamics of mRNA, expression and localization of maternal effect proteins, spindle integrity and pericentromeric proteins in mouse oocytes. / 01.2016 / PubMed / Full text
GUK1[править]
- Characterization of the impact of GMP/GDP synthesis inhibition on replicative lifespan extension in yeast. / 08.2020 / PubMed / Full text
GUSB[править]
- Identification of reference genes for RT-qPCR data normalisation in aging studies. / 27.09.2019 / PubMed / Full text
GYS2[править]
- In ovo feeding of creatine pyruvate modulates growth performance, energy reserves and mRNA expression levels of gluconeogenesis and glycogenesis enzymes in liver of embryos and neonatal broilers. / 04.2018 / PubMed / Full text
GZMH[править]
- Age-related profiling of DNA methylation in CD8 T cells reveals changes in immune response and transcriptional regulator genes. / 19.08.2015 / PubMed / Full text
GZMK[править]
- Comprehensive Profiling of an Aging Immune System Reveals Clonal GZMK CD8 T Cells as Conserved Hallmark of Inflammaging. / 21.11.2020 / PubMed / Full text
HABP4[править]
- Microneedle fractional radiofrequency increases epidermal hyaluronan and reverses age-related epidermal dysfunction. / 02.2016 / PubMed / Full text
HACE1[править]
- HACE1 reduces oxidative stress and mutant Huntingtin toxicity by promoting the NRF2 response. / 25.02.2014 / PubMed / Full text
HADH[править]
- Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone. / 07.2014 / PubMed / Full text
HADHA[править]
- Exosomes from hyperglycemia-stimulated vascular endothelial cells contain versican that regulate calcification/senescence in vascular smooth muscle cells. / 2019 / PubMed / Full text
HAMP[править]
- A potent tilapia secreted granulin peptide enhances the survival of transgenic zebrafish infected by Vibrio vulnificus via modulation of innate immunity. / 04.2018 / PubMed / Full text
HAP1[править]
- The longevity SNP rs2802292 uncovered: HSF1 activates stress-dependent expression of FOXO3 through an intronic enhancer. / 20.06.2018 / PubMed / Full text
HAUS4[править]
- A multidimensional systems biology analysis of cellular senescence in aging and disease. / 07.04.2020 / PubMed / Full text
HAX1[править]
- Both Granulocytic and Non-Granulocytic Blood Cells Are Affected in Patients with Severe Congenital Neutropenia and Their Non-Neutropenic Family Members: An Evaluation of Morphology, Function, and Cell Death / 13.11.2018 / PubMed / Full text
HBM[править]
- The effects of dietary fatty acids on bone, hematopoietic marrow and marrow adipose tissue in a murine model of senile osteoporosis. / 25.09.2019 / PubMed / Full text
HBZ[править]
- HTLV-1 Infection and Adult T-Cell Leukemia/Lymphoma-A Tale of Two Proteins: Tax and HBZ. / 16.06.2016 / PubMed / Full text
HDAC10[править]
- Middle-aged female rats lack changes in histone H3 acetylation in the anterior hypothalamus observed in young females on the day of a luteinizing hormone surge. / 17.09.2019 / PubMed / Full text
HDAC11[править]
- Disruption to schizophrenia-associated gene Fez1 in the hippocampus of HDAC11 knockout mice. / 19.09.2017 / PubMed / Full text
HDAC8[править]
- Histone deacetylase 1 expression is inversely correlated with age in the short-lived fish Nothobranchius furzeri. / 09.2018 / PubMed / Full text
HDC[править]
- Induced pluripotency and spontaneous reversal of cellular aging in supercentenarian donor cells. / 07.05.2020 / PubMed / Full text
HDX[править]
- Pathways of aging: comparative analysis of gene signatures in replicative senescence and stress induced premature senescence. / 28.12.2016 / PubMed / Full text
HEPN1[править]
- Functional analysis and transcriptional output of the Göttingen minipig genome. / 14.11.2015 / PubMed / Full text
HERC2[править]
- Endothelial SIRT1 prevents adverse arterial remodeling by facilitating HERC2-mediated degradation of acetylated LKB1. / 28.06.2016 / PubMed / Full text
HGSNAT[править]
- Progressive neurologic and somatic disease in a novel mouse model of human mucopolysaccharidosis type IIIC. / 01.09.2016 / PubMed / Full text
HHIP[править]
HHLA2[править]
- Impaired Cytolytic Activity and Loss of Clonal Neoantigens in Elderly Patients With Lung Adenocarcinoma. / 05.2019 / PubMed / Full text
HIF3A[править]
- Hypoxia-inducible transcription factors, HIF1A and HIF2A, increase in aging mucosal tissues. / 07.2018 / PubMed / Full text
HIP1[править]
- Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text
HIPK2[править]
HJURP[править]
- HJURP regulates cellular senescence in human fibroblasts and endothelial cells via a p53-dependent pathway. / 08.2013 / PubMed / Full text
HJV[править]
- Hemojuvelin is a novel suppressor for Duchenne muscular dystrophy and age-related muscle wasting. / 06.2019 / PubMed / Full text
HLA-DMA[править]
- Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. / 10.2019 / PubMed / Full text
HLA-DPA1[править]
HLA-DRA[править]
- Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis. / 24.02.2016 / PubMed / Full text
HLA-DRB4[править]
- Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text
HLA-DRB5[править]
- Late Onset Alzheimer's Disease Risk Variants in Cognitive Decline: The PATH Through Life Study. / 2017 / PubMed / Full text
HLA-E[править]
- Senescent cells evade immune clearance via HLA-E-mediated NK and CD8 T cell inhibition. / 03.06.2019 / PubMed / Full text
HLA-F[править]
- Extended lifespan and reduced adiposity in mice lacking the FAT10 gene. / 08.04.2014 / PubMed / Full text
HLF[править]
- Healthy lifestyle and normal waist circumference are associated with a lower 5-year risk of type 2 diabetes in middle-aged and elderly individuals: Results from the healthy aging longitudinal study in Taiwan (HALST). / 02.2017 / PubMed / Full text
HMGCS2[править]
- The aged testis. A good model to find proteins involved in age-related changes of testis by proteomic analysis. / 01-02.2014 / PubMed
HMGN2[править]
HMMR[править]
- The Naked Mole Rat Genome Resource: facilitating analyses of cancer and longevity-related adaptations. / 15.12.2014 / PubMed / Full text
HMX1[править]
- Pathways of aging: comparative analysis of gene signatures in replicative senescence and stress induced premature senescence. / 28.12.2016 / PubMed / Full text
HNF1A[править]
- The Impact of Biomarker Screening and Cascade Genetic Testing on the Cost-Effectiveness of MODY Genetic Testing. / 12.2019 / PubMed / Full text
HNMT[править]
- Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text
HNRNPA0[править]
- The transcript expression levels of HNRNPM, HNRNPA0 and AKAP17A splicing factors may be predictively associated with ageing phenotypes in human peripheral blood. / 10.2019 / PubMed / Full text
HNRNPA2B1[править]
- Changes in the expression of splicing factor transcripts and variations in alternative splicing are associated with lifespan in mice and humans. / 10.2016 / PubMed / Full text
HNRNPF[править]
- Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text
HNRNPM[править]
- The transcript expression levels of HNRNPM, HNRNPA0 and AKAP17A splicing factors may be predictively associated with ageing phenotypes in human peripheral blood. / 10.2019 / PubMed / Full text
HOXA3[править]
- DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. / 25.07.2018 / PubMed / Full text
HOXA4[править]
- Epigenetic signatures of Werner syndrome occur early in life and are distinct from normal epigenetic aging processes. / 10.2019 / PubMed / Full text
HOXA9[править]
- Co-regulation of senescence-associated genes by oncogenic homeobox proteins and polycomb repressive complexes. / 15.07.2013 / PubMed / Full text
HOXB7[править]
- Impact of HOXB7 overexpression on human adipose-derived mesenchymal progenitors. / 19.03.2019 / PubMed / Full text
HOXC13[править]
- Pathways of aging: comparative analysis of gene signatures in replicative senescence and stress induced premature senescence. / 28.12.2016 / PubMed / Full text
HOXD8[править]
- Single-Cell Transcriptome Analysis Reveals Six Subpopulations Reflecting Distinct Cellular Fates in Senescent Mouse Embryonic Fibroblasts. / 2020 / PubMed / Full text
HP1BP3[править]
- Systems genetics identifies Hp1bp3 as a novel modulator of cognitive aging. / 10.2016 / PubMed / Full text
HPDL[править]
- Characterization and cytological effects of a novel glycated gelatine substrate. / 04.2014 / PubMed / Full text
HPSE[править]
- Distribution of heparan sulfate correlated with the expression of heparanase-1 and matrix metalloproteinase-9 in an ovariectomized rats skin. / 07.2020 / PubMed / Full text
HRC[править]
- Differences in false recollection according to the cognitive reserve of healthy older people. / 09.2016 / PubMed / Full text
HRH4[править]
- Histamime Receptor H4 as a New Therapeutic Target for Age-related Macular Degeneration. / 11.2016 / PubMed
HS2ST1[править]
- Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text
HSD17B1[править]
- Genetic Basis of the Relationship Between Reproduction and Longevity: A Study on Common Variants of Three Genes in Steroid Hormone Metabolism--CYP17, HSD17B1, and COMT. / 10.2015 / PubMed / Full text
HSD17B14[править]
- Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. / 04.2018 / PubMed / Full text
HSD17B4[править]
- Autonomous Purkinje cell axonal dystrophy causes ataxia in peroxisomal multifunctional protein-2 deficiency. / 09.2018 / PubMed / Full text
HSPA13[править]
HSPA1L[править]
- Melatonin suppresses senescence-derived mitochondrial dysfunction in mesenchymal stem cells via the HSPA1L-mitophagy pathway. / 03.2020 / PubMed / Full text
HSPA4[править]
- Assessment of the risk of blastomere biopsy during preimplantation genetic diagnosis in a mouse model: reducing female ovary function with an increase in age by proteomics method. / 06.12.2013 / PubMed / Full text
HSPA5[править]
- Expression of lipogenic markers is decreased in subcutaneous adipose tissue and adipocytes of older women and is negatively linked to GDF15 expression. / 08.2019 / PubMed / Full text
HSPBP1[править]
HSPG2[править]
- Proteomic profiling of follicle fluids after superstimulation in one-month-old lambs. / 02.2018 / PubMed / Full text
HTR1A[править]
- Gene Expression Switching of Receptor Subunits in Human Brain Development. / 12.2015 / PubMed / Full text
HTR1B[править]
- Polymorphic variants of neurotransmitter receptor genes may affect sexual function in aging males: data from the HALS study. / 2013 / PubMed / Full text
HTR2A[править]
- Region-specific regulation of the serotonin 2A receptor expression in development and ageing in post mortem human brain. / 06.2015 / PubMed / Full text
HTR2B[править]
- Up-regulation of serotonin receptor 2B mRNA and protein in the peri-infarcted area of aged rats and stroke patients. / 05.04.2016 / PubMed / Full text
HTR4[править]
- ADAM19 and HTR4 variants and pulmonary function: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text
HTR5A[править]
- Gene Expression Switching of Receptor Subunits in Human Brain Development. / 12.2015 / PubMed / Full text
HTRA2[править]
HYOU1[править]
- Expression of lipogenic markers is decreased in subcutaneous adipose tissue and adipocytes of older women and is negatively linked to GDF15 expression. / 08.2019 / PubMed / Full text
IBSP[править]
ICAM5[править]
- A reverse genetics cell-based evaluation of genes linked to healthy human tissue age. / 01.2017 / PubMed / Full text
ICE1[править]
- ATBS1-INTERACTING FACTOR 2 negatively regulates dark- and brassinosteroid-induced leaf senescence through interactions with INDUCER OF CBF EXPRESSION 1. / 19.02.2020 / PubMed / Full text
IFI27[править]
- Ultraviolet B irradiation-induced keratinocyte senescence and impaired development of 3D epidermal reconstruct. / 01.06.2021 / PubMed / Full text
IFIH1[править]
- Comparative analysis of microbial sensing molecules in mucosal tissues with aging. / 03.2018 / PubMed / Full text
IFNAR2[править]
- Type I interferon receptors in goose: molecular cloning, structural identification, evolutionary analysis and age-related tissue expression profile. / 25.04.2015 / PubMed / Full text
IFNB1[править]
- Effects of aging in the expression of NOD-like receptors and inflammasome-related genes in oral mucosa. / 02.2016 / PubMed / Full text
IFNGR2[править]
- Lifespan of mice and primates correlates with immunoproteasome expression. / 05.2015 / PubMed / Full text
IFT140[править]
IGF2BP2[править]
- Gene transcripts associated with muscle strength: a CHARGE meta-analysis of 7,781 persons. / 01.2016 / PubMed / Full text
IGF2BP3[править]
- Avenanthramide A Induces Cellular Senescence via miR-129-3p/Pirh2/p53 Signaling Pathway To Suppress Colon Cancer Growth. / 01.05.2019 / PubMed / Full text
IGFBP6[править]
- Proteomic profiling of follicle fluids after superstimulation in one-month-old lambs. / 02.2018 / PubMed / Full text
IGHG2[править]
- Human IgG2- and IgG4-expressing memory B cells display enhanced molecular and phenotypic signs of maturity and accumulate with age. / 10.2017 / PubMed / Full text
IGHM[править]
- Developmental expression of B cell molecules in equine lymphoid tissues. / 01.2017 / PubMed / Full text
IGLL5[править]
- Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution. / 07.12.2015 / PubMed / Full text
IKBKB[править]
- Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats. / 02.2019 / PubMed / Full text
IL10RA[править]
- Exome sequencing analysis reveals variants in primary immunodeficiency genes in patients with very early onset inflammatory bowel disease. / 11.2015 / PubMed / Full text
IL11[править]
- Myocardial Infarction Superimposed on Aging: MMP-9 Deletion Promotes M2 Macrophage Polarization. / 04.2016 / PubMed / Full text
IL12B[править]
- Association and Interaction Effects of Interleukin-12 Related Genes and Physical Activity on Cognitive Aging in Old Adults in the Taiwanese Population. / 2019 / PubMed / Full text
IL13RA1[править]
- Genetic correlation and genome-wide association study (GWAS) of the length of productive life, days open, and 305-days milk yield in crossbred Holstein dairy cattle. / 29.06.2017 / PubMed / Full text
IL17C[править]
- Age-dependent changes in inflammation and extracellular matrix in bovine oviduct epithelial cells during the post-ovulatory phase. / 09.2016 / PubMed / Full text
IL17D[править]
IL17RA[править]
- Chronic disruptions of circadian sleep regulation induce specific proinflammatory responses in the rat colon. / 2017 / PubMed / Full text
IL17RB[править]
IL17RC[править]
- Overstimulation can create health problems due to increases in PI3K/Akt/GSK3 insensitivity and GSK3 activity. / 2014 / PubMed / Full text
IL18RAP[править]
- Age and pro-inflammatory gene polymorphisms influence adjacent segment disc degeneration more than fusion does in patients treated for chronic low back pain. / 01.2016 / PubMed / Full text
IL1R2[править]
- Lower levels of interleukin-1β gene expression are associated with impaired Langerhans' cell migration in aged human skin. / 01.2018 / PubMed / Full text
IL1RN[править]
- Transcriptomic and epigenetic analyses reveal a gender difference in aging-associated inflammation: the Vitality 90 study. / 08.2015 / PubMed / Full text
IL21[править]
- The expression of IL6 and 21 in crossbred calves upregulated by inactivated trivalent FMD vaccine. / 03.04.2014 / PubMed / Full text
IL22[править]
- Age-specific changes in the molecular phenotype of patients with moderate-to-severe atopic dermatitis. / 07.2019 / PubMed / Full text
IL2RA[править]
- Dynamic demethylation of the IL2RA promoter during in vitro CD4 T cell activation in association with IL2RA expression. / 2018 / PubMed / Full text
IL2RG[править]
- Generation of a Nonhuman Primate Model of Severe Combined Immunodeficiency Using Highly Efficient Genome Editing. / 07.07.2016 / PubMed / Full text
IL33[править]
- Interleukin33 deficiency causes tau abnormality and neurodegeneration with Alzheimer-like symptoms in aged mice. / 04.07.2017 / PubMed / Full text
IL36RN[править]
- Elderly-Onset Generalized Pustular Psoriasis without a Previous History of Psoriasis Vulgaris. / 05-08.2015 / PubMed / Full text
IL5[править]
- Low Molecular Weight Hyaluronan Induces an Inflammatory Response in Ovarian Stromal Cells and Impairs Gamete Development In Vitro. / 04.02.2020 / PubMed / Full text
IL6ST[править]
- The senescent status of endothelial cells affects proliferation, inflammatory profile and SOX2 expression in bone marrow-derived mesenchymal stem cells. / 06.2019 / PubMed / Full text
IMMP2L[править]
- Switching off IMMP2L signaling drives senescence via simultaneous metabolic alteration and blockage of cell death. / 06.2018 / PubMed / Full text
IMMT[править]
- A multidimensional systems biology analysis of cellular senescence in aging and disease. / 07.04.2020 / PubMed / Full text
IMPA1[править]
- Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text
IMPA2[править]
- Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text
INHBA[править]
- Proteomic profiling of follicle fluids after superstimulation in one-month-old lambs. / 02.2018 / PubMed / Full text
INHBE[править]
- Human iPSC-derived MSCs (iMSCs) from aged individuals acquire a rejuvenation signature. / 18.03.2019 / PubMed / Full text
INO80D[править]
- Whole exome sequencing implicates an INO80D mutation in a syndrome of aortic hypoplasia, premature atherosclerosis, and arterial stiffness. / 10.2014 / PubMed / Full text
INPP4B[править]
- [Target protein candidates of hypothalamus in aging rats with intervention by Qiongyugao]. / 04.2016 / PubMed / Full text
INPPL1[править]
- Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text
IP6K1[править]
- The Role of the IGF-1 Signaling Cascade in Muscle Protein Synthesis and Anabolic Resistance in Aging Skeletal Muscle. / 2019 / PubMed / Full text
IP6K3[править]
- Inositol Hexakisphosphate Kinase 3 Regulates Metabolism and Lifespan in Mice. / 31.08.2016 / PubMed / Full text
IPMK[править]
- Inositol Polyphosphate Multikinase ([i]IPMK[/i]), a Gene Coding for a Potential Moonlighting Protein, Contributes to Human Female Longevity. / 08.02.2019 / PubMed / Full text
IRAK1[править]
- Age-associated changes in microRNA expression in bone marrow derived dendritic cells. / 2013 / PubMed / Full text
IRAK4[править]
IRF1[править]
- Sirtuin 1-Chromatin-Binding Dynamics Points to a Common Mechanism Regulating Inflammatory Targets in SIV Infection and in the Aging Brain. / 06.2018 / PubMed / Full text
IRF5[править]
- Age-related differences in interferon regulatory factor-4 and -5 signaling in ischemic brains of mice. / 11.2017 / PubMed / Full text
IRF9[править]
- Bioinformatic characterization of angiotensin-converting enzyme 2, the entry receptor for SARS-CoV-2. / 2020 / PubMed / Full text
IRX2[править]
- Pathways of aging: comparative analysis of gene signatures in replicative senescence and stress induced premature senescence. / 28.12.2016 / PubMed / Full text
ISG20[править]
- A Large Genome-Wide Association Study of Age-Related Hearing Impairment Using Electronic Health Records. / 10.2016 / PubMed / Full text
ISYNA1[править]
- Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text
ITCH[править]
- Selective multifaceted E3 ubiquitin ligases barricade extreme defense: Potential therapeutic targets for neurodegeneration and ageing. / 11.2015 / PubMed / Full text
ITGA2[править]
- [Clinical and genetic characteristics of long-livers in Moscow region]. / 2013 / PubMed
ITGA3[править]
- A transcriptomic analysis of serial-cultured, tonsil-derived mesenchymal stem cells reveals decreased integrin α3 protein as a potential biomarker of senescent cells. / 17.08.2020 / PubMed / Full text
ITGA5[править]
- Kaempferol alleviates the reduction of developmental competence during aging of porcine oocytes. / 11.2019 / PubMed / Full text
