Aging genes 1-2: различия между версиями

Материал из hpluswiki
Перейти к навигации Перейти к поиску
Нет описания правки
Нет описания правки
 
Строка 1: Строка 1:
__NOTOC__
__NOTOC__
* [[Aging genes 100‎‎|Genes with 100 and more publications]]
* [[Aging genes 300‎‎|Genes with 300 and more publications]]
* [[Aging genes 60-99‎‎|Genes with 60-99 publications]]
* [[Aging genes 200-299‎‎|Genes with 200-299 publications]]
* [[Aging genes 30-59‎‎|Genes with 30-59 publications]]
* [[Aging genes 100-199‎‎|Genes with 100-199 publications]]
* [[Aging genes 10-29‎‎|Genes with 10-29 publications]]
* [[Aging genes 90-99‎‎|Genes with 90-99 publications]]
* [[Aging genes 3-9‎‎|Genes with 3-9 publications]]
* [[Aging genes 80-89‎‎|Genes with 80-89 publications]]
* [[Aging genes 70-79‎‎|Genes with 70-79 publications]]
* [[Aging genes 60-69‎‎|Genes with 60-69 publications]]
* [[Aging genes 50-59‎‎|Genes with 50-59 publications]]
* [[Aging genes 40-49‎‎|Genes with 40-49 publications]]
* [[Aging genes 30-39‎‎|Genes with 30-39 publications]]
* [[Aging genes 20-29‎‎|Genes with 20-29 publications]]
* [[Aging genes 10-19‎‎|Genes with 10-19 publications]]
* [[Aging genes 5-9‎‎|Genes with 5-9 publications]]
* [[Aging genes 3-4‎‎|Genes with 3-4 publications]]
* [[Aging genes 1-2‎‎|Genes with 1-2 publications]]
* [[Aging genes 1-2‎‎|Genes with 1-2 publications]]
* [[Aging_genes_A-Z_table]]


==AACS==
==AACS==
Строка 35: Строка 45:
|full-text-url=https://sci-hub.do/10.1111/ped.12965
|full-text-url=https://sci-hub.do/10.1111/ped.12965
}}
}}
==ABCC6==
==ABCG1==


* {{medline-title
* {{medline-title
|title=[i][[ABCC6]][/i] knockdown in HepG2 cells induces a senescent-like cell phenotype.
|title=Disrupted cholesterol metabolism promotes age-related photoreceptor neurodegeneration.
|date=2017
|date=08.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28536638
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29946056
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5415800
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071770
}}
* {{medline-title
|title=Elevated COX2 expression and PGE2 production by downregulation of RXRα in senescent macrophages.
|date=11.10.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24051096
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2013.09.047
}}
==ABCG5==
 
* {{medline-title
|title=2, 3, 4', 5-tetrahydroxystilbene-2-0-β-d Glycoside Attenuates Age- and Diet-Associated Non-Alcoholic Steatohepatitis and Atherosclerosis in LDL Receptor Knockout Mice and Its Possible Mechanisms.
|date=01.04.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30939745
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479705
}}
}}
* {{medline-title
* {{medline-title
|title=Changes in dermal fibroblasts from Abcc6(-/-) mice are present before and after the onset of ectopic tissue mineralization.
|title=Genetic determinants of macular pigments in women of the Carotenoids in Age-Related Eye Disease Study.
|date=07.2014
|date=28.03.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24670382
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23404124
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057957
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3626525
}}
}}
==ABI3==
==ABI3==
Строка 77: Строка 101:
|full-text-url=https://sci-hub.do/10.1016/j.bone.2018.04.014
|full-text-url=https://sci-hub.do/10.1016/j.bone.2018.04.014
}}
}}
==ACAN==
==ACAT2==


* {{medline-title
* {{medline-title
|title=MicroRNA-143-5p targeting eEF2 gene mediates intervertebral disc degeneration through the AMPK signaling pathway.
|title=Cholesterol Homeostasis: An In Silico Investigation into How Aging Disrupts Its Key Hepatic Regulatory Mechanisms.
|date=15.04.2019
|date=30.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30987676
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33007859
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6466769
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599957
}}
}}
* {{medline-title
* {{medline-title
|title=Acetylation reduces [[SOX9]] nuclear entry and [[ACAN]] gene transactivation in human chondrocytes.
|title=Serum starvation of A[[RPE]]-19 changes the cellular distribution of cholesterol and Fibulin3 in patterns reminiscent of age-related macular degeneration.
|date=06.2016
|date=15.12.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26910618
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29097185
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854920
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701823
}}
}}
==ACTA1==
==ACTA1==
Строка 133: Строка 157:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5135304
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5135304
}}
}}
==ADH1B==
==ADAMTS4==


* {{medline-title
* {{medline-title
|title=Telomere shortening in alcohol dependence: Roles of alcohol and acetaldehyde.
|title=Influences of circulatory factors on intervertebral disc aging phenotype.
|date=02.2019
|date=11.06.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466069
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32527988
|full-text-url=https://sci-hub.do/10.1016/j.jpsychires.2018.11.007
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343497
}}
}}
* {{medline-title
* {{medline-title
|title=Relationships of alcohol dehydrogenase 1B ([[ADH1B]]) and aldehyde dehydrogenase 2 ([[ALDH2]]) genotypes with alcohol sensitivity, drinking behavior and problem drinking in Japanese older men.
|title=Genotoxic stress accelerates age-associated degenerative changes in intervertebral discs.
|date=05.2016
|date=01-02.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26825972
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23262094
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4823221
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3558562
}}
}}
==ADH5==
==ADH5==
Строка 160: Строка 184:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30029585
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30029585
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6103690
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6103690
}}
==ADIPOQ==
* {{medline-title
|title=Determination of the Mechanisms that Cause Sarcopenia through cDNA Microarray.
|date=2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28555711
|full-text-url=https://sci-hub.do/10.14283/jfa.2017.13
}}
* {{medline-title
|title=Contribution of adiponectin and its type 1 receptor to age-related hearing impairment.
|date=06.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25911279
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2015.02.030
}}
}}
==ADIPOR1==
==ADIPOR1==
Строка 217: Строка 227:
|full-text-url=https://sci-hub.do/10.1016/j.exger.2016.06.011
|full-text-url=https://sci-hub.do/10.1016/j.exger.2016.06.011
}}
}}
==AGER==
==ADRB2==


* {{medline-title
* {{medline-title
|title=Vitamin D3 regulates apoptosis and proliferation in the testis of D-galactose-induced aged rat model.
|title=Interactions between social/ behavioral factors and [[ADRB2]] genotypes may be associated with health at advanced ages in China.
|date=01.10.2019
|date=09.09.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31575929
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24016068
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6773724
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3846634
}}
}}
* {{medline-title
* {{medline-title
|title=Long-lived rodents reveal signatures of positive selection in genes associated with lifespan.
|title=[[ADRB2]], brain white matter integrity and cognitive ageing in the Lothian Birth Cohort 1936.
|date=03.2018
|date=01.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29570707
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23229623
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884551
|full-text-url=https://sci-hub.do/10.1007/s10519-012-9570-x
}}
}}
==AGO2==
==AGO2==
Строка 272: Строка 282:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24390964
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24390964
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959216
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959216
}}
==AKT2==
* {{medline-title
|title=A conserved role of the insulin-like signaling pathway in diet-dependent uric acid pathologies in Drosophila melanogaster.
|date=08.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31415568
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695094
}}
* {{medline-title
|title=Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats.
|date=02.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30661688
|full-text-url=https://sci-hub.do/10.1016/j.clnesp.2018.10.003
}}
}}
==AKT3==
==AKT3==
Строка 300: Строка 324:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27512140
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27512140
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5008010
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5008010
}}
==ALDOA==
* {{medline-title
|title=Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease.
|date=2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31733664
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939615
}}
* {{medline-title
|title=An Adult Drosophila Glioma Model for Studying Pathometabolic Pathways of Gliomagenesis.
|date=06.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30357574
|full-text-url=https://sci-hub.do/10.1007/s12035-018-1392-2
}}
}}
==ALKBH8==
==ALKBH8==
Строка 315: Строка 353:


}}
}}
==ANGPTL2==
==ALOX5==


* {{medline-title
* {{medline-title
|title=Circulating angiopoietin-like protein 2 levels and mortality risk in patients receiving maintenance hemodialysis: a prospective cohort study.
|title=Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis.
|date=01.05.2020
|date=19.12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31840173
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31687975
|full-text-url=https://sci-hub.do/10.1093/ndt/gfz236
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6975274
}}
}}
* {{medline-title
* {{medline-title
|title=Age-dependent increase in angiopoietin-like protein 2 accelerates skeletal muscle loss in mice.
|title=Functional Characterization of Knock-In Mice Expressing a 12/15-Lipoxygenating Alox5 Mutant Instead of the 5-Lipoxygenating Wild-Type Enzyme.
|date=02.02.2018
|date=01.01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29191837
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31642348
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5798292
|full-text-url=https://sci-hub.do/10.1089/ars.2019.7751
}}
}}
==ANK1==
==ANK1==
Строка 360: Строка 398:


* {{medline-title
* {{medline-title
|title=Circular RNA NF1-419 enhances autophagy to ameliorate senile dementia by binding Dynamin-1 and Adaptor protein 2 B1 in AD-like mice.
|title=Circular RNA [[NF1]]-419 enhances autophagy to ameliorate senile dementia by binding Dynamin-1 and Adaptor protein 2 B1 in AD-like mice.
|date=20.12.2019
|date=20.12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31860870
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31860870
Строка 371: Строка 409:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890987
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890987
}}
}}
==APOB==
==APOD==


* {{medline-title
* {{medline-title
|title=Autophagy-mediated longevity is modulated by lipoprotein biogenesis.
|title=Identification of reference genes for RT-qPCR data normalisation in aging studies.
|date=2016
|date=27.09.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26671266
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31562345
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4836030
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764958
}}
}}
* {{medline-title
* {{medline-title
|title=Exome sequencing of three cases of familial exceptional longevity.
|title=Apolipoprotein D takes center stage in the stress response of the aging and degenerative brain.
|date=12.2014
|date=07.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25116423
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24612673
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326919
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3988949
}}
}}
==APOL1==
==APOL1==
Строка 412: Строка 450:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28965332
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28965332
|full-text-url=https://sci-hub.do/10.1007/s12035-017-0785-y
|full-text-url=https://sci-hub.do/10.1007/s12035-017-0785-y
}}
==AQP2==
* {{medline-title
|title=A bell-shaped pattern of urinary aquaporin-2-bearing extracellular vesicle release in an experimental model of nephronophthisis.
|date=05.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31074077
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509436
}}
* {{medline-title
|title=Nitric oxide and [[AQP2]] in hypothyroid rats: a link between aging and water homeostasis.
|date=09.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23706747
|full-text-url=https://sci-hub.do/10.1016/j.metabol.2013.04.013
}}
}}
==AQP3==
==AQP3==
Строка 510: Строка 562:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28981097
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28981097
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5680584
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5680584
}}
==ATOH1==
* {{medline-title
|title=In Vivo Interplay between p27 , [[GATA3]], [[ATOH1]], and [[POU4F3]] Converts Non-sensory Cells to Hair Cells in Adult Mice.
|date=11.04.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28402854
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5423718
}}
* {{medline-title
|title=A new mutation of the Atoh1 gene in mice with normal life span allows analysis of inner ear and cerebellar phenotype in aging.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24265785
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827170
}}
}}
==ATP1A2==
==ATP1A2==
Строка 552: Строка 618:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30530920
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30530920
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326685
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326685
}}
==ATXN3==
* {{medline-title
|title=Rescue of [[ATXN3]] neuronal toxicity in [i]Caenorhabditis[/i][i]elegans[/i] by chemical modification of endoplasmic reticulum stress.
|date=19.12.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29061563
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5769603
}}
* {{medline-title
|title=Sodium valproate alleviates neurodegeneration in SCA3/MJD via suppressing apoptosis and rescuing the hypoacetylation levels of histone H3 and H4.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23382971
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3557284
}}
}}
==AXL==
==AXL==
Строка 580: Строка 660:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30779020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30779020
|full-text-url=https://sci-hub.do/10.1007/978-981-13-2835-0_17
|full-text-url=https://sci-hub.do/10.1007/978-981-13-2835-0_17
}}
==BACH2==
* {{medline-title
|title=Age-related changes in the [[BACH2]] and [[PRDM1]] genes in lymphocytes from healthy donors and chronic lymphocytic leukemia patients.
|date=17.01.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30654767
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6337793
}}
* {{medline-title
|title=[[BACH2]]: a marker of DNA damage and ageing.
|date=11.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24075570
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912324
}}
}}
==BAG3==
==BAG3==
Строка 637: Строка 731:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541364
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541364
}}
}}
==BCL6==
==BCL2L1==


* {{medline-title
* {{medline-title
|title=Ecto-NTPDase CD39 is a negative checkpoint that inhibits follicular helper cell generation.
|title=The transcription factor [[ETS1]] promotes apoptosis resistance of senescent cholangiocytes by epigenetically up-regulating the apoptosis suppressor [[BCL2]]L1.
|date=01.07.2020
|date=06.12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32452837
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31659122
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324201
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6901313
}}
}}
* {{medline-title
* {{medline-title
|title=Transcription factor networks in aged naïve [[CD4]] T cells bias lineage differentiation.
|title=[[SIRT6]] histone deacetylase functions as a potential oncogene in human melanoma.
|date=08.2019
|date=09.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31264370
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29234488
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612640
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724804
}}
}}
==BMPR1B==
==BMPR1B==
Строка 664: Строка 758:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26805635
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26805635
|full-text-url=https://sci-hub.do/10.1016/j.mce.2016.01.016
|full-text-url=https://sci-hub.do/10.1016/j.mce.2016.01.016
}}
==BMX==
* {{medline-title
|title=Inducible Activation of [[FGFR2]] in Adult Mice Promotes Bone Formation After Bone Marrow Ablation.
|date=11.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28650109
|full-text-url=https://sci-hub.do/10.1002/jbmr.3204
}}
* {{medline-title
|title=Enhanced activity of an angiotensin-(1-7) neuropeptidase in glucocorticoid-induced fetal programming.
|date=02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24355101
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157337
}}
}}
==BRD2==
==BRD2==
Строка 693: Строка 801:
|full-text-url=https://sci-hub.do/10.2527/jas.2015-9252
|full-text-url=https://sci-hub.do/10.2527/jas.2015-9252
}}
}}
==BTK==
==BTG1==


* {{medline-title
* {{medline-title
|title=Amelioration of age-related brain function decline by Bruton's tyrosine kinase inhibition.
|title=Effects of hydrogen peroxide, doxorubicin and ultraviolet irradiation on senescence of human dental pulp stem cells.
|date=01.2020
|date=09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31736210
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32592933
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974713
|full-text-url=https://sci-hub.do/10.1016/j.archoralbio.2020.104819
}}
}}
* {{medline-title
* {{medline-title
|title=[[BTK]] suppresses myeloma cellular senescence through activating AKT/P27/Rb signaling.
|title=Tumor cell escape from therapy-induced senescence.
|date=04.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30576620
|full-text-url=https://sci-hub.do/10.1016/j.bcp.2018.12.013
}}
==BTK==
 
* {{medline-title
|title=Amelioration of age-related brain function decline by Bruton's tyrosine kinase inhibition.
|date=01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31736210
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974713
}}
* {{medline-title
|title=[[BTK]] suppresses myeloma cellular senescence through activating AKT/P27/Rb signaling.
|date=22.08.2017
|date=22.08.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28915637
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28915637
Строка 734: Строка 856:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28473691
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28473691
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431421
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431421
}}
==CACNA1C==
* {{medline-title
|title=Profiling gene expression in the human dentate gyrus granule cell layer reveals insights into schizophrenia and its genetic risk.
|date=04.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32203495
|full-text-url=https://sci-hub.do/10.1038/s41593-020-0604-z
}}
* {{medline-title
|title=Epigenetic regulation of L-type voltage-gated Ca  channels in mesenteric arteries of aging hypertensive rats.
|date=05.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27881847
|full-text-url=https://sci-hub.do/10.1038/hr.2016.167
}}
==CALR==
* {{medline-title
|title=Elevated circulating HtrA4 in preeclampsia may alter endothelial expression of senescence genes.
|date=15.01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32056555
|full-text-url=https://sci-hub.do/10.1016/j.placenta.2019.12.012
}}
* {{medline-title
|title=Molecular Pathogenesis of Myeloproliferative Neoplasms: Influence of Age and Gender.
|date=10.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28948454
|full-text-url=https://sci-hub.do/10.1007/s11899-017-0411-0
}}
}}
==CASK==
==CASK==
Строка 749: Строка 899:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5654756
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5654756
}}
}}
==CAST==
==CASP1==


* {{medline-title
* {{medline-title
|title=Cytomatrix proteins [[CAST]] and ELKS regulate retinal photoreceptor development and maintenance.
|title=White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy.
|date=05.11.2018
|date=02.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30190286
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31691183
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219712
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035207
}}
}}
* {{medline-title
* {{medline-title
|title=Short Telomeres Induce p53 and Autophagy and Modulate Age-Associated Changes in Cardiac Progenitor Cell Fate.
|title=Gene expression of inflammasome components in peripheral blood mononuclear cells (PBMC) of vascular patients increases with age.
|date=06.2018
|date=2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29441645
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26448778
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5992026
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596365
}}
}}
==CBX7==
==CASP7==


* {{medline-title
* {{medline-title
|title=Integrin Beta 3 Regulates Cellular Senescence by Activating the TGF-β Pathway.
|title=Global Characteristics of CSIG-Associated Gene Expression Changes in Human HEK293 Cells and the Implications for CSIG Regulating Cell Proliferation and Senescence.
|date=07.03.2017
|date=2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28273461
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26029164
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5357738
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432801
}}
}}
* {{medline-title
* {{medline-title
|title=[[CBX7]] and miR-9 are part of an autoregulatory loop controlling p16(INK) (4a).
|title=Dual role of the caspase enzymes in satellite cells from aged and young subjects.
|date=12.2015
|date=12.12.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26416703
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24336075
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4693451
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877545
}}
}}
==CBX8==
==CASP8==


* {{medline-title
* {{medline-title
|title=[[PIM1]]-catalyzed [[CBX8]] phosphorylation promotes the oncogene-induced senescence of human diploid fibroblast.
|title=Crucial role of the terminal complement complex in chondrocyte death and hypertrophy after cartilage trauma.
|date=27.06.2018
|date=05.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29763603
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31981738
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2018.05.070
|full-text-url=https://sci-hub.do/10.1016/j.joca.2020.01.004
}}
}}
* {{medline-title
* {{medline-title
|title=[[CBX8]] antagonizes the effect of Sirtinol on premature senescence through the AKT-RB-[[E2F1]] pathway in K562 leukemia cells.
|title=[Association of polymorphic markers of [[CASP8]], [[BCL2]] and [[BAX]] genes with aging and longevity].
|date=22.01.2016
|date=2012
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26718407
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23289213
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2015.12.070
 
}}
}}
==CCL13==
==CASQ2==


* {{medline-title
* {{medline-title
|title=Age-specific changes in the molecular phenotype of patients with moderate-to-severe atopic dermatitis.
|title=Single delivery of an adeno-associated viral construct to transfer the [[CASQ2]] gene to knock-in mice affected by catecholaminergic polymorphic ventricular tachycardia is able to cure the disease from birth to advanced age.
|date=07.2019
|date=24.06.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30685456
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24888331
|full-text-url=https://sci-hub.do/10.1016/j.jaci.2019.01.015
|full-text-url=https://sci-hub.do/10.1161/CIRCULATIONAHA.113.006901
}}
}}
* {{medline-title
* {{medline-title
|title=Differential Gene Expression Profiles Reflecting Macrophage Polarization in Aging and Periodontitis Gingival Tissues.
|title=The role of mutant protein level in autosomal recessive catecholamine dependent polymorphic ventricular tachycardia (CPVT2).
|date=2015
|date=01.12.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26397131
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24070655
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786741
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103182
}}
==CAST==
 
* {{medline-title
|title=Cytomatrix proteins [[CAST]] and ELKS regulate retinal photoreceptor development and maintenance.
|date=05.11.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30190286
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219712
}}
* {{medline-title
|title=Short Telomeres Induce p53 and Autophagy and Modulate Age-Associated Changes in Cardiac Progenitor Cell Fate.
|date=06.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29441645
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5992026
}}
==CAV1==
 
* {{medline-title
|title=Candesartan Neuroprotection in Rat Primary Neurons Negatively Correlates with Aging and Senescence: a Transcriptomic Analysis.
|date=03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31811565
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062590
}}
* {{medline-title
|title=Broad range metabolomics coupled with network analysis for explaining possible mechanisms of Er-Zhi-Wan in treating liver-kidney Yin deficiency syndrome of Traditional Chinese medicine.
|date=24.04.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30690072
|full-text-url=https://sci-hub.do/10.1016/j.jep.2019.01.019
}}
==CBX4==
 
* {{medline-title
|title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development.
|date=24.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659
}}
* {{medline-title
|title=Maintenance of Nucleolar Homeostasis by [[CBX4]] Alleviates Senescence and Osteoarthritis.
|date=26.03.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30917318
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2019.02.088
}}
==CBX8==
 
* {{medline-title
|title=[[PIM1]]-catalyzed [[CBX8]] phosphorylation promotes the oncogene-induced senescence of human diploid fibroblast.
|date=27.06.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29763603
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2018.05.070
}}
* {{medline-title
|title=[[CBX8]] antagonizes the effect of Sirtinol on premature senescence through the AKT-RB-[[E2F1]] pathway in K562 leukemia cells.
|date=22.01.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26718407
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2015.12.070
}}
==CCL13==
 
* {{medline-title
|title=Age-specific changes in the molecular phenotype of patients with moderate-to-severe atopic dermatitis.
|date=07.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30685456
|full-text-url=https://sci-hub.do/10.1016/j.jaci.2019.01.015
}}
* {{medline-title
|title=Differential Gene Expression Profiles Reflecting Macrophage Polarization in Aging and Periodontitis Gingival Tissues.
|date=2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26397131
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786741
}}
}}
==CCL17==
==CCL17==
Строка 833: Строка 1053:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707671
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707671
}}
}}
==CCN2==
==CCL7==


* {{medline-title
* {{medline-title
|title=[[CCN2]] induces cellular senescence in fibroblasts.
|title=Increased cardiovascular and atherosclerosis markers in blood of older patients with atopic dermatitis.
|date=03.2017
|date=01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27752926
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31622668
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5362572
|full-text-url=https://sci-hub.do/10.1016/j.anai.2019.10.013
}}
}}
* {{medline-title
* {{medline-title
|title=Generation and Analysis of Cartilage-Specific [[CCN2]] Overexpression in Transgenic Mice.
|title=Advanced atherosclerosis is associated with inflammation, vascular dysfunction and oxidative stress, but not hypertension.
|date=2017
|date=02.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27734391
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28017665
|full-text-url=https://sci-hub.do/10.1007/978-1-4939-6430-7_32
|full-text-url=https://sci-hub.do/10.1016/j.phrs.2016.12.032
}}
}}
==CCN4==
==CCNG2==


* {{medline-title
* {{medline-title
|title=CCN proteins as potential actionable targets in scleroderma.
|title=A Novel [i]Dnmt3a1[/i] Transcript Inhibits Adipogenesis.
|date=01.2019
|date=2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30329180
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30333755
|full-text-url=https://sci-hub.do/10.1111/exd.13806
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6176318
}}
}}
* {{medline-title
* {{medline-title
|title=[[WNT1]]-induced Secreted Protein-1 (WI[[SP1]]), a Novel Regulator of Bone Turnover and Wnt Signaling.
|title=Hypoxia-inducible transcription factors, [[HIF1A]] and HIF2A, increase in aging mucosal tissues.
|date=29.05.2015
|date=07.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25864198
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29338076
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447973
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002220
}}
}}
==CCND1==
==CCR4==


* {{medline-title
* {{medline-title
|title=Effects of hydrogen peroxide, doxorubicin and ultraviolet irradiation on senescence of human dental pulp stem cells.
|title=mTOR regulates the expression of DNA damage response enzymes in long-lived Snell dwarf, GHRKO, and [[PAPPA]]-KO mice.
|date=09.2020
|date=02.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32592933
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27618784
|full-text-url=https://sci-hub.do/10.1016/j.archoralbio.2020.104819
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5242303
}}
}}
* {{medline-title
* {{medline-title
|title=Expansion of adipose tissue-derived stromal cells at "physiologic" hypoxia attenuates replicative senescence.
|title=Circulating T helper and T regulatory subsets in untreated early rheumatoid arthritis and healthy control subjects.
|date=06.2017
|date=10.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28589682
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27190305
|full-text-url=https://sci-hub.do/10.1002/cbf.3267
|full-text-url=https://sci-hub.do/10.1189/jlb.5A0116-025R
}}
}}
==CCNG2==
==CD209==


* {{medline-title
* {{medline-title
|title=A Novel [i]Dnmt3a1[/i] Transcript Inhibits Adipogenesis.
|title=Senescence in Monocytes Facilitates Dengue Virus Infection by Increasing Infectivity.
|date=2018
|date=2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30333755
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32850477
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6176318
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7399640
}}
}}
* {{medline-title
* {{medline-title
|title=Hypoxia-inducible transcription factors, [[HIF1A]] and HIF2A, increase in aging mucosal tissues.
|title=Comparative analysis of microbial sensing molecules in mucosal tissues with aging.
|date=07.2018
|date=03.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29338076
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29066255
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002220
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821569
}}
==CD160==
 
* {{medline-title
|title=Age-related changes in the gene expression profile of antigen-specific mouse CD8  T cells can be partially reversed by blockade of the BTLA/[[CD160]] pathways during vaccination.
|date=09.11.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27922818
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5270668
}}
* {{medline-title
|title=T cells in multiple myeloma display features of exhaustion and senescence at the tumor site.
|date=03.11.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27809856
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5093947
}}
}}
==CD46==
==CD46==
Строка 917: Строка 1123:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157566
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157566
}}
}}
==CDC25A==
==CD70==


* {{medline-title
* {{medline-title
|title=Babam2 Regulates Cell Cycle Progression and Pluripotency in Mouse Embryonic Stem Cells as Revealed by Induced DNA Damage.
|title=[[CD70]] contributes to age-associated T cell defects and overwhelming inflammatory responses.
|date=10.10.2020
|date=19.06.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33050379
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32559178
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600899
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343466
}}
}}
* {{medline-title
* {{medline-title
|title=Nickel-induced HIF-1α promotes growth arrest and senescence in normal human cells but lacks toxic effects in transformed cells.
|title=Molecular mechanisms involved in the aging of the T-cell immune response.
|date=15.09.2017
|date=12.2012
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28552779
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23730199
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568485
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3492799
}}
}}
==CDH1==
==CDH1==
Строка 972: Строка 1178:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28589682
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28589682
|full-text-url=https://sci-hub.do/10.1002/cbf.3267
|full-text-url=https://sci-hub.do/10.1002/cbf.3267
}}
==CDKN2B==
* {{medline-title
|title=Molecular Genetics and Functional Analysis Implicate [i][[CDKN2B]]AS1-[[CDKN2B]][/i] Involvement in POAG Pathogenesis.
|date=21.08.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32825664
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564117
}}
* {{medline-title
|title=Interference of the long noncoding RNA [[CDKN2B]]-AS1 upregulates miR-181a-5p/TGFβI axis to restrain the metastasis and promote apoptosis and senescence of cervical cancer cells.
|date=04.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30884187
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6488111
}}
}}
==CDR1==
==CDR1==
Строка 1043: Строка 1235:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5005889
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5005889
}}
}}
==CES2==
==CHEK1==


* {{medline-title
* {{medline-title
|title=Age-Dependent Absolute Abundance of Hepatic Carboxylesterases ([[CES1]] and [[CES2]]) by LC-MS/MS Proteomics: Application to PBPK Modeling of Oseltamivir In Vivo Pharmacokinetics in Infants.
|title=Candesartan Neuroprotection in Rat Primary Neurons Negatively Correlates with Aging and Senescence: a Transcriptomic Analysis.
|date=02.2017
|date=03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27895113
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31811565
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5267516
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062590
}}
}}
* {{medline-title
* {{medline-title
|title=Age-Dependent Human Hepatic Carboxylesterase 1 ([[CES1]]) and Carboxylesterase 2 ([[CES2]]) Postnatal Ontogeny.
|title=The Ubiquitin-like with PHD and Ring Finger Domains 1 ([[UHRF1]])/DNA Methyltransferase 1 ([[DNMT1]]) Axis Is a Primary Regulator of Cell Senescence.
|date=07.2016
|date=03.03.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26825642
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28100769
|full-text-url=https://sci-hub.do/10.1124/dmd.115.068957
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5339756
}}
}}
==CFD==
==CHEK2==


* {{medline-title
* {{medline-title
|title=Senescent dermal fibroblasts negatively influence fibroblast extracellular matrix-related gene expression partly via secretion of complement factor D.
|title=Elevated circulating HtrA4 in preeclampsia may alter endothelial expression of senescence genes.
|date=07.2019
|date=15.01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31026383
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32056555
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850482
|full-text-url=https://sci-hub.do/10.1016/j.placenta.2019.12.012
}}
}}
* {{medline-title
* {{medline-title
|title=New horizons in the compression of functional decline.
|title=A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass.
|date=01.11.2018
|date=20.06.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30165372
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31219803
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6201827
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628988
}}
==CFP==
 
* {{medline-title
|title=Proteopathic tau seeding predicts tauopathy in vivo.
|date=14.10.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25261551
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4205609
}}
* {{medline-title
|title=Characterization of the IL-15 niche in primary and secondary lymphoid organs in vivo.
|date=04.02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24449915
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3918838
}}
}}
==CHI3L1==
==CHI3L1==


