Материал из hpluswiki
Перейти к навигации Перейти к поиску

Dual specificity protein phosphatase 2 (EC (EC (Dual specificity protein phosphatase PAC-1) [PAC1]


The association between poverty and gene expression within peripheral blood mononuclear cells in a diverse Baltimore City cohort.

Socioeconomic status (SES), living in poverty, and other social determinants of health contribute to health disparities in the United States. African American (AA) men living below poverty in Baltimore City have a higher incidence of mortality when compared to either white males or AA females living below poverty. Previous studies in our laboratory and elsewhere suggest that environmental conditions are associated with differential gene expression (DGE) patterns in peripheral blood mononuclear cells (PBMCs). DGE have also been associated with hypertension and cardiovascular disease (CVD) and correlate with race and sex. However, no studies have investigated how poverty status associates with DGE between male and female AAs and whites living in Baltimore City. We examined DGE in 52 AA and white participants of the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) cohort, who were living above or below 125% of the 2004 federal poverty line at time of sample collection. We performed a microarray to assess DGE patterns in PBMCs from these participants. AA males and females living in poverty had the most genes differentially-expressed compared with above poverty controls. Gene ontology (GO) analysis identified unique and overlapping pathways related to the endosome, single-stranded RNA binding, long-chain fatty-acyl-CoA biosynthesis, toll-like receptor signaling, and others within AA males and females living in poverty and compared with their above poverty controls. We performed RT-qPCR to validate top differentially-expressed genes in AA males. We found that KLF6, DUSP2, RBM34, and CD19 are expressed at significantly lower levels in AA males in poverty and KCTD12 is higher compared to above poverty controls. This study serves as an additional link to better understand the gene expression response in peripheral blood mononuclear cells in those living in poverty.

MeSH Terms

  • Adult
  • Demography
  • Female
  • Gene Expression Profiling
  • Humans
  • Longevity
  • Male
  • Metabolic Networks and Pathways
  • Middle Aged
  • Monocytes
  • Poverty
  • Transcriptome
  • Urban Population

Aging Increases Hippocampal DUSP2 by a Membrane Cholesterol Loss-Mediated RTK/p38MAPK Activation Mechanism.

Numerous studies suggest that the increased activity of p38MAPK plays an important role in the abnormal immune and inflammatory response observed in the course of neurodegenerative diseases such as Alzheimer's disease. On the other hand, high levels of p38MAPK are present in the brain during normal aging, suggesting the existence of mechanisms that keep the p38MAPK-regulated pro-inflammatory activity within physiological limits. In this study, we show that high p38MAPK activity in the hippocampus of old mice is in part due to the reduction in membrane cholesterol that constitutively occurs in the aging brain. Mechanistically, membrane cholesterol reduction increases p38MAPK activity through the stimulation of a subset of tyrosine kinase receptors (RTKs). In turn, activated p38MAPK increases the expression and activity of the phosphatase DUSP2, which is known to reduce the activity of different MAPKs, including p38MAPK. These results suggest that the loss of membrane cholesterol that constitutively occurs with age takes part in a negative-feedback loop that keeps p38MAPK activity levels within physiological range. Thus, conditions that increase p38MAPK activity such as cellular stressors or that inhibit DUSP2 will amplify inflammatory activity with its consequent deleterious functional changes.


  • DUSP2
  • RTKs
  • aging
  • cholesterol
  • p38MAPK