ITGA6[править]
- Selective molecular biomarkers to predict biologic behavior in pituitary tumors. / 05.2017 / PubMed / Full text
ITGA8[править]
- Comparative Analysis of Gene Expression Patterns for Oral Epithelium-Related Functions with Aging. / 2019 / PubMed / Full text
ITGB1[править]
- Switch in Laminin β2 to Laminin β1 Isoforms During Aging Controls Endothelial Cell Functions-Brief Report. / 05.2018 / PubMed / Full text
ITGB4[править]
- ITGB4 deficiency induces senescence of airway epithelial cells through p53 activation. / 03.2019 / PubMed / Full text
ITGB5[править]
- Differential DNA Methylation in Relation to Age and Health Risks of Obesity. / 24.07.2015 / PubMed / Full text
ITM2B[править]
ITPKB[править]
- Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text
ITPR1[править]
- Age-associated repression of type 1 inositol 1, 4, 5-triphosphate receptor impairs muscle regeneration. / 21.09.2016 / PubMed / Full text
ITPR2[править]
- The nuclear receptor RXRA controls cellular senescence by regulating calcium signaling. / 12.2018 / PubMed / Full text
JAG1[править]
- Targeted sequencing of genome wide significant loci associated with bone mineral density (BMD) reveals significant novel and rare variants: the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) targeted sequencing study. / 01.12.2016 / PubMed / Full text
JAGN1[править]
- Both Granulocytic and Non-Granulocytic Blood Cells Are Affected in Patients with Severe Congenital Neutropenia and Their Non-Neutropenic Family Members: An Evaluation of Morphology, Function, and Cell Death / 13.11.2018 / PubMed / Full text
JAM3[править]
- Selective molecular biomarkers to predict biologic behavior in pituitary tumors. / 05.2017 / PubMed / Full text
JARID2[править]
- Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. / 02.2018 / PubMed / Full text
JDP2[править]
- Jun dimerization protein 2 controls hypoxia-induced replicative senescence via both the p16 -pRb and Arf-p53 pathways. / 11.2017 / PubMed / Full text
JHY[править]
- Disruption of the mouse Jhy gene causes abnormal ciliary microtubule patterning and juvenile hydrocephalus. / 01.10.2013 / PubMed / Full text
JMJD1C[править]
- JMJD1C, a JmjC domain-containing protein, is required for long-term maintenance of male germ cells in mice. / 10.2013 / PubMed / Full text
JUNB[править]
- Promotion of cellular senescence by THG-1/TSC22D4 knockout through activation of JUNB. / 19.02.2020 / PubMed / Full text
JUP[править]
- From comorbidities of chronic obstructive pulmonary disease to identification of shared molecular mechanisms by data integration. / 22.11.2016 / PubMed / Full text
KALRN[править]
- Age-dependent increase in Kalirin-9 and Kalirin-12 transcripts in human orbitofrontal cortex. / 10.2016 / PubMed / Full text
KANSL1[править]
- Koolen-de Vries Syndrome: Clinical Report of an Adult and Literature Review. / 2016 / PubMed / Full text
KAT6B[править]
- Aging-associated decrease in the histone acetyltransferase KAT6B is linked to altered hematopoietic stem cell differentiation. / 02.2020 / PubMed / Full text
KCNAB3[править]
KCNC3[править]
- DNA methylation levels in candidate genes associated with chronological age in mammals are not conserved in a long-lived seabird. / 2017 / PubMed / Full text
KCNC4[править]
- Targeted deletion of [i]Kcne3[/i] impairs skeletal muscle function in mice. / 07.2017 / PubMed / Full text
KCND3[править]
KCNE1[править]
- Delayed pharyngeal repolarization promotes abnormal calcium buildup in aging muscle. / 12.04.2013 / PubMed / Full text
KCNE3[править]
- Targeted deletion of [i]Kcne3[/i] impairs skeletal muscle function in mice. / 07.2017 / PubMed / Full text
KCNE4[править]
- Kcne4 deletion sex-specifically predisposes to cardiac arrhythmia via testosterone-dependent impairment of RISK/SAFE pathway induction in aged mice. / 29.05.2018 / PubMed / Full text
KCNH2[править]
- Targeted deletion of [i]Kcne3[/i] impairs skeletal muscle function in mice. / 07.2017 / PubMed / Full text
KCNJ10[править]
- Compromised potassium recycling in the cochlea contributes to conservation of endocochlear potential in a mouse model of age-related hearing loss. / 25.10.2013 / PubMed / Full text
KCNJ11[править]
- A mouse model of human hyperinsulinism produced by the E1506K mutation in the sulphonylurea receptor SUR1. / 11.2013 / PubMed / Full text
KCNJ12[править]
- Altered expression of genes for Kir ion channels in dilated cardiomyopathy. / 08.2013 / PubMed / Full text
KCNJ14[править]
- Altered expression of genes for Kir ion channels in dilated cardiomyopathy. / 08.2013 / PubMed / Full text
KCNJ2[править]
- Altered expression of genes for Kir ion channels in dilated cardiomyopathy. / 08.2013 / PubMed / Full text
KCNJ4[править]
- Altered expression of genes for Kir ion channels in dilated cardiomyopathy. / 08.2013 / PubMed / Full text
KCNJ6[править]
- Genetic correlates of the development of theta event related oscillations in adolescents and young adults. / 05.2017 / PubMed / Full text
KCNK2[править]
- Brain age prediction using deep learning uncovers associated sequence variants. / 27.11.2019 / PubMed / Full text
KCNK4[править]
- Targeted deletion of [i]Kcne3[/i] impairs skeletal muscle function in mice. / 07.2017 / PubMed / Full text
KCNQ1[править]
- Compromised potassium recycling in the cochlea contributes to conservation of endocochlear potential in a mouse model of age-related hearing loss. / 25.10.2013 / PubMed / Full text
KCNQ1DN[править]
- The EpiTect Methyl qPCR Assay as novel age estimation method in forensic biology. / 07.2016 / PubMed / Full text
KCNQ2[править]
- Neurotransmitter Pathway Genes in Cognitive Decline During Aging: Evidence for GNG4 and KCNQ2 Genes. / 05.2018 / PubMed / Full text
KCNQ4[править]
- Guanylyl Cyclase A/cGMP Signaling Slows Hidden, Age- and Acoustic Trauma-Induced Hearing Loss. / 2020 / PubMed / Full text
KCNS3[править]
- Vitamin D-responsive SGPP2 variants associated with lung cell expression and lung function. / 25.11.2013 / PubMed / Full text
KCP[править]
- The kielin/chordin-like protein KCP attenuates nonalcoholic fatty liver disease in mice. / 01.10.2016 / PubMed / Full text
KCTD12[править]
- The association between poverty and gene expression within peripheral blood mononuclear cells in a diverse Baltimore City cohort. / 2020 / PubMed / Full text
KDF1[править]
- The histological characteristics, age-related thickness change of skin, and expression of the HSPs in the skin during hair cycle in yak (Bos grunniens). / 2017 / PubMed / Full text
KDM1A[править]
- Modulation of KDM1A with vafidemstat rescues memory deficit and behavioral alterations. / 2020 / PubMed / Full text
KDM2A[править]
- SIRT6 mono-ADP ribosylates KDM2A to locally increase H3K36me2 at DNA damage sites to inhibit transcription and promote repair. / 25.06.2020 / PubMed / Full text
KDM4A[править]
- Structure-Based Discovery of a Selective KDM5A Inhibitor that Exhibits Anti-Cancer Activity via Inducing Cell Cycle Arrest and Senescence in Breast Cancer Cell Lines. / 15.01.2019 / PubMed / Full text
KDM5A[править]
- Structure-Based Discovery of a Selective KDM5A Inhibitor that Exhibits Anti-Cancer Activity via Inducing Cell Cycle Arrest and Senescence in Breast Cancer Cell Lines. / 15.01.2019 / PubMed / Full text
KDM5B[править]
- Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases. / 03.2016 / PubMed / Full text
KDR[править]
- Regulation of endothelial progenitor cell differentiation and function by dimethylarginine dimethylaminohydrolase 2 in an asymmetric dimethylarginine-independent manner. / 09.2014 / PubMed / Full text
KIAA0319[править]
- The Dyslexia-susceptibility Protein KIAA0319 Inhibits Axon Growth Through Smad2 Signaling. / 01.03.2017 / PubMed / Full text
KIAA0930[править]
- Genetics of facial telangiectasia in the Rotterdam Study: a genome-wide association study and candidate gene approach. / 23.10.2020 / PubMed / Full text
KIAA1755[править]
- Identifying blood-specific age-related DNA methylation markers on the Illumina MethylationEPIC® BeadChip. / 10.2019 / PubMed / Full text
KIF11[править]
- Bmk-1 regulates lifespan in Caenorhabditis elegans by activating hsp-16. / 07.08.2015 / PubMed / Full text
KIF1A[править]
- SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text
KIF3A[править]
- Progressive axonal transport and synaptic protein changes correlate with behavioral and neuropathological abnormalities in the heterozygous Q175 KI mouse model of Huntington's disease. / 01.09.2014 / PubMed / Full text
KIF4A[править]
- Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text
KIF5C[править]
- Alteration of Motor Protein Expression Involved in Bidirectional Transport in Peripheral Blood Mononuclear Cells of Patients with Amyotrophic Lateral Sclerosis. / 2016 / PubMed / Full text
KIF6[править]
- Gene variants at FTO, 9p21, and 2q36.3 are age-independently associated with myocardial infarction in Czech men. / 15.02.2016 / PubMed / Full text
KIR3DL2[править]
- Expression of aberrant HLA-B27 molecules is dependent on B27 dosage and peptide supply. / 04.2014 / PubMed / Full text
KLB[править]
- Infants Uniquely Express High Levels of RBM3 and Other Cold-Adaptive Neuroprotectant Proteins in the Human Brain. / 2018 / PubMed / Full text
KLF1[править]
- Mutant KLF1 in Adult Anemic Nan Mice Leads to Profound Transcriptome Changes and Disordered Erythropoiesis. / 24.08.2018 / PubMed / Full text
KLF10[править]
- Polymorphism rs7278468 is associated with Age-related cataract through decreasing transcriptional activity of the CRYAA promoter. / 17.03.2016 / PubMed / Full text
KLF2[править]
- KLF2 induces the senescence of pancreatic cancer cells by cooperating with FOXO4 to upregulate p21. / 01.03.2020 / PubMed / Full text
KLHL13[править]
- Genetic correlation and genome-wide association study (GWAS) of the length of productive life, days open, and 305-days milk yield in crossbred Holstein dairy cattle. / 29.06.2017 / PubMed / Full text
KLHL22[править]
- KLHL22 activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing. / 05.2018 / PubMed / Full text
KPNA5[править]
- Global Characteristics of CSIG-Associated Gene Expression Changes in Human HEK293 Cells and the Implications for CSIG Regulating Cell Proliferation and Senescence. / 2015 / PubMed / Full text
KRR1[править]
- Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. / 29.09.2015 / PubMed / Full text
KRT15[править]
- Extracellular proteoglycan decorin maintains human hair follicle stem cells. / 12.2018 / PubMed / Full text
KRT18[править]
- Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. / 11.2018 / PubMed / Full text
KRT19[править]
- Characterization of Krt19 allele for targeting the nucleus pulposus cells in the postnatal mouse intervertebral disc. / 01.2020 / PubMed / Full text
KRT5[править]
- Alternative Progenitor Lineages Regenerate the Adult Lung Depleted of Alveolar Epithelial Type 2 Cells. / 04.2017 / PubMed / Full text
KTN1[править]
- Common genetic variants influence human subcortical brain structures. / 09.04.2015 / PubMed / Full text
KY[править]
- Combination of acupuncture and Chinese herbal formula for elderly adults with mild cognitive impairment: protocol for a randomized controlled trial. / 11.02.2019 / PubMed / Full text
L3MBTL1[править]
- Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. / 12.2015 / PubMed / Full text
LAGE3[править]
- Novel homozygous OSGEP gene pathogenic variants in two unrelated patients with Galloway-Mowat syndrome: case report and review of the literature. / 11.04.2019 / PubMed / Full text
LAMA1[править]
- Laminin α1 regulates age-related mesangial cell proliferation and mesangial matrix accumulation through the TGF-β pathway. / 06.2014 / PubMed / Full text
LAMA2[править]
- [Alu insertion-deletion polymorphism of COL13A1 and LAMA2 genes: The analysis of association with longevity]. / 10.2016 / PubMed
LATS1[править]
- Impaired liver regeneration in aged mice can be rescued by silencing Hippo core kinases MST1 and MST2. / 01.2017 / PubMed / Full text
LDB2[править]
- Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. / 11.2017 / PubMed / Full text
LDHC[править]
- The aged testis. A good model to find proteins involved in age-related changes of testis by proteomic analysis. / 01-02.2014 / PubMed
LDLRAD4[править]
- Epigenetics of neuroinflammation: Immune response, inflammatory response and cholinergic synaptic involvement evidenced by genome-wide DNA methylation analysis of delirious inpatients. / 10.2020 / PubMed / Full text
LEF1[править]
- LncRNA H19 targets miR-22 to modulate H O -induced deregulation in nucleus pulposus cell senescence, proliferation, and ECM synthesis through Wnt signaling. / 06.2018 / PubMed / Full text
LGALS1[править]
- Quantitative proteomic profiling of tumor cell response to telomere dysfunction using isotope-coded protein labeling (ICPL) reveals interaction network of candidate senescence markers. / 08.10.2013 / PubMed / Full text
LGALS3[править]
- Tissue Taurine Depletion Induces Profibrotic Pattern of Gene Expression and Causes Aging-Related Cardiac Fibrosis in Heart in Mice. / 2018 / PubMed / Full text
LGR6[править]
- Effect of defensins-containing eye cream on periocular rhytids and skin quality. / 08.2020 / PubMed / Full text
LIMK2[править]
- Reduced corporal fibrosis to protect erectile function by inhibiting the Rho-kinase/LIM-kinase/cofilin pathway in the aged transgenic rat harboring human tissue kallikrein 1. / 01-02.2017 / PubMed / Full text
LINC00862[править]
- Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. / 12.2017 / PubMed / Full text
LIPC[править]
- Quantitative and Qualitative Role of Antagonistic Heterogeneity in Genetics of Blood Lipids. / 25.09.2020 / PubMed / Full text
LIPG[править]
- Quantitative and Qualitative Role of Antagonistic Heterogeneity in Genetics of Blood Lipids. / 25.09.2020 / PubMed / Full text
LMNB2[править]
- Physiological and Pathological Aging Affects Chromatin Dynamics, Structure and Function at the Nuclear Edge. / 2016 / PubMed / Full text
LMO2[править]
- Aging-dependent DNA hypermethylation and gene expression of GSTM1 involved in T cell differentiation. / 25.07.2017 / PubMed / Full text
LMX1A[править]
- Phenotypic Reprogramming of Striatal Neurons into Dopaminergic Neuron-like Cells in the Adult Mouse Brain. / 13.11.2018 / PubMed / Full text
LMX1B[править]
- LMX1B is essential for the maintenance of differentiated podocytes in adult kidneys. / 11.2013 / PubMed / Full text
LOXL4[править]
- Blood Vessel Basement Membrane Alterations in Human Retinal Microaneurysms During Aging. / 01.02.2017 / PubMed / Full text
LPAR3[править]
- Upregulated microRNA-15b alleviates ovarian cancer through inhitbition of the PI3K/Akt pathway by targeting LPAR3. / 12.2019 / PubMed / Full text
LRAT[править]
- Oxidative stress induces mitochondrial dysfunction and a protective unfolded protein response in RPE cells. / 04.2014 / PubMed / Full text
LRCH1[править]
LRP2[править]
- Single-Cell Transcriptomics Characterizes Cell Types in the Subventricular Zone and Uncovers Molecular Defects Impairing Adult Neurogenesis. / 27.11.2018 / PubMed / Full text
LRP8[править]
- SFRS11 Loss Leads to Aging-Associated Cognitive Decline by Modulating LRP8 and ApoE. / 02.07.2019 / PubMed / Full text
LRRC23[править]
- Common genetic variants in ARNTL and NPAS2 and at chromosome 12p13 are associated with objectively measured sleep traits in the elderly. / 01.03.2013 / PubMed / Full text
LRRC34[править]
- The polygenic nature of telomere length and the anti-ageing properties of lithium. / 03.2019 / PubMed / Full text
LRRC8B[править]
- DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. / 25.07.2018 / PubMed / Full text
LRRK1[править]
- Age-Dependent Dopaminergic Neurodegeneration and Impairment of the Autophagy-Lysosomal Pathway in LRRK-Deficient Mice. / 15.11.2017 / PubMed / Full text
LTBP4[править]
- Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text
LY6D[править]
- LY6D-induced macropinocytosis as a survival mechanism of senescent cells. / 09.11.2020 / PubMed / Full text
LY86[править]
- Identification of age- and gender-associated long noncoding RNAs in the human brain with Alzheimer's disease. / 09.2019 / PubMed / Full text
LYG1[править]
- Uncovering genetic mechanisms of kidney aging through transcriptomics, genomics, and epigenomics. / 03.2019 / PubMed / Full text
LYST[править]
MACROD2[править]
- Survival analyses in Holstein cows considering direct disease diagnoses and specific SNP marker effects. / 09.2020 / PubMed / Full text
MADD[править]
- Association of levels of fasting glucose and insulin with rare variants at the chromosome 11p11.2-MADD locus: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text
MAFB[править]
- Age-dependent skeletal muscle transcriptome response to bed rest-induced atrophy. / 01.04.2019 / PubMed / Full text
MAGOHB[править]
- Proteomic analysis reveals novel common genes modulated in both replicative and stress-induced senescence. / 14.10.2015 / PubMed / Full text
MAK[править]
- Age-dependent autophagy induction after injury promotes axon regeneration by limiting NOTCH. / 11.2020 / PubMed / Full text
MANBA[править]
- A meta-analysis of genome-wide association studies of epigenetic age acceleration. / 11.2019 / PubMed / Full text
MANF[править]
- Age-dependent decrease in chaperone activity impairs MANF expression, leading to Purkinje cell degeneration in inducible SCA17 mice. / 22.01.2014 / PubMed / Full text
MAOB[править]
- Modulation of KDM1A with vafidemstat rescues memory deficit and behavioral alterations. / 2020 / PubMed / Full text
MAP2K3[править]
- Associations of [i]MAP2K3[/i] Gene Variants With Superior Memory in SuperAgers. / 2018 / PubMed / Full text
MAP3K11[править]
MAP3K5[править]
- Analysis of Polymorphisms in 59 Potential Candidate Genes for Association With Human Longevity. / 08.10.2018 / PubMed / Full text
MAP4K3[править]
MAPK10[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
MAPK11[править]
- lncRNA ENSMUST00000134285 Increases MAPK11 Activity, Regulating Aging-Related Myocardial Apoptosis. / 09.07.2018 / PubMed / Full text
MAPK13[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
MAPK8[править]
- Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats. / 02.2019 / PubMed / Full text
MARCKSL1[править]
- MARCKSL1 Regulates Spine Formation in the Amygdala and Controls the Hypothalamic-Pituitary-Adrenal Axis and Anxiety-Like Behaviors. / 04.2018 / PubMed / Full text
MARK1[править]
- SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text
MARK4[править]
- Two-stage Bayesian GWAS of 9576 individuals identifies SNP regions that are targeted by miRNAs inversely expressed in Alzheimer's and cancer. / 01.2020 / PubMed / Full text
MAS1[править]
- AVE0991, a nonpeptide analogue of Ang-(1-7), attenuates aging-related neuroinflammation. / 17.04.2018 / PubMed / Full text
MASP1[править]
- Polymorphisms in the MASP1 gene are associated with serum levels of MASP-1, MASP-3, and MAp44. / 2013 / PubMed / Full text
MATN2[править]
- Mice Lacking the Matrilin Family of Extracellular Matrix Proteins Develop Mild Skeletal Abnormalities and Are Susceptible to Age-Associated Osteoarthritis. / 19.01.2020 / PubMed / Full text
MATN3[править]
- Mice Lacking the Matrilin Family of Extracellular Matrix Proteins Develop Mild Skeletal Abnormalities and Are Susceptible to Age-Associated Osteoarthritis. / 19.01.2020 / PubMed / Full text
MATN4[править]
- Mice Lacking the Matrilin Family of Extracellular Matrix Proteins Develop Mild Skeletal Abnormalities and Are Susceptible to Age-Associated Osteoarthritis. / 19.01.2020 / PubMed / Full text
MATR3[править]