* {{medline-title
* {{medline-title
|title=Postsynaptic damage and microglial activation in AD patients could be linked CXCR4/CXCL12 expression levels.
|title=Postsynaptic damage and microglial activation in AD patients could be linked [[CXCR4]]/[[CXCL12]] expression levels.
|date=15.12.2020
|date=15.12.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32949560
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32949560
Строка 1141: Строка 1319:
|full-text-url=https://sci-hub.do/10.4268/cjcmm20162105
|full-text-url=https://sci-hub.do/10.4268/cjcmm20162105
}}
}}
==CLC==
==CIDEA==


* {{medline-title
* {{medline-title
|title=Impact of Intervention to Improve Nursing Home Resident-Staff Interactions and Engagement.
|title=Growth hormone receptor expression in human gluteal versus abdominal subcutaneous adipose tissue: Association with body shape.
|date=13.07.2018
|date=05.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29718195
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27015877
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6455946
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5084456
}}
}}
* {{medline-title
* {{medline-title
|title=Effect of cholesterol loaded cyclodextrin on semen cryopreservation of Aksaray Malakli shepherd dogs of different ages.
|title=The developmental transition of ovine adipose tissue through early life.
|date=06.2018
|date=01.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29699920
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23351024
|full-text-url=https://sci-hub.do/10.1016/j.anireprosci.2018.04.068
|full-text-url=https://sci-hub.do/10.1111/apha.12053
}}
}}
==CLEC3B==
==CIP2A==


* {{medline-title
* {{medline-title
|title=[[CLEC3B]] p.S106G Mutant in a Caucasian Population of Successful Neurological Aging.
|title=Long-lived mice with reduced growth hormone signaling have a constitutive upregulation of hepatic chaperone-mediated autophagy.
|date=12.02.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32013718
|full-text-url=https://sci-hub.do/10.1080/15548627.2020.1725378
}}
* {{medline-title
|title=Inhibition of [[CIP2A]] attenuates tumor progression by inducing cell cycle arrest and promoting cellular senescence in hepatocellular carcinoma.
|date=08.01.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29175329
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2017.11.124
}}
==CLC==
 
* {{medline-title
|title=Impact of Intervention to Improve Nursing Home Resident-Staff Interactions and Engagement.
|date=13.07.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29718195
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6455946
}}
* {{medline-title
|title=Effect of cholesterol loaded cyclodextrin on semen cryopreservation of Aksaray Malakli shepherd dogs of different ages.
|date=06.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29699920
|full-text-url=https://sci-hub.do/10.1016/j.anireprosci.2018.04.068
}}
==CLEC3B==
 
* {{medline-title
|title=[[CLEC3B]] p.S106G Mutant in a Caucasian Population of Successful Neurological Aging.
|date=16.09.2020
|date=16.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31570938
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31570938
Строка 1182: Строка 1388:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29851234
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29851234
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052477
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052477
}}
==CLSTN2==
* {{medline-title
|title=Investigating the influence of KIBRA and [[CLSTN2]] genetic polymorphisms on cross-sectional and longitudinal measures of memory performance and hippocampal volume in older individuals.
|date=11.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26415670
|full-text-url=https://sci-hub.do/10.1016/j.neuropsychologia.2015.09.031
}}
* {{medline-title
|title=Genetic effects on old-age cognitive functioning: a population-based study.
|date=03.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23276211
|full-text-url=https://sci-hub.do/10.1037/a0030829
}}
}}
==CNP==
==CNP==
Строка 1224: Строка 1444:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25139204
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25139204
|full-text-url=https://sci-hub.do/10.1159/000363320
|full-text-url=https://sci-hub.do/10.1159/000363320
}}
==COL2A1==
* {{medline-title
|title=Inhibition of Wnt/β-catenin signaling ameliorates osteoarthritis in a murine model of experimental osteoarthritis.
|date=08.02.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29415892
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821202
}}
* {{medline-title
|title=Endoplasmic reticulum stress participates in the progress of senescence and apoptosis of osteoarthritis chondrocytes.
|date=16.09.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28728848
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2017.07.094
}}
}}
==COPE==
==COPE==
Строка 1280: Строка 1486:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26506233
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26506233
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791237
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791237
}}
==CPNE1==
* {{medline-title
|title=Prevalent intron retention fine-tunes gene expression and contributes to cellular senescence.
|date=04.12.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33274830
|full-text-url=https://sci-hub.do/10.1111/acel.13276
}}
* {{medline-title
|title=Genome-wide Associations Reveal Human-Mouse Genetic Convergence and Modifiers of Myogenesis, [[CPNE1]] and [[STC2]].
|date=05.12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31761296
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904802
}}
}}
==CPQ==
==CPQ==
Строка 1322: Строка 1542:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25588812
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25588812
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295106
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295106
}}
==CR2==
* {{medline-title
|title=Age-related but not longevity-related genes are found by weighted gene co-expression network analysis in the peripheral blood cells of humans.
|date=19.01.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30541985
|full-text-url=https://sci-hub.do/10.1266/ggs.17-00052
}}
* {{medline-title
|title=Senescent dermal fibroblasts enhance stem cell migration through [[CCL2]]/C[[CR2]] axis.
|date=07.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25808810
|full-text-url=https://sci-hub.do/10.1111/exd.12701
}}
}}
==CRABP2==
==CRABP2==
Строка 1378: Строка 1584:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25150575
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25150575
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4253058
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4253058
}}
==CREM==
* {{medline-title
|title=Ageing in men with normal spermatogenesis alters spermatogonial dynamics and nuclear morphology in Sertoli cells.
|date=11.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31250567
|full-text-url=https://sci-hub.do/10.1111/andr.12665
}}
* {{medline-title
|title=Constitutive Expression of Inducible Cyclic Adenosine Monophosphate Early Repressor (ICER) in Cycling Quiescent Hematopoietic Cells: Implications for Aging Hematopoietic Stem Cells.
|date=02.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27822872
|full-text-url=https://sci-hub.do/10.1007/s12015-016-9701-5
}}
}}
==CRYAB==
==CRYAB==
Строка 1421: Строка 1613:
|full-text-url=https://sci-hub.do/10.1016/j.stem.2018.12.002
|full-text-url=https://sci-hub.do/10.1016/j.stem.2018.12.002
}}
}}
==CTSL==
==CYB5A==


* {{medline-title
* {{medline-title
|title=Cathepsin L deficiency results in reactive oxygen species (ROS) accumulation and vascular cells activation.
|title=11-Oxygenated C19 Steroids Do Not Decline With Age in Women.
|date=12.2017
|date=01.07.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29041825
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30753518
|full-text-url=https://sci-hub.do/10.1080/10715762.2017.1393665
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525564
}}
* {{medline-title
|title=Involvement of lysosomal dysfunction in autophagosome accumulation and early pathologies in adipose tissue of obese mice.
|date=03.04.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28121218
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388215
}}
==CYB5A==
 
* {{medline-title
|title=11-Oxygenated C19 Steroids Do Not Decline With Age in Women.
|date=01.07.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30753518
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525564
}}
}}
* {{medline-title
* {{medline-title
Строка 1462: Строка 1640:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28566337
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28566337
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568806
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568806
}}
==CYP24A1==
* {{medline-title
|title=Oleanolic Acid Exerts Osteoprotective Effects and Modulates Vitamin D Metabolism.
|date=22.02.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29470404
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5852823
}}
* {{medline-title
|title=Environmental and genetic determinants of vitamin D status among older adults in London, UK.
|date=11.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26776442
|full-text-url=https://sci-hub.do/10.1016/j.jsbmb.2016.01.005
}}
}}
==CYP27A1==
==CYP27A1==
Строка 1561: Строка 1725:
|full-text-url=https://sci-hub.do/10.1007/s12035-018-1312-5
|full-text-url=https://sci-hub.do/10.1007/s12035-018-1312-5
}}
}}
==DAXX==
==DAZL==


* {{medline-title
* {{medline-title
|title=[[ATRX]]-[[DAXX]] Complex Expression Levels and Telomere Length in Normal Young and Elder Autopsy Human Brains.
|title=[[DAZL]] Regulates Germ Cell Survival through a Network of PolyA-Proximal mRNA Interactions.
|date=09.2019
|date=30.10.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31361513
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30380414
|full-text-url=https://sci-hub.do/10.1089/dna.2019.4752
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6878787
}}
}}
* {{medline-title
* {{medline-title
|title=Age-dependent differential expression of death-associated protein 6 (Daxx) in various peripheral tissues and different brain regions of C57BL/6 male mice.
|title=No evidence for neo-oogenesis may link to ovarian senescence in adult monkey.
|date=11.2016
|date=11.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27465500
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23897655
|full-text-url=https://sci-hub.do/10.1007/s10522-016-9651-y
|full-text-url=https://sci-hub.do/10.1002/stem.1480
}}
}}
==DBT==
==DBT==
Строка 1588: Строка 1752:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28197085
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28197085
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5281631
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5281631
}}
==DCD==
* {{medline-title
|title=Improved metabolism and redox state with a novel preservation solution: implications for donor lungs after cardiac death ([[DCD]]).
|date=04-06.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28597777
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467941
}}
* {{medline-title
|title=Functional connectivity of neural motor networks is disrupted in children with developmental coordination disorder and attention-deficit/hyperactivity disorder.
|date=2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24818082
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3984446
}}
}}
==DCTN3==
==DCTN3==
Строка 1701: Строка 1851:
|full-text-url=https://sci-hub.do/10.1016/j.jsams.2017.08.022
|full-text-url=https://sci-hub.do/10.1016/j.jsams.2017.08.022
}}
}}
==DGCR8==
==DHFR==


* {{medline-title
* {{medline-title
|title=HPV shapes tumor transcriptome by globally modifying the pool of RNA binding protein-binding motif.
|title=Excessive folic acid intake and relation to adverse health outcome.
|date=29.04.2019
|date=07.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31039132
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27131640
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520004
|full-text-url=https://sci-hub.do/10.1016/j.biochi.2016.04.010
}}
}}
* {{medline-title
* {{medline-title
|title=miRNAs 182 and 183 are necessary to maintain adult cone photoreceptor outer segments and visual function.
|title=Increase in tetrahydrobiopterin concentration with aging in the cerebral cortex of the senescence-accelerated mouse prone 10 strain caused by abnormal regulation of tetrahydrobiopterin biosynthesis.
|date=06.08.2014
|date=10.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25002228
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23933678
|full-text-url=https://sci-hub.do/10.1016/j.neuron.2014.06.020
|full-text-url=https://sci-hub.do/10.1007/s10522-013-9452-5
}}
}}
==DHX9==
==DHX9==
Строка 1770: Строка 1920:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24478790
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24478790
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894567
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894567
}}
==DLC1==
* {{medline-title
|title=Resveratrol promotes oxidative stress to drive [[DLC1]] mediated cellular senescence in cancer cells.
|date=15.09.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29964052
|full-text-url=https://sci-hub.do/10.1016/j.yexcr.2018.06.031
}}
* {{medline-title
|title=Depletion of the transcriptional coactivators megakaryoblastic leukaemia 1 and 2 abolishes hepatocellular carcinoma xenograft growth by inducing oncogene-induced senescence.
|date=09.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23853104
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799492
}}
}}
==DLX5==
==DLX5==


* {{medline-title
* {{medline-title
|title=Inhibition of microRNA-27b-3p relieves osteoarthritis pain via regulation of KDM4B-dependent [[DLX5]].
|title=Inhibition of microRNA-27b-3p relieves osteoarthritis pain via regulation of [[KDM4B]]-dependent [[DLX5]].
|date=09.2020
|date=09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32856377
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32856377
Строка 1784: Строка 1948:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28854399
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28854399
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.07.011
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.07.011
}}
==DNA2==
* {{medline-title
|title=53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination.
|date=02.01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31653568
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993210
}}
* {{medline-title
|title=Replication Stress at Telomeric and Mitochondrial DNA: Common Origins and Consequences on Ageing.
|date=08.10.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31597307
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6801922
}}
}}
==DNAJC5==
==DNAJC5==
Строка 1841: Строка 2019:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4661415
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4661415
}}
}}
==DRD4==
==DRD1==


* {{medline-title
* {{medline-title
|title=ADHD risk genes involved in dopamine signaling and metabolism are associated with reduced estimated life expectancy at young adult follow-up in hyperactive and control children.
|title=Impact of dopamine-related genetic variants on physical activity in old age - a cohort study.
|date=04.2019
|date=24.05.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30637915
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32448293
|full-text-url=https://sci-hub.do/10.1002/ajmg.b.32711
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245799
}}
}}
* {{medline-title
* {{medline-title
|title=Age-dependent role of pre- and perinatal factors in interaction with genes on ADHD symptoms across adolescence.
|title=Maternal deprivation enhances behavioral vulnerability to stress associated with miR-504 expression in nucleus accumbens of rats.
|date=07.2017
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28259004
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23922862
|full-text-url=https://sci-hub.do/10.1016/j.jpsychires.2017.02.014
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724734
}}
}}
==DROSHA==
==DROSHA==
Строка 1883: Строка 2061:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4191645
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4191645
}}
}}
==DSE==
==DSG2==


* {{medline-title
* {{medline-title
|title=Impact of Intensive Lifestyle Intervention on Disability-Free Life Expectancy: The Look AHEAD Study.
|title=Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population.
|date=05.2018
|date=11.04.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29545462
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28199971
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5911793
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421828
}}
}}
* {{medline-title
* {{medline-title
|title=Changes in regional body composition over 8 years in a randomized lifestyle trial: The look AHEAD study.
|title=Age-dependent clinical and genetic characteristics in Japanese patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia.
|date=09.2016
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27465756
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23514727
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5134917
|full-text-url=https://sci-hub.do/10.1253/circj.cj-12-1446
}}
}}
==DUSP16==
==DSPP==


* {{medline-title
* {{medline-title
|title=Nicotinamide Mononucleotide, an NAD  Precursor, Rescues Age-Associated Susceptibility to AKI in a Sirtuin 1-Dependent Manner.
|title=Effects of [i]p[/i]-Cresol on Senescence, Survival, Inflammation, and Odontoblast Differentiation in Canine Dental Pulp Stem Cells.
|date=08.2017
|date=21.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28246130
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32967298
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5533221
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555360
}}
}}
* {{medline-title
* {{medline-title
|title=[[DUSP16]] ablation arrests the cell cycle and induces cellular senescence.
|title=[[GREM1]] inhibits osteogenic differentiation, senescence and BMP transcription of adipose-derived stem cells.
|date=12.2015
|date=09.03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26381291
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32151168
|full-text-url=https://sci-hub.do/10.1111/febs.13518
|full-text-url=https://sci-hub.do/10.1080/03008207.2020.1736054
}}
==DUSP2==
 
* {{medline-title
|title=The association between poverty and gene expression within peripheral blood mononuclear cells in a diverse Baltimore City cohort.
|date=2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32970748
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514036
}}
* {{medline-title
|title=Aging Increases Hippocampal [[DUSP2]] by a Membrane Cholesterol Loss-Mediated RTK/p38MAPK Activation Mechanism.
|date=2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31293510
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603139
}}
}}
==E2F2==
==E2F2==
Строка 1953: Строка 2145:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827
}}
}}
==EDARADD==
==EDNRB==
 
* {{medline-title
|title=Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease.
|date=03.03.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26863197
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846424
}}
* {{medline-title
|title=Variation in genes in the endothelin pathway and endothelium-dependent and endothelium-independent vasodilation in an elderly population.
|date=05.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23336501
|full-text-url=https://sci-hub.do/10.1111/apha.12068
}}
==EED==


* {{medline-title
* {{medline-title
|title=Age prediction in living: Forensic epigenetic age estimation based on blood samples.
|title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development.
|date=11.2020
|date=24.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32721866
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540
|full-text-url=https://sci-hub.do/10.1016/j.legalmed.2020.101763
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659
}}
}}
* {{medline-title
* {{medline-title
|title=DNA methylation levels in candidate genes associated with chronological age in mammals are not conserved in a long-lived seabird.
|title=Economic evaluations of eHealth technologies: A systematic review.
|date=2017
|date=2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29216256
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29897921
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5720723
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5999277
}}
}}
==EIF2B1==
==EIF2B1==
Строка 1995: Строка 2201:
|full-text-url=https://sci-hub.do/10.1002/ajmg.a.36961
|full-text-url=https://sci-hub.do/10.1002/ajmg.a.36961
}}
}}
==EMB==
==EIF5A==


* {{medline-title
* {{medline-title
|title=X[[RCC1]] and XPD genetic polymorphisms and susceptibility to age-related cataract: a meta-analysis.
|title=The curious case of polyamines: spermidine drives reversal of B cell senescence.
|date=2015
|date=03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25873778
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31795807
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384174
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999633
}}
}}
* {{medline-title
* {{medline-title
|title=Diabetes self-management programmes in older adults: a systematic review and meta-analysis.
|title=Polyamines reverse immune senescence via the translational control of autophagy.
|date=11.2015
|date=01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25865179
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31679458
|full-text-url=https://sci-hub.do/10.1111/dme.12780
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6984486
}}
==EMD==
 
* {{medline-title
|title=Transcriptome analysis of human cumulus cells reveals hypoxia as the main determinant of follicular senescence.
|date=08.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27268410
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4986421
}}
* {{medline-title
|title=Electromechanical delay of the knee extensor muscles: comparison among young, middle-age and older individuals.
|date=07.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24797398
|full-text-url=https://sci-hub.do/10.1111/cpf.12157
}}
}}
==EN1==
==EN1==
Строка 2050: Строка 2242:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28441426
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28441426
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5404753
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5404753
}}
==ENO1==
* {{medline-title
|title=Reduced expression of enolase-1 correlates with high intracellular glucose levels and increased senescence in cisplatin-resistant ovarian cancer cells.
|date=2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32355541
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191177
}}
* {{medline-title
|title=Targeting the Warburg effect in cancer cells through [[ENO1]] knockdown rescues oxidative phosphorylation and induces growth arrest.
|date=02.02.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26734996
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4868708
}}
}}
==ENTPD7==
==ENTPD7==
Строка 2078: Строка 2256:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27737960
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27737960
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5088567
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5088567
}}
==EOMES==
* {{medline-title
|title=Association of Epigenetic Age and p16INK4a With Markers of T-Cell Composition in a Healthy Cohort.
|date=13.11.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32361724
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662168
}}
* {{medline-title
|title=Eomesodermin Expression in CD4  T Cells Restricts Peripheral Foxp3 Induction.
|date=15.11.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26453746
|full-text-url=https://sci-hub.do/10.4049/jimmunol.1501159
}}
}}
==EPHA2==
==EPHA2==
Строка 2121: Строка 2313:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5787419
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5787419
}}
}}
==ERCC2==
==ERCC6==


* {{medline-title
* {{medline-title
|title=The genetic component of human longevity: New insights from the analysis of pathway-based SNP-SNP interactions.
|title=Two Cockayne Syndrome patients with a novel splice site mutation - clinical and metabolic analyses.
|date=06.2018
|date=10.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29577582
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29944916
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946073
|full-text-url=https://sci-hub.do/10.1016/j.mad.2018.06.001
}}
}}
* {{medline-title
* {{medline-title
|title=X[[RCC1]] and XPD genetic polymorphisms and susceptibility to age-related cataract: a meta-analysis.
|title=The associations between single nucleotide polymorphisms of DNA repair genes, DNA damage, and age-related cataract: Jiangsu Eye Study.
|date=2015
|date=01.02.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25873778
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23322570
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384174
|full-text-url=https://sci-hub.do/10.1167/iovs.12-10940
}}
}}
==EWSR1==
==ETS2==


* {{medline-title
* {{medline-title
|title=[[EWSR1]], a multifunctional protein, regulates cellular function and aging via genetic and epigenetic pathways.
|title=[[FOXO3]] targets are reprogrammed as Huntington's disease neural cells and striatal neurons face senescence with p16  increase.
|date=11.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33156570
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7681055
}}
* {{medline-title
|title=The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators.
|date=29.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32997995
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527782
}}
==EWSR1==
 
* {{medline-title
|title=[[EWSR1]], a multifunctional protein, regulates cellular function and aging via genetic and epigenetic pathways.
|date=01.07.2019
|date=01.07.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30481590
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30481590
Строка 2149: Строка 2355:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5198945
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5198945
}}
}}
==EXO1==
==EZR==
 
* {{medline-title
|title=Proteomic analysis of six- and twelve-month hippocampus and cerebellum in a murine Down syndrome model.
|date=03.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29245059
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5801041
}}
* {{medline-title
|title=Genetic variations and polymorphisms in the ezrin gene are associated with age-related cataract.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23882136
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718490
}}
==F8==
 
* {{medline-title
|title=The Pattern of Mu Rhythm Modulation During Emotional Destination Memory: Comparison Between Mild Cognitive Impairment Patients and Healthy Controls.
|date=2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31524160
|full-text-url=https://sci-hub.do/10.3233/JAD-190311
}}
* {{medline-title
|title=Correlations between the signal complexity of cerebral and cardiac electrical activity: a multiscale entropy analysis.
|date=2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24498375
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912068
}}
==F9==
 
* {{medline-title
|title=Hypermaintenance and hypofunction of aged spermatogonia: insight from age-related increase of Plzf expression.
|date=30.06.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25986924
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4599245
}}
* {{medline-title
|title=eHealth literacy and Web 2.0 health information seeking behaviors among baby boomers and older adults.
|date=17.03.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25783036
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381816
}}
==FABP1==
 
* {{medline-title
|title=The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats.
|date=09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32729662
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511879
}}
* {{medline-title
|title=Expression of digestive enzyme and intestinal transporter genes during chronic heat stress in the thermally manipulated broiler chicken.
|date=01.09.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31065718
|full-text-url=https://sci-hub.do/10.3382/ps/pez249
}}
==FADS1==


* {{medline-title
* {{medline-title
|title=Polymorphisms of the DNA repair gene [[EXO1]] modulate cognitive aging in old adults in a Taiwanese population.
|title=Aging and [[FADS1]] polymorphisms decrease the biosynthetic capacity of long-chain PUFAs: A human trial using [U- C]linoleic acid.
|date=06.2019
|date=09.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30928815
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31492428
|full-text-url=https://sci-hub.do/10.1016/j.dnarep.2019.03.013
|full-text-url=https://sci-hub.do/10.1016/j.plefa.2019.07.003
}}
}}
* {{medline-title
* {{medline-title
|title=Exonuclease 1 and its versatile roles in DNA repair.
|title=Genetic determinants of macular pigments in women of the Carotenoids in Age-Related Eye Disease Study.
|date=11-12.2016
|date=28.03.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27494243
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23404124
|full-text-url=https://sci-hub.do/10.1080/10409238.2016.1215407
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3626525
}}
}}
==FAHD1==
==FAHD1==
Строка 2180: Строка 2442:


* {{medline-title
* {{medline-title
|title=TFG-maintaining stability of overlooked [[FANCD2]] confers early DNA-damage response.
|title=[[TFG]]-maintaining stability of overlooked [[FANCD2]] confers early DNA-damage response.
|date=24.10.2020
|date=24.10.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33099537
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33099537
Строка 2191: Строка 2453:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5578191
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5578191
}}
}}
==FASN==
==FAR2==


* {{medline-title
* {{medline-title
|title=Expression of lipogenic markers is decreased in subcutaneous adipose tissue and adipocytes of older women and is negatively linked to [[GDF15]] expression.
|title=[[FAR2]] is associated with kidney disease in mice and humans.
|date=08.2019
|date=01.08.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30912009
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29652635
|full-text-url=https://sci-hub.do/10.1007/s13105-019-00676-6
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6139637
}}
}}
* {{medline-title
* {{medline-title
|title=Fatty acid synthase is a metabolic marker of cell proliferation rather than malignancy in ovarian cancer and its precursor cells.
|title=Genetic analysis of mesangial matrix expansion in aging mice and identification of Far2 as a candidate gene.
|date=01.05.2015
|date=12.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25302649
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24009241
|full-text-url=https://sci-hub.do/10.1002/ijc.29261
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3839541
}}
}}
==FBN1==
==FBN1==
Строка 2246: Строка 2508:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26056366
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26056366
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581027
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581027
}}
==FEN1==
* {{medline-title
|title=The Werner Syndrome Helicase Coordinates Sequential Strand Displacement and [[FEN1]]-Mediated Flap Cleavage during Polymerase δ Elongation.
|date=01.02.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27849570
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5247617
}}
* {{medline-title
|title=[[RECQL5]] has unique strand annealing properties relative to the other human RecQ helicase proteins.
|date=01.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26717024
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5903426
}}
}}
==FGF6==
==FGF6==
Строка 2275: Строка 2523:
|full-text-url=https://sci-hub.do/10.1002/dvdy.24495
|full-text-url=https://sci-hub.do/10.1002/dvdy.24495
}}
}}
==FGFR2==
==FGG==


* {{medline-title
* {{medline-title
|title=Oncogenic mutations in histologically normal endometrium: the new normal?
|title=Candidate SNP associations of optimism and resilience in older adults: exploratory study of 935 community-dwelling adults.
|date=10.2019
|date=10.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31187483
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24791650
|full-text-url=https://sci-hub.do/10.1002/path.5314
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163500
}}
}}
* {{medline-title
* {{medline-title
|title=Inducible Activation of [[FGFR2]] in Adult Mice Promotes Bone Formation After Bone Marrow Ablation.
|title=A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium.
|date=11.2017
|date=07.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28650109
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23650146
|full-text-url=https://sci-hub.do/10.1002/jbmr.3204
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990406
}}
}}
==FGFR4==
 
* {{medline-title
|title=[[FGFR4]] Inhibitor BLU9931 Attenuates Pancreatic Cancer Cell Proliferation and Invasion While Inducing Senescence: Evidence for Senolytic Therapy Potential in Pancreatic Cancer.
|date=14.10.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33066597
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602396
}}
* {{medline-title
|title=The Klotho proteins in health and disease.
|date=01.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30455427
|full-text-url=https://sci-hub.do/10.1038/s41581-018-0078-3
}}
==FHL1==
==FHL1==


Строка 2330: Строка 2564:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29300832
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29300832
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6175033
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6175033
}}
==FN1==
* {{medline-title
|title=Systems biology and network pharmacology of frailty reveal novel epigenetic targets and mechanisms.
|date=22.07.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31332237
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6646318
}}
* {{medline-title
|title=Effects of Fibronectin 1 on Cell Proliferation, Senescence and Apoptosis of Human Glioma Cells Through the PI3K/AKT Signaling Pathway.
|date=2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30048971
|full-text-url=https://sci-hub.do/10.1159/000492096
}}
}}
==FOXA2==
==FOXA2==
Строка 2387: Строка 2607:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019307
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019307
}}
}}
==FOXL2==
==FOXP2==


* {{medline-title
* {{medline-title
|title=Human amniotic mesenchymal stem cells improve ovarian function in natural aging through secreting hepatocyte growth factor and epidermal growth factor.
|title=Identification of the neurotransmitter profile of AmFoxP expressing neurons in the honeybee brain using double-label in situ hybridization.
|date=09.03.2018
|date=06.11.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29523193
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30400853
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5845161
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219247
}}
}}
* {{medline-title
* {{medline-title
|title=Different therapeutic effects of cells derived from human amniotic membrane on premature ovarian aging depend on distinct cellular biological characteristics.
|title=Human skin keratinocytes can be reprogrammed to express neuronal genes and proteins after a single treatment with decitabine.
|date=27.07.2017
|date=06.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28750654
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23741634
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5530953
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3666219
}}
}}
==FSHB==
==FSTL1==


* {{medline-title
* {{medline-title
|title=Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome.
|title=Blocking the [[FSTL1]]-[[DIP2A]] Axis Improves Anti-tumor Immunity.
|date=29.09.2015
|date=14.08.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26416764
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30110636
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598835
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2018.07.043
}}
* {{medline-title
|title='Carriers of variant luteinizing hormone (V-LH) among 1593 Baltic men have significantly higher serum LH'.
|date=05.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25820123
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4832392
}}
==FSTL3==
 
* {{medline-title
|title=Activin type II receptor signaling in cardiac aging and heart failure.
|date=06.03.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30842316
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7124007
}}
}}
* {{medline-title
* {{medline-title
|title=Physiology of Activins/Follistatins: Associations With Metabolic and Anthropometric Variables and Response to Exercise.
|title=Vitamin D-responsive [[SGPP2]] variants associated with lung cell expression and lung function.
|date=01.10.2018
|date=25.11.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30085147
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24274704
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6179167
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907038
}}
}}
==FXN==
==FXN==
Строка 2442: Строка 2648:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24860428
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24860428
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4026758
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4026758
}}
==GABARAP==
* {{medline-title
|title=Age-dependent loss of adipose Rubicon promotes metabolic disorders via excess autophagy.
|date=18.08.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32811819
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7434891
}}
* {{medline-title
|title=Age-dependent autophagy induction after injury promotes axon regeneration by limiting NOTCH.
|date=11.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31920157
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595581
}}
==GAK==
* {{medline-title
|title=Auxilin Underlies Progressive Locomotor Deficits and Dopaminergic Neuron Loss in a Drosophila Model of Parkinson's Disease.
|date=31.01.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28147270
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2017.01.005
}}
* {{medline-title
|title=Disruption of clathrin-mediated trafficking causes centrosome overduplication and senescence.
|date=01.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24138026
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868896
}}
}}
==GAS6==
==GAS6==
Строка 2484: Строка 2718:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26000717
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26000717
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5377050
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5377050
}}
==GCKR==
* {{medline-title
|title=The [[ADAMTS9]] gene is associated with cognitive aging in the elderly in a Taiwanese population.
|date=2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28225792
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5321460
}}
* {{medline-title
|title=Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits.
|date=10.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27329260
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013013
}}
}}
==GDF3==
==GDF3==
Строка 2513: Строка 2733:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5718149
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5718149
}}
}}
==GDF9==
==GIT1==


* {{medline-title
* {{medline-title
|title=Observation of the influences of diosgenin on aging ovarian reserve and function in a mouse model.
|title=[[GIT2]]-A keystone in ageing and age-related disease.
|date=18.10.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29047400
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5648463
}}
* {{medline-title
|title=Effects of aging on gene expression and mitochondrial DNA in the equine oocyte and follicle cells.
|date=07.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25786490
|full-text-url=https://sci-hub.do/10.1071/RD14472
}}
==GIT1==
 
* {{medline-title
|title=[[GIT2]]-A keystone in ageing and age-related disease.
|date=05.2018
|date=05.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29452267
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29452267
Строка 2540: Строка 2746:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25009255
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25009255
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608362
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608362
}}
==GLB1==
* {{medline-title
|title=Docosahexaenoic acid prevented tumor necrosis factor alpha-induced endothelial dysfunction and senescence.
|date=01.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26802937
|full-text-url=https://sci-hub.do/10.1016/j.plefa.2015.10.006
}}
* {{medline-title
|title=Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis.
|date=02.11.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26391655
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824610
}}
}}
==GLI1==
==GLI1==
Строка 2583: Строка 2775:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050201
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050201
}}
}}
==GNB3==
==GNAQ==


* {{medline-title
* {{medline-title
|title=Ablation of [[EYS]] in zebrafish causes mislocalisation of outer segment proteins, F-actin disruption and cone-rod dystrophy.
|title=Active notch protects MAPK activated melanoma cell lines from MEK inhibitor cobimetinib.
|date=05.04.2017
|date=14.11.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28378834
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33202284
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5380955
|full-text-url=https://sci-hub.do/10.1016/j.biopha.2020.111006
}}
* {{medline-title
|title=[[GNAQ]] expression initiated in multipotent neural crest cells drives aggressive melanoma of the central nervous system.
|date=01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31680437
|full-text-url=https://sci-hub.do/10.1111/pcmr.12843
}}
==GNAS==
 
* {{medline-title
|title=Intratumoral heterogeneity of the tumor cells based on in situ cortisol excess in cortisol-producing adenomas; ∼An association among morphometry, genotype and cellular senescence∼.
|date=11.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33002589
|full-text-url=https://sci-hub.do/10.1016/j.jsbmb.2020.105764
}}
}}
* {{medline-title
* {{medline-title
|title=[[GNB3]], eNOS, and mitochondrial DNA polymorphisms correlate to natural longevity in a Xinjiang Uygur population.
|title=Clinical characterization and molecular classification of 12 Korean patients with pseudohypoparathyroidism and pseudopseudohypoparathyroidism.
|date=2013
|date=10.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24376503
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24127307
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869651
|full-text-url=https://sci-hub.do/10.1055/s-0033-1349867
}}
}}
==GNG3==
==GNG3==
Строка 2652: Строка 2858:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26941383
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26941383
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5909633
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5909633
}}
==GPR158==
* {{medline-title
|title=Identifying blood-specific age-related DNA methylation markers on the Illumina MethylationEPIC® BeadChip.
|date=10.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31546163
|full-text-url=https://sci-hub.do/10.1016/j.forsciint.2019.109944
}}
* {{medline-title
|title=RbAp48 Protein Is a Critical Component of [[GPR158]]/OCN Signaling and Ameliorates Age-Related Memory Loss.
|date=23.10.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30355501
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725275
}}
}}
==GPR17==
==GPR17==
Строка 2694: Строка 2914:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31237151
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31237151
|full-text-url=https://sci-hub.do/10.1080/21691401.2019.1626405
|full-text-url=https://sci-hub.do/10.1080/21691401.2019.1626405
}}
==GPR55==
* {{medline-title
|title=Age-dependent plasticity in endocannabinoid modulation of pain processing through postnatal development.
|date=11.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28767505
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5642337
}}
* {{medline-title
|title=[[GPR55]] deletion in mice leads to age-related ventricular dysfunction and impaired adrenoceptor-mediated inotropic responses.
|date=2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25275556
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4183508
}}
}}
==GRB10==
==GRB10==
Строка 2807: Строка 3013:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6128438
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6128438
}}
}}
==GSTA1==
==GSTA2==


* {{medline-title
* {{medline-title
|title=Age-associated changes in GSH S-transferase gene/proteins in livers of rats.
|title=The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats.
|date=12.2018
|date=09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30444463
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32729662
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748684
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511879
}}
}}
* {{medline-title
* {{medline-title
|title=Effects of insulin-like growth factor 1 on glutathione S-transferases and thioredoxin in growth hormone receptor knockout mice.
|title=The age-related change of glutathione antioxidant system in mice liver.
|date=2014
|date=07.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25001375
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23343351
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150915
|full-text-url=https://sci-hub.do/10.3109/15376516.2013.769655
}}
}}
==GSTA4==
==GSTA4==
Строка 2834: Строка 3040:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30444463
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30444463
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748684
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748684
}}
==GSTK1==
* {{medline-title
|title=Age-associated changes in GSH S-transferase gene/proteins in livers of rats.
|date=12.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30444463
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748684
}}
* {{medline-title
|title=Growth hormone alters the glutathione S-transferase and mitochondrial thioredoxin systems in long-living Ames dwarf mice.
|date=10.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24285747
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172038
}}
}}
==GSTM3==
==GSTM3==
Строка 2863: Строка 3083:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150915
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150915
}}
}}
==HAMP==
==HAPLN1==
 
* {{medline-title
|title=A potent tilapia secreted granulin peptide enhances the survival of transgenic zebrafish infected by Vibrio vulnificus via modulation of innate immunity.
|date=04.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29408220
|full-text-url=https://sci-hub.do/10.1016/j.fsi.2018.01.044
}}
* {{medline-title
|title=Longitudinal Relationships between Reproductive Hormones and Cognitive Decline in Older Men: The Concord Health and Ageing in Men Project.
|date=06.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25867811
|full-text-url=https://sci-hub.do/10.1210/jc.2015-1016
}}
==HAPLN1==


* {{medline-title
* {{medline-title
Строка 2904: Строка 3110:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29063508
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29063508
|full-text-url=https://sci-hub.do/10.1007/s13577-017-0185-7
|full-text-url=https://sci-hub.do/10.1007/s13577-017-0185-7
}}
==HAS3==
* {{medline-title
|title=Microneedle fractional radiofrequency increases epidermal hyaluronan and reverses age-related epidermal dysfunction.
|date=02.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26415023
|full-text-url=https://sci-hub.do/10.1002/lsm.22420
}}
* {{medline-title
|title=Age-associated changes in gene expression of goat oocytes.
|date=01.09.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23746875
|full-text-url=https://sci-hub.do/10.1016/j.theriogenology.2013.04.019
}}
==HAT1==
* {{medline-title
|title=Activation of p53 by spermine mediates induction of autophagy in HT1080 cells.
|date=02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24189165
|full-text-url=https://sci-hub.do/10.1016/j.ijbiomac.2013.10.041
}}
* {{medline-title
|title=Age-associated changes in gene expression of goat oocytes.
|date=01.09.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23746875
|full-text-url=https://sci-hub.do/10.1016/j.theriogenology.2013.04.019
}}
}}
==HBD==
==HBD==
Строка 2932: Строка 3166:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25887273
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25887273
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4367845
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4367845
}}
==HCRT==
* {{medline-title
|title=Age-related central regulation of orexin and [[NPY]] in the short-lived African killifish Nothobranchius furzeri.
|date=15.05.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30666646
|full-text-url=https://sci-hub.do/10.1002/cne.24638
}}
* {{medline-title
|title=Sleep and cardiovascular phenotype in middle-aged hypocretin-deficient narcoleptic mice.
|date=02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24033681
|full-text-url=https://sci-hub.do/10.1111/jsr.12081
}}
==HELLS==
* {{medline-title
|title=The Ubiquitin-like with PHD and Ring Finger Domains 1 ([[UHRF1]])/DNA Methyltransferase 1 ([[DNMT1]]) Axis Is a Primary Regulator of Cell Senescence.
|date=03.03.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28100769
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5339756
}}
* {{medline-title
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335
}}
}}
==HGD==
==HGD==
Строка 2974: Строка 3236:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26415502
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26415502
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4587922
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4587922
}}
==HLA-A==
* {{medline-title
|title=Reduced expression of the lncRNA NRON is a potential hallmark of the CMV-amplified CD8  T cell accumulations commonly seen in older humans.
|date=01.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30415066
|full-text-url=https://sci-hub.do/10.1016/j.exger.2018.11.004
}}
* {{medline-title
|title=Cytomegalovirus-Specific T Cells Restricted by [[HLA-C]]w*0702 Increase Markedly with Age and Dominate the CD8  T-Cell Repertoire in Older People.
|date=2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29312307
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5732243
}}
}}
==HLA-B==
==HLA-B==
Строка 3058: Строка 3334:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25187565
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25187565
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169931
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169931
}}
==HNF4A==
* {{medline-title
|title=The Impact of Biomarker Screening and Cascade Genetic Testing on the Cost-Effectiveness of MODY Genetic Testing.
|date=12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31558549
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868460
}}
* {{medline-title
|title=Hepatocyte Nuclear Factor-4α P2 Promoter Variants Are Associated With the Risk of Metabolic Syndrome and Testosterone Deficiency in Aging Taiwanese Men.
|date=11.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30415809
|full-text-url=https://sci-hub.do/10.1016/j.jsxm.2018.09.012
}}
}}
==HNRNPA1==
==HNRNPA1==
Строка 3142: Строка 3432:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28166986
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28166986
|full-text-url=https://sci-hub.do/10.1016/j.theriogenology.2016.11.007
|full-text-url=https://sci-hub.do/10.1016/j.theriogenology.2016.11.007
}}
==HSF4==
* {{medline-title
|title=Effect of [[HSF4]]b on age related cataract may through its novel downstream target Hif1α.
|date=24.10.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25088997
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2014.07.118
}}
* {{medline-title
|title=Copy number variations of DNA repair genes and the age-related cataract: Jiangsu Eye Study.
|date=01.02.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23329665
|full-text-url=https://sci-hub.do/10.1167/iovs.12-10948
}}
}}
==HSP90AA1==
==HSP90AA1==
Строка 3185: Строка 3489:
|full-text-url=https://sci-hub.do/10.1016/j.jprot.2015.04.023
|full-text-url=https://sci-hub.do/10.1016/j.jprot.2015.04.023
}}
}}
==HTRA1==
==HUS1==


* {{medline-title
* {{medline-title
|title=Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of [[CSF1R]] and [[NOTCH3]].
|title=Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes.
|date=06.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29544907
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5937905
}}
* {{medline-title
|title=Fibrotic-like changes in degenerate human intervertebral discs revealed by quantitative proteomic analysis.
|date=03.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26463451
|full-text-url=https://sci-hub.do/10.1016/j.joca.2015.09.020
}}
==HUS1==
 
* {{medline-title
|title=Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes.
|date=19.10.2015
|date=19.10.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26477511
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26477511
Строка 3227: Строка 3517:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4655906
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4655906
}}
}}
==ICAM1==
==ID2==


* {{medline-title
* {{medline-title
|title=An Inhibitor of Activated Blood Coagulation Factor X Shows Anti-Endothelial Senescence and Anti-Atherosclerotic Effects.
|title=Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength.
|date=2019
|date=10.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31266015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31254144
|full-text-url=https://sci-hub.do/10.1159/000499975
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733812
}}
}}
* {{medline-title
* {{medline-title
|title=Effect of age on expression of spermatogonial markers in bovine testis and isolated cells.
|title=Ablation of the [[ID2]] gene results in altered circadian feeding behavior, and sex-specific enhancement of insulin sensitivity and elevated glucose uptake in skeletal muscle and brown adipose tissue.
|date=07.2016
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27180120
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24023810
|full-text-url=https://sci-hub.do/10.1016/j.anireprosci.2016.04.004
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759459
}}
}}
==ID3==
==ID3==
Строка 3254: Строка 3544:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29196338
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29196338
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795392
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795392
}}
==IDO1==
* {{medline-title
|title=Different expression of Defensin-B gene in the endometrium of mares of different age during the breeding season.
|date=21.12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31864349
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925900
}}
* {{medline-title
|title=Advanced age negatively impacts survival in an experimental brain tumor model.
|date=06.09.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27493076
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5006183
}}
}}
==IFIT1==
==IFIT1==
Строка 3282: Строка 3586:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28325852
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28325852
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827
}}
==IFITM1==
* {{medline-title
|title=White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy.
|date=02.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31691183
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035207
}}
* {{medline-title
|title=Age-Associated Changes in the Respiratory Epithelial Response to Influenza Infection.
|date=10.11.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29878083
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6230210
}}
==IFITM3==
* {{medline-title
|title=Blood DNA methylation sites predict death risk in a longitudinal study of 12, 300 individuals.
|date=22.07.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32697766
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7425458
}}
* {{medline-title
|title=Small Extracellular Vesicles Are Key Regulators of Non-cell Autonomous Intercellular Communication in Senescence via the Interferon Protein [[IFITM3]].
|date=25.06.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31242426
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613042
}}
}}
==IFNAR1==
==IFNAR1==
Строка 3296: Строка 3628:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26046815
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26046815
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4622626
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4622626
}}
==IGFBP1==
* {{medline-title
|title=Role of [[IGFBP1]] in the senescence of vascular endothelial cells and severity of aging‑related coronary atherosclerosis.
|date=11.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31545483
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777673
}}
* {{medline-title
|title=Dehydroepiandrosterone enhances decidualization in women of advanced reproductive age.
|date=04.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29397924
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5908781
}}
}}
==IGFBP4==
==IGFBP4==
Строка 3324: Строка 3642:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28595186
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28595186
|full-text-url=https://sci-hub.do/10.1159/000477873
|full-text-url=https://sci-hub.do/10.1159/000477873
}}
==IGHD==
* {{medline-title
|title=Growth Hormone Deficiency: Health and Longevity.
|date=01.04.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30576428
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416709
}}
* {{medline-title
|title=Lifetime, untreated isolated GH deficiency due to a GH-releasing hormone receptor mutation has beneficial consequences on bone status in older individuals, and does not influence their abdominal aorta calcification.
|date=09.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24272598
|full-text-url=https://sci-hub.do/10.1007/s12020-013-0118-5
}}
==IGSF1==
* {{medline-title
|title=Age-related gene and miRNA expression changes in airways of healthy individuals.
|date=06.03.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30842487
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403379
}}
* {{medline-title
|title=The [[IGSF1]] deficiency syndrome: characteristics of male and female patients.
|date=12.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24108313
|full-text-url=https://sci-hub.do/10.1210/jc.2013-2743
}}
}}
==IHH==
==IHH==
Строка 3339: Строка 3685:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5325333
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5325333
}}
}}
==IL13==
==IL18==


* {{medline-title
* {{medline-title
|title=Age-specific changes in the molecular phenotype of patients with moderate-to-severe atopic dermatitis.
|title=p53 and p53-related mediators PAI-1 and IGFBP-3 are downregulated in peripheral blood mononuclear cells of HIV-patients exposed to non-nucleoside reverse transcriptase inhibitors.
|date=07.2019
|date=06.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30685456
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32272174
|full-text-url=https://sci-hub.do/10.1016/j.jaci.2019.01.015
|full-text-url=https://sci-hub.do/10.1016/j.antiviral.2020.104784
}}
}}
* {{medline-title
* {{medline-title
|title=[[IL10]]-driven [[STAT3]] signalling in senescent macrophages promotes pathological eye angiogenesis.
|title=Aging and the Inflammasomes.
|date=11.08.2015
|date=2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26260587
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30536177
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4918330
|full-text-url=https://sci-hub.do/10.1007/978-3-319-89390-7_13
}}
}}
==IL1R2==
==IL9==


* {{medline-title
* {{medline-title
|title=Lower levels of interleukin-1β gene expression are associated with impaired Langerhans' cell migration in aged human skin.
|title=A novel multi-marker discovery approach identifies new serum biomarkers for Parkinson's disease in older people: an EXosomes in PArkiNson Disease (EXPAND) ancillary study.
|date=01.2018
|date=10.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28777886
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32458283
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5721243
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7525911
}}
}}
* {{medline-title
* {{medline-title
|title=A genome-wide scan reveals important roles of DNA methylation in human longevity by regulating age-related disease genes.
|title=Transcription factor networks in aged naïve [[CD4]] T cells bias lineage differentiation.
|date=2015
|date=08.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25793257
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31264370
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4368809
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612640
}}
==IL6R==
 
* {{medline-title
|title=Chronic Resveratrol Treatment Inhibits MRC5 Fibroblast SASP-Related Protumoral Effects on Melanoma Cells.
|date=01.09.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28329136
|full-text-url=https://sci-hub.do/10.1093/gerona/glw336
}}
* {{medline-title
|title=No Association between Variation in Longevity Candidate Genes and Aging-related Phenotypes in Oldest-old Danes.
|date=06.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26946122
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841709
}}
==IL7==
 
* {{medline-title
|title=[[SCAMP4]] enhances the senescent cell secretome.
|date=01.07.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29967290
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6075036
}}
* {{medline-title
|title=Thymic Atrophy: Experimental Studies and Therapeutic Interventions.
|date=01.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28960415
|full-text-url=https://sci-hub.do/10.1111/sji.12618
}}
}}
==ILDR1==
==ILDR1==
Строка 3437: Строка 3755:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567
}}
}}
==IQGAP1==
==INSR==


* {{medline-title
* {{medline-title
|title=[[IQGAP1]]-dysfunction leads to induction of senescence in human vascular smooth muscle cells.
|title=Proteomics of Long-Lived Mammals.
|date=09.2020
|date=03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32592713
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31737995
|full-text-url=https://sci-hub.do/10.1016/j.mad.2020.111295
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7117992
}}
}}
* {{medline-title
* {{medline-title
|title=Hyaluronan-binding protein 1 (HABP1) overexpression triggers induction of senescence in fibroblasts cells.
|title=The Ubiquitin Ligase CHIP Integrates Proteostasis and Aging by Regulation of Insulin Receptor Turnover.
|date=06.2020
|date=20.04.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32068317
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28431247
|full-text-url=https://sci-hub.do/10.1002/cbin.11326
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5406386
}}
}}
==IRF4==
==IRF4==
Строка 3478: Строка 3796:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27670271
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27670271
|full-text-url=https://sci-hub.do/10.1093/jee/tow204
|full-text-url=https://sci-hub.do/10.1093/jee/tow204
}}
==ISG15==
* {{medline-title
|title=White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy.
|date=02.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31691183
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035207
}}
* {{medline-title
|title=Transcriptome analysis reveals immune-related gene expression changes with age in giant panda ([i]Ailuropoda melanoleuca[/i]) blood.
|date=14.01.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30641486
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339791
}}
==ISL1==
* {{medline-title
|title=Aging-relevant human basal forebrain cholinergic neurons as a cell model for Alzheimer's disease.
|date=21.10.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33087140
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579825
}}
* {{medline-title
|title=Deterioration of the Medial Olivocochlear Efferent System Accelerates Age-Related Hearing Loss in Pax2-Isl1 Transgenic Mice.
|date=05.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25990412
|full-text-url=https://sci-hub.do/10.1007/s12035-015-9215-1
}}
}}
==ITGAM==
==ITGAM==
Строка 3493: Строка 3839:
|full-text-url=https://sci-hub.do/10.1038/nn.4597
|full-text-url=https://sci-hub.do/10.1038/nn.4597
}}
}}
==ITGB3==
==ITGB2==


* {{medline-title
* {{medline-title
|title=Integrin Beta 3 Regulates Cellular Senescence by Activating the TGF-β Pathway.
|title=Comparative Analysis of Gene Expression Patterns for Oral Epithelium-Related Functions with Aging.
|date=07.03.2017
|date=2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28273461
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31732940
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5357738
|full-text-url=https://sci-hub.do/10.1007/978-3-030-28524-1_11
}}
}}
* {{medline-title
* {{medline-title
|title=[Clinical and genetic characteristics of long-livers in Moscow region].
|title=A Microglial Signature Directing Human Aging and Neurodegeneration-Related Gene Networks.
|date=2013
|date=2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24640693
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30733664
 
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6353788
}}
}}
==ITK==
==ITK==
Строка 3549: Строка 3895:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809609
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809609
}}
}}
==KDM3A==
==KDM4B==


* {{medline-title
* {{medline-title
|title=[[KDM3A]] and KDM4C Regulate Mesenchymal Stromal Cell Senescence and Bone Aging via Condensin-mediated Heterochromatin Reorganization.
|title=Inhibition of microRNA-27b-3p relieves osteoarthritis pain via regulation of [[KDM4B]]-dependent [[DLX5]].
|date=09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32856377
|full-text-url=https://sci-hub.do/10.1002/biof.1670
}}
* {{medline-title
|title=Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases.
|date=03.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27114850
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809609
}}
==KDM4C==
 
* {{medline-title
|title=[[KDM3A]] and [[KDM4C]] Regulate Mesenchymal Stromal Cell Senescence and Bone Aging via Condensin-mediated Heterochromatin Reorganization.
|date=22.11.2019
|date=22.11.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31704649
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31704649
Строка 3577: Строка 3937:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809609
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809609
}}
}}
==KIF1B==
==KIFC3==


* {{medline-title
* {{medline-title
|title=[[BDNF]] trafficking and signaling impairment during early neurodegeneration is prevented by moderate physical activity.
|title=Defective recruitment of motor proteins to autophagic compartments contributes to autophagic failure in aging.
|date=12.2016
|date=08.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30135925
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29845728
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6084862
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052466
}}
}}
* {{medline-title
* {{medline-title
Строка 3591: Строка 3951:
|full-text-url=https://sci-hub.do/10.1159/000443664
|full-text-url=https://sci-hub.do/10.1159/000443664
}}
}}
==KIFC3==
==KIR2DS5==


* {{medline-title
* {{medline-title
|title=Defective recruitment of motor proteins to autophagic compartments contributes to autophagic failure in aging.
|title=[The relationship between the polymorphism of immunity genes and both aging and age-related diseases].
|date=08.2018
|date=07.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29845728
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23853351
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052466
|full-text-url=https://sci-hub.do/10.3724/sp.j.1005.2013.00813
}}
}}
* {{medline-title
* {{medline-title
|title=Alteration of Motor Protein Expression Involved in Bidirectional Transport in Peripheral Blood Mononuclear Cells of Patients with Amyotrophic Lateral Sclerosis.
|title=16(th) IHIW: immunogenetics of aging.
|date=2016
|date=02.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26954557
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23302099
|full-text-url=https://sci-hub.do/10.1159/000443664
|full-text-url=https://sci-hub.do/10.1111/iji.12027
}}
}}
==KISS1R==
==KISS1R==
Строка 3632: Строка 3992:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26340948
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26340948
|full-text-url=https://sci-hub.do/10.1007/s10571-015-0258-7
|full-text-url=https://sci-hub.do/10.1007/s10571-015-0258-7
}}
==KY==
* {{medline-title
|title=Combination of acupuncture and Chinese herbal formula for elderly adults with mild cognitive impairment: protocol for a randomized controlled trial.
|date=11.02.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30744676
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6371495
}}
* {{medline-title
|title=Cerebrolysin Accelerates Metamorphosis and Attenuates Aging-Accelerating Effect of High Temperature in Drosophila Melanogaster.
|date=01.10.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25798213
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4367862
}}
==LAG3==
* {{medline-title
|title=T Cell Transcriptional Profiling and Immunophenotyping Uncover [[LAG3]] as a Potential Significant Target of Immune Modulation in Multiple Myeloma.
|date=01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31445183
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952061
}}
* {{medline-title
|title=Functional exhaustion of [[CD4]]  T cells induced by co-stimulatory signals from myeloid leukaemia cells.
|date=12.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27565576
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095494
}}
}}
==LAMA5==
==LAMA5==
Строка 3688: Строка 4020:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25087724
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25087724
|full-text-url=https://sci-hub.do/10.1016/j.exger.2014.07.020
|full-text-url=https://sci-hub.do/10.1016/j.exger.2014.07.020
}}
==LAMP2==
* {{medline-title
|title=A pH probe inhibits senescence in mesenchymal stem cells.
|date=07.12.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30526663
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6286523
}}
* {{medline-title
|title=Skeletal muscle from aged American Quarter Horses shows impairments in mitochondrial biogenesis and expression of autophagy markers.
|date=02.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29203401
|full-text-url=https://sci-hub.do/10.1016/j.exger.2017.11.022
}}
}}
==LAT==
==LAT==
Строка 3773: Строка 4091:
|full-text-url=https://sci-hub.do/10.5603/EP.2014.0002
|full-text-url=https://sci-hub.do/10.5603/EP.2014.0002
}}
}}
==LIFR==
==LGI1==


* {{medline-title
* {{medline-title
|title=Efficacy of leukemia inhibitory factor as a therapeutic for permanent large vessel stroke differs among aged male and female rats.
|title=Antibody-associated CNS syndromes without signs of inflammation in the elderly.
|date=15.03.2019
|date=03.10.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30445025
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28878050
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814304
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5631166
}}
}}
* {{medline-title
* {{medline-title
|title=Characterization of Nestin-positive stem Leydig cells as a potential source for the treatment of testicular Leydig cell dysfunction.
|title=Expression of NgR1-antagonizing proteins decreases with aging and cognitive decline in rat hippocampus.
|date=12.2014
|date=05.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25418539
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23525710
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260348
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651369
}}
}}
==LOXL1==
==LGR5==


* {{medline-title
* {{medline-title
|title=A blackberry-dill extract combination synergistically increases skin elasticity.
|title=Thyroid hormone activates Wnt/β-catenin signaling involved in adult epithelial development during intestinal remodeling in Xenopus laevis.
|date=10.2020
|date=08.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32583541
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27068920
|full-text-url=https://sci-hub.do/10.1111/ics.12644
|full-text-url=https://sci-hub.do/10.1007/s00441-016-2396-8
}}
}}
* {{medline-title
* {{medline-title
|title=Methylation of [[LOXL1]] Promoter by [[DNMT3A]] in Aged Human Skin Fibroblasts.
|title=Cancer stem cells in Helicobacter pylori infection and aging: Implications for gastric carcinogenesis.
|date=15.08.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25133037
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4133534
}}
==LHCGR==
 
* {{medline-title
|title=Comparative Study of the Steroidogenic Effects of Human Chorionic Gonadotropin and Thieno[2,3-D]pyrimidine-Based Allosteric Agonist of Luteinizing Hormone Receptor in Young Adult, Aging and Diabetic Male Rats.
|date=11.10.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33050653
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7590010
}}
* {{medline-title
|title=Association between the luteinizing hormone/chorionic gonadotropin receptor ([[LHCGR]]) rs4073366 polymorphism and ovarian hyperstimulation syndrome during controlled ovarian hyperstimulation.
|date=25.07.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23883350
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3727944
}}
==LIFR==
 
* {{medline-title
|title=Efficacy of leukemia inhibitory factor as a therapeutic for permanent large vessel stroke differs among aged male and female rats.
|date=15.03.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30445025
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814304
}}
* {{medline-title
|title=Characterization of Nestin-positive stem Leydig cells as a potential source for the treatment of testicular Leydig cell dysfunction.
|date=12.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25418539
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260348
}}
==LIPA==
 
* {{medline-title
|title=Modeling the cardiometabolic benefits of sleep in older women: exploring the 24-hour day.
|date=13.01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31553045
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955642
}}
* {{medline-title
|title=Influence of Habitual Physical Behavior - Sleeping, Sedentarism, Physical Activity - On Bone Health in Community-Dwelling Older People.
|date=2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31037056
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6476278
}}
==LOXL1==
 
* {{medline-title
|title=A blackberry-dill extract combination synergistically increases skin elasticity.
|date=10.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32583541
|full-text-url=https://sci-hub.do/10.1111/ics.12644
}}
* {{medline-title
|title=Methylation of [[LOXL1]] Promoter by [[DNMT3A]] in Aged Human Skin Fibroblasts.
|date=04.2017
|date=04.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27396912
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27396912
Строка 3814: Строка 4188:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30171091
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30171091
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6181315
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6181315
}}
==LRP5==
* {{medline-title
|title=[[LRP5]] in age-related changes in vascular and alveolar morphogenesis in the lung.
|date=05.01.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30612120
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339783
}}
* {{medline-title
|title=Wnt1 is an Lrp5-independent bone-anabolic Wnt ligand.
|date=07.11.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30404864
|full-text-url=https://sci-hub.do/10.1126/scitranslmed.aau7137
}}
}}
==LRPPRC==
==LRPPRC==
Строка 3842: Строка 4202:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25428350
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25428350
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267620
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267620
}}
==LRRN3==
* {{medline-title
|title=Accelerated aging in HIV/AIDS: novel biomarkers of senescent human CD8  T cells.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23717651
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3661524
}}
* {{medline-title
|title=Transcriptomics of cortical gray matter thickness decline during normal aging.
|date=15.11.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23707588
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759649
}}
}}
==LTB==
==LTB==
Строка 3912: Строка 4286:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30025493
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30025493
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152528
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152528
}}
==MAP1S==
* {{medline-title
|title=Defects in [[MAP1S]]-mediated autophagy turnover of fibronectin cause renal fibrosis.
|date=05.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27236336
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931848
}}
* {{medline-title
|title=Defects in [[MAP1S]]-mediated autophagy cause reduction in mouse lifespans especially when fibronectin is overexpressed.
|date=04.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26750654
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783353
}}
==MARCO==
* {{medline-title
|title=Age-dependent effect between [[MARCO]] and [[TLR4]] on PMMA particle phagocytosis by macrophages.
|date=08.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31225947
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6653467
}}
* {{medline-title
|title=Aging-Impaired Filamentous Actin Polymerization Signaling Reduces Alveolar Macrophage Phagocytosis of Bacteria.
|date=01.11.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28947541
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5679440
}}
}}
==MAVS==
==MAVS==
Строка 3955: Строка 4301:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5541666
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5541666
}}
}}
==MC1R==
==MBNL1==