- Heterogeneity of Matrin 3 in the developing and aging murine central nervous system. / 01.10.2016 / PubMed / Full text
MBD2[править]
- Age-related Changes in the Global DNA Methylation Profile of Oligodendrocyte Progenitor Cells Derived from Rat Spinal Cords. / 02.2019 / PubMed / Full text
MBOAT2[править]
- Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. / 03.2020 / PubMed / Full text
MBTD1[править]
- LncRNA TTN-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/MBTD1 axis. / 10.10.2019 / PubMed / Full text
MCF2L[править]
- DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. / 25.07.2018 / PubMed / Full text
MCM3AP[править]
- Nodes and biological processes identified on the basis of network analysis in the brain of the senescence accelerated mice as an Alzheimer's disease animal model. / 2013 / PubMed / Full text
MCM5[править]
MCM6[править]
MCUR1[править]
- Cytosolic and mitochondrial Ca concentrations in primary hepatocytes change with ageing and in consequence of an mtDNA mutation. / 09.2019 / PubMed / Full text
MDK[править]
- A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass. / 20.06.2019 / PubMed / Full text
MDN1[править]
ME3[править]
- Acceleration of age-associated methylation patterns in HIV-1-infected adults. / 2015 / PubMed / Full text
MECOM[править]
- Clinical and genetic risk factors for decreased bone mineral density in Japanese patients with inflammatory bowel disease. / 11.2018 / PubMed / Full text
MED25[править]
- The [i]HAC1[/i] histone acetyltransferase promotes leaf senescence and regulates the expression of [i]ERF022[/i]. / 08.2019 / PubMed / Full text
MED28[править]
- Redox regulation of the MED28 and MED32 mediator subunits is important for development and senescence. / 05.2016 / PubMed / Full text
MEIS2[править]
MEPE[править]
- Remodeling process in bone of aged rats in response to resistance training. / 01.09.2020 / PubMed / Full text
MERTK[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
MESP1[править]
- Simulated Microgravity Exerts an Age-Dependent Effect on the Differentiation of Cardiovascular Progenitors Isolated from the Human Heart. / 2015 / PubMed / Full text
MEST[править]
- Improving specific autobiographical memory in older adults: impacts on mood, social problem solving, and functional limitations. / 09.2018 / PubMed / Full text
MFAP4[править]
- The role of microfibrillar-associated protein 4 (MFAP4) in the formation and function of splenic compartments during embryonic and adult life. / 07.2016 / PubMed / Full text
MFSD2A[править]
- Decreased Blood Level of MFSD2a as a Potential Biomarker of Alzheimer's Disease. / 20.12.2019 / PubMed / Full text
MICB[править]
MICU1[править]
- Cytosolic and mitochondrial Ca concentrations in primary hepatocytes change with ageing and in consequence of an mtDNA mutation. / 09.2019 / PubMed / Full text
MIPEP[править]
- [Metabolic Alteration in Aging Process: Metabolic Remodeling in White Adipose Tissue by Caloric Restriction]. / 2020 / PubMed / Full text
MKRN1[править]
- Endothelial senescence-associated secretory phenotype (SASP) is regulated by Makorin-1 ubiquitin E3 ligase. / 11.2019 / PubMed / Full text
MLH3[править]
- Age-Dependent Alterations in Meiotic Recombination Cause Chromosome Segregation Errors in Spermatocytes. / 19.10.2017 / PubMed / Full text
MLST8[править]
- Genetic variants near MLST8 and DHX57 affect the epigenetic age of the cerebellum. / 02.02.2016 / PubMed / Full text
MMP20[править]
- Identification of the effects of aging-related gene-matrix metalloproteinase on allograft outcomes in kidney transplantation. / 07-08.2013 / PubMed / Full text
MOB1B[править]
- Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. / 05.03.2020 / PubMed / Full text
MOG[править]
- Efficacy of vitamin D in treating multiple sclerosis-like neuroinflammation depends on developmental stage. / 11.2013 / PubMed / Full text
MORF4L1[править]
- A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass. / 20.06.2019 / PubMed / Full text
MPC1[править]
- Age-related impairments in skeletal muscle PDH phosphorylation and plasma lactate are indicative of metabolic inflexibility and the effects of exercise training. / 01.07.2016 / PubMed / Full text
MPG[править]
- Menoprogen, a TCM Herbal Formula for Menopause, Increases Endogenous E2 in an Aged Rat Model of Menopause by Reducing Ovarian Granulosa Cell Apoptosis. / 2016 / PubMed / Full text
MPHOSPH6[править]
- Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. / 05.03.2020 / PubMed / Full text
MPL[править]
- Molecular Pathogenesis of Myeloproliferative Neoplasms: Influence of Age and Gender. / 10.2017 / PubMed / Full text
MPP3[править]
- MPP3 regulates levels of PALS1 and adhesion between photoreceptors and Müller cells. / 10.2013 / PubMed / Full text
MPP4[править]
- DNA damage tolerance in hematopoietic stem and progenitor cells in mice. / 15.08.2017 / PubMed / Full text
MPST[править]
- Methionine restriction leads to hyperhomocysteinemia and alters hepatic H S production capacity in Fischer-344 rats. / 12.2018 / PubMed / Full text
MPV17[править]
- The Human Mitochondrial DNA Depletion Syndrome Gene MPV17 Encodes a Non-selective Channel That Modulates Membrane Potential. / 29.05.2015 / PubMed / Full text
MR1[править]
MRC1[править]
- Myocardial Infarction Superimposed on Aging: MMP-9 Deletion Promotes M2 Macrophage Polarization. / 04.2016 / PubMed / Full text
MRO[править]
- [Effects of different intensities exercise combined with resveratrol on RBP4 in aged obese rats]. / 08.05.2017 / PubMed / Full text
MRTFA[править]
- Endothelial progerin expression causes cardiovascular pathology through an impaired mechanoresponse. / 01.02.2019 / PubMed / Full text
MS4A1[править]
- Age-related but not longevity-related genes are found by weighted gene co-expression network analysis in the peripheral blood cells of humans. / 19.01.2019 / PubMed / Full text
MS4A4A[править]
- Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text
MS4A6A[править]
- Recent studies on cellular and molecular mechanisms in Alzheimer's disease: focus on epigenetic factors and histone deacetylase. / 28.03.2018 / PubMed / Full text
MSH3[править]
- RNA-Seq analysis of differentially expressed genes relevant to mismatch repair in aging hematopoietic stem-progenitor cells. / 25.02.2019 / PubMed / Full text
MSH5[править]
- Exome sequencing analysis reveals variants in primary immunodeficiency genes in patients with very early onset inflammatory bowel disease. / 11.2015 / PubMed / Full text
MSN[править]
- The sigma-1 receptor mediates the beneficial effects of pridopidine in a mouse model of Huntington disease. / 01.2017 / PubMed / Full text
MSR1[править]
MSRA[править]
- Temporal pattern of neuronal insulin release during Caenorhabditis elegans aging: Role of redox homeostasis. / 02.2019 / PubMed / Full text
MT1B[править]
- Pharmacological advantages of melatonin in immunosenescence by improving activity of T lymphocytes. / 07.2016 / PubMed / Full text
MT1M[править]
- A novel strain of Lactobacillus mucosae isolated from a Gaotian villager improves in vitro and in vivo antioxidant as well as biological properties in D-galactose-induced aging mice. / 02.2016 / PubMed / Full text
MT3[править]
- Age-related changes of metallothionein 1/2 and metallothionein 3 expression in rat brain. / 01.2017 / PubMed / Full text
MTBP[править]
- Multiomics Approach to Novel Therapeutic Targets for Cancer and Aging-Related Diseases: Role of Sld7 in Yeast Aging Network. / 02.2017 / PubMed / Full text
MTCH2[править]
- The influence of obesity-related single nucleotide polymorphisms on BMI across the life course: the PAGE study. / 05.2013 / PubMed / Full text
MTHFD2[править]
- A multidimensional systems biology analysis of cellular senescence in aging and disease. / 07.04.2020 / PubMed / Full text
MTNR1A[править]
- Influence of melatonin receptor 1A gene polymorphisms on seasonal reproduction in Sarda ewes with different body condition scores and ages. / 10.2014 / PubMed / Full text
MTTP[править]
- Active vitamin D supplementation alleviates initiation and progression of nonalcoholic fatty liver disease by repressing the p53 pathway. / 15.01.2020 / PubMed / Full text
MUC7[править]
- Reduced Salivary Mucin Binding and Glycosylation in Older Adults Influences Taste in an In Vitro Cell Model. / 24.09.2019 / PubMed / Full text
MUL1[править]
- Effects of MUL1 and PARKIN on the circadian clock, brain and behaviour in Drosophila Parkinson's disease models. / 28.05.2019 / PubMed / Full text
MUTYH[править]
- Cholangiocyte senescence caused by lysophosphatidylcholine as a potential implication in carcinogenesis. / 09.2015 / PubMed / Full text
MVP[править]
- Reexamining the minimum viable population concept for long-lived species. / 06.2013 / PubMed / Full text
MYBBP1A[править]
- The protein-interaction network with functional roles in tumorigenesis, neurodegeneration, and aging. / 12.2016 / PubMed / Full text
MYBPC1[править]
- Myosin Binding Protein-C Slow Phosphorylation is Altered in Duchenne Dystrophy and Arthrogryposis Myopathy in Fast-Twitch Skeletal Muscles. / 19.08.2015 / PubMed / Full text
MYCN[править]
- Silencing of AURKA augments the antitumor efficacy of the AURKA inhibitor MLN8237 on neuroblastoma cells. / 2020 / PubMed / Full text
MYCNOS[править]
- Insights into the Function of Long Noncoding RNAs in Sepsis Revealed by Gene Co-Expression Network Analysis. / 26.01.2017 / PubMed / Full text
MYH10[править]
- Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. / 10.2019 / PubMed / Full text
MYH9[править]
- Estimated glomerular filtration rate (eGFR), 25(OH) D3, chronic kidney disease (CKD), the MYH9 (myosin heavy chain 9) gene in old and very elderly people. / 08.2015 / PubMed / Full text
MYLPF[править]
- Explaining meat quality of bulls and steers by differential proteome and phosphoproteome analysis of skeletal muscle. / 15.05.2019 / PubMed / Full text
MYNN[править]
- Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text
MYO18B[править]
- A common variant in myosin-18B contributes to mathematical abilities in children with dyslexia and intraparietal sulcus variability in adults. / 19.02.2013 / PubMed / Full text
MYO1F[править]
- A Microglial Signature Directing Human Aging and Neurodegeneration-Related Gene Networks. / 2019 / PubMed / Full text
MYO5B[править]
- Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. / 12.2017 / PubMed / Full text
MYOC[править]
- Binding of a glaucoma-associated myocilin variant to the αB-crystallin chaperone impedes protein clearance in trabecular meshwork cells. / 28.12.2018 / PubMed / Full text
MYOF[править]
- Genetics of Human Longevity From Incomplete Data: New Findings From the Long Life Family Study. / 08.10.2018 / PubMed / Full text
MYOG[править]
- Low Six4 and Six5 gene dosage improves dystrophic phenotype and prolongs life span of mdx mice. / 08.2016 / PubMed / Full text
MYSM1[править]
- MYSM1 Suppresses Cellular Senescence and the Aging Process to Prolong Lifespan. / 11.2020 / PubMed / Full text
MYT1[править]
- ESC-sEVs Rejuvenate Aging Hippocampal NSCs by Transferring SMADs to Regulate the MYT1-Egln3-Sirt1 Axis. / 01.10.2020 / PubMed / Full text
NACA[править]
- Age and Sex Are Strongly Correlated to the Rate and Type of Mountain Injuries Requiring Search and Rescue Missions. / 12.2019 / PubMed / Full text
NAF1[править]
- Telomere length and aging-related outcomes in humans: A Mendelian randomization study in 261,000 older participants. / 12.2019 / PubMed / Full text
NAIP[править]
NBPF6[править]
- Genomewide Association Scan of a Mortality Associated Endophenotype for a Long and Healthy Life in the Long Life Family Study. / 01.10.2017 / PubMed / Full text
NCAPD2[править]
- KDM3A and KDM4C Regulate Mesenchymal Stromal Cell Senescence and Bone Aging via Condensin-mediated Heterochromatin Reorganization. / 22.11.2019 / PubMed / Full text
NCAPG2[править]
- KDM3A and KDM4C Regulate Mesenchymal Stromal Cell Senescence and Bone Aging via Condensin-mediated Heterochromatin Reorganization. / 22.11.2019 / PubMed / Full text
NCK2[править]
NCOR2[править]
- DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. / 25.07.2018 / PubMed / Full text
NCSTN[править]
- The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. / 29.07.2020 / PubMed / Full text
NDN[править]
- The Changing Landscape of Naive T Cell Receptor Repertoire With Human Aging. / 2018 / PubMed / Full text
NDP[править]
- Association between Cognitive Status before Surgery and Outcomes in Elderly Patients with Hip Fracture in a Dedicated Orthogeriatric Care Pathway. / 2017 / PubMed / Full text
NDUFA8[править]
- Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text
NDUFA9[править]
- Preservation of skeletal muscle mitochondrial content in older adults: relationship between mitochondria, fibre type and high-intensity exercise training. / 01.06.2017 / PubMed / Full text
NDUFAB1[править]
- Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. / 02.2018 / PubMed / Full text
NDUFS4[править]
- Low abundance of NDUFV2 and NDUFS4 subunits of the hydrophilic complex I domain and VDAC1 predicts mammalian longevity. / 07.2020 / PubMed / Full text
NDUFS7[править]
- Nod-like receptor pyrin containing 3 (NLRP3) in the post-mortem frontal cortex from patients with bipolar disorder: A potential mediator between mitochondria and immune-activation. / 01.2016 / PubMed / Full text
NDUFS8[править]
- Mitochondrial Complex I Mutations Predispose Drosophila to Isoflurane Neurotoxicity. / 01.10.2020 / PubMed / Full text
NDUFV1[править]
- Contribution of genetic polymorphisms on functional status at very old age: a gene-based analysis of 38 genes (311 SNPs) in the oxidative stress pathway. / 04.2014 / PubMed / Full text
NEBL[править]
- Isolation and characterization of the human immature osteoblast culture system from the alveolar bones of aged donors for bone regeneration therapy. / 12.2014 / PubMed / Full text
NEDD4L[править]
- DP1 Activation Reverses Age-Related Hypertension Via NEDD4L-Mediated T-Bet Degradation in T Cells. / 25.02.2020 / PubMed / Full text
NEGR1[править]
- The influence of obesity-related single nucleotide polymorphisms on BMI across the life course: the PAGE study. / 05.2013 / PubMed / Full text
NEIL3[править]
- Age-Related Oxidative Changes in Primary Porcine Fibroblasts Expressing Mutated Huntingtin. / 2019 / PubMed / Full text
NEK9[править]
- Effect of sex, age and genetics on crossover interference in cattle. / 28.11.2016 / PubMed / Full text
NELL1[править]
- Pharmacogenomics study of thiazide diuretics and QT interval in multi-ethnic populations: the cohorts for heart and aging research in genomic epidemiology. / 04.2018 / PubMed / Full text
NEU1[править]
- Sialylation regulates myofibroblast differentiation of human skin fibroblasts. / 18.04.2017 / PubMed / Full text
NF2[править]
- Rac1-Mediated DNA Damage and Inflammation Promote Nf2 Tumorigenesis but Also Limit Cell-Cycle Progression. / 21.11.2016 / PubMed / Full text
NFIA[править]
- Cell-type-specific expression of NFIX in the developing and adult cerebellum. / 07.2017 / PubMed / Full text
NFIL3[править]
- [Identification of single nucleotide polymorphisms in centenarians]. / 05-06.2016 / PubMed / Full text
NFIX[править]
- Cell-type-specific expression of NFIX in the developing and adult cerebellum. / 07.2017 / PubMed / Full text
NFKB2[править]
- Partial sleep deprivation activates the DNA damage response (DDR) and the senescence-associated secretory phenotype (SASP) in aged adult humans. / 01.2016 / PubMed / Full text
NFKBIA[править]
- Analysis of molecular networks and targets mining of Chinese herbal medicines on anti-aging. / 28.12.2016 / PubMed / Full text
NHP2[править]
- Pseudouridylation defect due to [i]DKC1[/i] and [i]NOP10[/i] mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis. / 30.06.2020 / PubMed / Full text
NIN[править]
- Increased macromolecular damage due to oxidative stress in the neocortex and hippocampus of WNIN/Ob, a novel rat model of premature aging. / 06.06.2014 / PubMed / Full text
NIPA2[править]
- A multidimensional systems biology analysis of cellular senescence in aging and disease. / 07.04.2020 / PubMed / Full text
NKAP[править]
- NKAP Regulates Senescence and Cell Death Pathways in Hematopoietic Progenitors. / 2019 / PubMed / Full text
NKIRAS2[править]
- Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. / 11.2017 / PubMed / Full text
NKX2-1[править]
- Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. / 03.2015 / PubMed / Full text
NKX2-5[править]
- Isolation, Characterization, and Differentiation of Cardiac Stem Cells from the Adult Mouse Heart. / 07.01.2019 / PubMed / Full text
NKX6-1[править]
NLRP5[править]
- Effects of aging in the expression of NOD-like receptors and inflammasome-related genes in oral mucosa. / 02.2016 / PubMed / Full text
NLRP6[править]
- LRP6 targeting suppresses gastric tumorigenesis via P14 -Mdm2-P53-dependent cellular senescence. / 19.12.2017 / PubMed / Full text
NMI[править]
- Age-Dependent Control of Shoulder Muscles During a Reach-and-Lift Task. / 10.12.2019 / PubMed / Full text
NMNAT3[править]
- Restoration of Mitochondrial NAD Levels Delays Stem Cell Senescence and Facilitates Reprogramming of Aged Somatic Cells. / 12.2016 / PubMed / Full text
NMRK2[править]
- Aged Nicotinamide Riboside Kinase 2 Deficient Mice Present an Altered Response to Endurance Exercise Training. / 2018 / PubMed / Full text
NMU[править]
- [Medicinal Chemistry Focused on Mid-sized Peptides Derived from Biomolecules]. / 2019 / PubMed / Full text
NMUR1[править]
- [Medicinal Chemistry Focused on Mid-sized Peptides Derived from Biomolecules]. / 2019 / PubMed / Full text
NMUR2[править]
- [Medicinal Chemistry Focused on Mid-sized Peptides Derived from Biomolecules]. / 2019 / PubMed / Full text
NOBOX[править]
- Observation of the influences of diosgenin on aging ovarian reserve and function in a mouse model. / 18.10.2017 / PubMed / Full text
NOD2[править]
- Molecular modeling in the age of clinical genomics, the enterprise of the next generation. / 03.2017 / PubMed / Full text
NOL12[править]
- NOL12 Repression Induces Nucleolar Stress-Driven Cellular Senescence and Is Associated with Normative Aging. / 15.06.2019 / PubMed / Full text
NOLC1[править]
- Enhanced NOLC1 promotes cell senescence and represses hepatocellular carcinoma cell proliferation by disturbing the organization of nucleolus. / 08.2017 / PubMed / Full text
NOTCH4[править]
- Age-dependent autophagy induction after injury promotes axon regeneration by limiting NOTCH. / 11.2020 / PubMed / Full text
NPB[править]
- The Role of the IGF-1 Signaling Cascade in Muscle Protein Synthesis and Anabolic Resistance in Aging Skeletal Muscle. / 2019 / PubMed / Full text
NPBWR1[править]
- Genome-wide association study and annotating candidate gene networks affecting age at first calving in Nellore cattle. / 12.2017 / PubMed / Full text
NPFFR2[править]
- Genome-wide association study for longevity with whole-genome sequencing in 3 cattle breeds. / 09.2016 / PubMed / Full text
NPPB[править]
- Chloride channels are involved in sperm motility and are downregulated in spermatozoa from patients with asthenozoospermia. / 07-08.2017 / PubMed / Full text
NPRL2[править]
- KLHL22 activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing. / 05.2018 / PubMed / Full text
NPRL3[править]
- KLHL22 activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing. / 05.2018 / PubMed / Full text
NPSR1[править]
- Variants of asthma and chronic obstructive pulmonary disease genes and lung function decline in aging. / 07.2014 / PubMed / Full text
NPY2R[править]
- Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus. / 2015 / PubMed / Full text
NQO2[править]