* {{medline-title
* {{medline-title
|title=In vitro behavior and UV response of melanocytes derived from carriers of [[[[CDKN2A]]]] mutations and [[MC1R]] variants.
|title=Compound loss of muscleblind-like function in myotonic dystrophy.
|date=03.2019
|date=12.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30117292
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24293317
|full-text-url=https://sci-hub.do/10.1111/pcmr.12732
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3914532
}}
* {{medline-title
|title=Dysfunction of protein homeostasis in myotonic dystrophies.
|date=09.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23536431
|full-text-url=https://sci-hub.do/10.14670/HH-28.1089
}}
==MC4R==
 
* {{medline-title
|title=Melanocortin-4 receptor rs17782313 polymorphisms are associated with serum triglycerides in older Chinese women.
|date=2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26965781
|full-text-url=https://sci-hub.do/10.6133/apjcn.2016.25.1.18
}}
}}
* {{medline-title
* {{medline-title
|title=The [[MC1R]] Gene and Youthful Looks.
|title=Polymorphic variants of neurotransmitter receptor genes may affect sexual function in aging males: data from the HALS study.
|date=09.05.2016
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27133870
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23485949
|full-text-url=https://sci-hub.do/10.1016/j.cub.2016.03.008
|full-text-url=https://sci-hub.do/10.1159/000350324
}}
}}
==MCM3==
==MCM3==
Строка 3983: Строка 4343:
|full-text-url=https://sci-hub.do/10.1007/s10571-016-0404-x
|full-text-url=https://sci-hub.do/10.1007/s10571-016-0404-x
}}
}}
==MCM8==
==MCM4==
 
* {{medline-title
|title=Hepatoprotective effects of hydroxysafflor yellow A in D-galactose-treated aging mice.
|date=15.08.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32454116
|full-text-url=https://sci-hub.do/10.1016/j.ejphar.2020.173214
}}
* {{medline-title
|title=Changes in [[MCM2]]-7 proteins at senescence.
|date=27.07.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31092751
|full-text-url=https://sci-hub.do/10.1266/ggs.18-00062
}}
==MCM8==


* {{medline-title
* {{medline-title
Строка 4024: Строка 4398:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30977188
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30977188
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850038
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850038
}}
==MDM4==
* {{medline-title
|title=In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases.
|date=12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31520345
|full-text-url=https://sci-hub.do/10.1007/s10522-019-09834-1
}}
* {{medline-title
|title=Germline genetics of the p53 pathway affect longevity in a gender specific manner.
|date=2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24654968
|full-text-url=https://sci-hub.do/10.2174/1874609807666140321150751
}}
}}
==ME1==
==ME1==
Строка 4066: Строка 4454:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25184702
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25184702
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4153547
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4153547
}}
==MEFV==
* {{medline-title
|title=The grandfather's fever.
|date=02.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31401792
|full-text-url=https://sci-hub.do/10.1007/s10067-019-04741-9
}}
* {{medline-title
|title=E148Q [[MEFV]] mutation carriage and longevity in individuals of Ashkenazi origin.
|date=07.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23592051
|full-text-url=https://sci-hub.do/10.1007/s12026-013-8414-y
}}
}}
==MEIS1==
==MEIS1==
Строка 4080: Строка 4482:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28841467
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28841467
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.07.015
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.07.015
}}
==MELK==
* {{medline-title
|title=[[MELK]]-T1, a small-molecule inhibitor of protein kinase [[MELK]], decreases DNA-damage tolerance in proliferating cancer cells.
|date=02.10.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26431963
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643329
}}
* {{medline-title
|title=Maternal embryonic leucine zipper kinase ([[MELK]]) reduces replication stress in glioblastoma cells.
|date=16.08.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23836907
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3745365
}}
}}
==MEOX2==
==MEOX2==
Строка 4094: Строка 4510:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27143421
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27143421
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4878023
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4878023
}}
==MFN1==
* {{medline-title
|title=Increased Degradation Rates in the Components of the Mitochondrial Oxidative Phosphorylation Chain in the Cerebellum of Old Mice.
|date=2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29503614
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5820363
}}
* {{medline-title
|title=Mitofusin 1 and optic atrophy 1 shift metabolism to mitochondrial respiration during aging.
|date=10.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28758339
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5595680
}}
}}
==MGAT1==
==MGAT1==
Строка 4122: Строка 4524:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24904604
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24904604
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4033622
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4033622
}}
==MIB1==
* {{medline-title
|title=[[MIB1]]-mediated degradation of [[WRN]] promotes cellular senescence in response to camptothecin treatment.
|date=09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32652764
|full-text-url=https://sci-hub.do/10.1096/fj.202000268RRR
}}
* {{medline-title
|title=Immunohistochemical detection of senescence markers in human sarcomas.
|date=02.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31899047
|full-text-url=https://sci-hub.do/10.1016/j.prp.2019.152800
}}
}}
==MICA==
==MICA==
Строка 4136: Строка 4552:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26878797
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26878797
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4789586
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4789586
}}
==MKI67==
* {{medline-title
|title=Evidence for reduced neurogenesis in the aging human hippocampus despite stable stem cell markers.
|date=10.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28766905
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5595679
}}
* {{medline-title
|title=[Epigenetic aspects of peptidergic regulation of vascular endothelial cell proliferation during aging].
|date=2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25051766
}}
}}
==MLH1==
==MLH1==
Строка 4165: Строка 4567:
|full-text-url=https://sci-hub.do/10.1002/jcb.28417
|full-text-url=https://sci-hub.do/10.1002/jcb.28417
}}
}}
==MNT==
==MMP10==


* {{medline-title
* {{medline-title
|title=Application of a handheld Pressure Application Measurement device for the characterisation of mechanical nociceptive thresholds in intact pig tails.
|title=Astrocyte senescence may drive alterations in GFAPα, [[[[CDKN2A]]]] p14 , and TAU3 transcript expression and contribute to cognitive decline.
|date=15.10.2016
|date=10.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27422675
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31654269
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038977
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6885035
}}
}}
* {{medline-title
* {{medline-title
|title=Performance of the Maze Navigation Test in a sample of older New Zealanders.
|title=Bone biology-related gingival transcriptome in ageing and periodontitis in non-human primates.
|date=10.2015
|date=05.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26229055
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26859687
|full-text-url=https://sci-hub.do/10.1177/1039856215597541
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844783
}}
}}
==MR1==
==MMP14==


* {{medline-title
* {{medline-title
|title=Human blood MAIT cell subsets defined using [[MR1]] tetramers.
|title=Overexpression of microRNA-1470 promotes proliferation and migration, and inhibits senescence of esophageal squamous carcinoma cells.
|date=05.2018
|date=12.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29437263
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29344220
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446826
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5755030
}}
}}
* {{medline-title
* {{medline-title
|title=Aging-associated formaldehyde-induced norepinephrine deficiency contributes to age-related memory decline.
|title=Enhanced tissue regeneration potential of juvenile articular cartilage.
|date=08.2015
|date=11.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25866202
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24043472
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531079
|full-text-url=https://sci-hub.do/10.1177/0363546513502945
}}
}}
==MRPS5==
==MMP8==


* {{medline-title
* {{medline-title
|title=Mutant [[MRPS5]] affects mitoribosomal accuracy and confers stress-related behavioral alterations.
|title=[Investigation of signal molecules in saliva: prospects of application for diagnostics of myocardial infarction and the aging rate of different age people.]
|date=11.2018
|date=2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30237157
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31512422
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6216279
 
}}
}}
* {{medline-title
* {{medline-title
|title=Molecular evolutionary patterns of NAD /Sirtuin aging signaling pathway across taxa.
|title=Bone biology-related gingival transcriptome in ageing and periodontitis in non-human primates.
|date=2017
|date=05.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28767699
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26859687
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5540417
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844783
}}
}}
==MS4A6E==
==MS4A6E==
Строка 4221: Строка 4623:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5005889
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5005889
}}
}}
==MSH2==
==MSH6==


* {{medline-title
* {{medline-title
Строка 4230: Строка 4632:
}}
}}
* {{medline-title
* {{medline-title
|title=Age-dependent changes in DNA repair in radiation-exposed mice.
|title=DNA mismatch repair system: repercussions in cellular homeostasis and relationship with aging.
|date=12.2014
|date=2012
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25409128
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23213348
|full-text-url=https://sci-hub.do/10.1667/RR13697.1
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3504481
}}
}}
==MT2A==
==MT2A==
Строка 4276: Строка 4678:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24640693
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24640693


}}
==MUC1==
* {{medline-title
|title=Sensitivity of neoplastic cells to senescence unveiled under standard cell culture conditions.
|date=05.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25964555
}}
* {{medline-title
|title=Serum [[KL]]-6 concentrations are associated with molecular sizes and efflux behavior of [[KL]]-6/[[MUC1]] in healthy subjects.
|date=23.09.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23778023
|full-text-url=https://sci-hub.do/10.1016/j.cca.2013.06.002
}}
}}
==MUC2==
==MUC2==
Строка 4290: Строка 4706:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26944966
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26944966
|full-text-url=https://sci-hub.do/10.3382/ps/pew019
|full-text-url=https://sci-hub.do/10.3382/ps/pew019
}}
==MX1==
* {{medline-title
|title=White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy.
|date=02.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31691183
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035207
}}
* {{medline-title
|title=Age-Associated Changes in the Respiratory Epithelial Response to Influenza Infection.
|date=10.11.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29878083
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6230210
}}
==MYBL2==
* {{medline-title
|title=A multidimensional systems biology analysis of cellular senescence in aging and disease.
|date=07.04.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264951
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333371
}}
* {{medline-title
|title=Molecular mechanism of G  arrest and cellular senescence induced by LEE011, a novel [[CDK4]]/CDK6 inhibitor, in leukemia cells.
|date=2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28286417
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5340031
}}
}}
==MYBPC3==
==MYBPC3==
Строка 4304: Строка 4748:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24951664
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24951664
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066205
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066205
}}
==MYOCD==
* {{medline-title
|title=Aging-associated changes in microRNA expression profile of internal anal sphincter smooth muscle: Role of microRNA-133a.
|date=01.11.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27634012
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5130548
}}
* {{medline-title
|title=Transplantation of mesenchymal cells rejuvenated by the overexpression of telomerase and myocardin promotes revascularization and tissue repair in a murine model of hindlimb ischemia.
|date=13.09.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23780385
|full-text-url=https://sci-hub.do/10.1161/CIRCRESAHA.113.301690
}}
}}
==MYOD1==
==MYOD1==
Строка 4347: Строка 4805:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076205
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076205
}}
}}
==NBN==
==NCAM1==


* {{medline-title
* {{medline-title
|title=G protein-coupled receptor kinase 4-induced cellular senescence and its senescence-associated gene expression profiling.
|title=Resistance Training Enhances Skeletal Muscle Innervation Without Modifying the Number of Satellite Cells or their Myofiber Association in Obese Older Adults.
|date=15.11.2017
|date=10.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28912086
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26447161
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5944352
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5018557
}}
}}
* {{medline-title
* {{medline-title
|title=Circulating T Cells of Patients with Nijmegen Breakage Syndrome Show Signs of Senescence.
|title=Human skin keratinocytes can be reprogrammed to express neuronal genes and proteins after a single treatment with decitabine.
|date=02.2017
|date=06.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28000062
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23741634
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5325864
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3666219
}}
==NBR1==
 
* {{medline-title
|title=Nrf2 mediates the expression of [[BAG3]] and autophagy cargo adaptor proteins and tau clearance in an age-dependent manner.
|date=03.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29304346
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5801049
}}
* {{medline-title
|title=Overweight in elderly people induces impaired autophagy in skeletal muscle.
|date=09.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28549989
|full-text-url=https://sci-hub.do/10.1016/j.freeradbiomed.2017.05.018
}}
}}
==NDNF==
==NDNF==
Строка 4403: Строка 4847:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050201
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050201
}}
}}
==NDUFV2==
==NECTIN2==


* {{medline-title
* {{medline-title
|title=Low expression of aging-related [[[[NRXN3]]]] is associated with Alzheimer disease: A systematic review and meta-analysis.
|title=Genetics of Human Longevity From Incomplete Data: New Findings From the Long Life Family Study.
|date=07.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29995770
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076205
}}
* {{medline-title
|title=The Effect of Aging on Mitochondrial Complex I and the Extent of Oxidative Stress in the Rat Brain Cortex.
|date=08.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27161369
|full-text-url=https://sci-hub.do/10.1007/s11064-016-1931-z
}}
==NECTIN2==
 
* {{medline-title
|title=Genetics of Human Longevity From Incomplete Data: New Findings From the Long Life Family Study.
|date=08.10.2018
|date=08.10.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30299504
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30299504
Строка 4430: Строка 4860:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29797398
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29797398
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052488
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052488
}}
==NEDD4==
* {{medline-title
|title=Mechanism of [[PRL]]2 phosphatase-mediated [[PTEN]] degradation and tumorigenesis.
|date=25.08.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32788364
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456095
}}
* {{medline-title
|title=Estrogen receptor β, a regulator of androgen receptor signaling in the mouse ventral prostate.
|date=09.05.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28439009
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441728
}}
}}
==NEFM==
==NEFM==
Строка 4458: Строка 4902:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26245904
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26245904
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598976
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598976
}}
==NEIL2==
* {{medline-title
|title=Mitochondrial base excision repair positively correlates with longevity in the liver and heart of mammals.
|date=04.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31970600
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7205949
}}
* {{medline-title
|title=Neil2-null Mice Accumulate Oxidized DNA Bases in the Transcriptionally Active Sequences of the Genome and Are Susceptible to Innate Inflammation.
|date=09.10.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26245904
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598976
}}
==NEK2==
* {{medline-title
|title=A multidimensional systems biology analysis of cellular senescence in aging and disease.
|date=07.04.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264951
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333371
}}
* {{medline-title
|title=Upregulation of [[FOXM1]] leads to diminished drug sensitivity in myeloma.
|date=21.11.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30463534
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6249818
}}
}}
==NEO1==
==NEO1==
Строка 4500: Строка 4972:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27545503
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27545503
|full-text-url=https://sci-hub.do/10.1016/j.stem.2016.07.003
|full-text-url=https://sci-hub.do/10.1016/j.stem.2016.07.003
}}
==NGFR==
* {{medline-title
|title=Evidence for changing nerve growth factor signalling mechanisms during development, maturation and ageing in the rat molar pulp.
|date=02.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30099752
|full-text-url=https://sci-hub.do/10.1111/iej.12997
}}
* {{medline-title
|title=A nutrigenomics approach for the study of anti-aging interventions: olive oil phenols and the modulation of gene and microRNA expression profiles in mouse brain.
|date=03.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26695409
|full-text-url=https://sci-hub.do/10.1007/s00394-015-1134-4
}}
}}
==NHLRC1==
==NHLRC1==
Строка 4574: Строка 5032:


* {{medline-title
* {{medline-title
|title=Characterizing Heterogeneity Bias in Cohort-Based Models.
|title=Deceased donor kidney allocation: an economic evaluation of contemporary longevity matching practices.
|date=08.2015
|date=09.10.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25851486
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33036621
|full-text-url=https://sci-hub.do/10.1007/s40273-015-0273-z
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547436
}}
}}
* {{medline-title
* {{medline-title
Строка 4682: Строка 5140:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29055871
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29055871
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5650655
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5650655
}}
==NPAS2==
* {{medline-title
|title=Is the aging human ovary still ticking?: Expression of clock-genes in luteinized granulosa cells of young and older women.
|date=21.11.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30463623
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6247686
}}
* {{medline-title
|title=Effects of circadian clock genes and environmental factors on cognitive aging in old adults in a Taiwanese population.
|date=11.04.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28412756
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421829
}}
}}
==NPTX2==
==NPTX2==
Строка 4725: Строка 5169:
|full-text-url=https://sci-hub.do/10.1016/j.peptides.2015.07.011
|full-text-url=https://sci-hub.do/10.1016/j.peptides.2015.07.011
}}
}}
==NR3C1==
==NPY1R==


* {{medline-title
* {{medline-title
|title=Glucocorticoid receptor ([[NR3C1]]) gene polymorphisms are associated with age and blood parameters in Polish Caucasian nonagenarians and centenarians.
|title=[[NPY]]/neuropeptide Y enhances autophagy in the hypothalamus: a mechanism to delay aging?
|date=02.2019
|date=2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30553025
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26086271
|full-text-url=https://sci-hub.do/10.1016/j.exger.2018.12.006
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4590601
}}
}}
* {{medline-title
* {{medline-title
|title=Inter-Regional Variations in Gene Expression and Age-Related Cortical Thinning in the Adolescent Brain.
|title=Vulnerability imposed by diet and brain trauma for anxiety-like phenotype: implications for post-traumatic stress disorders.
|date=01.04.2018
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28334178
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23483949
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6093352
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3590222
}}
}}
==NR4A2==
==NPY5R==
 
* {{medline-title
|title=Effects of age on feeding response: Focus on the rostral C1 neuron and its glucoregulatory proteins.
|date=01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31705967
|full-text-url=https://sci-hub.do/10.1016/j.exger.2019.110779
}}
* {{medline-title
|title=[[NPY]]/neuropeptide Y enhances autophagy in the hypothalamus: a mechanism to delay aging?
|date=2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26086271
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4590601
}}
==NR3C1==
 
* {{medline-title
|title=Glucocorticoid receptor ([[NR3C1]]) gene polymorphisms are associated with age and blood parameters in Polish Caucasian nonagenarians and centenarians.
|date=02.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30553025
|full-text-url=https://sci-hub.do/10.1016/j.exger.2018.12.006
}}
* {{medline-title
|title=Inter-Regional Variations in Gene Expression and Age-Related Cortical Thinning in the Adolescent Brain.
|date=01.04.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28334178
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6093352
}}
==NRL==


* {{medline-title
* {{medline-title
|title=The NR4A nuclear receptors as potential targets for anti-aging interventions.
|title=Development of a cyclophosphamide stress test to predict resilience to aging in mice.
|date=02.2015
|date=12.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25543265
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32613492
|full-text-url=https://sci-hub.do/10.1016/j.mehy.2014.12.003
|full-text-url=https://sci-hub.do/10.1007/s11357-020-00222-z
}}
}}
* {{medline-title
* {{medline-title
|title=Comparative pathway and network analysis of brain transcriptome changes during adult aging and in Parkinson's disease.
|title=A Spontaneous Aggressive ERα  Mammary Tumor Model Is Driven by Kras Activation.
|date=02.2015
|date=06.08.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25447234
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31390566
|full-text-url=https://sci-hub.do/10.1016/j.nbd.2014.11.002
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713291
}}
}}
==NRM==
==NRM==
Строка 4762: Строка 5234:
}}
}}
* {{medline-title
* {{medline-title
|title=[[NRM]]T1 knockout mice exhibit phenotypes associated with impaired DNA repair and premature aging.
|title=Who is the better donor for older hematopoietic transplant recipients: an older-aged sibling or a young, matched unrelated volunteer?
|date=03.2015
|date=28.03.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25843235
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23361908
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4457563
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612864
}}
==NRP1==
 
* {{medline-title
|title=[[APOE]] ε4-specific associations of VEGF gene family expression with cognitive aging and Alzheimer's disease.
|date=03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31791659
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064375
}}
* {{medline-title
|title=Neuropilin 1 is essential for gastrointestinal smooth muscle contractility and motility in aged mice.
|date=2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25659123
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319892
}}
}}
==NRXN1==
==NRXN1==
Строка 4808: Строка 5294:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27207784
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27207784
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4886166
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4886166
}}
==NTRK2==
* {{medline-title
|title=The Role of [[BDNF]] in Age-Dependent Changes of Excitatory and Inhibitory Synaptic Markers in the Human Prefrontal Cortex.
|date=12.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27417517
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5101556
}}
* {{medline-title
|title=Nodes and biological processes identified on the basis of network analysis in the brain of the senescence accelerated mice as an Alzheimer's disease animal model.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24194717
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810591
}}
}}
==OAT==
==OAT==
Строка 4823: Строка 5323:
|full-text-url=https://sci-hub.do/10.1007/s13105-019-00663-x
|full-text-url=https://sci-hub.do/10.1007/s13105-019-00663-x
}}
}}
==OGA==
==OMD==


* {{medline-title
* {{medline-title
|title=NPGPx-Mediated Adaptation to Oxidative Stress Protects Motor Neurons from Degeneration in Aging by Directly Modulating O-GlcNAcase.
|title=Genome-wide associations and detection of potential candidate genes for direct genetic and maternal genetic effects influencing dairy cattle body weight at different ages.
|date=19.11.2019
|date=06.02.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31747588
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30727969
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2019.10.053
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6366057
}}
}}
* {{medline-title
* {{medline-title
|title=Aging leads to elevation of O-GlcNAcylation and disruption of mitochondrial homeostasis in retina.
|title=Digestive capacity in weanling and mature horses.
|date=2014
|date=05.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24987494
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23463556
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4060167
|full-text-url=https://sci-hub.do/10.2527/jas.2012-5789
}}
}}
==PAPSS2==
==OPTN==


* {{medline-title
* {{medline-title
|title=Autosomal recessive brachyolmia: early radiological findings.
|title=Autophagy receptor [[OPTN]] (optineurin) regulates mesenchymal stem cell fate and bone-fat balance during aging by clearing [[FABP3]].
|date=11.2016
|date=04.11.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27544198
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33143524
|full-text-url=https://sci-hub.do/10.1007/s00256-016-2458-8
|full-text-url=https://sci-hub.do/10.1080/15548627.2020.1839286
}}
}}
* {{medline-title
* {{medline-title
|title=Gene Expression Differences Between Offspring of Long-Lived Individuals and Controls in Candidate Longevity Regions: Evidence for [[PAPSS2]] as a Longevity Gene.
|title=Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis.
|date=10.2016
|date=24.02.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26896383
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26912063
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5018562
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765225
}}
}}
==PAX5==
==ORAI1==


* {{medline-title
* {{medline-title
|title=Diminished antibody response to influenza vaccination is characterized by expansion of an age-associated B-cell population with low [[PAX5]].
|title=Progerin in muscle leads to thermogenic and metabolic defects via impaired calcium homeostasis.
|date=08.2018
|date=02.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29425852
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31833196
|full-text-url=https://sci-hub.do/10.1016/j.clim.2018.02.003
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996945
}}
}}
* {{medline-title
* {{medline-title
|title=Developmental expression of B cell molecules in equine lymphoid tissues.
|title=Calcium Dynamics of Ex Vivo Long-Term Cultured CD8  T Cells Are Regulated by Changes in Redox Metabolism.
|date=01.2017
|date=2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28063478
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27526200
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4985122
}}
==P2RX7==
 
* {{medline-title
|title=The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells.
|date=29.07.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32727592
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392710
}}
* {{medline-title
|title=A rare functional haplotype of the [[P2RX4]] and [[P2RX7]] genes leads to loss of innate phagocytosis and confers increased risk of age-related macular degeneration.
|date=04.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23303206
|full-text-url=https://sci-hub.do/10.1096/fj.12-215368
}}
==PALB2==
 
* {{medline-title
|title=53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination.
|date=02.01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31653568
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993210
}}
* {{medline-title
|title=A Multigene Test Could Cost-Effectively Help Extend Life Expectancy for Women at Risk of Hereditary Breast Cancer.
|date=04.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28407996
|full-text-url=https://sci-hub.do/10.1016/j.jval.2017.01.006
}}
==PAX5==
 
* {{medline-title
|title=Diminished antibody response to influenza vaccination is characterized by expansion of an age-associated B-cell population with low [[PAX5]].
|date=08.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29425852
|full-text-url=https://sci-hub.do/10.1016/j.clim.2018.02.003
}}
* {{medline-title
|title=Developmental expression of B cell molecules in equine lymphoid tissues.
|date=01.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28063478
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5267323
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5267323
}}
}}
Строка 4882: Строка 5424:


* {{medline-title
* {{medline-title
|title=Internalization of the TAT-[[PBX1]] fusion protein significantly enhances the proliferation of human hair follicle-derived mesenchymal stem cells and delays their senescence.
|title=Internalization of the [[TAT]]-[[PBX1]] fusion protein significantly enhances the proliferation of human hair follicle-derived mesenchymal stem cells and delays their senescence.
|date=10.2020
|date=10.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32436118
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32436118
Строка 4921: Строка 5463:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334536
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334536
}}
}}
==PDE10A==
==PDE2A==


* {{medline-title
* {{medline-title
|title=Cyclic nucleotide signaling changes associated with normal aging and age-related diseases of the brain.
|title=TAK-915, a phosphodiesterase 2A inhibitor, ameliorates the cognitive impairment associated with aging in rodent models.
|date=01.2018
|date=30.12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29175000
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31521738
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5732030
|full-text-url=https://sci-hub.do/10.1016/j.bbr.2019.112192
}}
}}
* {{medline-title
* {{medline-title
|title=Patterns of age related changes for phosphodiesterase type-10A in comparison with dopamine D  receptors and sub-cortical volumes in the human basal ganglia: A PET study with  F-MNI-659 and  C-raclopride with correction for partial volume effect.
|title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain.
|date=15.05.2017
|date=02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28254508
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653
|full-text-url=https://sci-hub.do/10.1016/j.neuroimage.2017.02.047
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007
}}
}}
==PDE1A==
==PDE3A==


* {{medline-title
* {{medline-title
|title=Phosphodiesterase 1 regulation is a key mechanism in vascular aging.
|title=Effects of aging on gene expression and mitochondrial DNA in the equine oocyte and follicle cells.
|date=12.2015
|date=07.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26464516
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25786490
|full-text-url=https://sci-hub.do/10.1042/CS20140753
|full-text-url=https://sci-hub.do/10.1071/RD14472
}}
}}
* {{medline-title
* {{medline-title
|title=Cyclic nucleotide phosphodiesterase 1 and vascular aging.
|title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain.
|date=12.2015
|date=02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26374857
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610264
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007
}}
}}
==PDE1C==
==PDE5A==


* {{medline-title
* {{medline-title
|title=Phosphodiesterase 1 regulation is a key mechanism in vascular aging.
|title=Repurposing erectile dysfunction drugs tadalafil and vardenafil to increase bone mass.
|date=12.2015
|date=23.06.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26464516
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32513693
|full-text-url=https://sci-hub.do/10.1042/CS20140753
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7321982
}}
}}
* {{medline-title
* {{medline-title
|title=Cyclic nucleotide phosphodiesterase 1 and vascular aging.
|title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain.
|date=12.2015
|date=02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26374857
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610264
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007
}}
}}
==PDE4B==
==PDE9A==


* {{medline-title
* {{medline-title
|title=Phosphodiesterase-4B as a Therapeutic Target for Cognitive Impairment and Obesity-Related Metabolic Diseases.
|title=Identification of new [[PDE9A]] isoforms and how their expression and subcellular compartmentalization in the brain change across the life span.
|date=2017
|date=05.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28956331
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29505961
|full-text-url=https://sci-hub.do/10.1007/978-3-319-58811-7_5
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5871571
}}
}}
* {{medline-title
* {{medline-title
|title=The isozyme selective phosphodiesterase-4 inhibitor, ABI-4, attenuates the effects of lipopolysaccharide in human cells and rodent models of peripheral and CNS inflammation.
|title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain.
|date=08.2017
|date=02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28438557
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653
|full-text-url=https://sci-hub.do/10.1016/j.bbi.2017.04.015
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007
}}
}}
==PDGFB==
==PDGFB==
Строка 4991: Строка 5533:
|full-text-url=https://sci-hub.do/10.1016/j.bbi.2015.06.008
|full-text-url=https://sci-hub.do/10.1016/j.bbi.2015.06.008
}}
}}
==PDGFRB==
==PDHB==


* {{medline-title
* {{medline-title
|title=A tyrosine kinase-activating variant Asn666Ser in [[PDGFRB]] causes a progeria-like condition in the severe end of Penttinen syndrome.
|title=Oxidative Damage to the TCA Cycle Enzyme [[MDH1]] Dysregulates Bioenergetic Enzymatic Activity in the Aged Murine Brain.
|date=04.2019
|date=03.04.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30573803
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32175745
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6460636
|full-text-url=https://sci-hub.do/10.1021/acs.jproteome.9b00861
}}
}}
* {{medline-title
* {{medline-title
|title=Expansion of the phenotype of Kosaki overgrowth syndrome.
|title=Neuron-specific knockdown of Drosophila [[PDHB]] induces reduction of lifespan, deficient locomotive ability, abnormal morphology of motor neuron terminals and photoreceptor axon targeting.
|date=09.2017
|date=15.05.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28639748
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29501567
|full-text-url=https://sci-hub.do/10.1002/ajmg.a.38310
|full-text-url=https://sci-hub.do/10.1016/j.yexcr.2018.02.035
}}
}}
==PDK2==
==PDK2==
Строка 5033: Строка 5575:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967149
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967149
}}
}}
==PDX1==
==PENK==


* {{medline-title
* {{medline-title
|title=Resveratrol attenuates senescence of adipose-derived mesenchymal stem cells and restores their paracrine effects on promoting insulin secretion of [[INS]]-1 cells through Pim-1.
|title=Aging-associated DNA methylation changes in middle-aged individuals: the Young Finns study.
|date=2016
|date=09.02.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27049278
 
}}
* {{medline-title
|title=Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells.
|date=03.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25761685
|full-text-url=https://sci-hub.do/10.1134/S0006297915030062
}}
==PENK==
 
* {{medline-title
|title=Aging-associated DNA methylation changes in middle-aged individuals: the Young Finns study.
|date=09.02.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26861258
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26861258
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746895
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746895
Строка 5089: Строка 5617:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432272
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432272
}}
}}
==PGD==
==PGAM1==


* {{medline-title
* {{medline-title
|title=Primary Care for the Elderly Bereaved: Recommendations for Medical Education.
|title=Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease.
|date=12.2018
|date=2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29500657
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31733664
|full-text-url=https://sci-hub.do/10.1007/s10880-018-9556-9
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939615
}}
}}
* {{medline-title
* {{medline-title
|title=High percentages of embryos with 21, 18 or 13 trisomy are related to advanced paternal age in donor egg cycles.
|title=The aged testis. A good model to find proteins involved in age-related changes of testis by proteomic analysis.
|date=01.03.2018
|date=01-02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29303233
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24597284
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844656
 
}}
}}
==PGR==
==PGR==
Строка 5172: Строка 5700:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26487704
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26487704
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4757025
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4757025
}}
==PKP2==
* {{medline-title
|title=Molecular disturbance underlies to arrhythmogenic cardiomyopathy induced by transgene content, age and exercise in a truncated [[PKP2]] mouse model.
|date=01.09.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27412010
|full-text-url=https://sci-hub.do/10.1093/hmg/ddw213
}}
* {{medline-title
|title=Age-dependent clinical and genetic characteristics in Japanese patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23514727
|full-text-url=https://sci-hub.do/10.1253/circj.cj-12-1446
}}
}}
==PLA2G6==
==PLA2G6==
Строка 5186: Строка 5728:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24919816
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24919816
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4364003
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4364003
}}
==PLA2R1==
* {{medline-title
|title=Targeting the phospholipase A2 receptor ameliorates premature aging phenotypes.
|date=12.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30216637
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6260922
}}
* {{medline-title
|title=[[PLA2R1]]: expression and function in cancer.
|date=08.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24667060
|full-text-url=https://sci-hub.do/10.1016/j.bbcan.2014.03.003
}}
}}
==PLD3==
==PLD3==
Строка 5214: Строка 5742:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28199971
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28199971
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421828
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421828
}}
==PLK1==
* {{medline-title
|title=Dynactin pathway-related gene expression is altered by aging, but not by vitrification.
|date=09.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31260804
|full-text-url=https://sci-hub.do/10.1016/j.reprotox.2019.06.011
}}
* {{medline-title
|title=Downregulation of Polo-like kinase 1 induces cellular senescence in human primary cells through a p53-dependent pathway.
|date=10.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23525475
|full-text-url=https://sci-hub.do/10.1093/gerona/glt017
}}
}}
==PLK4==
==PLK4==
Строка 5224: Строка 5766:
}}
}}
* {{medline-title
* {{medline-title
|title=Differential expression of AURKA/[[PLK4]] in quiescence and senescence of osteosarcoma U2OS cells.
|title=Differential expression of [[AURKA]]/[[PLK4]] in quiescence and senescence of osteosarcoma U2OS cells.
|date=04.2020
|date=04.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32200684
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32200684
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217361
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217361
}}
==PMP22==
* {{medline-title
|title=Role of microRNAs in senescence and its contribution to peripheral neuropathy in the arsenic exposed population of West Bengal, India.
|date=02.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29107899
|full-text-url=https://sci-hub.do/10.1016/j.envpol.2017.09.063
}}
* {{medline-title
|title=A molecular signature predictive of indolent prostate cancer.
|date=11.09.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24027026
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3943244
}}
}}
==POLD3==
==POLD3==
Строка 5260: Строка 5816:


* {{medline-title
* {{medline-title
|title=[[PP[[AR]]D]]  294C overrepresentation in general and long-lived population in China Bama longevity area and unique relationships between [[PP[[AR]]D]]  294T/C polymorphism and serum lipid profiles.
|title=[[PPARD]]  294C overrepresentation in general and long-lived population in China Bama longevity area and unique relationships between [[PPARD]]  294T/C polymorphism and serum lipid profiles.
|date=07.03.2015
|date=07.03.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25873088
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25873088
Строка 5266: Строка 5822:
}}
}}
* {{medline-title
* {{medline-title
|title=[Genotype and allele frequencies of U[[CP]] and PP[[AR]] gene families in residents of besieged Leningrad and in the control group].
|title=[Genotype and allele frequencies of UCP and PPAR gene families in residents of besieged Leningrad and in the control group].
|date=2014
|date=2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25826986
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25826986
Строка 5284: Строка 5840:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30602793
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30602793
|full-text-url=https://sci-hub.do/10.1038/s41586-018-0811-x
|full-text-url=https://sci-hub.do/10.1038/s41586-018-0811-x
}}
==PPP3CB==
* {{medline-title
|title=The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells.
|date=29.07.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32727592
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392710
}}
* {{medline-title
|title=Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex.
|date=2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30210331
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6119720
}}
}}
==PPY==
==PPY==
Строка 5298: Строка 5868:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25881911
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25881911
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4923714
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4923714
}}
==PRDM16==
* {{medline-title
|title=Assessment of the Aging of the Brown Adipose Tissue by  F-FDG PET/CT Imaging in the Progeria Mouse Model Lmna .
|date=2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30116163
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6079616
}}
* {{medline-title
|title=Large-scale analysis reveals a functional single-nucleotide polymorphism in the 5'-flanking region of [[PRDM16]] gene associated with lean body mass.
|date=08.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24863034
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326941
}}
}}
==PRF1==
==PRF1==
Строка 5327: Строка 5883:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600657
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600657
}}
}}
==PRMT5==
==PRG4==


* {{medline-title
* {{medline-title
|title=Regenerating muscle with arginine methylation.
|title=Inhibition of Wnt/β-catenin signaling ameliorates osteoarthritis in a murine model of experimental osteoarthritis.
|date=27.05.2017
|date=08.02.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28301308
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29415892
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501374
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821202
}}
* {{medline-title
|title=Age-related changes in structure and extracellular matrix protein expression levels in rat tendons.
|date=12.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23354684
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3824999
}}
==PRKAA2==
 
* {{medline-title
|title=Study on the effect of CaMKKβ-mediated AMPK activation on the glycolysis and the quality of different altitude postmortem bovines longissimus muscle.
|date=11.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31456257
|full-text-url=https://sci-hub.do/10.1111/jfbc.13023
}}
}}
* {{medline-title
* {{medline-title
|title=Simultaneous ablation of prmt-1 and prmt-5 abolishes asymmetric and symmetric arginine dimethylations in Caenorhabditis elegans.
|title=Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone.
|date=01.06.2017
|date=07.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28158808
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24760536
|full-text-url=https://sci-hub.do/10.1093/jb/mvw101
|full-text-url=https://sci-hub.do/10.1530/EJE-14-0006
}}
}}
==PRMT7==
==PRMT7==
Строка 5369: Строка 5939:
|full-text-url=https://sci-hub.do/10.1002/jcb.25508
|full-text-url=https://sci-hub.do/10.1002/jcb.25508
}}
}}
==PRNP==
==PROX1==


* {{medline-title
* {{medline-title
|title=Spontaneous generation of prions and transmissible PrP amyloid in a humanised transgenic mouse model of A117V GSS.
|title=Molecular control of two novel migratory paths for CGE-derived interneurons in the developing mouse brain.
|date=06.2020
|date=15.05.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32516343
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27034423
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7282622
|full-text-url=https://sci-hub.do/10.1242/dev.131102
}}
}}
* {{medline-title
* {{medline-title
|title=AGE AND REPEATED BIOPSY INFLUENCE ANTEMORTEM PRP(CWD) TESTING IN MULE DEER (ODOCOILEUS HEMIONUS) IN COLORADO, USA.
|title=[[PROX1]]: a lineage tracer for cortical interneurons originating in the lateral/caudal ganglionic eminence and preoptic area.
|date=10.2015
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26251986
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24155945
|full-text-url=https://sci-hub.do/10.7589/2014-12-284
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3796451
}}
}}
==PTBP1==
==PSMB8==


* {{medline-title
* {{medline-title
|title=Dual functions for OVAAL in initiation of RAF/MEK/ERK prosurvival signals and evasion of p27-mediated cellular senescence.
|title=[Target protein candidates of hypothalamus in aging rats with intervention by Qiongyugao].
|date=11.12.2018
|date=04.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30478051
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28879748
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294934
|full-text-url=https://sci-hub.do/10.4268/cjcmm20160724
}}
}}
* {{medline-title
* {{medline-title
|title=[[PTBP1]]-Mediated Alternative Splicing Regulates the Inflammatory Secretome and the Pro-tumorigenic Effects of Senescent Cells.
|title=Assessment of the risk of blastomere biopsy during preimplantation genetic diagnosis in a mouse model: reducing female ovary function with an increase in age by proteomics method.
|date=09.07.2018
|date=06.12.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29990503
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24156634
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6048363
|full-text-url=https://sci-hub.do/10.1021/pr400366j
}}
}}
==PTH1R==
==PTH1R==
Строка 5410: Строка 5980:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24378925
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24378925
|full-text-url=https://sci-hub.do/10.1007/s00774-013-0550-x
|full-text-url=https://sci-hub.do/10.1007/s00774-013-0550-x
}}
==PTK7==
* {{medline-title
|title=Innate and adaptive immune dysregulation in critically ill ICU patients.
|date=05.07.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29976949
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6033948
}}
* {{medline-title
|title=Heterogeneity in thymic emigrants: implications for thymectomy and immunosenescence.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23468830
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3584139
}}
==PTPN1==
* {{medline-title
|title=The genetic component of human longevity: New insights from the analysis of pathway-based SNP-SNP interactions.
|date=06.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29577582
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946073
}}
* {{medline-title
|title=Leptin and leptin-related gene polymorphisms, obesity, and influenza A/H1N1 vaccine-induced immune responses in older individuals.
|date=07.02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24360890
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922536
}}
==PTTG1==
* {{medline-title
|title=[Down-regulated [[PTTG1]] expression promotes the senescence of human prostate cancer LNCaP-AI].
|date=03.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32216239
}}
* {{medline-title
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335
}}
}}
==PUM2==
==PUM2==
Строка 5439: Строка 6051:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5225059
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5225059
}}
}}
==RAC1==
==RAD51B==


* {{medline-title
* {{medline-title
|title=Reactive oxygen species: The good, the bad, and the enigma.
|title=Increased age-adjusted hazard of death associated with a common single nucleotide polymorphism of the human [[RAD52]] gene in a cardiovascular cohort.
|date=07-09.2014
|date=10.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27308352
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29024686
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4904994
|full-text-url=https://sci-hub.do/10.1016/j.mad.2017.10.003
}}
}}
* {{medline-title
* {{medline-title
|title=NADPH oxidase-derived production of reactive oxygen species is involved in learning and memory impairments in 16-month-old female rats.
|title=[What's new in dermatological research?].
|date=09.2015
|date=12.2012
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26058943
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23522705
|full-text-url=https://sci-hub.do/10.3892/mmr.2015.3894
|full-text-url=https://sci-hub.do/10.1016/S0151-9638(12)70133-3
}}
}}
==RAF1==
==RAG1==


* {{medline-title
* {{medline-title
|title=Circular [i]ANRIL[/i] isoforms switch from repressors to activators of [i]p15/CDKN2B[/i] expression during [[RAF1]] oncogene-induced senescence.
|title=T cell senescence accelerates Angiotensin II-induced target organ damage.
|date=29.09.2020
|date=12.02.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32862732
|full-text-url=https://sci-hub.do/10.1080/15476286.2020.1812910
}}
* {{medline-title
|title=MSK1 triggers the expression of the INK4AB/ARF locus in oncogene-induced senescence.
|date=01.09.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27385346
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007092
}}
==RAG1==
 
* {{medline-title
|title=T cell senescence accelerates Angiotensin II-induced target organ damage.
|date=12.02.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32049355
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32049355
|full-text-url=https://sci-hub.do/10.1093/cvr/cvaa032
|full-text-url=https://sci-hub.do/10.1093/cvr/cvaa032
Строка 5494: Строка 6092:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24894919
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24894919
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4177035
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4177035
}}
==RASGRP1==
* {{medline-title
|title=Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans.
|date=12.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27878761
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441979
}}
* {{medline-title
|title=PPARβ/δ promotes [[HRAS]]-induced senescence and tumor suppression by potentiating p-ERK and repressing p-AKT signaling.
|date=13.11.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24213576
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4017002
}}
}}
==RECQL5==
==RECQL5==
Строка 5509: Строка 6121:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047874
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047874
}}
}}
==RELA==
==RNF168==


* {{medline-title
* {{medline-title
|title=Genome-wide association study and annotating candidate gene networks affecting age at first calving in Nellore cattle.
|title=53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination.
|date=12.2017
|date=02.01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28994157
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31653568
|full-text-url=https://sci-hub.do/10.1111/jbg.12299
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993210
}}
}}
* {{medline-title
* {{medline-title
|title=The Inflammatory Transcription Factors NFκB, [[STAT1]] and [[STAT3]] Drive Age-Associated Transcriptional Changes in the Human Kidney.
|title=[[PML]] nuclear bodies are recruited to persistent DNA damage lesions in an [[RNF168]]-53BP1 dependent manner and contribute to DNA repair.
|date=12.2015
|date=06.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26678048
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31009828
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4682820
|full-text-url=https://sci-hub.do/10.1016/j.dnarep.2019.04.001
}}
==RIPK2==
 
* {{medline-title
|title=RIP kinases as modulators of inflammation and immunity.
|date=09.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30131615
|full-text-url=https://sci-hub.do/10.1038/s41590-018-0188-x
}}
* {{medline-title
|title=Molecular modeling in the age of clinical genomics, the enterprise of the next generation.
|date=03.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28204942
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5529140
}}
}}
==RPIA==
==RPIA==
Строка 5550: Строка 6148:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25429733
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25429733
|full-text-url=https://sci-hub.do/10.1002/ijc.29361
|full-text-url=https://sci-hub.do/10.1002/ijc.29361
}}
==RPS6==
* {{medline-title
|title=Regulation of Amino Acid Transporters and Sensors in Response to a High protein Diet: A Randomized Controlled Trial in Elderly Men.
|date=2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30932134
|full-text-url=https://sci-hub.do/10.1007/s12603-019-1171-4
}}
* {{medline-title
|title=Endothelial replicative senescence delayed by the inhibition of [[MTOR]]C1 signaling involves MicroRNA-107.
|date=08.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29857052
|full-text-url=https://sci-hub.do/10.1016/j.biocel.2018.05.016
}}
}}
==RRM1==
==RRM1==
Строка 5579: Строка 6163:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342491
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342491
}}
}}
==RTEL1==
==RXRG==


* {{medline-title
* {{medline-title
|title=Telomere length and aging-related outcomes in humans: A Mendelian randomization study in 261,000 older participants.
|title=Genetic variations, reproductive aging, and breast cancer risk in African American and European American women: The Women's Circle of Health Study.
|date=12.2019
|date=2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31444995
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29073238
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826144
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5658184
}}
}}
* {{medline-title
* {{medline-title
|title=Genome-wide association study of telomere length among South Asians identifies a second [[RTEL1]] association signal.
|title=Genome wide association study of age at menarche in the Japanese population.
|date=01.2018
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29151059
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23667675
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5749304
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646805
}}
}}
==S100A12==
==S100A12==
Строка 5607: Строка 6191:
|full-text-url=https://sci-hub.do/10.2460/javma.246.1.91
|full-text-url=https://sci-hub.do/10.2460/javma.246.1.91
}}
}}
==S100A4==
==S100A6==


* {{medline-title
* {{medline-title
|title=Protective role of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in cigarette smoke-induced mitochondrial dysfunction in mice.
|title=Sex differences in distribution of cannabinoid receptors (CB1 and CB2), [[S100A6]] and CacyBP/SIP in human ageing hearts.
|date=15.12.2019
|date=27.11.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31678243
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30482253
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894395
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6258148
}}
}}
* {{medline-title
* {{medline-title
|title=Tissue Taurine Depletion Induces Profibrotic Pattern of Gene Expression and Causes Aging-Related Cardiac Fibrosis in Heart in Mice.
|title=[[S100A6]] (calcyclin) is a novel marker of neural stem cells and astrocyte precursors in the subgranular zone of the adult mouse hippocampus.
|date=2018
|date=01.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30270325
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24115312
|full-text-url=https://sci-hub.do/10.1248/bpb.b18-00217
|full-text-url=https://sci-hub.do/10.1002/hipo.22207
}}
}}
==S1PR3==
==S1PR3==
Строка 5705: Строка 6289:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4177904
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4177904
}}
}}
==SDC4==
==SCO2==


* {{medline-title
* {{medline-title
|title=Alterations in Corneal Sensory Nerves During Homeostasis, Aging, and After Injury in Mice Lacking the Heparan Sulfate Proteoglycan Syndecan-1.
|title=Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients.
|date=01.10.2017
|date=03.09.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28973369
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31560770
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627677
|full-text-url=https://sci-hub.do/10.1167/iovs.19-27921
}}
}}
* {{medline-title
* {{medline-title
|title=Metabolism and successful aging: Polymorphic variation of syndecan-4 ([[SDC4]]) gene associate with longevity and lipid profile in healthy elderly Italian subjects.
|title=Role of SCOX in determination of Drosophila melanogaster lifespan.
|date=2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25057436
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4106651
}}
==SDC4==
 
* {{medline-title
|title=Alterations in Corneal Sensory Nerves During Homeostasis, Aging, and After Injury in Mice Lacking the Heparan Sulfate Proteoglycan Syndecan-1.
|date=01.10.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28973369
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627677
}}
* {{medline-title
|title=Metabolism and successful aging: Polymorphic variation of syndecan-4 ([[SDC4]]) gene associate with longevity and lipid profile in healthy elderly Italian subjects.
|date=09.2015
|date=09.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26254886
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26254886
|full-text-url=https://sci-hub.do/10.1016/j.mad.2015.08.003
|full-text-url=https://sci-hub.do/10.1016/j.mad.2015.08.003
}}
}}
==SDHA==
==SDHC==


* {{medline-title
* {{medline-title
|title=Accumulation of electrophilic aldehydes during postovulatory aging of mouse oocytes causes reduced fertility, oxidative stress, and apoptosis.
|title=Endogenous reactive oxygen species cause astrocyte defects and neuronal dysfunctions in the hippocampus: a new model for aging brain.
|date=02.2015
|date=02.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25505195
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27623715
|full-text-url=https://sci-hub.do/10.1095/biolreprod.114.122820
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5242301
}}
}}
* {{medline-title
* {{medline-title
|title=Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone.
|title=Long-term prognosis of patients with pediatric pheochromocytoma.
|date=07.2014
|date=02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24760536
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24169644
|full-text-url=https://sci-hub.do/10.1530/EJE-14-0006
|full-text-url=https://sci-hub.do/10.1530/ERC-13-0415
}}
}}
==SDHB==
==SERPINB2==


* {{medline-title
* {{medline-title
|title=Mitochondrial Signatures in Circulating Extracellular Vesicles of Older Adults with Parkinson's Disease: Results from the EXosomes in PArkiNson's Disease (EXPAND) Study.
|title=Elevated circulating HtrA4 in preeclampsia may alter endothelial expression of senescence genes.
|date=12.02.2020
|date=15.01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32059608
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32056555
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074517
|full-text-url=https://sci-hub.do/10.1016/j.placenta.2019.12.012
}}
}}
* {{medline-title
* {{medline-title
|title=Mitochondrial bioenergetics and disease in Caenorhabditis elegans.
|title=An Endogenous Anti-aging Factor, Sonic Hedgehog, Suppresses Endometrial Stem Cell Aging through [[SERPINB2]].
|date=01.01.2015
|date=03.07.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25553447
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31080015
|full-text-url=https://sci-hub.do/10.2741/4305
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612665
}}
}}
==SESN2==
==SESN2==
Строка 5774: Строка 6372:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28430387
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28430387
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5650945
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5650945
}}
==SF3B1==
* {{medline-title
|title=Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis.
|date=03.03.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25732814
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4542313
}}
* {{medline-title
|title=Splicing factor 3B1 hypomethylation is associated with altered [[SF3B1]] transcript expression in older humans.
|date=01.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24463145
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985527
}}
}}
==SFRP2==
==SFRP2==
Строка 5803: Строка 6387:
|full-text-url=https://sci-hub.do/10.1007/s00441-016-2396-8
|full-text-url=https://sci-hub.do/10.1007/s00441-016-2396-8
}}
}}
==SHANK3==
==SGK1==


* {{medline-title
* {{medline-title
|title=Spontaneous seizure and partial lethality of juvenile Shank3-overexpressing mice in C57BL/6 J background.
|title=Epigenetic Regulation of [[KL]] (Klotho) via H3K27me3 (Histone 3 Lysine [K] 27 Trimethylation) in Renal Tubule Cells.
|date=10.10.2018
|date=05.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30305163
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32223380
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6180595
|full-text-url=https://sci-hub.do/10.1161/HYPERTENSIONAHA.120.14642
}}
* {{medline-title
|title=Adult restoration of Shank3 expression rescues selective autistic-like phenotypes.
|date=25.02.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26886798
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4898763
}}
}}
==SHB==
* {{medline-title
* {{medline-title
|title=Longitudinal Relationships between Reproductive Hormones and Cognitive Decline in Older Men: The Concord Health and Ageing in Men Project.
|title=The cell survival kinase [[SGK1]] and its targets FOXO3a and [[NDRG1]] in aged human brain.
|date=06.2015
|date=10.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25867811
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23363009
|full-text-url=https://sci-hub.do/10.1210/jc.2015-1016
|full-text-url=https://sci-hub.do/10.1111/nan.12023
}}
* {{medline-title
|title='Carriers of variant luteinizing hormone (V-LH) among 1593 Baltic men have significantly higher serum LH'.
|date=05.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25820123
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4832392
}}
}}
==SIX3==
==SIX3==
Строка 5858: Строка 6428:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26106407
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26106407
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4460575
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4460575
}}
==SLC16A7==
* {{medline-title
|title=Genetics of facial telangiectasia in the Rotterdam Study: a genome-wide association study and candidate gene approach.
|date=23.10.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33095951
|full-text-url=https://sci-hub.do/10.1111/jdv.17014
}}
* {{medline-title
|title=The SLC16 gene family - structure, role and regulation in health and disease.
|date=04-06.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23506875
|full-text-url=https://sci-hub.do/10.1016/j.mam.2012.05.003
}}
}}
==SLC19A1==
==SLC19A1==
Строка 5901: Строка 6485:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5673623
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5673623
}}
}}
==SLC6A3==
==SLC26A2==


* {{medline-title
* {{medline-title
|title=A variable number of tandem repeats in the 3'-untranslated region of the dopamine transporter modulates striatal function during working memory updating across the adult age span.
|title=Phenotypic characterization of Slc26a2 mutant mice reveals a multifactorial etiology of spondylolysis.
|date=08.2015
|date=01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25997640
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31914611
|full-text-url=https://sci-hub.do/10.1111/ejn.12956
|full-text-url=https://sci-hub.do/10.1096/fj.201901040RR
}}
}}
* {{medline-title
* {{medline-title
|title=Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus.
|title=Alteration of proteoglycan sulfation affects bone growth and remodeling.
|date=2015
|date=05.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25765287
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23369989
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475460
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3607217
}}
}}
==SLC7A11==
==SLC2A4==


* {{medline-title
* {{medline-title
|title=[[SOCS1]] regulates senescence and ferroptosis by modulating the expression of p53 target genes.
|title=Permanent cystathionine-β-Synthase gene knockdown promotes inflammation and oxidative stress in immortalized human adipose-derived mesenchymal stem cells, enhancing their adipogenic capacity.
|date=28.10.2017
|date=02.08.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29081404
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32800520
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5680560
|full-text-url=https://sci-hub.do/10.1016/j.redox.2020.101668
}}
}}
* {{medline-title
* {{medline-title
|title=Comprehensive Analysis of Interaction Networks of Telomerase Reverse Transcriptase with Multiple Bioinformatic Approaches: Deep Mining the Potential Functions of Telomere and Telomerase.
|title=Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats.
|date=08.2017
|date=02.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30661688
|full-text-url=https://sci-hub.do/10.1016/j.clnesp.2018.10.003
}}
==SLC2A9==
 
* {{medline-title
|title=[[ABCG2]] rs2231142 variant in hyperuricemia is modified by [[SLC2A9]] and [[SLC22A12]] polymorphisms and cardiovascular risk factors in an elderly community-dwelling population.
|date=17.03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32183743
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7077001
}}
* {{medline-title
|title=MicroRNA-Based Linkage between Aging and Cancer: from Epigenetics View Point.
|date=07-09.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27540517
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4988411
}}
==SLC6A3==
 
* {{medline-title
|title=A variable number of tandem repeats in the 3'-untranslated region of the dopamine transporter modulates striatal function during working memory updating across the adult age span.
|date=08.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25997640
|full-text-url=https://sci-hub.do/10.1111/ejn.12956
}}
* {{medline-title
|title=Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus.
|date=2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25765287
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475460
}}
==SLC7A11==
 
* {{medline-title
|title=[[SOCS1]] regulates senescence and ferroptosis by modulating the expression of p53 target genes.
|date=28.10.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29081404
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5680560
}}
* {{medline-title
|title=Comprehensive Analysis of Interaction Networks of Telomerase Reverse Transcriptase with Multiple Bioinformatic Approaches: Deep Mining the Potential Functions of Telomere and Telomerase.
|date=08.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28281877
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28281877
|full-text-url=https://sci-hub.do/10.1089/rej.2016.1909
|full-text-url=https://sci-hub.do/10.1089/rej.2016.1909
Строка 5946: Строка 6572:


* {{medline-title
* {{medline-title
|title=TGFB1-Mediated Gliosis in Multiple Sclerosis Spinal Cords Is Favored by the Regionalized Expression of HOXA5 and the Age-Dependent Decline in Androgen Receptor Ligands.
|title=[[TGFB1]]-Mediated Gliosis in Multiple Sclerosis Spinal Cords Is Favored by the Regionalized Expression of [[HOXA5]] and the Age-Dependent Decline in Androgen Receptor Ligands.
|date=26.11.2019
|date=26.11.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31779094
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31779094
Строка 5970: Строка 6596:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25107564
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25107564
|full-text-url=https://sci-hub.do/10.1016/j.anireprosci.2014.07.016
|full-text-url=https://sci-hub.do/10.1016/j.anireprosci.2014.07.016
}}
==SMARCA4==
* {{medline-title
|title=Attenuation of epigenetic regulator [[SMARCA4]] and ERK-ETS signaling suppresses aging-related dopaminergic degeneration.
|date=09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32749068
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511865
}}
* {{medline-title
|title=GBM-associated mutations and altered protein expression are more common in young patients.
|date=25.10.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27579614
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342491
}}
}}
==SMO==
==SMO==
Строка 5998: Строка 6638:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26005834
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26005834
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449816
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449816
}}
==SMPD1==
* {{medline-title
|title=Alterations in Lipid Profile of the Aging Kidney Identified by MALDI Imaging Mass Spectrometry.
|date=05.07.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31244212
|full-text-url=https://sci-hub.do/10.1021/acs.jproteome.9b00108
}}
* {{medline-title
|title=Rare lysosomal enzyme gene [[SMPD1]] variant (p.R591C) associates with Parkinson's disease.
|date=12.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23871123
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2013.06.010
}}
}}
==SNCB==
==SNCB==
Строка 6040: Строка 6694:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29154276
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29154276
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5934753
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5934753
}}
==SPN==
* {{medline-title
|title=Parkinson's disease-related Leucine-rich repeat kinase 2 modulates nuclear morphology and genomic stability in striatal projection neurons during aging.
|date=19.02.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32075681
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031993
}}
* {{medline-title
|title=[Identification of single nucleotide polymorphisms in centenarians].
|date=05-06.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26541311
|full-text-url=https://sci-hub.do/10.1016/j.regg.2015.09.006
}}
}}
==SPON1==
==SPON1==
Строка 6054: Строка 6722:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26923371
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26923371
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408358
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408358
}}
==SREBF2==
* {{medline-title
|title=The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators.
|date=29.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32997995
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527782
}}
* {{medline-title
|title=White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy.
|date=02.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31691183
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035207
}}
}}
==SRR==
==SRR==
Строка 6068: Строка 6750:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29209239
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29209239
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702307
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702307
}}
==SRY==
* {{medline-title
|title=Identification of novel genes in aging osteoblasts using next-generation sequencing and bioinformatics.
|date=26.12.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29371932
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5768349
}}
* {{medline-title
|title=Regulation of senescence associated signaling mechanisms in chondrocytes for cartilage tissue regeneration.
|date=02.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26190795
|full-text-url=https://sci-hub.do/10.1016/j.joca.2015.07.008
}}
}}
==SSTR1==
==SSTR1==
Строка 6111: Строка 6779:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4884931
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4884931
}}
}}
==STAT5A==
==STAR==
 
* {{medline-title
|title=Testicular gene expression of steroidogenesis-related factors in prepubertal, postpubertal, and aging dogs.
|date=01.03.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28166986
|full-text-url=https://sci-hub.do/10.1016/j.theriogenology.2016.11.007
}}
* {{medline-title
|title=Role of the steroidogenic acute regulatory protein in health and disease.
|date=01.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26271515
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4707056
}}
==STAT4==
 