- The ontogeny and population variability of human hepatic dihydronicotinamide riboside:quinone oxidoreductase (NQO2). / 08.2017 / PubMed / Full text
NR1D1[править]
- Quercetin, caffeic acid and resveratrol regulate circadian clock genes and aging-related genes in young and old human lung fibroblast cells. / 02.2020 / PubMed / Full text
NR1H3[править]
- Association of levels of fasting glucose and insulin with rare variants at the chromosome 11p11.2-MADD locus: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text
NR2C2[править]
- Minireview: Pathophysiological roles of the TR4 nuclear receptor: lessons learned from mice lacking TR4. / 06.2014 / PubMed / Full text
NR2F2[править]
- Fine mapping genetic variants associated with age at puberty and sow fertility using SowPro90 genotyping array. / 01.10.2020 / PubMed / Full text
NR5A2[править]
- Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. / 12.2017 / PubMed / Full text
NRARP[править]
- Low dose Emodin induces tumor senescence for boosting breast cancer chemotherapy via silencing NRARP. / 10.11.2018 / PubMed / Full text
NRSN2[править]
- Down-Regulated NRSN2 Promotes Cell Proliferation and Survival Through PI3K/Akt/mTOR Pathway in Hepatocellular Carcinoma. / 10.2015 / PubMed / Full text
NRXN2[править]
- Neurexins 1-3 Each Have a Distinct Pattern of Expression in the Early Developing Human Cerebral Cortex. / 01.01.2017 / PubMed / Full text
NSD1[править]
- Screening for genes that accelerate the epigenetic aging clock in humans reveals a role for the H3K36 methyltransferase NSD1. / 14.08.2019 / PubMed / Full text
NSF[править]
- Effects of air pollution on children from a socioecological perspective. / 15.11.2019 / PubMed / Full text
NSMCE2[править]
- NSMCE2 suppresses cancer and aging in mice independently of its SUMO ligase activity. / 03.11.2015 / PubMed / Full text
NSUN2[править]
- RNA methyltransferase NSUN2 promotes stress-induced HUVEC senescence. / 12.04.2016 / PubMed / Full text
NSUN5[править]
- Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan. / 30.01.2015 / PubMed / Full text
NT5E[править]
- The NT5E gene variant strongly affects the degradation rate of inosine 5'-monophosphate under postmortem conditions in Japanese Black beef. / 12.2019 / PubMed / Full text
NTHL1[править]
- Mitochondrial base excision repair positively correlates with longevity in the liver and heart of mammals. / 04.2020 / PubMed / Full text
NTM[править]
- Attenuated heme oxygenase-1 responses predispose the elderly to pulmonary nontuberculous mycobacterial infections. / 01.11.2016 / PubMed / Full text
NTN4[править]
- EGF/EGFR upregulates and cooperates with Netrin-4 to protect glioblastoma cells from DNA damage-induced senescence. / 04.12.2018 / PubMed / Full text
NTNG2[править]
- Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. / 03.2020 / PubMed / Full text
NUBP2[править]
- Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. / 10.2016 / PubMed / Full text
NUCB2[править]
- Ontogenetic Pattern Changes of Nucleobindin-2/Nesfatin-1 in the Brain and Intestinal Bulb of the Short Lived African Turquoise Killifish. / 31.12.2019 / PubMed / Full text
NUDT12[править]
- Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text
NUPR1[править]
- NUPR1 maintains autolysosomal efflux by activating SNAP25 transcription in cancer cells. / 2018 / PubMed / Full text
NUSAP1[править]
- Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text
NVL[править]
- [The effectiveness of non-invasive lung ventilation in lateral amyotrophic sclerosis]. / 2014 / PubMed
NXF1[править]
- WRN modulates translation by influencing nuclear mRNA export in HeLa cancer cells. / 14.10.2020 / PubMed / Full text
OAS1[править]
- Fine mapping genetic variants associated with age at puberty and sow fertility using SowPro90 genotyping array. / 01.10.2020 / PubMed / Full text
OASL[править]
- Effect of age on the pathogenesis of DHV-1 in Pekin ducks and on the innate immune responses of ducks to infection. / 05.2014 / PubMed / Full text
OAZ1[править]
- Identification of reference genes for RT-qPCR data normalisation in aging studies. / 27.09.2019 / PubMed / Full text
OCLN[править]
- Reduction of Aging-Induced Oxidative Stress and Activation of Autophagy by Bilberry Anthocyanin Supplementation via the AMPK-mTOR Signaling Pathway in Aged Female Rats. / 17.07.2019 / PubMed / Full text
OCRL[править]
- Decreased urinary excretion of the ectodomain form of megalin (A-megalin) in children with OCRL gene mutations. / 04.2017 / PubMed / Full text
ODC1[править]
- The curious case of polyamines: spermidine drives reversal of B cell senescence. / 03.2020 / PubMed / Full text
OGDH[править]
- An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. / 12.2019 / PubMed / Full text
OGFOD1[править]
- 2-Oxoglutarate-dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process. / 10.2015 / PubMed / Full text
OLFML3[править]
- Dexamethasone Induces a Specific Form of Ramified Dysfunctional Microglia. / 02.2019 / PubMed / Full text
OMA1[править]
ONECUT1[править]
- Survival analyses in Holstein cows considering direct disease diagnoses and specific SNP marker effects. / 09.2020 / PubMed / Full text
OOEP[править]
- Maternal gene [i]Ooep[/i] may participate in homologous recombination-mediated DNA double-strand break repair in mouse oocytes. / 18.11.2018 / PubMed / Full text
OPLAH[править]
- An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. / 12.2019 / PubMed / Full text
OPRD1[править]
- A commonly carried genetic variant in the delta opioid receptor gene, OPRD1, is associated with smaller regional brain volumes: replication in elderly and young populations. / 04.2014 / PubMed / Full text
OR2AG1[править]
- The activation of OR51E1 causes growth suppression of human prostate cancer cells. / 26.07.2016 / PubMed / Full text
OR51E1[править]
- The activation of OR51E1 causes growth suppression of human prostate cancer cells. / 26.07.2016 / PubMed / Full text
OR51E2[править]
- The activation of OR51E1 causes growth suppression of human prostate cancer cells. / 26.07.2016 / PubMed / Full text
ORC1[править]
ORMDL3[править]
- Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. / 12.2019 / PubMed / Full text
OSCAR[править]
- Awareness tool for safe and responsible driving (OSCAR): a potential educational intervention for increasing interest, openness and knowledge about the abilities required and compensatory strategies among older drivers. / 2015 / PubMed / Full text
OSGEP[править]
- Novel homozygous OSGEP gene pathogenic variants in two unrelated patients with Galloway-Mowat syndrome: case report and review of the literature. / 11.04.2019 / PubMed / Full text
OTUD7A[править]
- A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. / 07.2013 / PubMed / Full text
OXT[править]
- Medial amygdala lesions modify aggressive behavior and immediate early gene expression in oxytocin and vasopressin neurons during intermale exposure. / 15.05.2013 / PubMed / Full text
P2RX3[править]
- Fine mapping genetic variants associated with age at puberty and sow fertility using SowPro90 genotyping array. / 01.10.2020 / PubMed / Full text
P2RX4[править]
- A rare functional haplotype of the P2RX4 and P2RX7 genes leads to loss of innate phagocytosis and confers increased risk of age-related macular degeneration. / 04.2013 / PubMed / Full text
P2RY10[править]
- Divergent age-dependent peripheral immune transcriptomic profile following traumatic brain injury. / 12.06.2019 / PubMed / Full text
P4HA2[править]
- Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients. / 03.09.2019 / PubMed / Full text
P4HA3[править]
- Age-associated genes in human mammary gland drive human breast cancer progression. / 15.06.2020 / PubMed / Full text
PABPC1[править]
- Comprehensive Analysis of Interaction Networks of Telomerase Reverse Transcriptase with Multiple Bioinformatic Approaches: Deep Mining the Potential Functions of Telomere and Telomerase. / 08.2017 / PubMed / Full text
PACSIN1[править]
- GluN3A promotes dendritic spine pruning and destabilization during postnatal development. / 09.07.2014 / PubMed / Full text
PAFAH2[править]
- Elevated truncated oxidized phospholipids as a factor exacerbating ALI in the aging lungs. / 03.2019 / PubMed / Full text
PAK2[править]
- Targeting genes in insulin-associated signalling pathway, DNA damage, cell proliferation and cell differentiation pathways by tocotrienol-rich fraction in preventing cellular senescence of human diploid fibroblasts. / 11-12.2015 / PubMed / Full text
PALM[править]
- Signatures of malaria vaccine efficacy in ageing murine immune memory. / 05.2014 / PubMed / Full text
PAPSS1[править]
- Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text
PARN[править]
- CD8 T-cell senescence and skewed lymphocyte subsets in young Dyskeratosis Congenita patients with PARN and DKC1 mutations. / 09.2020 / PubMed / Full text
PARP2[править]
- Molecular evolutionary patterns of NAD /Sirtuin aging signaling pathway across taxa. / 2017 / PubMed / Full text
PATE1[править]
- Aged men share the sperm protein PATE1 defect with young asthenozoospermia patients. / 04.2015 / PubMed / Full text
PAX1[править]
- Co-culturing nucleus pulposus mesenchymal stem cells with notochordal cell-rich nucleus pulposus explants attenuates tumor necrosis factor-α-induced senescence. / 26.06.2018 / PubMed / Full text
PAX4[править]
- Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. / 03.2015 / PubMed / Full text
PAX7[править]
- Muscle health and performance in monozygotic twins with 30 years of discordant exercise habits. / 10.2018 / PubMed / Full text
PAX8[править]
- Inadequate control of thyroid hormones sensitizes to hepatocarcinogenesis and unhealthy aging. / 13.09.2019 / PubMed / Full text
PBX4[править]
- Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. / 12.2019 / PubMed / Full text
PCBP2[править]
- RNA-binding Protein PCBP2 Regulates p73 Expression and p73-dependent Antioxidant Defense. / 29.04.2016 / PubMed / Full text
PCCA[править]
- Propionyl-CoA carboxylase pcca-1 and pccb-1 gene deletions in Caenorhabditis elegans globally impair mitochondrial energy metabolism. / 03.2018 / PubMed / Full text
PCCB[править]
- Propionyl-CoA carboxylase pcca-1 and pccb-1 gene deletions in Caenorhabditis elegans globally impair mitochondrial energy metabolism. / 03.2018 / PubMed / Full text
PCDH9[править]
- A reverse genetics cell-based evaluation of genes linked to healthy human tissue age. / 01.2017 / PubMed / Full text
PCDHGA3[править]
PCGF2[править]
- Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text
PCGF3[править]
- Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text
PCGF5[править]
- Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text
PCK1[править]
- PCK1 is negatively regulated by bta-miR-26a, and a single-nucleotide polymorphism in the 3' untranslated region is involved in semen quality and longevity of Holstein bulls. / 03.2016 / PubMed / Full text
PCMTD1[править]
- Genome-wide association study and annotating candidate gene networks affecting age at first calving in Nellore cattle. / 12.2017 / PubMed / Full text
PCP4[править]
- Specific age-related molecular alterations in the cerebellum of Down syndrome mouse models. / 01.09.2016 / PubMed / Full text
PDE11A[править]
- Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text
PDE1B[править]
- Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text
PDE3B[править]
- Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text
PDE4A[править]
- Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text
PDE7A[править]
- Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text
PDE7B[править]
- Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text
PDE8A[править]
- Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text
PDE8B[править]
- Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text
PDGFRA[править]
- GBM-associated mutations and altered protein expression are more common in young patients. / 25.10.2016 / PubMed / Full text
PDP1[править]
- Age-related impairments in skeletal muscle PDH phosphorylation and plasma lactate are indicative of metabolic inflexibility and the effects of exercise training. / 01.07.2016 / PubMed / Full text
PDP2[править]
- Age-related impairments in skeletal muscle PDH phosphorylation and plasma lactate are indicative of metabolic inflexibility and the effects of exercise training. / 01.07.2016 / PubMed / Full text
PEBP1[править]
- [i]Drosophila[/i] PEBP1 inhibits intestinal stem cell aging via suppression of ERK pathway. / 06.04.2018 / PubMed / Full text
PER3[править]
- Effects of PER3 clock gene polymorphisms on aging-related changes of the cerebral cortex. / 03.2018 / PubMed / Full text
PEX1[править]
- Transcription factor PEX1 modulates extracellular matrix turnover through regulation of MMP-9 expression. / 02.2017 / PubMed / Full text
PEX19[править]
- A genome-wide screen identifies genes that suppress the accumulation of spontaneous mutations in young and aged yeast cells. / 02.2020 / PubMed / Full text
PEX5[править]
- Aging lowers PEX5 levels in cortical neurons in male and female mouse brains. / 09.2020 / PubMed / Full text
PF4V1[править]
- Involvement of ERK1/2 activation in the gene expression of senescence-associated secretory factors in human hepatic stellate cells. / 05.2019 / PubMed / Full text
PFKL[править]
- Developmental changes in hepatic glucose metabolism in a newborn piglet model: A comparative analysis for suckling period and early weaning period. / 19.02.2016 / PubMed / Full text
PGAP1[править]
- Hypoxia-inducible transcription factors, HIF1A and HIF2A, increase in aging mucosal tissues. / 07.2018 / PubMed / Full text
PGK2[править]
- Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice. / 01.2020 / PubMed / Full text
PGLS[править]
- 547 transcriptomes from 44 brain areas reveal features of the aging brain in non-human primates. / 28.11.2019 / PubMed / Full text
PGLYRP1[править]
- PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan. / 16.01.2014 / PubMed / Full text
PGLYRP2[править]
- Innate immune response to LPS in airway epithelium is dependent on chronological age and antecedent exposures. / 11.2013 / PubMed / Full text
PGM1[править]
- Explaining meat quality of bulls and steers by differential proteome and phosphoproteome analysis of skeletal muscle. / 15.05.2019 / PubMed / Full text
PHAX[править]
- Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text
PHF19[править]
- A reverse genetics cell-based evaluation of genes linked to healthy human tissue age. / 01.2017 / PubMed / Full text
PHF6[править]
- miR-128 regulates neuronal migration, outgrowth and intrinsic excitability via the intellectual disability gene Phf6. / 03.01.2015 / PubMed / Full text
PHGDH[править]
- Tanshinone prevents alveolar bone loss in ovariectomized osteoporosis rats by up-regulating phosphoglycerate dehydrogenase. / 01.08.2019 / PubMed / Full text
PHLPP1[править]
- Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans. / 28.06.2016 / PubMed / Full text
PHOSPHO1[править]
- Phospho1 deficiency transiently modifies bone architecture yet produces consistent modification in osteocyte differentiation and vascular porosity with ageing. / 12.2015 / PubMed / Full text
PI4KA[править]
- Combined aerobic exercise and enzyme replacement therapy rejuvenates the mitochondrial-lysosomal axis and alleviates autophagic blockage in Pompe disease. / 10.2015 / PubMed / Full text
PIAS1[править]
- Age-Dependent and -Independent Effects of Perivascular Adipose Tissue and Its Paracrine Activities during Neointima Formation. / 31.12.2019 / PubMed / Full text
PICK1[править]
- Development- and age-related alterations in the expression of AMPA receptor subunit GluR2 and its trafficking proteins in the hippocampus of male mouse brain. / 06.2015 / PubMed / Full text
PIGR[править]
- Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. / 02.2018 / PubMed / Full text
PIK3C2A[править]
- Identification of key genes and transcription factors in aging mesenchymal stem cells by DNA microarray data. / 15.04.2019 / PubMed / Full text
PIK3C2B[править]
- In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. / 12.2019 / PubMed / Full text
PIK3C3[править]
- Metabolomic analyses reveal that anti-aging metabolites are depleted by palmitate but increased by oleate in vivo. / 03.08.2015 / PubMed / Full text
PIK3CB[править]
- Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text
PIK3R1[править]
- Analysis of Polymorphisms in 59 Potential Candidate Genes for Association With Human Longevity. / 08.10.2018 / PubMed / Full text
PIK3R3[править]
- Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text
PIM1[править]
- PIM1-catalyzed CBX8 phosphorylation promotes the oncogene-induced senescence of human diploid fibroblast. / 27.06.2018 / PubMed / Full text
PIP5K1C[править]
- [Target protein candidates of hypothalamus in aging rats with intervention by Qiongyugao]. / 04.2016 / PubMed / Full text
PIPOX[править]
- Aging related methylation influences the gene expression of key control genes in colorectal cancer and adenoma. / 21.12.2016 / PubMed / Full text
PKD1[править]
- The protein kinase D1-mediated classical protein secretory pathway regulates the Ras oncogene-induced senescence response. / 16.03.2018 / PubMed / Full text
PKHD1L1[править]
PKLR[править]
- Developmental changes in hepatic glucose metabolism in a newborn piglet model: A comparative analysis for suckling period and early weaning period. / 19.02.2016 / PubMed / Full text
PKNOX1[править]
- The effects of environmental stressors on candidate aging associated genes. / 08.2020 / PubMed / Full text
PLA2G4A[править]
- Coordination of gene expression of arachidonic and docosahexaenoic acid cascade enzymes during human brain development and aging. / 2014 / PubMed / Full text
PLA2G4B[править]
- Monocytes present age-related changes in phospholipid concentration and decreased energy metabolism. / 04.2020 / PubMed / Full text
PLA2G7[править]
- Elevated PLA2G7 gene promoter methylation as a gender-specific marker of aging increases the risk of coronary heart disease in females. / 2013 / PubMed / Full text
PLAGL1[править]
- Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. / 12.2015 / PubMed / Full text
PLAT[править]
PLCB1[править]
- Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text
PLCD1[править]
- Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text
PLCG2[править]
- A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer's disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity. / 08.2019 / PubMed / Full text
PLEC[править]
- Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. / 07.2014 / PubMed / Full text
PLEKHA6[править]
- In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. / 12.2019 / PubMed / Full text
PLEKHO1[править]
- Increased PLEKHO1 within osteoblasts suppresses Smad-dependent BMP signaling to inhibit bone formation during aging. / 04.2017 / PubMed / Full text
PLIN1[править]
- Determination of the Mechanisms that Cause Sarcopenia through cDNA Microarray. / 2017 / PubMed / Full text
PLK2[править]
- Age- and brain region-dependent α-synuclein oligomerization is attributed to alterations in intrinsic enzymes regulating α-synuclein phosphorylation in aging monkey brains. / 23.02.2016 / PubMed / Full text
PLP1[править]
- Age-related changes in a patient with Pelizaeus-Merzbacher disease determined by repeated 1H-magnetic resonance spectroscopy. / 02.2014 / PubMed / Full text
PLTP[править]
- PLTP deficiency impairs learning and memory capabilities partially due to alteration of amyloid-β metabolism in old mice. / 2014 / PubMed / Full text
PLXNA4[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
PMM2[править]
- Synaptic roles for phosphomannomutase type 2 in a new Drosophila congenital disorder of glycosylation disease model. / 01.05.2016 / PubMed / Full text
PMS1[править]
- RNA-Seq analysis of differentially expressed genes relevant to mismatch repair in aging hematopoietic stem-progenitor cells. / 25.02.2019 / PubMed / Full text
PNPLA6[править]
- Delayed Induction of Human NTE (PNPLA6) Rescues Neurodegeneration and Mobility Defects of Drosophila swiss cheese (sws) Mutants. / 2015 / PubMed / Full text
PODXL[править]
- Induced Pluripotent Stem Cell-Derived Dopaminergic Neurons from Adult Common Marmoset Fibroblasts. / 01.09.2017 / PubMed / Full text
POLDIP2[править]
- Essential role of POLDIP2 in Tau aggregation and neurotoxicity via autophagy/proteasome inhibition. / 26.06.2015 / PubMed / Full text
POLL[править]
- Temporal trends in loss of life expectancy after a cancer diagnosis among the Australian population. / 04.2020 / PubMed / Full text
POLN[править]
- Analysis of DNA polymerase ν function in meiotic recombination, immunoglobulin class-switching, and DNA damage tolerance. / 06.2017 / PubMed / Full text
POLR3A[править]
- Nucleolar disruption, activation of P53 and premature senescence in POLR3A-mutated Wiedemann-Rautenstrauch syndrome fibroblasts. / 12.2020 / PubMed / Full text
POU2F1[править]
- Methyl CpG level at distal part of heat-shock protein promoter HSP70 exhibits epigenetic memory for heat stress by modulating recruitment of POU2F1-associated nucleosome-remodeling deacetylase (NuRD) complex. / 05.2017 / PubMed / Full text
POU3F2[править]
- POU3F2 participates in cognitive function and adult hippocampal neurogenesis via mammalian-characteristic amino acid repeats. / 02.2018 / PubMed / Full text
POU4F3[править]
- In Vivo Interplay between p27 , GATA3, ATOH1, and POU4F3 Converts Non-sensory Cells to Hair Cells in Adult Mice. / 11.04.2017 / PubMed / Full text
PPA2[править]
- Characterization of long living yeast deletion mutants that lack mitochondrial metabolism genes DSS1, PPA2 and AFG3. / 20.07.2019 / PubMed / Full text
PPARA[править]
- [Genotype and allele frequencies of UCP and PPAR gene families in residents of besieged Leningrad and in the control group]. / 2014 / PubMed
PPCDC[править]
- Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text
PPFIA1[править]
- Explorative results from multistep screening for potential genetic risk loci of Alzheimer's disease in the longitudinal VITA study cohort. / 01.2018 / PubMed / Full text
PPM1A[править]
- The TGF-β1/p53/PAI-1 Signaling Axis in Vascular Senescence: Role of Caveolin-1. / 03.08.2019 / PubMed / Full text
PPM1B[править]
- PPM1B depletion induces premature senescence in human IMR-90 fibroblasts. / 06.2014 / PubMed / Full text
PPP1R12B[править]
- BDA-410 Treatment Reduces Body Weight and Fat Content by Enhancing Lipolysis in Sedentary Senescent Mice. / 01.08.2017 / PubMed / Full text
PPP1R15B[править]
- In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. / 12.2019 / PubMed / Full text
PPP1R1B[править]
- Effects of PPP1R1B (DARPP-32) Polymorphism on Feedback-Related Brain Potentials Across the Life Span. / 2013 / PubMed / Full text
PPP1R3C[править]
- Uncovering genetic mechanisms of kidney aging through transcriptomics, genomics, and epigenomics. / 03.2019 / PubMed / Full text
PPP2R1A[править]
- Identification of key genes and transcription factors in aging mesenchymal stem cells by DNA microarray data. / 15.04.2019 / PubMed / Full text
PPP2R2B[править]
- Germline genetics of the p53 pathway affect longevity in a gender specific manner. / 2014 / PubMed / Full text
PPP2R3C[править]
- The mir-465 family is upregulated with age and attenuates growth hormone signaling in mouse liver. / 04.2019 / PubMed / Full text
PPT1[править]
- Neuroprotection and lifespan extension in Ppt1(-/-) mice by NtBuHA: therapeutic implications for INCL. / 11.2013 / PubMed / Full text
PRDM1[править]
- Age-related changes in the BACH2 and PRDM1 genes in lymphocytes from healthy donors and chronic lymphocytic leukemia patients. / 17.01.2019 / PubMed / Full text
PRDM8[править]
- PRDM8 reveals aberrant DNA methylation in aging syndromes and is relevant for hematopoietic and neuronal differentiation. / 20.08.2020 / PubMed / Full text
PRDX2[править]
PRDX5[править]
- The antioxidant icariin protects porcine oocytes from age-related damage in vitro. / 12.05.2020 / PubMed / Full text
PRG2[править]
- Peritoneal carcinomatosis of colorectal cancer is characterized by structural and functional reorganization of the tumor microenvironment inducing senescence and proliferation arrest in cancer cells. / 2016 / PubMed / Full text
PRKAA1[править]
- Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats. / 02.2019 / PubMed / Full text
PRKACA[править]
- Intratumoral heterogeneity of the tumor cells based on in situ cortisol excess in cortisol-producing adenomas; ∼An association among morphometry, genotype and cellular senescence∼. / 11.2020 / PubMed / Full text
PRKCB[править]
- MEF2A alters the proliferation, inflammation-related gene expression profiles and its silencing induces cellular senescence in human coronary endothelial cells. / 18.03.2019 / PubMed / Full text
PRKCD[править]
- Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text
PRKCH[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
PRKDC[править]
- DNA-PKcs modulates progenitor cell proliferation and fibroblast senescence in idiopathic pulmonary fibrosis. / 29.08.2019 / PubMed / Full text
PRKN[править]
- PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. / 03.2019 / PubMed / Full text
PRLR[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
PRM1[править]
PRM2[править]
PRODH[править]
- Proline dehydrogenase promotes senescence through the generation of reactive oxygen species. / 15.04.2017 / PubMed / Full text
PRR9[править]
- Circadian control of [i]ORE1[/i] by PRR9 positively regulates leaf senescence in [i]Arabidopsis[/i]. / 14.08.2018 / PubMed / Full text
PRRC2A[править]
- Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. / 05.03.2020 / PubMed / Full text
PRRX1[править]
- A SIRT1-centered circuitry regulates breast cancer stemness and metastasis. / 12.2018 / PubMed / Full text
PRSS16[править]
- The complex genetics of gait speed: genome-wide meta-analysis approach. / 10.01.2017 / PubMed / Full text
PSAP[править]
- Prosaposin and its receptors are differentially expressed in the salivary glands of male and female rats. / 08.2018 / PubMed / Full text
PSMA7[править]
- Role of the Ubiquitin C-Terminal Hydrolase L1-Modulated Ubiquitin Proteasome System in Auditory Cortex Senescence. / 2017 / PubMed / Full text
PSMB10[править]
- Identification of the activating cytotoxicity receptor NKG2D as a senescence marker in zero-hour kidney biopsies is indicative for clinical outcome. / 06.2017 / PubMed / Full text
PSMB5[править]
- Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression. / 24.01.2014 / PubMed / Full text
PSMB9[править]
- Identification of the activating cytotoxicity receptor NKG2D as a senescence marker in zero-hour kidney biopsies is indicative for clinical outcome. / 06.2017 / PubMed / Full text
PSMD11[править]
- The effect and mechanism of 19S proteasome PSMD11/Rpn6 subunit in D-Galactose induced mimetic aging models. / 01.09.2020 / PubMed / Full text
PSMD13[править]
- Lifelong Football Training: Effects on Autophagy and Healthy Longevity Promotion. / 2019 / PubMed / Full text
PSMD14[править]
- Upregulation of deubiquitinase PSMD14 in lung adenocarcinoma (LUAD) and its prognostic significance. / 2020 / PubMed / Full text
PSMG1[править]
- Long-lived rodents reveal signatures of positive selection in genes associated with lifespan. / 03.2018 / PubMed / Full text
PSTK[править]
- Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text
PTCH1[править]
- Sonic hedgehog regulation of cavernous nerve regeneration and neurite formation in aged pelvic plexus. / 02.2019 / PubMed / Full text
PTGDR[править]
PTGDS[править]
PTGER2[править]
- Molecular cloning and expression analysis of prostaglandin E receptor 2 gene in cashmere goat (Capra hircus) skin during hair follicle development. / 03.04.2014 / PubMed / Full text
PTH2R[править]
- Variation in the [[PTH2R]] gene is associated with age-related degenerative changes in the lumbar spine. / 01.2015 / PubMed / Full text
PTHLH[править]
- Variation in the [[PTH2R]] gene is associated with age-related degenerative changes in the lumbar spine. / 01.2015 / PubMed / Full text
PTK2[править]
- PTK2 rs7460 and rs7843014 polymorphisms and exceptional longevity: a functional replication study. / 10.2014 / PubMed / Full text
PTP4A3[править]
- Transcriptional and Functional Changes of the Human Microvasculature during Physiological Aging and Alzheimer Disease. / 05.2020 / PubMed / Full text
PTPN7[править]
- DNA methylation-based age prediction from saliva: High age predictability by combination of 7 CpG markers. / 07.2017 / PubMed / Full text
PTPRC[править]
- Selective molecular biomarkers to predict biologic behavior in pituitary tumors. / 05.2017 / PubMed / Full text
PTPRD[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
PTPRR[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
PTPRT[править]
- The complex genetics of gait speed: genome-wide meta-analysis approach. / 10.01.2017 / PubMed / Full text
PUM1[править]
- Identification of reference genes for RT-qPCR data normalisation in aging studies. / 27.09.2019 / PubMed / Full text
PXN[править]
- pxn-1 and pxn-2 May Interact Negatively during Neuronal Development and Aging in C. elegans. / 08.2015 / PubMed / Full text
QRFPR[править]
- Explorative results from multistep screening for potential genetic risk loci of Alzheimer's disease in the longitudinal VITA study cohort. / 01.2018 / PubMed / Full text
RAB10[править]
- Aberrant mitochondrial morphology and function associated with impaired mitophagy and DNM1L-MAPK/ERK signaling are found in aged mutant Parkinsonian LRRK2 mice. / 10.12.2020 / PubMed / Full text
RAB1B[править]
- Lifelong Football Training: Effects on Autophagy and Healthy Longevity Promotion. / 2019 / PubMed / Full text
RAB27A[править]
- Reduced expression level of the cyclic adenosine monophosphate response element-binding protein contributes to lung aging. / 01.2014 / PubMed / Full text
RAC3[править]
- RAC3 more than a nuclear receptor coactivator: a key inhibitor of senescence that is downregulated in aging. / 15.10.2015 / PubMed / Full text
RAD21[править]
- Suppression of RAD21 Induces Senescence of MDA-MB-231 Human Breast Cancer Cells Through RB1 Pathway Activation Via c-Myc Downregulation. / 06.2016 / PubMed / Full text
RAD23A[править]
- Lifelong Football Training: Effects on Autophagy and Healthy Longevity Promotion. / 2019 / PubMed / Full text
RAD51C[править]
- Polymorphisms of the DNA repair gene EXO1 modulate cognitive aging in old adults in a Taiwanese population. / 06.2019 / PubMed / Full text
RAD9A[править]
- Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. / 02.2018 / PubMed / Full text
RAI1[править]
- DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. / 25.07.2018 / PubMed / Full text
RAMP1[править]
- Depressed perivascular sensory innervation of mouse mesenteric arteries with advanced age. / 15.04.2016 / PubMed / Full text
RAMP2[править]
- Vascular endothelial adrenomedullin-RAMP2 system is essential for vascular integrity and organ homeostasis. / 19.02.2013 / PubMed / Full text
RAPGEF2[править]
- Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. / 12.2017 / PubMed / Full text
RARB[править]
- Genome-wide meta-analysis of macronutrient intake of 91,114 European ancestry participants from the cohorts for heart and aging research in genomic epidemiology consortium. / 12.2019 / PubMed / Full text
RASEF[править]
- Near-genomewide RNAi screening for regulators of BRAF(V600E) -induced senescence identifies RASEF, a gene epigenetically silenced in melanoma. / 07.2014 / PubMed / Full text
RASGEF1A[править]
- Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text
RASGRF2[править]
- A single nucleotide polymorphism associated with reduced alcohol intake in the RASGRF2 gene predicts larger cortical volumes but faster longitudinal ventricular expansion in the elderly. / 2013 / PubMed / Full text
RB1CC1[править]
- Tumor-suppressive functions of 15-Lipoxygenase-2 and RB1CC1 in prostate cancer. / 2014 / PubMed / Full text
RBBP4[править]
- Retinoblastoma-binding Protein 4-regulated Classical Nuclear Transport Is Involved in Cellular Senescence. / 04.12.2015 / PubMed / Full text
RBFOX1[править]
- Genetics of Gene Expression in the Aging Human Brain Reveal TDP-43 Proteinopathy Pathophysiology. / 05.08.2020 / PubMed / Full text
RBL1[править]
- Deregulation of hsa-miR-20b expression in TNF-α-induced premature senescence of human pulmonary microvascular endothelial cells. / 11.2017 / PubMed / Full text
RBM25[править]
- HPV shapes tumor transcriptome by globally modifying the pool of RNA binding protein-binding motif. / 29.04.2019 / PubMed / Full text
RBM3[править]
- Infants Uniquely Express High Levels of RBM3 and Other Cold-Adaptive Neuroprotectant Proteins in the Human Brain. / 2018 / PubMed / Full text
RBM34[править]
- The association between poverty and gene expression within peripheral blood mononuclear cells in a diverse Baltimore City cohort. / 2020 / PubMed / Full text
RBM38[править]
- Genetic Ablation of [i]Rbm38[/i] Promotes Lymphomagenesis in the Context of Mutant p53 by Downregulating PTEN. / 15.03.2018 / PubMed / Full text
RBM6[править]
- Bayesian association scan reveals loci associated with human lifespan and linked biomarkers. / 27.07.2017 / PubMed / Full text
RBMXL1[править]
RBP1[править]
- The SR proteins SF2 and RBP1 regulate triglyceride storage in the fat body of Drosophila. / 27.08.2019 / PubMed / Full text
RC3H2[править]
- The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. / 29.07.2020 / PubMed / Full text
RDX[править]
- Toxicity of the conventional energetics TNT and RDX relative to new insensitive munitions constituents DNAN and NTO in Rana pipiens tadpoles. / 04.2015 / PubMed / Full text
REEP4[править]
- Chromosome Missegregation in Single Human Oocytes Is Related to the Age and Gene Expression Profile. / 12.03.2020 / PubMed / Full text
REL[править]
- Impact of loss of NF-κB1, NF-κB2 or c-REL on SLE-like autoimmune disease and lymphadenopathy in Fas(lpr/lpr) mutant mice. / 01.2016 / PubMed / Full text
RELB[править]
REV1[править]
- REV1 inhibitor JH-RE-06 enhances tumor cell response to chemotherapy by triggering senescence hallmarks. / 17.11.2020 / PubMed / Full text
RFWD3[править]
- Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. / 05.03.2020 / PubMed / Full text
RGL1[править]
- Arabidopsis WRKY45 Interacts with the DELLA Protein RGL1 to Positively Regulate Age-Triggered Leaf Senescence. / 12.09.2017 / PubMed / Full text
RGS10[править]
- Age-related changes in regulator of G-protein signaling (RGS)-10 expression in peripheral and central immune cells may influence the risk for age-related degeneration. / 05.2015 / PubMed / Full text
RGS14[править]
- Enhanced longevity and metabolism by brown adipose tissue with disruption of the regulator of G protein signaling 14. / 08.2018 / PubMed / Full text
RGS3[править]
- The roles of ribosomal protein S19 C-terminus in a shortened neutrophil lifespan through delta lactoferrin. / 09.2015 / PubMed / Full text
RHCG[править]
- Rh type C-glycoprotein functions as a novel tumor suppressor gene by inhibiting tumorigenicity and metastasis in head and neck squamous cell carcinoma. / 06.06.2019 / PubMed / Full text
RHD[править]
- Suppression and narrative time shifts in adults with right-hemisphere brain damage. / 05.2013 / PubMed / Full text
RHEBL1[править]
- Long-lived rodents reveal signatures of positive selection in genes associated with lifespan. / 03.2018 / PubMed / Full text
RHOB[править]
- Regulation of RhoB Gene Expression during Tumorigenesis and Aging Process and Its Potential Applications in These Processes. / 13.06.2019 / PubMed / Full text
RIC3[править]
RIF1[править]
- 53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination. / 02.01.2020 / PubMed / Full text
RIMS2[править]
- Age-related gene and miRNA expression changes in airways of healthy individuals. / 06.03.2019 / PubMed / Full text
RIN3[править]
- Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text
RNASEL[править]
- Age-related methylation profiles of equine blood leukocytes in the RNASEL locus. / 08.2016 / PubMed / Full text
RNF10[править]
- Reduced RING finger protein 10 expression in macrophages is associated with aging-related inflammation. / 28.11.2020 / PubMed / Full text
RNF111[править]
- Global-genome Nucleotide Excision Repair Controlled by Ubiquitin/Sumo Modifiers. / 2016 / PubMed / Full text
RNF13[править]
- The effects of environmental stressors on candidate aging associated genes. / 08.2020 / PubMed / Full text
RNF144A[править]
- Identification of age- and gender-associated long noncoding RNAs in the human brain with Alzheimer's disease. / 09.2019 / PubMed / Full text
RORB[править]
- Effects of circadian clock genes and environmental factors on cognitive aging in old adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text
ROS1[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
RPA1[править]
- Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text
RPA2[править]
- Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. / 11.2017 / PubMed / Full text
RPL13[править]
- Selection of a Real-Time PCR Housekeeping Gene Panel in Human Endothelial Colony Forming Cells for Cellular Senescence Studies. / 2019 / PubMed / Full text
RPL18[править]
- Comprehensive analysis of the ubiquitinome during oncogene-induced senescence in human fibroblasts. / 2015 / PubMed / Full text
RPL30[править]
- Selection of a Real-Time PCR Housekeeping Gene Panel in Human Endothelial Colony Forming Cells for Cellular Senescence Studies. / 2019 / PubMed / Full text
RPL31[править]
- Selection of a Real-Time PCR Housekeeping Gene Panel in Human Endothelial Colony Forming Cells for Cellular Senescence Studies. / 2019 / PubMed / Full text
RPL36[править]
- Lifelong Football Training: Effects on Autophagy and Healthy Longevity Promotion. / 2019 / PubMed / Full text
RPL37[править]
- Selection of a Real-Time PCR Housekeeping Gene Panel in Human Endothelial Colony Forming Cells for Cellular Senescence Studies. / 2019 / PubMed / Full text
RPL4[править]
- Lifelong Football Training: Effects on Autophagy and Healthy Longevity Promotion. / 2019 / PubMed / Full text
RPS11[править]
- Comprehensive analysis of the ubiquitinome during oncogene-induced senescence in human fibroblasts. / 2015 / PubMed / Full text
RPS19BP1[править]
- Material basis, effect, and mechanism of ethanol extract of Pinellia ternata tubers on oxidative stress-induced cell senescence. / 10.2020 / PubMed / Full text
RPS6KA1[править]
- Genetic analysis of TOR complex gene variation with human longevity: a nested case-control study of American men of Japanese ancestry. / 02.2015 / PubMed / Full text
RPS6KB1[править]
- Inhibition of glioma growth by flavokawain B is mediated through endoplasmic reticulum stress induced autophagy. / 2018 / PubMed / Full text
RPS7[править]
- Comprehensive analysis of the ubiquitinome during oncogene-induced senescence in human fibroblasts. / 2015 / PubMed / Full text
RRAD[править]
- Pan-senescence transcriptome analysis identified RRAD as a marker and negative regulator of cellular senescence. / 01.2019 / PubMed / Full text
RRM2B[править]
- Troponin T3 associates with DNA consensus sequence that overlaps with p53 binding motifs. / 15.07.2018 / PubMed / Full text
RS1[править]