* {{medline-title
|title=Neonatal T Follicular Helper Cells Are Lodged in a Pre-T Follicular Helper Stage Favoring Innate Over Adaptive Germinal Center Responses.
|date=2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31456798
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700230
}}
* {{medline-title
|title=RNA-Seq analysis reveals new evidence for inflammation-related changes in aged kidney.
|date=24.05.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27153548
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5058662
}}
==STAT5A==


* {{medline-title
* {{medline-title
Строка 6138: Строка 6834:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27552481
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27552481
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2016.07.003
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2016.07.003
}}
==STN1==
* {{medline-title
|title=[[CTC1]]-[[STN1]] coordinates G- and C-strand synthesis to regulate telomere length.
|date=08.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29774655
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052479
}}
* {{medline-title
|title=A gain-of-function senescence bypass screen identifies the homeobox transcription factor [[DLX2]] as a regulator of [[ATM]]-p53 signaling.
|date=01.02.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26833729
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4743059
}}
}}
==SURF1==
==SURF1==
Строка 6166: Строка 6848:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24911525
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24911525
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4145821
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4145821
}}
==SUZ12==
* {{medline-title
|title=Epigallocatechin-3-gallate and BIX-01294 have different impact on epigenetics and senescence modulation in acute and chronic myeloid leukemia cells.
|date=05.11.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30194939
|full-text-url=https://sci-hub.do/10.1016/j.ejphar.2018.09.005
}}
* {{medline-title
|title=Polycomb repressive complex 2 epigenomic signature defines age-associated hypermethylation and gene expression changes.
|date=2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25880792
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4623031
}}
}}
==SV2A==
==SV2A==
Строка 6194: Строка 6862:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29713895
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29713895
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6129247
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6129247
}}
==SYNC==
* {{medline-title
|title=Alpha-synuclein expression patterns in the colonic submucosal plexus of the aging Fischer 344 rat: implications for biopsies in aging and neurodegenerative disorders?
|date=09.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23809578
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3735646
}}
* {{medline-title
|title=Macrophages are unsuccessful in clearing aggregated alpha-synuclein from the gastrointestinal tract of healthy aged Fischer 344 rats.
|date=04.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23441091
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3851024
}}
}}
==SYNJ1==
==SYNJ1==
Строка 6209: Строка 6891:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567
}}
}}
==TAL1==
==TACR3==


* {{medline-title
* {{medline-title
|title=Transcriptomic analysis of purified human cortical microglia reveals age-associated changes.
|title=Association of a neurokinin 3 receptor polymorphism with the anterior basal forebrain.
|date=08.2017
|date=06.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28671693
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25976010
|full-text-url=https://sci-hub.do/10.1038/nn.4597
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2014.12.031
}}
* {{medline-title
|title=Microglia recapitulate a hematopoietic master regulator network in the aging human frontal cortex.
|date=08.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26002684
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503803
}}
==TAP1==
 
* {{medline-title
|title=Age-associated methylation change of [[TAP1]] promoter in piglet.
|date=15.11.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26169022
|full-text-url=https://sci-hub.do/10.1016/j.gene.2015.07.026
}}
}}
* {{medline-title
* {{medline-title
|title=Lifespan of mice and primates correlates with immunoproteasome expression.
|title=Neurokinin3 receptor as a target to predict and improve learning and memory in the aged organism.
|date=05.2015
|date=10.09.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25866968
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23983264
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4463211
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773732
}}
==TARDBP==
 
* {{medline-title
|title=Selective Spatiotemporal Vulnerability of Central Nervous System Neurons to Pathologic TAR DNA-Binding Protein 43 in Aged Transgenic Mice.
|date=06.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29577934
|full-text-url=https://sci-hub.do/10.1016/j.ajpath.2018.03.002
}}
* {{medline-title
|title=Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis.
|date=24.02.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26912063
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765225
}}
}}
==TAS2R16==
==TAS2R16==
Строка 6265: Строка 6919:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387736
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387736
}}
}}
==TBC1D5==
==TBC1D4==


* {{medline-title
* {{medline-title
|title=[[TBC1D5]]-Catalyzed Cycling of Rab7 Is Required for Retromer-Mediated Human Papillomavirus Trafficking during Virus Entry.
|title=Effects of Exercise Training on Regulation of Skeletal Muscle Glucose Metabolism in Elderly Men.
|date=09.06.2020
|date=07.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25991826
|full-text-url=https://sci-hub.do/10.1093/gerona/glv012
}}
* {{medline-title
|title=AMPK and insulin action--responses to ageing and high fat diet.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23671593
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3645997
}}
==TBC1D5==
 
* {{medline-title
|title=[[TBC1D5]]-Catalyzed Cycling of Rab7 Is Required for Retromer-Mediated Human Papillomavirus Trafficking during Virus Entry.
|date=09.06.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32521275
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32521275
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7339955
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7339955
Строка 6279: Строка 6947:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719456
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719456
}}
}}
==TBK1==
==TBX21==


* {{medline-title
* {{medline-title
|title=Parkin overexpression alleviates cardiac aging through facilitating K63-polyubiquitination of [[TBK1]] to facilitate mitophagy.
|title=Association of Epigenetic Age and p16INK4a With Markers of T-Cell Composition in a Healthy Cohort.
|date=01.01.2021
|date=13.11.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33164878
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32361724
|full-text-url=https://sci-hub.do/10.1016/j.bbadis.2020.165997
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662168
}}
}}
* {{medline-title
* {{medline-title
|title=[[TBK1]] Suppresses [[RIPK1]]-Driven Apoptosis and Inflammation during Development and in Aging.
|title=[Study of gene expression of transcription factors T cells during aging].
|date=06.09.2018
|date=2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30146158
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28509479
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6128749
 
}}
}}
==TCF7==
==TCF7==
Строка 6306: Строка 6974:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26286994
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26286994
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541364
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541364
}}
==TDG==
* {{medline-title
|title=lncRNA H19 contributes to oxidative damage repair in the early age-related cataract by regulating miR-29a/[[TDG]] axis.
|date=09.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31282110
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6714223
}}
* {{medline-title
|title=Survival Rates of Out-Migrating Yearling Chinook Salmon in the Lower Columbia River and Plume after Exposure to Gas-Supersaturated Water.
|date=12.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28005490
|full-text-url=https://sci-hub.do/10.1080/08997659.2016.1227398
}}
}}
==TDP1==
==TDP1==
Строка 6334: Строка 6988:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25331878
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25331878
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226126
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226126
}}
==TDRD7==
* {{medline-title
|title=Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice.
|date=01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31472347
|full-text-url=https://sci-hub.do/10.1016/j.chemosphere.2019.124650
}}
* {{medline-title
|title=RNA granule component [[TDRD7]] gene polymorphisms in a Han Chinese population with age-related cataract.
|date=02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24435515
|full-text-url=https://sci-hub.do/10.1177/0300060513504702
}}
}}
==TEAD1==
==TEAD1==
Строка 6348: Строка 7016:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27720608
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27720608
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121000
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121000
}}
==TEF==
* {{medline-title
|title=Expression of human HSP27 in yeast extends replicative lifespan and uncovers a hormetic response.
|date=10.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32189112
|full-text-url=https://sci-hub.do/10.1007/s10522-020-09869-9
}}
* {{medline-title
|title=Relationship Between the Dose Administered, Target Tissue Dose, and Toxicity Level After Acute Oral Exposure to Bifenthrin and Tefluthrin in Young Adult Rats.
|date=01.12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31573616
|full-text-url=https://sci-hub.do/10.1093/toxsci/kfz204
}}
==TEN1==
* {{medline-title
|title=Stimulation of cell proliferation by glutathione monoethyl ester in aged bone marrow stromal cells is associated with the assistance of [[TERT]] gene expression and telomerase activity.
|date=08.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27251157
|full-text-url=https://sci-hub.do/10.1007/s11626-016-0021-5
}}
* {{medline-title
|title=Functional characterization of human [[CTC1]] mutations reveals novel mechanisms responsible for the pathogenesis of the telomere disease Coats plus.
|date=12.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23869908
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4083614
}}
}}
==TERF1==
==TERF1==
Строка 6363: Строка 7059:
|full-text-url=https://sci-hub.do/10.1007/s10522-015-9551-6
|full-text-url=https://sci-hub.do/10.1007/s10522-015-9551-6
}}
}}
==TIMELESS==
==TERF2==


* {{medline-title
* {{medline-title
|title=Loss of circadian protein [[TIMELESS]] accelerates the progression of cellular senescence.
|title=Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length.
|date=18.09.2018
|date=05.03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30100061
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109421
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2018.08.040
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058826
}}
}}
* {{medline-title
* {{medline-title
|title=Clock gene expression and locomotor activity predict death in the last days of life in Drosophila melanogaster.
|title=Endothelial senescence-associated secretory phenotype (SASP) is regulated by Makorin-1 ubiquitin E3 ligase.
|date=09.08.2018
|date=11.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30093652
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31476350
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6085321
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059097
}}
}}
==TIMP2==
==TES==


* {{medline-title
* {{medline-title
|title=The effects of aging, diabetes mellitus, and antiplatelet drugs on growth factors and anti-aging proteins in platelet-rich plasma.
|title=The Effects of Electrical Stimulation Pulse Duration on Lingual Palatal Pressure Measures During Swallowing in Healthy Older Adults.
|date=2019
|date=08.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30252623
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30820657
|full-text-url=https://sci-hub.do/10.1080/09537104.2018.1514110
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456514
}}
}}
* {{medline-title
* {{medline-title
|title=Human umbilical cord plasma proteins revitalize hippocampal function in aged mice.
|title=Comparison of different extenders on the recovery and longevity of epididymal sperm from Spix's yellow-toothed cavies (Galea spixii Wagler, 1831).
|date=27.04.2017
|date=04.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28424512
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28245889
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5586222
|full-text-url=https://sci-hub.do/10.1017/S0967199417000016
}}
}}
==TLR3==
==TFRC==


* {{medline-title
* {{medline-title
|title=Repetitive [[TLR3]] activation in the lung induces skeletal muscle adaptations and cachexia.
|title=Identification of reference genes for RT-qPCR data normalisation in aging studies.
|date=06.2018
|date=27.09.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29452288
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31562345
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5911410
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764958
}}
}}
* {{medline-title
* {{medline-title
|title=Age-related changes and distribution of T cell markers (CD3 and [[CD4]]) and toll-like receptors(TLR2, [[TLR3]],[[TLR4]] and [[TLR7]]) in the duck lymphoid organs.
|title=[[SQSTM1]]/p62 and [[PPARGC1A]]/PGC-1alpha at the interface of autophagy and vascular senescence.
|date=07.2017
|date=06.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28356195
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31441382
|full-text-url=https://sci-hub.do/10.1016/j.imbio.2017.01.004
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469683
}}
}}
==TMEM119==
==TGFBR2==


* {{medline-title
* {{medline-title
|title=Dexamethasone Induces a Specific Form of Ramified Dysfunctional Microglia.
|title=TGF-β type 2 receptor-mediated modulation of the IL-36 family can be therapeutically targeted in osteoarthritis.
|date=02.2019
|date=08.05.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29948944
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31068441
|full-text-url=https://sci-hub.do/10.1007/s12035-018-1156-z
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7102613
}}
* {{medline-title
|title=Serum levels of matrix metalloproteinases 2 and 9 and [[TGFBR2]] gene screening in patients with ascending aortic dilatation.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24093773
 
}}
==TMEM119==
 
* {{medline-title
|title=Dexamethasone Induces a Specific Form of Ramified Dysfunctional Microglia.
|date=02.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29948944
|full-text-url=https://sci-hub.do/10.1007/s12035-018-1156-z
}}
}}
* {{medline-title
* {{medline-title
Строка 6419: Строка 7129:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6057548
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6057548
}}
}}
==TMPRSS2==
==TMEM18==
 
* {{medline-title
|title=Sequence variation in [[TMEM18]] in association with body mass index: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study.
|date=06.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24951660
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4135723
}}
* {{medline-title
|title=The influence of obesity-related single nucleotide polymorphisms on BMI across the life course: the PAGE study.
|date=05.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23300277
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636619
}}
==TNFSF10==
 
* {{medline-title
|title=Role of mitochondrial function in cell death and body metabolism.
|date=01.06.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27100503
|full-text-url=https://sci-hub.do/10.2741/4453
}}
* {{medline-title
|title=Sporadic colorectal cancer development shows rejuvenescence regarding epithelial proliferation and apoptosis.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24098334
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3789736
}}
==TNNT1==
 
* {{medline-title
|title=Improved knee extensor strength with resistance training associates with muscle specific miRNAs in older adults.
|date=02.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25560803
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314447
}}
* {{medline-title
|title=Human slow troponin T ([[TNNT1]]) pre-mRNA alternative splicing is an indicator of skeletal muscle response to resistance exercise in older adults.
|date=12.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24368775
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4296115
}}
==TNR==


* {{medline-title
* {{medline-title
|title=Susceptibility to COVID-19 in populations with health disparities: Posited involvement of mitochondrial disorder, socioeconomic stress, and pollutants.
|title=Estimation of effectiveness of three methods of feral cat population control by use of a simulation model.
|date=09.09.2020
|date=15.08.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32905655
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23902443
|full-text-url=https://sci-hub.do/10.1002/jbt.22626
|full-text-url=https://sci-hub.do/10.2460/javma.243.4.502
}}
}}
* {{medline-title
* {{medline-title
|title=Expression of the SARS-CoV-2 Entry Proteins, ACE2 and [[TMPRSS2]], in Cells of the Olfactory Epithelium: Identification of Cell Types and Trends with Age.
|title=The extracellular matrix glycoprotein tenascin-R affects adult but not developmental neurogenesis in the olfactory bulb.
|date=03.06.2020
|date=19.06.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32379417
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23785146
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7241737
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618594
}}
}}
==TOMM20==
==TOMM20==
Строка 6460: Строка 7212:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26748253
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26748253
|full-text-url=https://sci-hub.do/10.1016/j.exger.2015.12.012
|full-text-url=https://sci-hub.do/10.1016/j.exger.2015.12.012
}}
==TOP2A==
* {{medline-title
|title=Proteomics of Long-Lived Mammals.
|date=03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31737995
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7117992
}}
* {{medline-title
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335
}}
}}
==TOX==
==TOX==
Строка 6470: Строка 7236:
}}
}}
* {{medline-title
* {{medline-title
|title=[[TH]]E EFFECTS OF XAN[[TH]]O[[TOX]]IN ON [[TH]]E BIOLOGY AND BIOCHEMISTRY OF Galleria mellonella L. ([[LEP]]IDO[[PTER]]A: PYRALIDAE).
|title=Incidence rate of modifying or discontinuing first combined antiretroviral therapy regimen due to toxicity during the first year of treatment stratified by age.
|date=08.2015
|date=01-02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25821173
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24029435
|full-text-url=https://sci-hub.do/10.1002/arch.21236
|full-text-url=https://sci-hub.do/10.1016/j.bjid.2013.04.005
}}
}}
==TPH2==
==TPX2==


* {{medline-title
* {{medline-title
|title=Ageing and gastrointestinal sensory function: altered colonic mechanosensory and chemosensory function in the aged mouse.
|title=Targeting [[DTL]] induces cell cycle arrest and senescence and suppresses cell growth and colony formation through [[TPX2]] inhibition in human hepatocellular carcinoma cells.
|date=15.08.2016
|date=2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26592729
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29606879
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4983623
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5868578
}}
}}
* {{medline-title
* {{medline-title
|title=Effect of tryptophan hydroxylase-2 gene polymorphism G-703 T on personality in a population representative sample.
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women.
|date=03.03.2015
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25455586
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896
|full-text-url=https://sci-hub.do/10.1016/j.pnpbp.2014.10.005
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335
}}
==TRAF2==
 
* {{medline-title
|title=The Misshapen subfamily of Ste20 kinases regulate proliferation in the aging mammalian intestinal epithelium.
|date=12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31042012
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6711781
}}
* {{medline-title
|title=Ubiquitination of inositol-requiring enzyme 1 (IRE1) by the E3 ligase CHIP mediates the IRE1/[[TRAF2]]/JNK pathway.
|date=31.10.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25225294
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215236
}}
}}
==TREX1==
==TREX1==
Строка 6517: Строка 7269:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5937905
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5937905
}}
}}
==TRH==
==TRIM21==


* {{medline-title
* {{medline-title
|title=Neonatal exposure to bisphenol A alters the hypothalamic-pituitary-thyroid axis in female rats.
|title=[[TRIM21]] overexpression promotes tumor progression by regulating cell proliferation, cell migration and cell senescence in human glioma.
|date=15.03.2018
|date=2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29305326
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32064156
|full-text-url=https://sci-hub.do/10.1016/j.toxlet.2017.12.029
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7017742
}}
}}
* {{medline-title
* {{medline-title
|title=Effect of dietary carbohydrates and time of year on ACTH and cortisol concentrations in adult and aged horses.
|title=[[PRMT5]]-[[TRIM21]] interaction regulates the senescence of osteosarcoma cells by targeting the [[TXNIP]]/p21 axis.
|date=04.2018
|date=05.02.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29195115
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32023548
|full-text-url=https://sci-hub.do/10.1016/j.domaniend.2017.10.005
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7041745
}}
}}
==TRIM28==
==TRIM28==
Строка 6674: Строка 7426:


* {{medline-title
* {{medline-title
|title=LncRNA [[TTN]]-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/MBTD1 axis.
|title=LncRNA [[TTN]]-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/[[MBTD1]] axis.
|date=10.10.2019
|date=10.10.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31600142
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31600142
Строка 6685: Строка 7437:
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204
}}
}}
==TYR==
==UBB==


* {{medline-title
* {{medline-title
|title=Phosphorylation of [[MITF]] by AKT affects its downstream targets and causes [[TP53]]-dependent cell senescence.
|title=Different Expression Levels of Human Mutant Ubiquitin B  ([[UBB]] ) Can Modify Chronological Lifespan or Stress Resistance of [i]Saccharomyces cerevisiae[/i].
|date=11.2016
|date=2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27702651
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29950972
|full-text-url=https://sci-hub.do/10.1016/j.biocel.2016.09.029
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008557
}}
}}
* {{medline-title
* {{medline-title
|title=Gene expression profiling to investigate tyrosol-induced lifespan extension in Caenorhabditis elegans.
|title=Modeling non-hereditary mechanisms of Alzheimer disease during apoptosis in yeast.
|date=03.2016
|date=20.03.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25804201
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28357285
|full-text-url=https://sci-hub.do/10.1007/s00394-015-0884-3
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5348975
}}
}}
==U2AF1==
==UGT1A1==
 
* {{medline-title
|title=Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of mRNA splicing relevant proteins in aging HSPCs.
|date=05.03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32141009
|full-text-url=https://sci-hub.do/10.1007/s40520-020-01509-z
}}
* {{medline-title
|title=Insight into the molecular pathophysiology of myelodysplastic syndromes: targets for novel therapy.
|date=10.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27147278
|full-text-url=https://sci-hub.do/10.1111/ejh.12771
}}
==UBB==
 
* {{medline-title
|title=Different Expression Levels of Human Mutant Ubiquitin B  ([[UBB]] ) Can Modify Chronological Lifespan or Stress Resistance of [i]Saccharomyces cerevisiae[/i].
|date=2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29950972
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008557
}}
* {{medline-title
|title=Modeling non-hereditary mechanisms of Alzheimer disease during apoptosis in yeast.
|date=20.03.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28357285
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5348975
}}
==UGT1A1==


* {{medline-title
* {{medline-title
Строка 6783: Строка 7507:
|full-text-url=https://sci-hub.do/10.1016/j.mrfmmm.2015.01.001
|full-text-url=https://sci-hub.do/10.1016/j.mrfmmm.2015.01.001
}}
}}
==UQCRC2==
==USP10==


* {{medline-title
* {{medline-title
|title=Elucidation of the mechanism of changes in the antioxidant function with the aging in the liver of the senescence-accelerated mouse P10 (SAMP10).
|title=The GID ubiquitin ligase complex is a regulator of AMPK activity and organismal lifespan.
|date=06.2018
|date=09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29477336
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31795790
|full-text-url=https://sci-hub.do/10.1016/j.exger.2018.02.025
|full-text-url=https://sci-hub.do/10.1080/15548627.2019.1695399
}}
* {{medline-title
|title=Long noncoding RNA H19 mediates melatonin inhibition of premature senescence of c-kit( ) cardiac progenitor cells by promoting miR-675.
|date=08.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27062045
|full-text-url=https://sci-hub.do/10.1111/jpi.12331
}}
==USP14==
 
* {{medline-title
|title=Low expression of aging-related [[[[NRXN3]]]] is associated with Alzheimer disease: A systematic review and meta-analysis.
|date=07.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29995770
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076205
}}
}}
* {{medline-title
* {{medline-title
|title=Resveratrol Protects SAMP8 Brain Under Metabolic Stress: Focus on Mitochondrial Function and Wnt Pathway.
|title=Compensatory increase in [[USP14]] activity accompanies impaired proteasomal proteolysis during aging.
|date=04.2017
|date=01-02.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26873850
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23291607
|full-text-url=https://sci-hub.do/10.1007/s12035-016-9770-0
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3558606
}}
}}
==VASH1==
==VASH1==
Строка 6838: Строка 7576:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30622695
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30622695
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317223
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317223
}}
==VEGFA==
* {{medline-title
|title=APOE ε4-specific associations of VEGF gene family expression with cognitive aging and Alzheimer's disease.
|date=03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31791659
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064375
}}
* {{medline-title
|title=Regulation of Vegf signaling by natural and synthetic ligands.
|date=10.11.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27557946
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5766839
}}
}}
==VGF==
==VGF==
Строка 6895: Строка 7619:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121000
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121000
}}
}}
==VIT==
==VIPR2==


* {{medline-title
* {{medline-title
|title=Autophagy-mediated longevity is modulated by lipoprotein biogenesis.
|title=Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology.
|date=2016
|date=15.11.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26671266
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4836030
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204
}}
}}
* {{medline-title
* {{medline-title
|title=ASSOCIATION OF PREVASCUL[[AR]] [[VIT]]REOUS FISSURES AND CISTERNS WI[[TH]] [[VIT]]REOUS DEGENERATION AS ASSESSED BY SWEPT SOURCE OPTICAL COHE[[REN]]CE TO[[MOG]]RAPHY.
|title=Chromatin remodeling of human subtelomeres and TERRA promoters upon cellular senescence: commonalities and differences between chromosomes.
|date=09.2015
|date=05.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25874366
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23644601
|full-text-url=https://sci-hub.do/10.1097/IAE.0000000000000540
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3741221
}}
}}
==VPS29==
==VPS29==
Строка 6992: Строка 7716:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30403914
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30403914
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526875
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526875
}}
==WNT16==
* {{medline-title
|title=Inducible [i]Wnt16[/i] inactivation: [[WNT16]] regulates cortical bone thickness in adult mice.
|date=05.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29530924
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5886037
}}
* {{medline-title
|title=Osteoblast-derived [[WNT16]] represses osteoclastogenesis and prevents cortical bone fragility fractures.
|date=11.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25306233
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4392888
}}
==WNT5A==
* {{medline-title
|title=[[WNT5A]] supports viability of senescent human dental follicle cells.
|date=05.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30406314
|full-text-url=https://sci-hub.do/10.1007/s11010-018-3467-9
}}
* {{medline-title
|title=The Ubiquitin-like with PHD and Ring Finger Domains 1 ([[UHRF1]])/DNA Methyltransferase 1 ([[DNMT1]]) Axis Is a Primary Regulator of Cell Senescence.
|date=03.03.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28100769
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5339756
}}
}}
==WWP1==
==WWP1==
Строка 7035: Строка 7731:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5401563
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5401563
}}
}}
==XDH==
==YY1==


* {{medline-title
* {{medline-title
|title=Enhancing xanthine dehydrogenase activity is an effective way to delay leaf senescence and increase rice yield.
|title=Distinct Age-Related Epigenetic Signatures in [[CD4]] and CD8 T Cells.
|date=11.03.2020
|date=2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32162142
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33262764
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065298
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7686576
}}
}}
* {{medline-title
* {{medline-title
|title=Pleurotus ostreatus, an edible mushroom, enhances glucose 6-phosphate dehydrogenase, ascorbate peroxidase and reduces xanthine dehydrogenase in major organs of aged rats.
|title=Low mitochondrial DNA content associates with familial longevity: the Leiden Longevity Study.
|date=05.2014
|date=06.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24392756
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24554339
|full-text-url=https://sci-hub.do/10.3109/13880209.2013.863948
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082602
}}
==XRCC6==
 
* {{medline-title
|title=Programmed Cell Death Genes Are Linked to Elevated Creatine Kinase Levels in Unhealthy Male Nonagenarians.
|date=2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26913518
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4993668
}}
* {{medline-title
|title=The impact of statins on biological characteristics of stem cells provides a novel explanation for their pleiotropic beneficial and adverse clinical effects.
|date=15.10.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26224580
|full-text-url=https://sci-hub.do/10.1152/ajpcell.00406.2014
}}
==ZBTB16==
 
* {{medline-title
|title=miR-19b-3p induces cell proliferation and reduces heterochromatin-mediated senescence through PLZF in goat male germline stem cells.
|date=06.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29171024
|full-text-url=https://sci-hub.do/10.1002/jcp.26231
}}
* {{medline-title
|title=Determination phase at transition of gonocytes to spermatogonial stem cells improves establishment efficiency of spermatogonial stem cells in domestic cats.
|date=2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26411537
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4685225
}}
}}
==ZC3H12A==
==ZC3H12A==
Строка 7104: Строка 7772:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30479019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30479019
|full-text-url=https://sci-hub.do/10.1002/jcp.27521
|full-text-url=https://sci-hub.do/10.1002/jcp.27521
}}
==ZFX==
* {{medline-title
|title=[[ZFX]] knockdown inhibits growth and migration of non-small cell lung carcinoma cell line H1299.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24228108
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816815
}}
* {{medline-title
|title=[[ZFX]] regulates glioma cell proliferation and survival in vitro and in vivo.
|date=03.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23322077
|full-text-url=https://sci-hub.do/10.1007/s11060-012-1032-z
}}
}}
==ZNF521==
==ZNF521==
Строка 7118: Строка 7800:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26008984
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26008984
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4558122
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4558122
}}
==ZP2==
* {{medline-title
|title=Coenzyme Q10 ameliorates the quality of postovulatory aged oocytes by suppressing DNA damage and apoptosis.
|date=01.11.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31398498
|full-text-url=https://sci-hub.do/10.1016/j.freeradbiomed.2019.08.002
}}
* {{medline-title
|title=Melatonin improves the fertilization ability of post-ovulatory aged mouse oocytes by stabilizing ovastacin and Juno to promote sperm binding and fusion.
|date=01.03.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28137755
|full-text-url=https://sci-hub.do/10.1093/humrep/dew362
}}
}}
==ZSCAN10==
==ZSCAN10==
Строка 7148: Строка 7844:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27103634
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27103634
|full-text-url=https://sci-hub.do/10.1124/dmd.115.068577
|full-text-url=https://sci-hub.do/10.1124/dmd.115.068577
}}
==ABCC8==
* {{medline-title
|title=A mouse model of human hyperinsulinism produced by the E1506K mutation in the sulphonylurea receptor SUR1.
|date=11.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23903354
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3806602
}}
}}
==ABCE1==
==ABCE1==
Строка 7156: Строка 7860:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30485811
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30485811
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6354779
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6354779
}}
==ABCG1==
* {{medline-title
|title=Disrupted cholesterol metabolism promotes age-related photoreceptor neurodegeneration.
|date=08.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29946056
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071770
}}
==ABCG5==
* {{medline-title
|title=2, 3, 4', 5-tetrahydroxystilbene-2-0-β-d Glycoside Attenuates Age- and Diet-Associated Non-Alcoholic Steatohepatitis and Atherosclerosis in LDL Receptor Knockout Mice and Its Possible Mechanisms.
|date=01.04.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30939745
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479705
}}
}}
==ABHD12==
==ABHD12==
Строка 7204: Строка 7892:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29529016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29529016
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5893385
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5893385
}}
==ABRA==
* {{medline-title
|title=[[LMX1B]] is essential for the maintenance of differentiated podocytes in adult kidneys.
|date=11.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23990680
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810075
}}
}}
==ACAA2==
==ACAA2==
Строка 7229: Строка 7925:
|full-text-url=https://sci-hub.do/10.1016/j.jfma.2017.08.008
|full-text-url=https://sci-hub.do/10.1016/j.jfma.2017.08.008
}}
}}
==ACAT2==
==ACER2==


* {{medline-title
* {{medline-title
|title=Serum starvation of A[[RPE]]-19 changes the cellular distribution of cholesterol and Fibulin3 in patterns reminiscent of age-related macular degeneration.
|title=Alkaline ceramidase family: The first two decades.
|date=15.12.2017
|date=01.12.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29097185
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33271224
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701823
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2020.109860
}}
}}
==ACKR2==
==ACKR2==
Строка 7252: Строка 7948:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30356218
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30356218
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448761
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448761
}}
==ACO2==
* {{medline-title
|title=Thioredoxin protects mitochondrial structure, function and biogenesis in myocardial ischemia-reperfusion via redox-dependent activation of AKT-CREB- PGC1α pathway in aged mice.
|date=13.10.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33049718
|full-text-url=https://sci-hub.do/10.18632/aging.104071
}}
}}
==ACP2==
==ACP2==
Строка 7260: Строка 7964:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24951664
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24951664
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066205
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066205
}}
==ACSL1==
* {{medline-title
|title=The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats.
|date=09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32729662
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511879
}}
}}
==ACSL5==
==ACSL5==
Строка 7309: Строка 8021:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136502
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136502
}}
}}
==ADAMTS1==
==ADAM22==