- Retinoschisin gene therapy in photoreceptors, Müller glia or all retinal cells in the Rs1h-/- mouse. / 06.2014 / PubMed / Full text
RSAD2[править]
- Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation. / 02.08.2017 / PubMed / Full text
RSF1[править]
- The SR proteins SF2 and RBP1 regulate triglyceride storage in the fat body of Drosophila. / 27.08.2019 / PubMed / Full text
RSL1D1[править]
- Ribosomal L1 domain and lysine-rich region are essential for CSIG/ RSL1D1 to regulate proliferation and senescence. / 15.01.2016 / PubMed / Full text
RTN3[править]
- Dysfunctional tubular endoplasmic reticulum constitutes a pathological feature of Alzheimer's disease. / 09.2016 / PubMed / Full text
RTN4[править]
RUNX3[править]
- circLARP4 induces cellular senescence through regulating miR-761/RUNX3/p53/p21 signaling in hepatocellular carcinoma. / 02.2019 / PubMed / Full text
RUVBL2[править]
- Proton irradiation impacts age-driven modulations of cancer progression influenced by immune system transcriptome modifications from splenic tissue. / 09.2015 / PubMed / Full text
RXFP1[править]
- Sex- and age-specific differences in relaxin family peptide receptor expression within the hippocampus and amygdala in rats. / 22.01.2015 / PubMed / Full text
RXFP3[править]
- The RXFP3 receptor is functionally associated with cellular responses to oxidative stress and DNA damage. / 03.12.2019 / PubMed / Full text
RXRA[править]
- The nuclear receptor RXRA controls cellular senescence by regulating calcium signaling. / 12.2018 / PubMed / Full text
RYR3[править]
- Association of the RYR3 gene polymorphisms with atherosclerosis in elderly Japanese population. / 14.01.2014 / PubMed / Full text
S100A10[править]
- Age-related and depot-specific changes in white adipose tissue of growth hormone receptor-null mice. / 01.2014 / PubMed / Full text
S100A13[править]
- S100A13 promotes senescence-associated secretory phenotype and cellular senescence via modulation of non-classical secretion of IL-1α. / 23.01.2019 / PubMed / Full text
S100A7[править]
- The secreted protein S100A7 (psoriasin) is induced by telomere dysfunction in human keratinocytes independently of a DNA damage response and cell cycle regulators. / 2014 / PubMed / Full text
S100P[править]
- Cancer-associated S100P protein binds and inactivates p53, permits therapy-induced senescence and supports chemoresistance. / 19.04.2016 / PubMed / Full text
SAA2[править]
- Naturally occurring antibodies against serum amyloid A reduce IL-6 release from peripheral blood mononuclear cells. / 2018 / PubMed / Full text
SACM1L[править]
- Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text
SAMD10[править]
- Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. / 11.2017 / PubMed / Full text
SAMD12[править]
- Genome-wide scan of depressive symptomatology in two representative cohorts in the United States and the United Kingdom. / 05.2018 / PubMed / Full text
SAMHD1[править]
- Gut microbiota lipopolysaccharide accelerates inflamm-aging in mice. / 16.01.2016 / PubMed / Full text
SARM1[править]
- Sarm1 Deletion, but Not Wld , Confers Lifelong Rescue in a Mouse Model of Severe Axonopathy. / 03.10.2017 / PubMed / Full text
SAT1[править]
- Triethylenetetramine (trientine): a caloric restriction mimetic with a new mode of action. / 08.2020 / PubMed / Full text
SCAMP1[править]
- Secretory Carrier Membrane Protein (SCAMP) deficiency influences behavior of adult flies. / 2014 / PubMed / Full text
SCAMP4[править]
SCD5[править]
- Bovine brain region-specific stearoyl-CoA desaturase expression and fatty acid composition. / 06.2015 / PubMed / Full text
SCGB1A1[править]
- Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. / 03.2015 / PubMed / Full text
SCGB2A2[править]
- Sensitivity of neoplastic cells to senescence unveiled under standard cell culture conditions. / 05.2015 / PubMed
SCGB3A2[править]
- Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. / 03.2015 / PubMed / Full text
SCN1A[править]
- Effects of normal aging and SCN1A risk-gene expression on brain metabolites: evidence for an association between SCN1A and myo-inositol. / 02.2014 / PubMed / Full text
SCN2A[править]
- Na 1.2 haploinsufficiency in Scn2a knock-out mice causes an autistic-like phenotype attenuated with age. / 09.09.2019 / PubMed / Full text
SCN9A[править]
- The SCN9A channel and plasma membrane depolarization promote cellular senescence through Rb pathway. / 06.2018 / PubMed / Full text
SCNN1B[править]
- Bitter, Sweet, Salty, Sour and Umami Taste Perception Decreases with Age: Sex-Specific Analysis, Modulation by Genetic Variants and Taste-Preference Associations in 18 to 80 Year-Old Subjects. / 18.10.2018 / PubMed / Full text
SCO1[править]
- Real-Time PCR Analysis of Metabolism-Related Genes in a Long-Lived Model of C. elegans. / 2020 / PubMed / Full text
SCPEP1[править]
- Structural and kinetic evidence of aging after organophosphate inhibition of human Cathepsin A. / 07.2020 / PubMed / Full text
SCRIB[править]
- Scribble is required for pregnancy-induced alveologenesis in the adult mammary gland. / 15.06.2016 / PubMed / Full text
SCX[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
SDC2[править]
- Alterations in Corneal Sensory Nerves During Homeostasis, Aging, and After Injury in Mice Lacking the Heparan Sulfate Proteoglycan Syndecan-1. / 01.10.2017 / PubMed / Full text
SDC3[править]
- Alterations in Corneal Sensory Nerves During Homeostasis, Aging, and After Injury in Mice Lacking the Heparan Sulfate Proteoglycan Syndecan-1. / 01.10.2017 / PubMed / Full text
SDHAF2[править]
SDHD[править]
SEC23A[править]
- Pancreatic SEC23B deficiency is sufficient to explain the perinatal lethality of germline SEC23B deficiency in mice. / 14.06.2016 / PubMed / Full text
SEC23B[править]
- Pancreatic SEC23B deficiency is sufficient to explain the perinatal lethality of germline SEC23B deficiency in mice. / 14.06.2016 / PubMed / Full text
SELENBP1[править]
- A Caenorhabditis elegans ortholog of human selenium-binding protein 1 is a pro-aging factor protecting against selenite toxicity. / 01.2020 / PubMed / Full text
SELENOH[править]
- The Thioredoxin-Like Family of Selenoproteins: Implications in Aging and Age-Related Degeneration. / 03.2019 / PubMed / Full text
SELENOK[править]
- Dietary selenium deficiency and supplementation differentially modulate the expression of two ER-resident selenoproteins (selenoprotein K and selenoprotein M) in the ovaries of aged mice: Preliminary data. / 09.2020 / PubMed / Full text
SELENOP[править]
- Analyses of Selenotranscriptomes and Selenium Concentrations in Response to Dietary Selenium Deficiency and Age Reveal Common and Distinct Patterns by Tissue and Sex in Telomere-Dysfunctional Mice. / 10.2017 / PubMed / Full text
SELENOT[править]
- The Thioredoxin-Like Family of Selenoproteins: Implications in Aging and Age-Related Degeneration. / 03.2019 / PubMed / Full text
SELENOV[править]
- The Thioredoxin-Like Family of Selenoproteins: Implications in Aging and Age-Related Degeneration. / 03.2019 / PubMed / Full text
SELENOW[править]
- The Thioredoxin-Like Family of Selenoproteins: Implications in Aging and Age-Related Degeneration. / 03.2019 / PubMed / Full text
SELP[править]
- Effect of age on expression of spermatogonial markers in bovine testis and isolated cells. / 07.2016 / PubMed / Full text
SEMA3A[править]
- Autoregulation of Osteocyte Sema3A Orchestrates Estrogen Action and Counteracts Bone Aging. / 05.03.2019 / PubMed / Full text
SEMA6C[править]
- Suppression of SEMA6C promotes preantral follicles atresia with decreased cell junctions in mice ovaries. / 04.2019 / PubMed / Full text
SENP1[править]
- Aging-related SUMOylation pattern in the cortex and blood plasma of wild type mice. / 06.03.2018 / PubMed / Full text
SENP6[править]
- Molecular signature for senile and complicated cataracts derived from analysis of sumoylation enzymes and their substrates in human cataract lenses. / 10.2020 / PubMed / Full text
SENP7[править]
- Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. / 05.03.2020 / PubMed / Full text
SERPINA1[править]
- Proteomic profiling of follicle fluids after superstimulation in one-month-old lambs. / 02.2018 / PubMed / Full text
SERPINB3[править]
SESN1[править]
- Sestrins are differentially expressed with age in the skeletal muscle of men: A cross-sectional analysis. / 09.2018 / PubMed / Full text
SETX[править]
- Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae. / 11.2016 / PubMed / Full text
SFPQ[править]
- Downregulation of LncRNA NORAD promotes Ox-LDL-induced vascular endothelial cell injury and atherosclerosis. / 08.04.2020 / PubMed / Full text
SFRP5[править]
- SFRP5 serves a beneficial role in arterial aging by inhibiting the proliferation, migration and inflammation of smooth muscle cells. / 11.2018 / PubMed / Full text
SFTPA1[править]
- Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. / 03.2015 / PubMed / Full text
SGCE[править]
- Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. / 12.2015 / PubMed / Full text
SGPP2[править]
- Vitamin D-responsive SGPP2 variants associated with lung cell expression and lung function. / 25.11.2013 / PubMed / Full text
SGSH[править]
SH2B1[править]
- The Dyslexia-susceptibility Protein KIAA0319 Inhibits Axon Growth Through Smad2 Signaling. / 01.03.2017 / PubMed / Full text
SH2B3[править]
- Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity. / 13.10.2017 / PubMed / Full text
SHC1[править]
- Docosahexaenoic acid prevented tumor necrosis factor alpha-induced endothelial dysfunction and senescence. / 01.2016 / PubMed / Full text
SHCBP1[править]
- Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text
SHD[править]
- Does self-reported hearing difficulty decrease older adults' cognitive and physical functioning? The mediating role of social isolation. / 11.2020 / PubMed / Full text
SHMT2[править]
- Epigenetic regulation of the nuclear-coded GCAT and SHMT2 genes confers human age-associated mitochondrial respiration defects. / 22.05.2015 / PubMed / Full text
SHOX2[править]
- Role of SHOX2 in the development of intervertebral disc degeneration. / 05.2017 / PubMed / Full text
SHROOM3[править]
SIGIRR[править]
- Anti-Inflamm-Aging Effects of Long-Term Caloric Restriction via Overexpression of SIGIRR to Inhibit NF-κB Signaling Pathway. / 2015 / PubMed / Full text
SIK3[править]
- Quantitative and Qualitative Role of Antagonistic Heterogeneity in Genetics of Blood Lipids. / 25.09.2020 / PubMed / Full text
SIL1[править]
- SIL1, the endoplasmic-reticulum-localized BiP co-chaperone, plays a crucial role in maintaining skeletal muscle proteostasis and physiology. / 10.05.2018 / PubMed / Full text
SIX1[править]
- Low Six4 and Six5 gene dosage improves dystrophic phenotype and prolongs life span of mdx mice. / 08.2016 / PubMed / Full text
SIX2[править]
- Age-Dependent Pancreatic Gene Regulation Reveals Mechanisms Governing Human β Cell Function. / 10.05.2016 / PubMed / Full text
SIX4[править]
- Low Six4 and Six5 gene dosage improves dystrophic phenotype and prolongs life span of mdx mice. / 08.2016 / PubMed / Full text
SIX5[править]
- Low Six4 and Six5 gene dosage improves dystrophic phenotype and prolongs life span of mdx mice. / 08.2016 / PubMed / Full text
SKAP2[править]
- Longevity-related molecular pathways are subject to midlife "switch" in humans. / 08.2019 / PubMed / Full text
SKI[править]
- Preventive effect of Shenkang injection against high glucose-induced senescence of renal tubular cells. / 04.2019 / PubMed / Full text
SKP1[править]
- Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and abscisic acid. / 01.2016 / PubMed / Full text
SLAMF1[править]
- Systemic Inflammation and the Increased Risk of Inflamm-Aging and Age-Associated Diseases in People Living With HIV on Long Term Suppressive Antiretroviral Therapy. / 2019 / PubMed / Full text
SLAMF7[править]
- Age-related differences in neuroinflammatory responses associated with a distinct profile of regulatory markers on neonatal microglia. / 04.04.2014 / PubMed / Full text
SLC11A1[править]
- The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. / 29.07.2020 / PubMed / Full text
SLC12A5[править]
- DNA methylation-based age prediction from saliva: High age predictability by combination of 7 CpG markers. / 07.2017 / PubMed / Full text
SLC12A8[править]
- Identifying blood-specific age-related DNA methylation markers on the Illumina MethylationEPIC® BeadChip. / 10.2019 / PubMed / Full text
SLC15A1[править]
- Molecular changes to the rat renal cotransporters PEPT1 and PEPT2 due to ageing. / 02.2019 / PubMed / Full text
SLC15A2[править]
- Molecular changes to the rat renal cotransporters PEPT1 and PEPT2 due to ageing. / 02.2019 / PubMed / Full text
SLC16A10[править]
- The SLC16 gene family - structure, role and regulation in health and disease. / 04-06.2013 / PubMed / Full text
SLC16A2[править]
- The SLC16 gene family - structure, role and regulation in health and disease. / 04-06.2013 / PubMed / Full text
SLC16A3[править]
- The SLC16 gene family - structure, role and regulation in health and disease. / 04-06.2013 / PubMed / Full text
SLC17A3[править]
- Sequencing of 2 subclinical atherosclerosis candidate regions in 3669 individuals: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text
SLC17A4[править]
- Sequencing of 2 subclinical atherosclerosis candidate regions in 3669 individuals: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text
SLC1A5[править]
- SLC1A5 glutamine transporter is a target of MYC and mediates reduced mTORC1 signaling and increased fatty acid oxidation in long-lived Myc hypomorphic mice. / 06.2019 / PubMed / Full text
SLC22A12[править]
- ABCG2 rs2231142 variant in hyperuricemia is modified by SLC2A9 and SLC22A12 polymorphisms and cardiovascular risk factors in an elderly community-dwelling population. / 17.03.2020 / PubMed / Full text
SLC22A14[править]
- Explorative results from multistep screening for potential genetic risk loci of Alzheimer's disease in the longitudinal VITA study cohort. / 01.2018 / PubMed / Full text
SLC22A23[править]
- Clinical and genetic risk factors for decreased bone mineral density in Japanese patients with inflammatory bowel disease. / 11.2018 / PubMed / Full text
SLC24A5[править]
SLC25A15[править]
SLC27A1[править]
- EPRS is a critical mTORC1-S6K1 effector that influences adiposity in mice. / 16.02.2017 / PubMed / Full text
SLC2A4RG[править]
- Genome-wide association study for lactation persistency, female fertility, longevity, and lifetime profit index traits in Holstein dairy cattle. / 02.2017 / PubMed / Full text
SLC30A1[править]
- Changes in Zn homeostasis during long term culture of primary endothelial cells and effects of Zn on endothelial cell senescence. / 01.12.2017 / PubMed / Full text
SLC30A10[править]
- Changes in Zn homeostasis during long term culture of primary endothelial cells and effects of Zn on endothelial cell senescence. / 01.12.2017 / PubMed / Full text
SLC30A3[править]
- SLC30A3 and SEP15 gene polymorphisms influence the serum concentrations of zinc and selenium in mature adults. / 09.2014 / PubMed / Full text
SLC30A5[править]
- Changes in Zn homeostasis during long term culture of primary endothelial cells and effects of Zn on endothelial cell senescence. / 01.12.2017 / PubMed / Full text
SLC36A4[править]
- The amino acid transporter SLC36A4 regulates the amino acid pool in retinal pigmented epithelial cells and mediates the mechanistic target of rapamycin, complex 1 signaling. / 04.2017 / PubMed / Full text
SLC39A5[править]
- Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients. / 03.09.2019 / PubMed / Full text
SLC39A6[править]
- Changes in Zn homeostasis during long term culture of primary endothelial cells and effects of Zn on endothelial cell senescence. / 01.12.2017 / PubMed / Full text
SLC41A1[править]
- Magnesium transporter protein solute carrier family 41 member 1 suppresses human pancreatic ductal adenocarcinoma through magnesium-dependent Akt/mTOR inhibition and bax-associated mitochondrial apoptosis. / 08.05.2019 / PubMed / Full text
SLC4A7[править]
- Multivariate genomic scan implicates novel loci and haem metabolism in human ageing. / 16.07.2020 / PubMed / Full text
SLC52A2[править]
- Clinical, pathological and functional characterization of riboflavin-responsive neuropathy. / 01.11.2017 / PubMed / Full text
SLC52A3[править]
- Clinical, pathological and functional characterization of riboflavin-responsive neuropathy. / 01.11.2017 / PubMed / Full text
SLCO1B1[править]
- The SLCO1B1 c.521T>C polymorphism is associated with dose decrease or switching during statin therapy in the Rotterdam Study. / 01.2014 / PubMed / Full text
SLCO1B3[править]
- Paclitaxel-induced sensory peripheral neuropathy is associated with an ABCB1 single nucleotide polymorphism and older age in Japanese. / 06.2017 / PubMed / Full text
SLCO1C1[править]
- Genomics and CSF analyses implicate thyroid hormone in hippocampal sclerosis of aging. / 12.2016 / PubMed / Full text
SLIT2[править]
- Analysis of gene expression during aging of CGNs in culture: implication of SLIT2 and NPY in senescence. / 06.2015 / PubMed / Full text
SLPI[править]
- Human buccal epithelium acquires microbial hyporesponsiveness at birth, a role for secretory leukocyte protease inhibitor. / 06.2015 / PubMed / Full text
SMAP[править]
- DNA integrity-protecting and survival-promoting activity of serotonergic system in sturgeon juveniles and sazans. / 08.2017 / PubMed / Full text
SMARCA5[править]
- The epigenetic regulator SIRT7 guards against mammalian cellular senescence induced by ribosomal DNA instability. / 13.07.2018 / PubMed / Full text
SMARCB1[править]
- High-Throughput Functional Genetic and Compound Screens Identify Targets for Senescence Induction in Cancer. / 17.10.2017 / PubMed / Full text
SMARCD1[править]
- Delphinidin-3-glucoside suppresses lipid accumulation in HepG2 cells. / 12.2018 / PubMed / Full text
SMC1A[править]
SMC1B[править]
SMC2[править]
- The proteomic study of serially passaged human skin fibroblast cells uncovers down-regulation of the chromosome condensin complex proteins involved in replicative senescence. / 10.11.2018 / PubMed / Full text
SMC4[править]
- The proteomic study of serially passaged human skin fibroblast cells uncovers down-regulation of the chromosome condensin complex proteins involved in replicative senescence. / 10.11.2018 / PubMed / Full text
SMC5[править]
- SMC5/6 is required for the formation of segregation-competent bivalent chromosomes during meiosis I in mouse oocytes. / 01.05.2017 / PubMed / Full text
SMG1[править]
- SMG1 heterozygosity exacerbates haematopoietic cancer development in Atm null mice by increasing persistent DNA damage and oxidative stress. / 12.2019 / PubMed / Full text
SMG6[править]
- Genetic Burden Analyses of Phenotypes Relevant to Aging in the Berlin Aging Study II (BASE-II). / 2016 / PubMed / Full text
SMPD3[править]
- Endoplasmic Reticulum Stress Mediates Vascular Smooth Muscle Cell Calcification via Increased Release of Grp78-Loaded Extracellular Vesicles. / 10.12.2020 / PubMed / Full text
SMURF2[править]
- Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text
SMYD2[править]
- Collaboration of MYC and RUNX2 in lymphoma simulates T-cell receptor signaling and attenuates p53 pathway activity. / 10.2019 / PubMed / Full text
SNAI2[править]
- Reawakening of dormant estrogen-dependent human breast cancer cells by bone marrow stroma secretory senescence. / 17.08.2018 / PubMed / Full text
SNAP23[править]
- Effects of immobilization and aerobic training on proteins related to intramuscular substrate storage and metabolism in young and older men. / 03.2016 / PubMed / Full text
SND1[править]