* {{medline-title
* {{medline-title
|title=Increased [[ADAMTS1]] mediates [[SPARC]]-dependent collagen deposition in the aging myocardium.
|title=Expression of NgR1-antagonizing proteins decreases with aging and cognitive decline in rat hippocampus.
|date=05.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23525710
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651369
}}
==ADAM9==
 
* {{medline-title
|title=[The effect of PNS on the content and activity of alpha-secretase in the brains of SAMP8 mice with alzheimer's disease].
|date=11.2012
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23627094
 
}}
==ADAMTS1==
 
* {{medline-title
|title=Increased [[ADAMTS1]] mediates [[SPARC]]-dependent collagen deposition in the aging myocardium.
|date=01.06.2016
|date=01.06.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27143554
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27143554
Строка 7340: Строка 8068:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28728848
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28728848
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2017.07.094
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2017.07.094
}}
==ADAMTS7==
* {{medline-title
|title=Identification of cardiovascular health gene variants related to longevity in a Chinese population.
|date=07.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32897244
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521493
}}
}}
==ADAR==
==ADAR==
Строка 7412: Строка 8148:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31386624
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31386624
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710058
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710058
}}
==AGL==
* {{medline-title
|title=Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis.
|date=12.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25824446
|full-text-url=https://sci-hub.do/10.1136/bjsports-2014-094073
}}
}}
==AGO1==
==AGO1==
Строка 7464: Строка 8192:


* {{medline-title
* {{medline-title
|title=The dominant negative [[AR]]M domain uncovers multiple functions of PUB13 in Arabidopsis immunity, flowering, and senescence.
|title=Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease.
|date=06.2015
|date=2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25873653
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31733664
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449551
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939615
}}
}}
==AKAP11==
==AKAP11==
Строка 7532: Строка 8260:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24597284
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24597284


}}
==AKT2==
* {{medline-title
|title=Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats.
|date=02.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30661688
|full-text-url=https://sci-hub.do/10.1016/j.clnesp.2018.10.003
}}
}}
==ALAD==
==ALAD==
Строка 7565: Строка 8285:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4757025
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4757025
}}
}}
==ALDH1A1==
==ALCAM==


* {{medline-title
* {{medline-title
|title=Aldehyde Dehydrogenase 1 making molecular inroads into the differential vulnerability of nigrostriatal dopaminergic neuron subtypes in Parkinson's disease.
|title=Zebrafish brain RNA sequencing reveals that cell adhesion molecules are critical in brain aging.
|date=2014
|date=10.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25705376
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32629311
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4334846
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2020.04.017
}}
}}
==ALDH1L1==
==ALDH1L1==
Строка 7589: Строка 8309:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382415
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382415
}}
}}
==ALDOA==
==ALDH4A1==


* {{medline-title
* {{medline-title
|title=An Adult Drosophila Glioma Model for Studying Pathometabolic Pathways of Gliomagenesis.
|title=An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence.
|date=06.2019
|date=12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30357574
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31531781
|full-text-url=https://sci-hub.do/10.1007/s12035-018-1392-2
|full-text-url=https://sci-hub.do/10.1007/s00425-019-03272-6
}}
}}
==ALKBH1==
==ALKBH1==
Строка 7621: Строка 8341:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242692
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242692
}}
}}
==ALOX5==
==ALOX15B==
 
* {{medline-title
|title=Monocytes present age-related changes in phospholipid concentration and decreased energy metabolism.
|date=04.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32107839
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189998
}}
==ALPL==


* {{medline-title
* {{medline-title
|title=Functional Characterization of Knock-In Mice Expressing a 12/15-Lipoxygenating Alox5 Mutant Instead of the 5-Lipoxygenating Wild-Type Enzyme.
|title=Physiological blood-brain transport is impaired with age by a shift in transcytosis.
|date=01.01.2020
|date=07.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31642348
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32612231
|full-text-url=https://sci-hub.do/10.1089/ars.2019.7751
|full-text-url=https://sci-hub.do/10.1038/s41586-020-2453-z
}}
}}
==ALS2==
==ALS2==
Строка 7636: Строка 8364:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24702731
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24702731
|full-text-url=https://sci-hub.do/10.1111/gtc.12146
|full-text-url=https://sci-hub.do/10.1111/gtc.12146
}}
==ALX4==
* {{medline-title
|title=Age-associated genes in human mammary gland drive human breast cancer progression.
|date=15.06.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32539762
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7294649
}}
}}
==AMBRA1==
==AMBRA1==
Строка 7652: Строка 8388:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31247458
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31247458
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6732241
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6732241
}}
==AMHR2==
* {{medline-title
|title=Long-lived rodents reveal signatures of positive selection in genes associated with lifespan.
|date=03.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29570707
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884551
}}
}}
==ANGPT1==
==ANGPT1==
Строка 7724: Строка 8452:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30373163
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30373163
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274848
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274848
}}
==ANXA2==
* {{medline-title
|title=Quantitative proteomic profiling of tumor cell response to telomere dysfunction using isotope-coded protein labeling (ICPL) reveals interaction network of candidate senescence markers.
|date=08.10.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23969227
|full-text-url=https://sci-hub.do/10.1016/j.jprot.2013.08.007
}}
==AOC1==
* {{medline-title
|title=Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence.
|date=12.09.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24028154
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847160
}}
}}
==AOX1==
==AOX1==
Строка 7748: Строка 8492:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26194614
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26194614
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4625986
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4625986
}}
==APLN==
* {{medline-title
|title=Relationship of age and body mass index to the expression of obesity and osteoarthritis-related genes in human meniscus.
|date=09.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23318714
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3751987
}}
}}
==APLNR==
==APLNR==
Строка 7789: Строка 8541:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4527288
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4527288
}}
}}
==APOD==
==APOH==


* {{medline-title
* {{medline-title
|title=Apolipoprotein D takes center stage in the stress response of the aging and degenerative brain.
|title=Genome-wide significant results identified for plasma apolipoprotein H levels in middle-aged and older adults.
|date=07.2014
|date=31.03.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24612673
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3988949
}}
==APOH==
 
* {{medline-title
|title=Genome-wide significant results identified for plasma apolipoprotein H levels in middle-aged and older adults.
|date=31.03.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27030319
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27030319
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814826
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814826
Строка 7812: Строка 8556:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31539648
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31539648
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960343
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960343
}}
==AQP2==
* {{medline-title
|title=A bell-shaped pattern of urinary aquaporin-2-bearing extracellular vesicle release in an experimental model of nephronophthisis.
|date=05.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31074077
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509436
}}
}}
==AQP9==
==AQP9==
Строка 7868: Строка 8604:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29044508
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29044508
|full-text-url=https://sci-hub.do/10.1002/jcp.26227
|full-text-url=https://sci-hub.do/10.1002/jcp.26227
}}
==ARID5B==
* {{medline-title
|title=Monocytes present age-related changes in phospholipid concentration and decreased energy metabolism.
|date=04.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32107839
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189998
}}
}}
==ARIH2==
==ARIH2==
Строка 7885: Строка 8629:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6381253
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6381253
}}
}}
==ARNTL==
==ARL4C==


* {{medline-title
* {{medline-title
|title=Is the aging human ovary still ticking?: Expression of clock-genes in luteinized granulosa cells of young and older women.
|title=[[LMX1B]] is essential for the maintenance of differentiated podocytes in adult kidneys.
|date=21.11.2018
|date=11.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30463623
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23990680
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6247686
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810075
}}
}}
==ARNTL2==
==ARNTL2==
Строка 7932: Строка 8676:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33251222
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33251222
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7674779
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7674779
}}
==ASF1A==
* {{medline-title
|title=Meta-analysis on blood transcriptomic studies identifies consistently coexpressed protein-protein interaction modules as robust markers of human aging.
|date=04.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24119000
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331790
}}
==ASIC2==
* {{medline-title
|title=Acidotoxicity and acid-sensing ion channels contribute to motoneuron degeneration.
|date=04.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23306556
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3595486
}}
}}
==ASIP==
==ASIP==
Строка 8013: Строка 8773:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5147016
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5147016
}}
}}
==ATOH1==
==ATP13A2==


* {{medline-title
* {{medline-title
|title=In Vivo Interplay between p27 , [[GATA3]], [[ATOH1]], and [[POU4F3]] Converts Non-sensory Cells to Hair Cells in Adult Mice.
|title=Atp13a2-deficient mice exhibit neuronal ceroid lipofuscinosis, limited α-synuclein accumulation and age-dependent sensorimotor deficits.
|date=11.04.2017
|date=15.05.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28402854
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23393156
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5423718
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633373
}}
}}
==ATP1A3==
==ATP1A3==
Строка 8052: Строка 8812:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28346404
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28346404
|full-text-url=https://sci-hub.do/10.1038/nchembio.2342
|full-text-url=https://sci-hub.do/10.1038/nchembio.2342
}}
==ATP7B==
* {{medline-title
|title=[Copper intoxication decreases lifespan and induces neurologic alterations in Drosophila melanogaster].
|date=03.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23781712
}}
}}
==ATXN1==
==ATXN1==
Строка 8061: Строка 8829:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974201
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974201
}}
}}
==ATXN3==
==AURKB==


* {{medline-title
* {{medline-title
|title=Rescue of [[ATXN3]] neuronal toxicity in [i]Caenorhabditis[/i][i]elegans[/i] by chemical modification of endoplasmic reticulum stress.
|title=Aurora kinase mRNA expression is reduced with increasing gestational age and in severe early onset fetal growth restriction.
|date=19.12.2017
|date=06.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29061563
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32452402
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5769603
|full-text-url=https://sci-hub.do/10.1016/j.placenta.2020.04.012
}}
}}
==AURKA==
==AURKC==


* {{medline-title
* {{medline-title
|title=Combined therapies that induce senescence and stabilize p53 block melanoma growth and prompt antitumor immune responses.
|title=Aurora kinase mRNA expression is reduced with increasing gestational age and in severe early onset fetal growth restriction.
|date=08.2015
|date=06.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26405565
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32452402
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4570092
|full-text-url=https://sci-hub.do/10.1016/j.placenta.2020.04.012
}}
}}
==AVPR1A==
==AVPR1A==
Строка 8092: Строка 8860:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26625814
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26625814
|full-text-url=https://sci-hub.do/10.7314/apjcp.2015.16.17.7875
|full-text-url=https://sci-hub.do/10.7314/apjcp.2015.16.17.7875
}}
==BAAT==
* {{medline-title
|title=Prevalence and associated metabolic factors of fatty liver disease in the elderly.
|date=08.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23721951
|full-text-url=https://sci-hub.do/10.1016/j.exger.2013.05.059
}}
}}
==BACE2==
==BACE2==
Строка 8100: Строка 8876:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24530026
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24530026
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4205206
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4205206
}}
==BACH2==
* {{medline-title
|title=Age-related changes in the [[BACH2]] and [[PRDM1]] genes in lymphocytes from healthy donors and chronic lymphocytic leukemia patients.
|date=17.01.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30654767
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6337793
}}
}}
==BAG2==
==BAG2==
Строка 8116: Строка 8884:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28042827
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28042827
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5297704
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5297704
}}
==BAG5==
* {{medline-title
|title=miR-155 inhibits mitophagy through suppression of [[BAG5]], a partner protein of [[PINK1]].
|date=12.03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31948758
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2020.01.022
}}
}}
==BAP1==
==BAP1==
Строка 8140: Строка 8916:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32103178
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32103178
|full-text-url=https://sci-hub.do/10.1038/s41586-020-2037-y
|full-text-url=https://sci-hub.do/10.1038/s41586-020-2037-y
}}
==BBC3==
* {{medline-title
|title=The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators.
|date=29.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32997995
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527782
}}
}}
==BBS5==
==BBS5==
Строка 8156: Строка 8940:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30760648
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30760648
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382415
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382415
}}
==BCL2L1==
* {{medline-title
|title=[[SIRT6]] histone deacetylase functions as a potential oncogene in human melanoma.
|date=09.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29234488
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724804
}}
}}
==BCL2L11==
==BCL2L11==
Строка 8205: Строка 8981:
|full-text-url=https://sci-hub.do/10.12659/aot.898007
|full-text-url=https://sci-hub.do/10.12659/aot.898007
}}
}}
==BMP1==
==BIRC5==


* {{medline-title
* {{medline-title
|title=Effects of aging on gene expression and mitochondrial DNA in the equine oocyte and follicle cells.
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women.
|date=07.2015
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25786490
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896
|full-text-url=https://sci-hub.do/10.1071/RD14472
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335
}}
==BLVRA==
 
* {{medline-title
|title=Attenuation of epigenetic regulator [[SMARCA4]] and ERK-ETS signaling suppresses aging-related dopaminergic degeneration.
|date=09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32749068
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511865
}}
}}
==BMP5==
==BMP5==
Строка 8221: Строка 9005:
|full-text-url=https://sci-hub.do/10.1016/j.neuroscience.2014.07.057
|full-text-url=https://sci-hub.do/10.1016/j.neuroscience.2014.07.057
}}
}}
==BMX==
==BNC1==
 
* {{medline-title
|title=Inducible Activation of [[FGFR2]] in Adult Mice Promotes Bone Formation After Bone Marrow Ablation.
|date=11.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28650109
|full-text-url=https://sci-hub.do/10.1002/jbmr.3204
}}
==BNC1==


* {{medline-title
* {{medline-title
Строка 8285: Строка 9061:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3928644
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3928644
}}
}}
==BTG1==
==BSG==


* {{medline-title
* {{medline-title
|title=Tumor cell escape from therapy-induced senescence.
|title=Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients.
|date=04.2019
|date=03.09.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30576620
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31560770
|full-text-url=https://sci-hub.do/10.1016/j.bcp.2018.12.013
|full-text-url=https://sci-hub.do/10.1167/iovs.19-27921
}}
}}
==BTG3==
==BTG3==
Строка 8356: Строка 9132:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24496748
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24496748
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209016
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209016
}}
==CA10==
* {{medline-title
|title=Genome wide association study of age at menarche in the Japanese population.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23667675
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646805
}}
}}
==CABLES1==
==CABLES1==
Строка 8372: Строка 9156:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31254144
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31254144
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733812
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733812
}}
==CACNA1C==
* {{medline-title
|title=Epigenetic regulation of L-type voltage-gated Ca  channels in mesenteric arteries of aging hypertensive rats.
|date=05.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27881847
|full-text-url=https://sci-hub.do/10.1038/hr.2016.167
}}
}}
==CACNA1F==
==CACNA1F==
Строка 8421: Строка 9197:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4542651
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4542651
}}
}}
==CALR==
==CAMK2A==
 
* {{medline-title
|title=Nodes and biological processes identified on the basis of network analysis in the brain of the senescence accelerated mice as an Alzheimer's disease animal model.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24194717
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810591
}}
==CAMKK2==


* {{medline-title
* {{medline-title
|title=Molecular Pathogenesis of Myeloproliferative Neoplasms: Influence of Age and Gender.
|title=The GID ubiquitin ligase complex is a regulator of AMPK activity and organismal lifespan.
|date=10.2017
|date=09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28948454
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31795790
|full-text-url=https://sci-hub.do/10.1007/s11899-017-0411-0
|full-text-url=https://sci-hub.do/10.1080/15548627.2019.1695399
}}
}}
==CAMP==
==CAMP==
Строка 8444: Строка 9228:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30210331
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30210331
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6119720
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6119720
}}
==CAP1==
* {{medline-title
|title=Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease.
|date=2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31733664
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939615
}}
}}
==CAP2==
==CAP2==
Строка 8477: Строка 9269:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4560317
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4560317
}}
}}
==CASP1==
==CARMIL1==
 
* {{medline-title
|title=Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length.
|date=05.03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109421
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058826
}}
==CASP2==


* {{medline-title
* {{medline-title
|title=Gene expression of inflammasome components in peripheral blood mononuclear cells (PBMC) of vascular patients increases with age.
|title=Dual role of the caspase enzymes in satellite cells from aged and young subjects.
|date=2015
|date=12.12.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26448778
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24336075
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596365
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877545
}}
}}
==CASP5==
==CASP5==
Строка 8493: Строка 9293:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596365
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596365
}}
}}
==CASP7==
==CASP6==


* {{medline-title
* {{medline-title
|title=Global Characteristics of CSIG-Associated Gene Expression Changes in Human HEK293 Cells and the Implications for CSIG Regulating Cell Proliferation and Senescence.
|title=Dual role of the caspase enzymes in satellite cells from aged and young subjects.
|date=2015
|date=12.12.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26029164
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24336075
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432801
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877545
}}
}}
==CASQ2==
==CASP9==


* {{medline-title
* {{medline-title
|title=Single delivery of an adeno-associated viral construct to transfer the [[CASQ2]] gene to knock-in mice affected by catecholaminergic polymorphic ventricular tachycardia is able to cure the disease from birth to advanced age.
|title=Dual role of the caspase enzymes in satellite cells from aged and young subjects.
|date=24.06.2014
|date=12.12.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24888331
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24336075
|full-text-url=https://sci-hub.do/10.1161/CIRCULATIONAHA.113.006901
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877545
}}
}}
==CAV1==
==CBR1==


* {{medline-title
* {{medline-title
|title=Broad range metabolomics coupled with network analysis for explaining possible mechanisms of Er-Zhi-Wan in treating liver-kidney Yin deficiency syndrome of Traditional Chinese medicine.
|title=Age-related changes in hepatic activity and expression of detoxification enzymes in male rats.
|date=24.04.2019
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30690072
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23971034
|full-text-url=https://sci-hub.do/10.1016/j.jep.2019.01.019
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736498
}}
}}
==CBSL==
==CBSL==
Строка 8525: Строка 9325:
|full-text-url=https://sci-hub.do/10.1111/jgs.14968
|full-text-url=https://sci-hub.do/10.1111/jgs.14968
}}
}}
==CBX3==
==CBX1==


* {{medline-title
* {{medline-title
Строка 8533: Строка 9333:
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659
}}
}}
==CBX4==
==CBX2==


* {{medline-title
* {{medline-title
|title=Maintenance of Nucleolar Homeostasis by [[CBX4]] Alleviates Senescence and Osteoarthritis.
|title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development.
|date=26.03.2019
|date=24.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30917318
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2019.02.088
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659
}}
==CBX3==
 
* {{medline-title
|title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development.
|date=24.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659
}}
}}
==CBX5==
==CBX5==
Строка 8548: Строка 9356:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28100769
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28100769
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5339756
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5339756
}}
==CBX6==
* {{medline-title
|title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development.
|date=24.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659
}}
}}
==CCAR2==
==CCAR2==
Строка 8580: Строка 9396:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24951662
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24951662
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112104
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112104
}}
==CCDC85A==
* {{medline-title
|title=Genome wide association study of age at menarche in the Japanese population.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23667675
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646805
}}
}}
==CCDC88A==
==CCDC88A==
Строка 8588: Строка 9412:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29196338
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29196338
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795392
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795392
}}
==CCL1==
* {{medline-title
|title=[Peptides and [[[[CCL1]]1]] and [[HMGB1]] as molecular markers of aging: literature review and own data].
|date=2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25826983
}}
}}
==CCL18==
==CCL18==
Строка 8604: Строка 9420:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30685456
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30685456
|full-text-url=https://sci-hub.do/10.1016/j.jaci.2019.01.015
|full-text-url=https://sci-hub.do/10.1016/j.jaci.2019.01.015
}}
==CCL23==
* {{medline-title
|title=Systemic Inflammation and the Increased Risk of Inflamm-Aging and Age-Associated Diseases in People Living With HIV on Long Term Suppressive Antiretroviral Therapy.
|date=2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31507593
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718454
}}
==CCL25==
* {{medline-title
|title=Age-related chemokine alterations affect IgA secretion and gut immunity in female mice.
|date=10.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32277312
|full-text-url=https://sci-hub.do/10.1007/s10522-020-09877-9
}}
}}
==CCL26==
==CCL26==
Строка 8620: Строка 9452:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32277312
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32277312
|full-text-url=https://sci-hub.do/10.1007/s10522-020-09877-9
|full-text-url=https://sci-hub.do/10.1007/s10522-020-09877-9
}}
==CCL7==
* {{medline-title
|title=Advanced atherosclerosis is associated with inflammation, vascular dysfunction and oxidative stress, but not hypertension.
|date=02.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28017665
|full-text-url=https://sci-hub.do/10.1016/j.phrs.2016.12.032
}}
}}
==CCL8==
==CCL8==
Строка 8644: Строка 9468:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25966944
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25966944
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4640319
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4640319
}}
==CCN4==
* {{medline-title
|title=CCN proteins as potential actionable targets in scleroderma.
|date=01.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30329180
|full-text-url=https://sci-hub.do/10.1111/exd.13806
}}
}}
==CCNA1==
==CCNA1==
Строка 8652: Строка 9484:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28920919
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28920919
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617654
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617654
}}
==CCNB2==
* {{medline-title
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335
}}
}}
==CCND2==
==CCND2==
Строка 8668: Строка 9508:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32727592
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32727592
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392710
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392710
}}
==CCNE1==
* {{medline-title
|title=Hepatoprotective effects of hydroxysafflor yellow A in D-galactose-treated aging mice.
|date=15.08.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32454116
|full-text-url=https://sci-hub.do/10.1016/j.ejphar.2020.173214
}}
==CCNE2==
* {{medline-title
|title=Circular RNA CircCCNB1 sponges micro RNA-449a to inhibit cellular senescence by targeting [[CCNE2]].
|date=25.11.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31767812
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6914408
}}
==CCNI==
* {{medline-title
|title=Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes.
|date=15.08.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23707792
|full-text-url=https://sci-hub.do/10.1016/j.mce.2013.05.003
}}
==CCNI2==
* {{medline-title
|title=Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes.
|date=15.08.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23707792
|full-text-url=https://sci-hub.do/10.1016/j.mce.2013.05.003
}}
}}
==CCR1==
==CCR1==
Строка 8701: Строка 9573:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133698
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133698
}}
}}
==CD209==
==CD207==


* {{medline-title
* {{medline-title
|title=Comparative analysis of microbial sensing molecules in mucosal tissues with aging.
|title=Neurogenic factor-induced Langerhans cell activation in diabetic mice with mechanical allodynia.
|date=03.2018
|date=14.05.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29066255
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23672639
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821569
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685572
}}
}}
==CD226==
==CD226==
Строка 8716: Строка 9588:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29349889
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29349889
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5847879
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5847879
}}
==CD244==
* {{medline-title
|title=Association of Epigenetic Age and p16INK4a With Markers of T-Cell Composition in a Healthy Cohort.
|date=13.11.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32361724
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662168
}}
}}
==CD3G==
==CD3G==
Строка 8781: Строка 9661:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4801471
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4801471
}}
}}
==CDC20==
==CD8A==


* {{medline-title
* {{medline-title
|title=Premature aging syndrome showing random chromosome number instabilities with [[CDC20]] mutation.
|title=Systemic Inflammation and the Increased Risk of Inflamm-Aging and Age-Associated Diseases in People Living With HIV on Long Term Suppressive Antiretroviral Therapy.
|date=11.2020
|date=2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33094908
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31507593
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7681047
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718454
}}
}}
==CDC6==
==CD8B==
 
* {{medline-title
|title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity.
|date=31.01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708
}}
==CDC20==
 
* {{medline-title
|title=Premature aging syndrome showing random chromosome number instabilities with [[CDC20]] mutation.
|date=11.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33094908
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7681047
}}
==CDC5L==
 
* {{medline-title
|title=Comparative transcriptome analysis of Parkinson's disease and Hutchinson-Gilford progeria syndrome reveals shared susceptible cellular network processes.
|date=18.08.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32811487
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7437934
}}
==CDC6==


* {{medline-title
* {{medline-title
Строка 8796: Строка 9700:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29321003
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29321003
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763532
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763532
}}
==CDC7==
* {{medline-title
|title=CHO cell culture longevity and recombinant protein yield are enhanced by depletion of miR-7 activity via sponge decoy vectors.
|date=03.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24166820
|full-text-url=https://sci-hub.do/10.1002/biot.201300325
}}
}}
==CDC73==
==CDC73==
Строка 8812: Строка 9724:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28487093
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28487093
|full-text-url=https://sci-hub.do/10.1016/j.jtho.2017.04.018
|full-text-url=https://sci-hub.do/10.1016/j.jtho.2017.04.018
}}
==CDCA4==
* {{medline-title
|title=A multidimensional systems biology analysis of cellular senescence in aging and disease.
|date=07.04.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264951
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333371
}}
}}
==CDH2==
==CDH2==
Строка 8820: Строка 9740:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30102368
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30102368
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6265269
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6265269
}}
==CDH23==
* {{medline-title
|title=Compound heterozygosity of the functionally null Cdh23(v-ngt) and hypomorphic Cdh23(ahl) alleles leads to early-onset progressive hearing loss in mice.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24172198
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4160959
}}
==CDK16==
* {{medline-title
|title=Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes.
|date=15.08.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23707792
|full-text-url=https://sci-hub.do/10.1016/j.mce.2013.05.003
}}
==CDK18==
* {{medline-title
|title=Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes.
|date=15.08.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23707792
|full-text-url=https://sci-hub.do/10.1016/j.mce.2013.05.003
}}
==CDK3==
* {{medline-title
|title=Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes.
|date=15.08.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23707792
|full-text-url=https://sci-hub.do/10.1016/j.mce.2013.05.003
}}
==CDK8==
* {{medline-title
|title=Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes.
|date=15.08.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23707792
|full-text-url=https://sci-hub.do/10.1016/j.mce.2013.05.003
}}
==CDK9==
* {{medline-title
|title=Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes.
|date=15.08.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23707792
|full-text-url=https://sci-hub.do/10.1016/j.mce.2013.05.003
}}
==CDKN2C==
* {{medline-title
|title=Elevated circulating HtrA4 in preeclampsia may alter endothelial expression of senescence genes.
|date=15.01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32056555
|full-text-url=https://sci-hub.do/10.1016/j.placenta.2019.12.012
}}
}}
==CDO1==
==CDO1==
Строка 8836: Строка 9812:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28459000
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28459000
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5397580
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5397580
}}
==CEACAM1==
* {{medline-title
|title=Aging-related carcinoembryonic antigen-related cell adhesion molecule 1 signaling promotes vascular dysfunction.
|date=12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31389127
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826129
}}
==CEBPA==
* {{medline-title
|title=Permanent cystathionine-β-Synthase gene knockdown promotes inflammation and oxidative stress in immortalized human adipose-derived mesenchymal stem cells, enhancing their adipogenic capacity.
|date=02.08.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32800520
|full-text-url=https://sci-hub.do/10.1016/j.redox.2020.101668
}}
}}
==CEBPD==
==CEBPD==
Строка 8844: Строка 9836:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31254144
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31254144
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733812
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733812
}}
==CEBPE==
* {{medline-title
|title=Identification and genomic analysis of pedigrees with exceptional longevity identifies candidate rare variants.
|date=09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32574725
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7461696
}}
}}
==CELSR2==
==CELSR2==
Строка 8852: Строка 9852:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27329260
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27329260
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013013
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013013
}}
==CEP55==
* {{medline-title
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335
}}
==CEP57==
* {{medline-title
|title=BubR1 allelic effects drive phenotypic heterogeneity in mosaic-variegated aneuploidy progeria syndrome.
|date=02.01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31738183
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934189
}}
}}
==CEP95==
==CEP95==
Строка 8861: Строка 9877:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894567
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894567
}}
}}
==CER1==
==CERK==


* {{medline-title
* {{medline-title
|title=Radiographic screening of infants and young children with genetic predisposition for rare malignancies: DI[[CER1]] mutations and pleuropulmonary blastoma.
|title=MicroRNA-34a causes ceramide accumulation and effects insulin signaling pathway by targeting ceramide kinase ([[CERK]]) in aging skeletal muscle.
|date=04.2015
|date=06.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25794098
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32056304
|full-text-url=https://sci-hub.do/10.2214/AJR.14.12802
|full-text-url=https://sci-hub.do/10.1002/jcb.29312
}}
==CFL2==
 
* {{medline-title
|title=Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease.
|date=2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31733664
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939615
}}
}}
==CFLAR==
==CFLAR==
Строка 8885: Строка 9909:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3994432
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3994432
}}
}}
==CHAD==
==CHMP1B==


* {{medline-title
* {{medline-title
|title=Insular cortex lesions, cardiac troponin, and detection of previously unknown atrial fibrillation in acute ischemic stroke: insights from the troponin elevation in acute ischemic stroke study.
|title=Overexpression of [[CHMP7]] from rapeseed and Arabidopsis causes dwarfism and premature senescence in Arabidopsis.
|date=05.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25835563
|full-text-url=https://sci-hub.do/10.1161/STROKEAHA.115.008681
}}
==CHEK1==
 
* {{medline-title
|title=The Ubiquitin-like with PHD and Ring Finger Domains 1 ([[UHRF1]])/DNA Methyltransferase 1 ([[DNMT1]]) Axis Is a Primary Regulator of Cell Senescence.
|date=03.03.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28100769
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5339756
}}
==CHEK2==
 
* {{medline-title
|title=A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass.
|date=20.06.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31219803
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628988
}}
==CHMP1B==
 