- [Downregulation of SND1 Expression Accelerates Cell Senescence of Human Diploid Fibroblasts 2BS via Modulating the SASP]. / 05.2020 / PubMed / Full text
SNN[править]
SNRPE[править]
- In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. / 12.2019 / PubMed / Full text
SNRPN[править]
SNX15[править]
SOBP[править]
- Lifetime increased cancer risk in mice following exposure to clinical proton beam-generated neutrons. / 01.05.2014 / PubMed / Full text
SORCS2[править]
- Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. / 10.2016 / PubMed / Full text
SORT1[править]
- Soluble sortilin is present in excess and positively correlates with progranulin in CSF of aging individuals. / 11.2016 / PubMed / Full text
SOS1[править]
- Fucoidan⁻Fucoxanthin Ameliorated Cardiac Function via IRS1/GRB2/ SOS1, GSK3β/CREB Pathways and Metabolic Pathways in Senescent Mice. / 21.01.2019 / PubMed / Full text
SOX1[править]
- The APOE gene cluster responds to air pollution factors in mice with coordinated expression of genes that differs by age in humans. / 20.11.2020 / PubMed / Full text
SOX10[править]
- SOX10 Distinguishes Pilocytic and Pilomyxoid Astrocytomas From Ependymomas but Shows No Differences in Expression Level in Ependymomas From Infants Versus Older Children or Among Molecular Subgroups. / 04.2016 / PubMed / Full text
SOX11[править]
- A lowered 26S proteasome activity correlates with mantle lymphoma cell lines resistance to genotoxic stress. / 10.08.2017 / PubMed / Full text
SOX13[править]
- In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. / 12.2019 / PubMed / Full text
SOX17[править]
- SOX17 Regulates Conversion of Human Fibroblasts Into Endothelial Cells and Erythroblasts by Dedifferentiation Into CD34 Progenitor Cells. / 20.06.2017 / PubMed / Full text
SOX6[править]
- Gene expression markers in horse articular chondrocytes: Chondrogenic differentiaton IN VITRO depends on the proliferative potential and ageing. Implication for tissue engineering of cartilage. / 02.2020 / PubMed / Full text
SP2[править]
- Influence of season, age and management on scrotal thermal profile in Murrah bulls using scrotal infrared digital thermography. / 12.2017 / PubMed / Full text
SP7[править]
- microRNA-31 inhibition partially ameliorates the deficiency of bone marrow stromal cells from cleidocranial dysplasia. / 06.2019 / PubMed / Full text
SP8[править]
- Molecular control of two novel migratory paths for CGE-derived interneurons in the developing mouse brain. / 15.05.2016 / PubMed / Full text
SPAG9[править]
- Sperm-associated antigen 9 (SPAG9) promotes the survival and tumor growth of triple-negative breast cancer cells. / 10.2016 / PubMed / Full text
SPATS2L[править]
- Longitudinal analysis of bronchodilator response in asthmatics and effect modification of age-related trends by genotype. / 02.2019 / PubMed / Full text
SPG11[править]
SPG21[править]
- Loss of Maspardin Attenuates the Growth and Maturation of Mouse Cortical Neurons. / 2016 / PubMed / Full text
SPG7[править]
- Loss of the Drosophila m-AAA mitochondrial protease paraplegin results in mitochondrial dysfunction, shortened lifespan, and neuronal and muscular degeneration. / 21.02.2018 / PubMed / Full text
SPHK1[править]
- Sphingosine Kinase-1 Is Essential for Maintaining External/Outer Limiting Membrane and Associated Adherens Junctions in the Aging Retina. / 10.2019 / PubMed / Full text
SPHK2[править]
- Loss of genomic integrity induced by lysosphingolipid imbalance drives ageing in the heart. / 04.2019 / PubMed / Full text
SPI1[править]
- Association of levels of fasting glucose and insulin with rare variants at the chromosome 11p11.2-MADD locus: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text
SPO11[править]
- "Mitotic Slippage" and Extranuclear DNA in Cancer Chemoresistance: A Focus on Telomeres. / 16.04.2020 / PubMed / Full text
SPX[править]
- Phosphorus remobilization from rice flag leaves during grain filling: an RNA-seq study. / 01.2017 / PubMed / Full text
SREBF1[править]
- The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. / 29.09.2020 / PubMed / Full text
SRI[править]
- The Role of Aging, Drug Dependence, and Hepatitis C Comorbidity in Alcoholism Cortical Compromise. / 01.05.2018 / PubMed / Full text
SRL[править]
- Income dividends and subjective survival in a Cherokee Indian cohort: a quasi-experiment. / 04-06.2020 / PubMed / Full text
SRPK1[править]
- [Age-related changes in the content of serine-arginine protein kinase 1 (SRPK1) in human dermis.] / 2017 / PubMed
SRSF1[править]
- Cellular stress and AMPK activation as a common mechanism of action linking the effects of metformin and diverse compounds that alleviate accelerated aging defects in Hutchinson-Gilford progeria syndrome. / 09.2018 / PubMed / Full text
SRSF10[править]
- Inflammation and hyperglycemia mediate Deaf1 splicing in the pancreatic lymph nodes via distinct pathways during type 1 diabetes. / 02.2015 / PubMed / Full text
SRSF2[править]
- Insight into the molecular pathophysiology of myelodysplastic syndromes: targets for novel therapy. / 10.2016 / PubMed / Full text
SRSF3[править]
- Alternative polyadenylation dependent function of splicing factor SRSF3 contributes to cellular senescence. / 04.03.2019 / PubMed / Full text
SSBP2[править]
SSTR3[править]
- Type 3 Adenylyl Cyclase and Somatostatin Receptor 3 Expression Persists in Aged Rat Neocortical and Hippocampal Neuronal Cilia. / 2016 / PubMed / Full text
SSX2[править]
- Ectopic expression of cancer/testis antigen SSX2 induces DNA damage and promotes genomic instability. / 02.2015 / PubMed / Full text
ST18[править]
- [Target protein candidates of hypothalamus in aging rats with intervention by Qiongyugao]. / 04.2016 / PubMed / Full text
STAT5B[править]
STC1[править]
- Proteomic profiling of follicle fluids after superstimulation in one-month-old lambs. / 02.2018 / PubMed / Full text
STC2[править]
- Genome-wide Associations Reveal Human-Mouse Genetic Convergence and Modifiers of Myogenesis, CPNE1 and STC2. / 05.12.2019 / PubMed / Full text
STIP1[править]
- The E3 ubiquitin ligase STUB1 attenuates cell senescence by promoting the ubiquitination and degradation of the core circadian regulator BMAL1. / 03.04.2020 / PubMed / Full text
STK11[править]
- A Multigene Test Could Cost-Effectively Help Extend Life Expectancy for Women at Risk of Hereditary Breast Cancer. / 04.2017 / PubMed / Full text
STK32C[править]
- DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. / 25.07.2018 / PubMed / Full text
STK38L[править]
STOML2[править]
STRA6[править]
- Transport of vitamin A across blood-tissue barriers is facilitated by STRA6. / 08.2016 / PubMed / Full text
STX16[править]
- Clinical characterization and molecular classification of 12 Korean patients with pseudohypoparathyroidism and pseudopseudohypoparathyroidism. / 10.2013 / PubMed / Full text
STX17[править]
- Directed elimination of senescent cells attenuates development of osteoarthritis by inhibition of c-IAP and XIAP. / 01.10.2019 / PubMed / Full text
SUCLA2[править]
- An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. / 12.2019 / PubMed / Full text
SUCNR1[править]
- [The effect of Mexidol on cerebral mitochondriogenesis at a young age and during aging]. / 2020 / PubMed / Full text
SUGCT[править]
- Knockout of the non-essential gene SUGCT creates diet-linked, age-related microbiome disbalance with a diabetes-like metabolic syndrome phenotype. / 09.2020 / PubMed / Full text
SULT1A1[править]
- Bayesian association scan reveals loci associated with human lifespan and linked biomarkers. / 27.07.2017 / PubMed / Full text
SULT1E1[править]
- Sex- and age-dependent gene expression in human liver: An implication for drug-metabolizing enzymes. / 02.2017 / PubMed / Full text
SULT2A1[править]
- Sex-, age-, and race/ethnicity-dependent variations in drug-processing and NRF2-regulated genes in human livers. / 08.11.2020 / PubMed / Full text
SUMO1[править]
- SUMO1-conjugation is altered during normal aging but not by increased amyloid burden. / 08.2018 / PubMed / Full text
SUMO2[править]
SUN1[править]
- Imbalanced nucleocytoskeletal connections create common polarity defects in progeria and physiological aging. / 26.02.2019 / PubMed / Full text
SUN2[править]
- Imbalanced nucleocytoskeletal connections create common polarity defects in progeria and physiological aging. / 26.02.2019 / PubMed / Full text
SUSD1[править]
- A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. / 07.2013 / PubMed / Full text
SUSD2[править]
- Comparing the Effect of TGF-β Receptor Inhibition on Human Perivascular Mesenchymal Stromal Cells Derived from Endometrium, Bone Marrow and Adipose Tissues. / 01.12.2020 / PubMed / Full text
SV2B[править]
- Mutant Huntingtin Causes a Selective Decrease in the Expression of Synaptic Vesicle Protein 2C. / 10.2018 / PubMed / Full text
SV2C[править]
- Mutant Huntingtin Causes a Selective Decrease in the Expression of Synaptic Vesicle Protein 2C. / 10.2018 / PubMed / Full text
SYCP2[править]
- Accelerated reproductive aging in females lacking a novel centromere protein [[SYCP2L]]. / 15.11.2015 / PubMed / Full text
SYCP2L[править]
- Accelerated reproductive aging in females lacking a novel centromere protein [[SYCP2L]]. / 15.11.2015 / PubMed / Full text
SYCP3[править]
- Effects of Saikokaryukotsuboreito on Spermatogenesis and Fertility in Aging Male Mice. / 05.04.2016 / PubMed / Full text
SYNE1[править]
SYNE2[править]
- Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. / 03.2020 / PubMed / Full text
SYNJ2[править]
- DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. / 25.07.2018 / PubMed / Full text
SYT1[править]
- Two Behavioral Tests Allow a Better Correlation Between Cognitive Function and Expression of Synaptic Proteins. / 2018 / PubMed / Full text
SYT4[править]
- Age-related obesity and type 2 diabetes dysregulate neuronal associated genes and proteins in humans. / 06.10.2015 / PubMed / Full text
SYT7[править]
- Synaptotagmin-7, a binding protein of P53, inhibits the senescence and promotes the tumorigenicity of lung cancer cells. / 28.02.2019 / PubMed / Full text
TAAR1[править]
- Minimal Age-Related Alterations in Behavioral and Hematological Parameters in Trace Amine-Associated Receptor 1 (TAAR1) Knockout Mice. / 03.2020 / PubMed / Full text
TAC3[править]
- Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus. / 2015 / PubMed / Full text
TAF15[править]
TAF7[править]
- Basonuclin 1 deficiency causes testicular premature aging: BNC1 cooperates with TAF7L to regulate spermatogenesis. / 22.01.2020 / PubMed / Full text
TAF7L[править]
- Basonuclin 1 deficiency causes testicular premature aging: BNC1 cooperates with TAF7L to regulate spermatogenesis. / 22.01.2020 / PubMed / Full text
TANK[править]
- Aging aggravated liver ischemia and reperfusion injury by promoting STING-mediated NLRP3 activation in macrophages. / 08.2020 / PubMed / Full text
TAP1[править]
TAP2[править]
- Lifespan of mice and primates correlates with immunoproteasome expression. / 05.2015 / PubMed / Full text
TAS1R2[править]
- Bitter, Sweet, Salty, Sour and Umami Taste Perception Decreases with Age: Sex-Specific Analysis, Modulation by Genetic Variants and Taste-Preference Associations in 18 to 80 Year-Old Subjects. / 18.10.2018 / PubMed / Full text
TBC1D2[править]
- Genome-wide association study identifies [i]SIAH3[/i] locus influencing the rate of ventricular enlargement in non-demented elders. / 11.11.2019 / PubMed / Full text
TBR1[править]
- DNA methylation-based age prediction from saliva: High age predictability by combination of 7 CpG markers. / 07.2017 / PubMed / Full text
TBX3[править]
- Coordinated control of senescence by lncRNA and a novel T-box3 co-repressor complex. / 29.05.2014 / PubMed / Full text
TCERG1[править]
- The longevity-promoting factor, TCER-1, widely represses stress resistance and innate immunity. / 17.07.2019 / PubMed / Full text
TCF15[править]
TCF21[править]
- Balance between senescence and apoptosis is regulated by telomere damage-induced association between p16 and caspase-3. / 22.06.2018 / PubMed / Full text
TCF7L1[править]
- TCF7L1 promotes skin tumorigenesis independently of β-catenin through induction of LCN2. / 03.05.2017 / PubMed / Full text
TCP1[править]
- Proteometabolomic characterization of apical bud maturation in Pinus pinaster. / 01.09.2020 / PubMed / Full text
TCTA[править]
- Exciplex-Forming Cohost for High Efficiency and High Stability Phosphorescent Organic Light-Emitting Diodes. / 17.01.2018 / PubMed / Full text
TDRD1[править]
- Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice. / 01.2020 / PubMed / Full text
TDRD6[править]
- Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice. / 01.2020 / PubMed / Full text
TEAD4[править]
- Clinical, polysomnographic and genome-wide association analyses of narcolepsy with cataplexy: a European Narcolepsy Network study. / 10.2013 / PubMed / Full text
TECPR2[править]
- Neuropathology-driven Whole-genome Sequencing Study Points to Novel Candidate Genes for Healthy Brain Aging. / 01-03.2019 / PubMed / Full text
TEP1[править]
- [Influence of Age on the Susceptibility of Anopheles stephensi to Plasmodium berghei Infection]. / 12.2016 / PubMed
TERF2IP[править]
- Endothelial senescence-associated secretory phenotype (SASP) is regulated by Makorin-1 ubiquitin E3 ligase. / 11.2019 / PubMed / Full text
TESC[править]
TFAP2A[править]
- Replicative senescence is associated with nuclear reorganization and with DNA methylation at specific transcription factor binding sites. / 2015 / PubMed / Full text
TFE3[править]
- Towards Age-Related Anti-Inflammatory Therapy: Klotho Suppresses Activation of ER and Golgi Stress Response in Senescent Monocytes. / 21.01.2020 / PubMed / Full text
TFG[править]
- TFG-maintaining stability of overlooked FANCD2 confers early DNA-damage response. / 24.10.2020 / PubMed / Full text
TFPI[править]
- Identification of cardiovascular health gene variants related to longevity in a Chinese population. / 07.09.2020 / PubMed / Full text
TGDS[править]
- The evaluation and design of a short depression screening tool in Turkish older adults. / 10.2018 / PubMed / Full text
TGFB2[править]
- Seminal plasma transforming growth factor-β, activin A and follistatin fluctuate within men over time. / 10.2016 / PubMed / Full text
TGFBR1[править]
- Dexamethasone Induces a Specific Form of Ramified Dysfunctional Microglia. / 02.2019 / PubMed / Full text
TGM2[править]
- Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. / 11.2018 / PubMed / Full text
THADA[править]
- Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. / 29.09.2015 / PubMed / Full text
THBS1[править]
- G protein-coupled receptor kinase 4-induced cellular senescence and its senescence-associated gene expression profiling. / 15.11.2017 / PubMed / Full text
THBS4[править]
- Specific factors in blood from young but not old mice directly promote synapse formation and NMDA-receptor recruitment. / 18.06.2019 / PubMed / Full text
THEMIS[править]
- Lifetime benefits of early detection and treatment of diabetic kidney disease. / 2019 / PubMed / Full text
THPO[править]
- Thrombopoietin is associated with δ's intercept, and only in Non-Hispanic Whites. / 2016 / PubMed / Full text
TIE1[править]
- Cerebrovascular Senescence Is Associated With Tau Pathology in Alzheimer's Disease. / 2020 / PubMed / Full text
TIMP3[править]
- Enhanced tissue regeneration potential of juvenile articular cartilage. / 11.2013 / PubMed / Full text
TINF2[править]
- Acute telomerase components depletion triggers oxidative stress as an early event previous to telomeric shortening. / 04.2018 / PubMed / Full text
TJP1[править]
- Morphological and immunohistochemical characteristics of the equine corneal epithelium. / 11.2019 / PubMed / Full text
TLR10[править]
- Innate immune response to LPS in airway epithelium is dependent on chronological age and antecedent exposures. / 11.2013 / PubMed / Full text
TM9SF1[править]
- Epigallocatechin-3-gallate increases autophagy signaling in resting and unloaded plantaris muscles but selectively suppresses autophagy protein abundance in reloaded muscles of aged rats. / 06.2017 / PubMed / Full text
TMEM127[править]
TMEM135[править]
- Mouse [i]Tmem135[/i] mutation reveals a mechanism involving mitochondrial dynamics that leads to age-dependent retinal pathologies. / 15.11.2016 / PubMed / Full text
TMEM38B[править]
- Genome wide association study of age at menarche in the Japanese population. / 2013 / PubMed / Full text
TMEM51[править]
- Genome-wide analysis of DNA methylation profiles in a senescence-accelerated mouse prone 8 brain using whole-genome bisulfite sequencing. / 01.06.2017 / PubMed / Full text
TNFAIP3[править]
TNFRSF11B[править]
- Genetic Burden Analyses of Phenotypes Relevant to Aging in the Berlin Aging Study II (BASE-II). / 2016 / PubMed / Full text
TNFRSF1A[править]
- Consumption of protein-enriched milk has minor effects on inflammation in older adults-A 12-week double-blind randomized controlled trial. / 03.2017 / PubMed / Full text
TNFSF13[править]
- Genome-wide methylation analysis reveals differentially methylated loci that are associated with an age-dependent increase in bovine fibroblast response to LPS. / 25.05.2017 / PubMed / Full text
TNFSF15[править]
- Expression of pro- and anti-inflammatory cytokines and chemokines during the ovulatory cycle and effects of aging on their expression in the uterine mucosa of laying hens. / 11.2018 / PubMed / Full text
TNK1[править]
- Role of CLU, PICALM, and TNK1 Genotypes in Aging With and Without Alzheimer's Disease. / 05.2018 / PubMed / Full text
TNKS2[править]
- Gene expression in human mesenchymal stem cell aging cultures: modulation by short peptides. / 06.2020 / PubMed / Full text
TNNI1[править]
- Regular aerobic exercise-ameliorated troponin I carbonylation to mitigate aged rat soleus muscle functional recession. / 05.2019 / PubMed / Full text
TNP1[править]
TNP2[править]
TNPO3[править]
TNS3[править]
- Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. / 10.2016 / PubMed / Full text
TOP3A[править]
- Replication Stress at Telomeric and Mitochondrial DNA: Common Origins and Consequences on Ageing. / 08.10.2019 / PubMed / Full text
TOR2A[править]
- The correlation of copy number variations with longevity in a genome-wide association study of Han Chinese. / 05.06.2018 / PubMed / Full text
TP53BP1[править]
- Induction of DNA double-strand breaks and cellular senescence by human respiratory syncytial virus. / 18.05.2016 / PubMed / Full text
TP53INP1[править]
- TP53INP1 deficiency maintains murine B lymphopoiesis in aged bone marrow through redox-controlled IL-7R/STAT5 signaling. / 02.01.2019 / PubMed / Full text
TP53RK[править]
- Novel homozygous OSGEP gene pathogenic variants in two unrelated patients with Galloway-Mowat syndrome: case report and review of the literature. / 11.04.2019 / PubMed / Full text
TP73[править]
- G protein-coupled receptor kinase 4-induced cellular senescence and its senescence-associated gene expression profiling. / 15.11.2017 / PubMed / Full text
TPCN1[править]
- Effect of aging on calcium signaling in C57Bl6J mouse cerebral arteries. / 06.2013 / PubMed / Full text
TPP2[править]
- Early-onset Evans syndrome, immunodeficiency, and premature immunosenescence associated with tripeptidyl-peptidase II deficiency. / 29.01.2015 / PubMed / Full text
TPRKB[править]
- Novel homozygous OSGEP gene pathogenic variants in two unrelated patients with Galloway-Mowat syndrome: case report and review of the literature. / 11.04.2019 / PubMed / Full text
TRAV1-2[править]
TRAV27[править]
- Perturbed CD8 T cell immunity across universal influenza epitopes in the elderly. / 02.2018 / PubMed / Full text
TRBV19[править]
- Perturbed CD8 T cell immunity across universal influenza epitopes in the elderly. / 02.2018 / PubMed / Full text
TREM1[править]
- A TREM1 variant alters the accumulation of Alzheimer-related amyloid pathology. / 03.2015 / PubMed / Full text
TRHR[править]
- Association between polymorphisms in the TRHR gene, fat-free mass, and muscle strength in older women. / 12.2013 / PubMed / Full text
TRIB2[править]
- TRIB2 functions as novel oncogene in colorectal cancer by blocking cellular senescence through AP4/p21 signaling. / 12.12.2018 / PubMed / Full text
TRIB3[править]
- Inhibition of glioma growth by flavokawain B is mediated through endoplasmic reticulum stress induced autophagy. / 2018 / PubMed / Full text
TRIM27[править]
- TRIM27 Functions as a Novel Oncogene in Non-Triple-Negative Breast Cancer by Blocking Cellular Senescence through p21 Ubiquitination. / 04.12.2020 / PubMed / Full text
TRIOBP[править]
- A Large Genome-Wide Association Study of Age-Related Hearing Impairment Using Electronic Health Records. / 10.2016 / PubMed / Full text
TRPC1[править]
- Ca entry via TRPC1 is essential for cellular differentiation and modulates secretion via the SNARE complex. / 01.07.2019 / PubMed / Full text
TRPC7[править]
- Nociceptive transient receptor potential canonical 7 (TRPC7) mediates aging-associated tumorigenesis induced by ultraviolet B. / 01.2020 / PubMed / Full text
TRPM5[править]
- Genetic strategies to analyze primary TRP channel-expressing cells in mice. / 11.2017 / PubMed / Full text
TRPS1[править]
- miRNA expression profiling uncovers a role of miR-302b-3p in regulating skin fibroblasts senescence. / 01.2020 / PubMed / Full text
TRPV2[править]
- The role of transient receptor potential vanilloid 2 channel in cardiac aging. / 10.2017 / PubMed / Full text
TSG101[править]
- Exosomal Notch3 from high glucose-stimulated endothelial cells regulates vascular smooth muscle cells calcification/aging. / 01.09.2019 / PubMed / Full text
TSHR[править]
- TSH-independent release of thyroid hormones through cold exposure in aging rats. / 27.10.2017 / PubMed / Full text
TSPYL5[править]
- Uncovering genetic mechanisms of kidney aging through transcriptomics, genomics, and epigenomics. / 03.2019 / PubMed / Full text
TSSK6[править]
- DNA methylation-based age prediction from saliva: High age predictability by combination of 7 CpG markers. / 07.2017 / PubMed / Full text
TTF1[править]
- Senescence and autophagy in usual interstitial pneumonia of different etiology. / 27.08.2020 / PubMed / Full text
TUBA1A[править]
- Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. / 2019 / PubMed / Full text
TUBAL3[править]
- Identification of biomarkers of human skin ageing in both genders. Wnt signalling - a label of skin ageing? / 2012 / PubMed / Full text
TWIST2[править]
- DNA methylation abnormalities at gene promoters are extensive and variable in the elderly and phenocopy cancer cells. / 07.2014 / PubMed / Full text
TXK[править]
- Phenotypic characteristics of aged CD4 CD28 T lymphocytes are determined by changes in the whole-genome DNA methylation pattern. / 04.2017 / PubMed / Full text
TXN[править]
- Thioredoxin mitigates radiation-induced hematopoietic stem cell injury in mice. / 15.11.2017 / PubMed / Full text
TXNDC5[править]
TXNRD3[править]
- Mitochondrial thioredoxin reductase 2 is elevated in long-lived primate as well as rodent species and extends fly mean lifespan. / 08.2017 / PubMed / Full text
TYK2[править]
- Immunologic effects of chronic administration of tofacitinib, a Janus kinase inhibitor, in cynomolgus monkeys and rats - Comparison of juvenile and adult responses. / 04.2018 / PubMed / Full text
TYMS[править]
- C. elegans lifespan extension by osmotic stress requires FUdR, base excision repair, FOXO, and sirtuins. / 03.2016 / PubMed / Full text
TYRO3[править]
- The tyrosine kinase receptor Tyro3 enhances lifespan and neuropeptide Y (Npy) neuron survival in the mouse anorexia ([i]anx[/i]) mutation. / 01.05.2017 / PubMed / Full text
TYRP1[править]
- Thymocid , a Standardized Black Cumin ([i]Nigella sativa[/i]) Seed Extract, Modulates Collagen Cross-Linking, Collagenase and Elastase Activities, and Melanogenesis in Murine B16F10 Melanoma Cells. / 19.07.2020 / PubMed / Full text
UACA[править]
- Knockdown of [i]UACA[/i] inhibitsproliferation and invasion and promotes senescence of hepatocellular carcinoma cells. / 2018 / PubMed / Full text
UAP1[править]
- Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice. / 02.2015 / PubMed / Full text
UBC[править]
- Selection of a Real-Time PCR Housekeeping Gene Panel in Human Endothelial Colony Forming Cells for Cellular Senescence Studies. / 2019 / PubMed / Full text
UBE2C[править]
- Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text
UBE2D2[править]
- Stable reference genes in granulosa cells of bovine dominant follicles during follicular growth, FSH stimulation and maternal aging. / 04.2016 / PubMed / Full text
UBE2E3[править]
- Loss of the ubiquitin conjugating enzyme UBE2E3 induces cellular senescence. / 07.2018 / PubMed / Full text
UBE2N[править]
- Aged monkey brains reveal the role of ubiquitin-conjugating enzyme UBE2N in the synaptosomal accumulation of mutant huntingtin. / 01.03.2015 / PubMed / Full text
UBE2T[править]
- Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text
UBE4B[править]
- CircRNAs in the tree shrew ([i]Tupaia belangeri[/i]) brain during postnatal development and aging. / 30.04.2018 / PubMed / Full text
UBN1[править]
- O-linked N-acetylglucosamine transferase (OGT) interacts with the histone chaperone HIRA complex and regulates nucleosome assembly and cellular senescence. / 07.06.2016 / PubMed / Full text
UBP1[править]
- Expression of potato RNA-binding proteins StUBA2a/b and StUBA2c induces hypersensitive-like cell death and early leaf senescence in Arabidopsis. / 07.2015 / PubMed / Full text
UBQLN2[править]
- Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis. / 24.02.2016 / PubMed / Full text
UBTD1[править]
- UBTD1 induces cellular senescence through an UBTD1-Mdm2/p53 positive feedback loop. / 03.2015 / PubMed / Full text
UBTF[править]
- Age-associated dysregulation of protein metabolism in the mammalian oocyte. / 12.2017 / PubMed / Full text
UBXN2B[править]
- Clinical, polysomnographic and genome-wide association analyses of narcolepsy with cataplexy: a European Narcolepsy Network study. / 10.2013 / PubMed / Full text
UCHL3[править]
- UCHL3 Regulates Topoisomerase-Induced Chromosomal Break Repair by Controlling TDP1 Proteostasis. / 12.06.2018 / PubMed / Full text
UCHL5[править]
- Amelioration of neuronal cell death in a spontaneous obese rat model by dietary restriction through modulation of ubiquitin proteasome system. / 07.2016 / PubMed / Full text
UCN[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
UCN3[править]
- Urocortin 3 signalling in the auditory brainstem aids recovery of hearing after reversible noise-induced threshold shift. / 08.2019 / PubMed / Full text
UGT1A6[править]
- Expression of UDP-Glucuronosyltransferase 1 (UGT1) and Glucuronidation Activity toward Endogenous Substances in Humanized UGT1 Mouse Brain. / 07.2015 / PubMed / Full text
UGT2B28[править]
- Ages of hepatocellular carcinoma occurrence and life expectancy are associated with a UGT2B28 genomic variation. / 05.12.2019 / PubMed / Full text
UGT2B7[править]
- Application of a physiologically based pharmacokinetic model for the prediction of mirabegron plasma concentrations in a population with severe renal impairment. / 05.2019 / PubMed / Full text
ULK2[править]
- miR-26a suppresses autophagy in swine Sertoli cells by targeting ULK2. / 08.2018 / PubMed / Full text
UNC5C[править]
- Identification of genes associated with dissociation of cognitive performance and neuropathological burden: Multistep analysis of genetic, epigenetic, and transcriptional data. / 04.2017 / PubMed / Full text
UPF1[править]
- Differential alternative splicing coupled to nonsense-mediated decay of mRNA ensures dietary restriction-induced longevity. / 21.08.2017 / PubMed / Full text
UPRT[править]
- UPRT, a suicide-gene therapy candidate in higher eukaryotes, is required for Drosophila larval growth and normal adult lifespan. / 14.08.2015 / PubMed / Full text
UQCRC1[править]
- Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone. / 07.2014 / PubMed / Full text
UQCRFS1[править]
- Contribution of genetic polymorphisms on functional status at very old age: a gene-based analysis of 38 genes (311 SNPs) in the oxidative stress pathway. / 04.2014 / PubMed / Full text
USF1[править]
- The rs2516839 variation of USF1 gene is associated with 4-year mortality of nonagenarian women: The Vitality 90 study. / 01.2019 / PubMed / Full text
USF2[править]
- Age-Related Expression of Human AT1R Variants and Associated Renal Dysfunction in Transgenic Mice. / 15.10.2018 / PubMed / Full text
USP15[править]
- Deficiency of parkin and PINK1 impairs age-dependent mitophagy in [i]Drosophila[/i]. / 29.05.2018 / PubMed / Full text
USP28[править]
- Genetic interrogation of replicative senescence uncovers a dual role for USP28 in coordinating the p53 and GATA4 branches of the senescence program. / 01.10.2017 / PubMed / Full text
USP30[править]
- Deficiency of parkin and PINK1 impairs age-dependent mitophagy in [i]Drosophila[/i]. / 29.05.2018 / PubMed / Full text
USP4[править]
- Increased Expression of Ubiquitin-Specific Protease 4 Participates in Neuronal Apoptosis After Intracerebral Hemorrhage in Adult Rats. / 04.2017 / PubMed / Full text
USP8[править]
- Inhibition of the deubiquitinase USP8 corrects a Drosophila PINK1 model of mitochondria dysfunction. / 04.2019 / PubMed / Full text
UTF1[править]
- miR-377 induces senescence in human skin fibroblasts by targeting DNA methyltransferase 1. / 09.03.2017 / PubMed / Full text
UVRAG[править]
- Essential role for UVRAG in autophagy and maintenance of cardiac function. / 01.01.2014 / PubMed / Full text
UVSSA[править]
- A C. elegans homolog for the UV-hypersensitivity syndrome disease gene UVSSA. / 05.2016 / PubMed / Full text
VAMP2[править]
- Newly produced synaptic vesicle proteins are preferentially used in synaptic transmission. / 01.08.2018 / PubMed / Full text
VAMP8[править]
- NUPR1 maintains autolysosomal efflux by activating SNAP25 transcription in cancer cells. / 2018 / PubMed / Full text
VAPB[править]
- Transforming Cytosolic Proteins into "Insoluble" and Membrane-toxic Forms Triggering Diseases/Aging by Genetic, Pathological or Environmental Factors. / 2017 / PubMed / Full text
VAV3[править]
- Age-related obesity and type 2 diabetes dysregulate neuronal associated genes and proteins in humans. / 06.10.2015 / PubMed / Full text
VCL[править]
- The effects of different preservation methods on ide (Leuciscus idus) sperm and the longevity of sperm movement. / 04.2018 / PubMed / Full text
VCPIP1[править]
- Tandem Deubiquitination and Acetylation of SPRTN Promotes DNA-Protein Crosslink Repair and Protects against Aging. / 03.09.2020 / PubMed / Full text
VDAC3[править]
- VDAC3 As a Potential Marker of Mitochondrial Status Is Involved in Cancer and Pathology. / 2016 / PubMed / Full text
VEGFC[править]
- Proteomic profiling of follicle fluids after superstimulation in one-month-old lambs. / 02.2018 / PubMed / Full text
VEGFD[править]
- Single-Arm Resistance Training Study to Determine the Relationship between Training Outcomes and Muscle Growth Factor mRNAs in Older Adults Consuming Numerous Medications and Supplements. / 2018 / PubMed / Full text
VHLL[править]
- The Monetary Valuation of Lifetime Health Improvement and Life Expectancy Gains in Turkey. / 29.09.2017 / PubMed / Full text
VIT[править]
VPREB3[править]
- Age-related but not longevity-related genes are found by weighted gene co-expression network analysis in the peripheral blood cells of humans. / 19.01.2019 / PubMed / Full text
VPS13C[править]
- SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text
VPS13D[править]
- SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text
VPS26A[править]
- Characterization of novel markers of senescence and their prognostic potential in cancer. / 20.11.2014 / PubMed / Full text
VPS37B[править]
- Identification of HIV infection-related DNA methylation sites and advanced epigenetic aging in HIV-positive, treatment-naive U.S. veterans. / 20.02.2017 / PubMed / Full text
VPS4A[править]
- The expression changes of vacuolar protein sorting 4B (VPS4B) following middle cerebral artery occlusion (MCAO) in adult rats brain hippocampus. / 01.2014 / PubMed / Full text
VPS4B[править]
- The expression changes of vacuolar protein sorting 4B (VPS4B) following middle cerebral artery occlusion (MCAO) in adult rats brain hippocampus. / 01.2014 / PubMed / Full text
VRK2[править]
- Accelerated Epigenetic Aging and Methylation Disruptions Occur in Human Immunodeficiency Virus Infection Prior to Antiretroviral Therapy. / 22.09.2020 / PubMed / Full text
VSIG4[править]
- Immune checkpoint protein VSIG4 as a biomarker of aging in murine adipose tissue. / 10.2020 / PubMed / Full text
VSX1[править]
- Amyloid Precursor-Like Protein 2 deletion-induced retinal synaptopathy related to congenital stationary night blindness: structural, functional and molecular characteristics. / 08.06.2016 / PubMed / Full text
WAC[править]
- Implementation of Writing Across the Curriculum (WAC) learning approaches in social work and sociology gerontology courses. / 2013 / PubMed / Full text
WASL[править]
WBP11[править]
- Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of mRNA splicing relevant proteins in aging HSPCs. / 05.03.2020 / PubMed / Full text
WDR48[править]
- Genome-wide studies of verbal declarative memory in nondemented older people: the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium. / 15.04.2015 / PubMed / Full text
WDR5[править]
- Inhibition of the H3K4 methyltransferase MLL1/WDR5 complex attenuates renal senescence in ischemia reperfusion mice by reduction of p16 . / 11.2019 / PubMed / Full text
WDR73[править]
- Novel homozygous OSGEP gene pathogenic variants in two unrelated patients with Galloway-Mowat syndrome: case report and review of the literature. / 11.04.2019 / PubMed / Full text
WDSUB1[править]
- The complex genetics of gait speed: genome-wide meta-analysis approach. / 10.01.2017 / PubMed / Full text
WFDC2[править]
- Differences in biomarkers and molecular pathways according to age for patients with HFrEF. / 01.10.2020 / PubMed / Full text
WIF1[править]
- Identification of the mechanisms by which age alters the mechanosensitivity of mesenchymal stromal cells on substrates of differing stiffness: Implications for osteogenesis and angiogenesis. / 15.04.2017 / PubMed / Full text
WNK1[править]
- Overexpression of WNK1 in POMC-expressing neurons reduces weigh gain via WNK4-mediated degradation of Kir6.2. / 10.2018 / PubMed / Full text
WNK4[править]
- Overexpression of WNK1 in POMC-expressing neurons reduces weigh gain via WNK4-mediated degradation of Kir6.2. / 10.2018 / PubMed / Full text
WNT10A[править]
- Dysregulation of the Wnt Signaling Pathway and Synovial Stem Cell Dysfunction in Osteoarthritis Development. / 01.04.2020 / PubMed / Full text
WNT3[править]
WNT5B[править]
- Dysregulation of the Wnt Signaling Pathway and Synovial Stem Cell Dysfunction in Osteoarthritis Development. / 01.04.2020 / PubMed / Full text
WNT7A[править]
- Exogenous Expression of WNT7A in Leukemia-Derived Cell Lines Induces Resistance to Chemotherapeutic Agents. / 2020 / PubMed / Full text
WWC1[править]
- WWC1 genotype modulates age-related decline in episodic memory function across the adult life span. / 01.05.2014 / PubMed / Full text
XAF1[править]
- XIAP-associating factor 1, a transcriptional target of BRD7, contributes to endothelial cell senescence. / 02.02.2016 / PubMed / Full text
XG[править]
- The effect of administration media on palatability and ease of swallowing of multiparticulate formulations. / 15.11.2018 / PubMed / Full text
XK[править]
- Neurodegeneration in the elderly - When the blood type matters: An overview of the McLeod syndrome with focus on hematological features. / 06.2015 / PubMed / Full text
XPO1[править]
- Nuclear Export Inhibition Enhances HLH-30/TFEB Activity, Autophagy, and Lifespan. / 15.05.2018 / PubMed / Full text
XRCC2[править]
- Copy neutral loss of heterozygosity is more frequent in older ovarian cancer patients. / 09.2013 / PubMed / Full text
XRCC5[править]
- Repairing DNA damage by XRCC6/KU70 reverses TLR4-deficiency-worsened HCC development via restoring senescence and autophagic flux. / 01.06.2013 / PubMed / Full text
YBX2[править]
- Preovulatory Aging In Vivo and In Vitro Affects Maturation Rates, Abundance of Selected Proteins, Histone Methylation Pattern and Spindle Integrity in Murine Oocytes. / 2016 / PubMed / Full text
YES1[править]
- Re-exploring the core genes and modules in the human frontal cortex during chronological aging: insights from network-based analysis of transcriptomic studies. / 20.10.2018 / PubMed / Full text
ZAP70[править]
ZBED6[править]
- Correlation between ZBED6 Gene Upstream CpG Island methylation and mRNA expression in cattle. / 03.04.2017 / PubMed / Full text
ZBTB7A[править]
- The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. / 29.09.2020 / PubMed / Full text
ZC3H11A[править]
- In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. / 12.2019 / PubMed / Full text
ZFHX3[править]
ZFP36L1[править]
- Zinc finger protein ZFP36L1 promotes osteoblastic differentiation but represses adipogenic differentiation of mouse multipotent cells. / 28.03.2017 / PubMed / Full text
ZFPM2[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
ZIC1[править]
- The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. / 29.09.2020 / PubMed / Full text
ZNF14[править]
- Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. / 07.2014 / PubMed / Full text
ZNF207[править]
- Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. / 02.2018 / PubMed / Full text
ZNF211[править]
- Genetics of facial telangiectasia in the Rotterdam Study: a genome-wide association study and candidate gene approach. / 23.10.2020 / PubMed / Full text
ZNF367[править]
- RNA-seq of the aging brain in the short-lived fish N. furzeri - conserved pathways and novel genes associated with neurogenesis. / 12.2014 / PubMed / Full text
ZNF396[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
ZNF467[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
ZNF483[править]
- Genome wide association study of age at menarche in the Japanese population. / 2013 / PubMed / Full text
ZNF518B[править]
- The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. / 29.09.2020 / PubMed / Full text
ZNF616[править]
- Global Characteristics of CSIG-Associated Gene Expression Changes in Human HEK293 Cells and the Implications for CSIG Regulating Cell Proliferation and Senescence. / 2015 / PubMed / Full text
ZNF619[править]
- Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. / 12.2019 / PubMed / Full text
ZNF644[править]
- Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients. / 03.09.2019 / PubMed / Full text
ZNF704[править]
- Genome-Wide Association Study and Linkage Analysis of the Healthy Aging Index. / 08.2015 / PubMed / Full text
ZPBP2[править]
- Sex- and age-dependent DNA methylation at the 17q12-q21 locus associated with childhood asthma. / 07.2013 / PubMed / Full text
ZRSR2[править]
- Insight into the molecular pathophysiology of myelodysplastic syndromes: targets for novel therapy. / 10.2016 / PubMed / Full text
ZSCAN4[править]
- Genetics of facial telangiectasia in the Rotterdam Study: a genome-wide association study and candidate gene approach. / 23.10.2020 / PubMed / Full text