* {{medline-title
|title=Overexpression of [[CHMP7]] from rapeseed and Arabidopsis causes dwarfism and premature senescence in Arabidopsis.
|date=01.10.2016
|date=01.10.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27497741
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27497741
Строка 8924: Строка 9924:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26912063
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26912063
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765225
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765225
}}
==CHMP4C==
* {{medline-title
|title=Silencing of human papillomavirus (HPV) E6/E7 oncogene expression affects both the contents and the amounts of extracellular microvesicles released from HPV-positive cancer cells.
|date=01.10.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23526637
|full-text-url=https://sci-hub.do/10.1002/ijc.28164
}}
}}
==CHMP7==
==CHMP7==
Строка 8940: Строка 9948:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26955889
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26955889
|full-text-url=https://sci-hub.do/10.1089/ten.TEA.2015.0366
|full-text-url=https://sci-hub.do/10.1089/ten.TEA.2015.0366
}}
==CHRFAM7A==
* {{medline-title
|title=Acetylcholinesterase inhibitors targeting the cholinergic anti-inflammatory pathway: a new therapeutic perspective in aging-related disorders.
|date=03.10.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31583530
|full-text-url=https://sci-hub.do/10.1007/s40520-019-01359-4
}}
==CHRM2==
* {{medline-title
|title=Aging-related changes in the gene expression profile of human lungs.
|date=09.11.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33168785
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695411
}}
}}
==CHRM4==
==CHRM4==
Строка 8980: Строка 10 004:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28100275
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28100275
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5241920
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5241920
}}
==CIDEA==
* {{medline-title
|title=Growth hormone receptor expression in human gluteal versus abdominal subcutaneous adipose tissue: Association with body shape.
|date=05.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27015877
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5084456
}}
}}
==CILP==
==CILP==
Строка 9012: Строка 10 028:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30681437
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30681437
|full-text-url=https://sci-hub.do/10.1097/WAD.0000000000000294
|full-text-url=https://sci-hub.do/10.1097/WAD.0000000000000294
}}
==CIP2A==
* {{medline-title
|title=Inhibition of [[CIP2A]] attenuates tumor progression by inducing cell cycle arrest and promoting cellular senescence in hepatocellular carcinoma.
|date=08.01.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29175329
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2017.11.124
}}
}}
==CITED2==
==CITED2==
Строка 9036: Строка 10 044:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29154038
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29154038
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5877805
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5877805
}}
==CKAP2==
* {{medline-title
|title=A multidimensional systems biology analysis of cellular senescence in aging and disease.
|date=07.04.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264951
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333371
}}
}}
==CLCN6==
==CLCN6==
Строка 9053: Строка 10 069:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821569
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821569
}}
}}
==CLSTN2==
==CLPTM1==


* {{medline-title
* {{medline-title
|title=Investigating the influence of KIBRA and [[CLSTN2]] genetic polymorphisms on cross-sectional and longitudinal measures of memory performance and hippocampal volume in older individuals.
|title=Two-stage Bayesian GWAS of 9576 individuals identifies SNP regions that are targeted by miRNAs inversely expressed in Alzheimer's and cancer.
|date=11.2015
|date=01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26415670
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31914222
|full-text-url=https://sci-hub.do/10.1016/j.neuropsychologia.2015.09.031
|full-text-url=https://sci-hub.do/10.1002/alz.12003
}}
}}
==CMA1==
==CMA1==
Строка 9068: Строка 10 084:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28325852
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28325852
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827
}}
==CMKLR1==
* {{medline-title
|title=Chemerin facilitates intervertebral disc degeneration via [[TLR4]] and [[CMKLR1]] and activation of NF-kB signaling pathway.
|date=11.06.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32526705
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343479
}}
}}
==CNGA3==
==CNGA3==
Строка 9076: Строка 10 100:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28419903
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28419903
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.04.006
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.04.006
}}
==CNKSR3==
* {{medline-title
|title=Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women.
|date=12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31508907
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6903450
}}
}}
==CNOT6==
==CNOT6==
Строка 9084: Строка 10 116:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26792405
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26792405
|full-text-url=https://sci-hub.do/10.1016/j.bbamcr.2016.01.005
|full-text-url=https://sci-hub.do/10.1016/j.bbamcr.2016.01.005
}}
==CNTNAP4==
* {{medline-title
|title=A common copy number variation (CNV) polymorphism in the [[CNTNAP4]] gene: association with aging in females.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24223195
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819343
}}
}}
==CNTRL==
==CNTRL==
Строка 9092: Строка 10 132:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26318758
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26318758
|full-text-url=https://sci-hub.do/10.1016/j.meatsci.2015.07.026
|full-text-url=https://sci-hub.do/10.1016/j.meatsci.2015.07.026
}}
==COG1==
* {{medline-title
|title=PRX2 and PRX25, peroxidases regulated by [[COG1]], are involved in seed longevity in Arabidopsis.
|date=02.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31600827
|full-text-url=https://sci-hub.do/10.1111/pce.13656
}}
}}
==COL12A1==
==COL12A1==
Строка 9140: Строка 10 188:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26309782
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26309782
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4497626
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4497626
}}
==COL9A1==
* {{medline-title
|title=Enhanced tissue regeneration potential of juvenile articular cartilage.
|date=11.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24043472
|full-text-url=https://sci-hub.do/10.1177/0363546513502945
}}
}}
==COQ5==
==COQ5==
Строка 9164: Строка 10 220:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30228311
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30228311
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143522
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143522
}}
==COX5A==
* {{medline-title
|title=[[COX5A]] Plays a Vital Role in Memory Impairment Associated With Brain Aging [i]via[/i] the [[BDNF]]/ERK1/2 Signaling Pathway.
|date=2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32754029
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7365906
}}
}}
==COX7A2==
==COX7A2==
Строка 9189: Строка 10 253:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878003
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878003
}}
}}
==CPNE1==
==CPSF1==


* {{medline-title
* {{medline-title
|title=Prevalent intron retention fine-tunes gene expression and contributes to cellular senescence.
|title=Genome-wide association study for lactation persistency, female fertility, longevity, and lifetime profit index traits in Holstein dairy cattle.
|date=04.12.2020
|date=02.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33274830
|full-text-url=https://sci-hub.do/10.1111/acel.13276
}}
==CPSF1==
 
* {{medline-title
|title=Genome-wide association study for lactation persistency, female fertility, longevity, and lifetime profit index traits in Holstein dairy cattle.
|date=02.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27889128
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27889128
|full-text-url=https://sci-hub.do/10.3168/jds.2016-11770
|full-text-url=https://sci-hub.do/10.3168/jds.2016-11770
Строка 9212: Строка 10 268:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31900237
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31900237
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941254
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941254
}}
==CR2==
* {{medline-title
|title=Age-related but not longevity-related genes are found by weighted gene co-expression network analysis in the peripheral blood cells of humans.
|date=19.01.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30541985
|full-text-url=https://sci-hub.do/10.1266/ggs.17-00052
}}
==CRB1==
* {{medline-title
|title=[[MPP3]] regulates levels of PALS1 and adhesion between photoreceptors and Müller cells.
|date=10.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23893895
|full-text-url=https://sci-hub.do/10.1002/glia.22545
}}
}}
==CRBN==
==CRBN==
Строка 9245: Строка 10 317:
|full-text-url=https://sci-hub.do/10.1016/j.bbadis.2014.05.027
|full-text-url=https://sci-hub.do/10.1016/j.bbadis.2014.05.027
}}
}}
==CRHR1==
==CRIP2==


* {{medline-title
* {{medline-title
|title=Koolen-de Vries Syndrome: Clinical Report of an Adult and Literature Review.
|title=Transcriptomics of cortical gray matter thickness decline during normal aging.
|date=2016
|date=15.11.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27852077
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23707588
|full-text-url=https://sci-hub.do/10.1159/000452724
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759649
}}
}}
==CRISPLD2==
==CRISPLD2==
Строка 9284: Строка 10 356:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26695409
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26695409
|full-text-url=https://sci-hub.do/10.1007/s00394-015-1134-4
|full-text-url=https://sci-hub.do/10.1007/s00394-015-1134-4
}}
==CRX==
* {{medline-title
|title=Transcription coactivators p300 and CBP are necessary for photoreceptor-specific chromatin organization and gene expression.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23922782
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724885
}}
}}
==CRYAA==
==CRYAA==
Строка 9324: Строка 10 404:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30040071
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30040071
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6256814
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6256814
}}
==CSGALNACT1==
* {{medline-title
|title=Alterations in the chondroitin sulfate chain in human osteoarthritic cartilage of the knee.
|date=02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24280246
|full-text-url=https://sci-hub.do/10.1016/j.joca.2013.11.010
}}
}}
==CSN2==
==CSN2==
Строка 9340: Строка 10 428:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28254385
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28254385
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5392537
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5392537
}}
==CSNK1G2==
* {{medline-title
|title=Casein kinase 1G2 suppresses necroptosis-promoted testis aging by inhibiting receptor-interacting kinase 3.
|date=18.11.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33206046
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673785
}}
}}
==CST3==
==CST3==
Строка 9348: Строка 10 444:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26911903
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26911903
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766395
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766395
}}
==CST5==
* {{medline-title
|title=Systemic Inflammation and the Increased Risk of Inflamm-Aging and Age-Associated Diseases in People Living With HIV on Long Term Suppressive Antiretroviral Therapy.
|date=2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31507593
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718454
}}
}}
==CSTF2T==
==CSTF2T==
Строка 9380: Строка 10 484:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26912063
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26912063
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765225
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765225
}}
==CTSD==
* {{medline-title
|title=Serum levels of cathepsin D, sirtuin1, and endothelial nitric oxide synthase are correlatively reduced in elderly healthy people.
|date=08.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26462844
|full-text-url=https://sci-hub.do/10.1007/s40520-015-0472-7
}}
}}
==CTSK==
==CTSK==
Строка 9404: Строка 10 500:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29234488
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29234488
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724804
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724804
}}
==CTU2==
* {{medline-title
|title=Chromosomal alterations among age-related haematopoietic clones in Japan.
|date=08.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32581364
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7489641
}}
==CTXND1==
* {{medline-title
|title=Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies.
|date=03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109663
|full-text-url=https://sci-hub.do/10.1016/j.atherosclerosis.2020.02.005
}}
}}
==CUBN==
==CUBN==
Строка 9460: Строка 10 572:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30710528
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30710528
|full-text-url=https://sci-hub.do/10.1053/j.gastro.2019.01.247
|full-text-url=https://sci-hub.do/10.1053/j.gastro.2019.01.247
}}
==CXXC1==
* {{medline-title
|title=The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators.
|date=29.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32997995
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527782
}}
}}
==CXXC5==
==CXXC5==
Строка 9476: Строка 10 596:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29706024
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29706024
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052403
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052403
}}
==CYBA==
* {{medline-title
|title=[Association between 242C > T polymorphism of NADPH oxidase p22phox gene ([[CYBA]]) and longevity in Russian population].
|date=03.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23755540
|full-text-url=https://sci-hub.do/10.7868/s0016675813020136
}}
}}
==CYCS==
==CYCS==
Строка 9540: Строка 10 668:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26388416
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26388416
|full-text-url=https://sci-hub.do/10.1017/S0007114515003517
|full-text-url=https://sci-hub.do/10.1017/S0007114515003517
}}
==CYSLTR2==
* {{medline-title
|title=Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies.
|date=03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109663
|full-text-url=https://sci-hub.do/10.1016/j.atherosclerosis.2020.02.005
}}
}}
==DAPK2==
==DAPK2==
Строка 9548: Строка 10 684:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31277379
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31277379
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651490
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651490
}}
==DAZL==
* {{medline-title
|title=[[DAZL]] Regulates Germ Cell Survival through a Network of PolyA-Proximal mRNA Interactions.
|date=30.10.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30380414
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6878787
}}
}}
==DCAF17==
==DCAF17==
Строка 9612: Строка 10 740:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31260804
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31260804
|full-text-url=https://sci-hub.do/10.1016/j.reprotox.2019.06.011
|full-text-url=https://sci-hub.do/10.1016/j.reprotox.2019.06.011
}}
==DCXR==
* {{medline-title
|title=Dicarbonyl/l-xylulose reductase ([[DCXR]]): The multifunctional pentosuria enzyme.
|date=11.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23988570
|full-text-url=https://sci-hub.do/10.1016/j.biocel.2013.08.010
}}
}}
==DDI2==
==DDI2==
Строка 9637: Строка 10 773:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6363044
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6363044
}}
}}
==DEFB1==
==DDX25==


* {{medline-title
* {{medline-title
|title=Association of Polymorphisms in Innate Immunity Genes [[TLR9]] and [[DEFB1]] with Human Longevity.
|title=Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice.
|date=05.2015
|date=01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31472347
|full-text-url=https://sci-hub.do/10.1016/j.chemosphere.2019.124650
}}
==DEFB1==
 
* {{medline-title
|title=Association of Polymorphisms in Innate Immunity Genes [[TLR9]] and [[DEFB1]] with Human Longevity.
|date=05.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26028230
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26028230
|full-text-url=https://sci-hub.do/10.1007/s10517-015-2894-9
|full-text-url=https://sci-hub.do/10.1007/s10517-015-2894-9
}}
==DEFB4B==
* {{medline-title
|title=Different expression of Defensin-B gene in the endometrium of mares of different age during the breeding season.
|date=21.12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31864349
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925900
}}
==DEK==
* {{medline-title
|title=Altered miRNA and mRNA Expression in Sika Deer Skeletal Muscle with Age.
|date=06.02.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32041309
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073773
}}
==DEPDC1==
* {{medline-title
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335
}}
}}
==DEPDC5==
==DEPDC5==
Строка 9676: Строка 10 844:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26776442
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26776442
|full-text-url=https://sci-hub.do/10.1016/j.jsbmb.2016.01.005
|full-text-url=https://sci-hub.do/10.1016/j.jsbmb.2016.01.005
}}
==DHFR==
* {{medline-title
|title=Excessive folic acid intake and relation to adverse health outcome.
|date=07.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27131640
|full-text-url=https://sci-hub.do/10.1016/j.biochi.2016.04.010
}}
}}
==DHRS2==
==DHRS2==
Строка 9725: Строка 10 885:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795392
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795392
}}
}}
==DLC1==
==DLG1==


* {{medline-title
* {{medline-title
|title=Resveratrol promotes oxidative stress to drive [[DLC1]] mediated cellular senescence in cancer cells.
|title=Altered expression of genes for Kir ion channels in dilated cardiomyopathy.
|date=15.09.2018
|date=08.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29964052
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23889090
|full-text-url=https://sci-hub.do/10.1016/j.yexcr.2018.06.031
|full-text-url=https://sci-hub.do/10.1139/cjpp-2012-0413
}}
}}
==DLGAP2==
==DLGAP2==
Строка 9740: Строка 10 900:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32877673
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32877673
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7502175
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7502175
}}
==DLK1==
* {{medline-title
|title=Dual role of delta-like 1 homolog ([[DLK1]]) in skeletal muscle development and adult muscle regeneration.
|date=09.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23946446
|full-text-url=https://sci-hub.do/10.1242/dev.095810
}}
}}
==DLL1==
==DLL1==
Строка 9804: Строка 10 972:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29503614
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29503614
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5820363
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5820363
}}
==DNM1L==
* {{medline-title
|title=Aberrant mitochondrial morphology and function associated with impaired mitophagy and [[DNM1L]]-MAPK/ERK signaling are found in aged mutant Parkinsonian [[LRRK2]]  mice.
|date=10.12.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33300446
|full-text-url=https://sci-hub.do/10.1080/15548627.2020.1850008
}}
}}
==DNM2==
==DNM2==
Строка 9820: Строка 10 996:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32195249
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32195249
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064442
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064442
}}
==DOCK7==
* {{medline-title
|title=Altered thermogenesis and impaired bone remodeling in Misty mice.
|date=09.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23553822
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3743939
}}
}}
==DPP6==
==DPP6==
Строка 9844: Строка 11 028:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29234488
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29234488
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724804
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724804
}}
==DRD1==
* {{medline-title
|title=Impact of dopamine-related genetic variants on physical activity in old age - a cohort study.
|date=24.05.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32448293
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245799
}}
}}
==DSC1==
==DSC1==
Строка 9860: Строка 11 036:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29561322
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29561322
|full-text-url=https://sci-hub.do/10.1097/HCO.0000000000000508
|full-text-url=https://sci-hub.do/10.1097/HCO.0000000000000508
}}
==DSC2==
* {{medline-title
|title=Age-dependent clinical and genetic characteristics in Japanese patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23514727
|full-text-url=https://sci-hub.do/10.1253/circj.cj-12-1446
}}
}}
==DSG1==
==DSG1==
Строка 9868: Строка 11 052:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24629169
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24629169
|full-text-url=https://sci-hub.do/10.1111/gbb.12132
|full-text-url=https://sci-hub.do/10.1111/gbb.12132
}}
==DSG2==
* {{medline-title
|title=Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population.
|date=11.04.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28199971
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421828
}}
==DSPP==
* {{medline-title
|title=Effects of [i]p[/i]-Cresol on Senescence, Survival, Inflammation, and Odontoblast Differentiation in Canine Dental Pulp Stem Cells.
|date=21.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32967298
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555360
}}
}}
==DTL==
==DTL==
Строка 9940: Строка 11 108:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32348937
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32348937
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191129
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191129
}}
==DUSP2==
* {{medline-title
|title=Aging Increases Hippocampal [[DUSP2]] by a Membrane Cholesterol Loss-Mediated RTK/p38MAPK Activation Mechanism.
|date=2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31293510
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603139
}}
}}
==DUSP6==
==DUSP6==
Строка 9980: Строка 11 140:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27884142
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27884142
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5123374
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5123374
}}
==DYNC1H1==
* {{medline-title
|title=Dynein mutations associated with hereditary motor neuropathies impair mitochondrial morphology and function with age.
|date=10.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23742762
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3748180
}}
}}
==DYNC2H1==
==DYNC2H1==
Строка 9989: Строка 11 157:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6280794
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6280794
}}
}}
==ECE1==
==DYNLT3==


* {{medline-title
* {{medline-title
|title=Ferulic Acid Suppresses Amyloid [i]β[/i] Production in the Human Lens Epithelial Cell Stimulated with Hydrogen Peroxide.
|title=Age-associated genes in human mammary gland drive human breast cancer progression.
|date=2017
|date=15.06.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32539762
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7294649
}}
==ECE1==
 
* {{medline-title
|title=Ferulic Acid Suppresses Amyloid [i]β[/i] Production in the Human Lens Epithelial Cell Stimulated with Hydrogen Peroxide.
|date=2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28409157
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28409157
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376927
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376927
Строка 10 037: Строка 11 213:
|full-text-url=https://sci-hub.do/10.1093/pcp/pcaa145
|full-text-url=https://sci-hub.do/10.1093/pcp/pcaa145
}}
}}
==EDN1==
==EDNRA==


* {{medline-title
* {{medline-title
|title=Dexamethasone downregulates [[SIRT1]] and [[IL6]] and upregulates [[EDN1]] genes in stem cells derived from gingivae via the AGE/RAGE pathway.
|title=Variation in genes in the endothelin pathway and endothelium-dependent and endothelium-independent vasodilation in an elderly population.
|date=03.2018
|date=05.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29302812
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23336501
|full-text-url=https://sci-hub.do/10.1007/s10529-017-2493-0
|full-text-url=https://sci-hub.do/10.1111/apha.12068
}}
}}
==EDNRB==
==EEA1==


* {{medline-title
* {{medline-title
|title=Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease.
|title=Quantitative Immunoblotting Analyses Reveal that the Abundance of Actin, Tubulin, Synaptophysin and [[EEA1]] Proteins is Altered in the Brains of Aged Mice.
|date=03.03.2016
|date=21.08.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26863197
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32652177
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846424
|full-text-url=https://sci-hub.do/10.1016/j.neuroscience.2020.06.044
}}
==EED==
 
* {{medline-title
|title=Economic evaluations of eHealth technologies: A systematic review.
|date=2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29897921
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5999277
}}
}}
==EEF1A1==
==EEF1A1==
Строка 10 100: Строка 11 268:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26980243
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26980243
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791873
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791873
}}
==EGFEM1P==
* {{medline-title
|title=Identifying blood-specific age-related DNA methylation markers on the Illumina MethylationEPIC® BeadChip.
|date=10.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31546163
|full-text-url=https://sci-hub.do/10.1016/j.forsciint.2019.109944
}}
}}
==EGR2==
==EGR2==
Строка 10 108: Строка 11 284:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24644060
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24644060
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4258100
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4258100
}}
==EHMT1==
* {{medline-title
|title=Two conserved epigenetic regulators prevent healthy ageing.
|date=03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32103178
|full-text-url=https://sci-hub.do/10.1038/s41586-020-2037-y
}}
}}
==EID3==
==EID3==
Строка 10 116: Строка 11 300:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30114644
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30114644
|full-text-url=https://sci-hub.do/10.1016/j.biopha.2018.08.022
|full-text-url=https://sci-hub.do/10.1016/j.biopha.2018.08.022
}}
==EIF2AK3==
* {{medline-title
|title=The unfolded protein response is activated in disease-affected brain regions in progressive supranuclear palsy and Alzheimer's disease.
|date=06.07.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24252572
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893579
}}
}}
==EIF2B2==
==EIF2B2==
Строка 10 148: Строка 11 340:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32424344
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32424344
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235038
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235038
}}
==EIF4EBP1==
* {{medline-title
|title=Peripheral Circulating Exosomal miRNAs Potentially Contribute to the Regulation of Molecular Signaling Networks in Aging.
|date=11.03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32168775
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139634
}}
}}
==ELANE==
==ELANE==
Строка 10 213: Строка 11 413:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827
}}
}}
==EOMES==
==ENTPD1==


* {{medline-title
* {{medline-title
|title=Eomesodermin Expression in CD4  T Cells Restricts Peripheral Foxp3 Induction.
|title=Ecto-NTPDase CD39 is a negative checkpoint that inhibits follicular helper cell generation.
|date=15.11.2015
|date=01.07.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26453746
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32452837
|full-text-url=https://sci-hub.do/10.4049/jimmunol.1501159
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324201
}}
}}
==EPG5==
==EPG5==
Строка 10 228: Строка 11 428:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29486404
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29486404
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882010
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882010
}}
==EPHA3==
* {{medline-title
|title=A high-content cellular senescence screen identifies candidate tumor suppressors, including [[EPHA3]].
|date=15.02.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23324396
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3594263
}}
==EPHA7==
* {{medline-title
|title=Impact of host ageing on the metastatic phenotype.
|date=03.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23403123
|full-text-url=https://sci-hub.do/10.1016/j.mad.2013.02.001
}}
}}
==ERAP1==
==ERAP1==
Строка 10 252: Строка 11 468:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30566395
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30566395
|full-text-url=https://sci-hub.do/10.1096/fj.201801690R
|full-text-url=https://sci-hub.do/10.1096/fj.201801690R
}}
==ERCC2==
* {{medline-title
|title=The genetic component of human longevity: New insights from the analysis of pathway-based SNP-SNP interactions.
|date=06.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29577582
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946073
}}
}}
==ERCC5==
==ERCC5==
Строка 10 260: Строка 11 484:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30838033
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30838033
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383105
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383105
}}
==ERCC6==
* {{medline-title
|title=Two Cockayne Syndrome patients with a novel splice site mutation - clinical and metabolic analyses.
|date=10.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29944916
|full-text-url=https://sci-hub.do/10.1016/j.mad.2018.06.001
}}
}}
==ERCC8==
==ERCC8==
Строка 10 284: Строка 11 500:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25786490
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25786490
|full-text-url=https://sci-hub.do/10.1071/RD14472
|full-text-url=https://sci-hub.do/10.1071/RD14472
}}
==ERVK-7==
* {{medline-title
|title=Effect of aging on the transcriptomic changes associated with the expression of the HERV-K (HML-2) provirus at 1q22.
|date=2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32435269
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218820
}}
}}
==ESCO1==
==ESCO1==
Строка 10 317: Строка 11 541:
|full-text-url=https://sci-hub.do/10.1530/EJE-14-0006
|full-text-url=https://sci-hub.do/10.1530/EJE-14-0006
}}
}}
==ETV5==
==ETNK2==


* {{medline-title
* {{medline-title
|title=miR-19b-3p induces cell proliferation and reduces heterochromatin-mediated senescence through PLZF in goat male germline stem cells.
|title=In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases.
|date=06.2018
|date=12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29171024
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31520345
|full-text-url=https://sci-hub.do/10.1002/jcp.26231
|full-text-url=https://sci-hub.do/10.1007/s10522-019-09834-1
}}
==ETV1==
 
* {{medline-title
|title=Survival analyses in Holstein cows considering direct disease diagnoses and specific SNP marker effects.
|date=09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32684467
|full-text-url=https://sci-hub.do/10.3168/jds.2020-18174
}}
==ETV5==
 
* {{medline-title
|title=miR-19b-3p induces cell proliferation and reduces heterochromatin-mediated senescence through PLZF in goat male germline stem cells.
|date=06.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29171024
|full-text-url=https://sci-hub.do/10.1002/jcp.26231
}}
}}
==ETV6==
==ETV6==
Строка 10 389: Строка 11 629:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5380955
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5380955
}}
}}
==EZR==
==EZH1==


* {{medline-title
* {{medline-title
|title=Proteomic analysis of six- and twelve-month hippocampus and cerebellum in a murine Down syndrome model.
|title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development.
|date=03.2018
|date=24.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29245059
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5801041
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659
}}
}}
==F10==
==F10==
Строка 10 404: Строка 11 644:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30097108
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30097108
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.06.008
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.06.008
}}
==F11==
* {{medline-title
|title=A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium.
|date=07.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23650146
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990406
}}
}}
==F11R==
==F11R==
Строка 10 420: Строка 11 668:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30508263
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30508263
|full-text-url=https://sci-hub.do/10.1002/etc.4307
|full-text-url=https://sci-hub.do/10.1002/etc.4307
}}
==F8==
* {{medline-title
|title=Correlations between the signal complexity of cerebral and cardiac electrical activity: a multiscale entropy analysis.
|date=2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24498375
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912068
}}
}}
==FA2H==
==FA2H==
Строка 10 436: Строка 11 676:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30184537
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30184537
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428043
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428043
}}
==FABP1==
* {{medline-title
|title=Expression of digestive enzyme and intestinal transporter genes during chronic heat stress in the thermally manipulated broiler chicken.
|date=01.09.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31065718
|full-text-url=https://sci-hub.do/10.3382/ps/pez249
}}
==FADS1==
* {{medline-title
|title=Aging and [[FADS1]] polymorphisms decrease the biosynthetic capacity of long-chain PUFAs: A human trial using [U- C]linoleic acid.
|date=09.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31492428
|full-text-url=https://sci-hub.do/10.1016/j.plefa.2019.07.003
}}
}}
==FADS2==
==FADS2==
Строка 10 476: Строка 11 700:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29930218
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29930218
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6046246
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6046246
}}
==FAR2==
* {{medline-title
|title=[[FAR2]] is associated with kidney disease in mice and humans.
|date=01.08.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29652635
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6139637
}}
}}
==FAT4==
==FAT4==
Строка 10 508: Строка 11 724:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27720640
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27720640
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5080600
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5080600
}}
==FBXO33==
* {{medline-title
|title=Quantitative and Qualitative Role of Antagonistic Heterogeneity in Genetics of Blood Lipids.
|date=25.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31566214
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518561
}}
}}
==FBXO46==
==FBXO46==
Строка 10 612: Строка 11 836:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26687232
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26687232
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916041
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916041
}}
==FGF7==
* {{medline-title
|title=Prostatic microenvironment in senescence: fibroblastic growth factors × hormonal imbalance.
|date=05.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24362909
|full-text-url=https://sci-hub.do/10.1007/s00418-013-1173-y
}}
==FGF8==
* {{medline-title
|title=Prostatic microenvironment in senescence: fibroblastic growth factors × hormonal imbalance.
|date=05.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24362909
|full-text-url=https://sci-hub.do/10.1007/s00418-013-1173-y
}}
}}
==FGFBP1==
==FGFBP1==
Строка 10 621: Строка 11 861:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5214636
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5214636
}}
}}
==FGG==
==FGFR3==


* {{medline-title
* {{medline-title
|title=Candidate SNP associations of optimism and resilience in older adults: exploratory study of 935 community-dwelling adults.
|title=New evidence for positive selection helps explain the paternal age effect observed in achondroplasia.
|date=10.2014
|date=15.10.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24791650
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23740942
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163500
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781639
}}
}}
==FGL2==
==FGL2==
Строка 10 636: Строка 11 876:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28063478
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28063478
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5267323
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5267323
}}
==FICD==
* {{medline-title
|title=Defining the limits of normal conjunctival fornix anatomy in a healthy South Asian population.
|date=02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24314841
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991394
}}
}}
==FIG4==
==FIG4==
Строка 10 653: Строка 11 901:
|full-text-url=https://sci-hub.do/10.3109/19396368.2015.1077903
|full-text-url=https://sci-hub.do/10.3109/19396368.2015.1077903
}}
}}
==FKRP==
==FKBP1A==


* {{medline-title
* {{medline-title
|title=Progressive Dystrophic Pathology in Diaphragm and Impairment of Cardiac Function in [[FKRP]] P448L Mutant Mice.
|title=The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells.
|date=29.07.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32727592
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392710
}}
==FKBP1B==
 
* {{medline-title
|title=The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells.
|date=29.07.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32727592
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392710
}}
==FKRP==
 
* {{medline-title
|title=Progressive Dystrophic Pathology in Diaphragm and Impairment of Cardiac Function in [[FKRP]] P448L Mutant Mice.
|date=2016
|date=2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27711214
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27711214
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053477
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053477
}}
==FLCN==
* {{medline-title
|title=Loss of the Birt-Hogg-Dubé gene product folliculin induces longevity in a hypoxia-inducible factor-dependent manner.
|date=08.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23566034
|full-text-url=https://sci-hub.do/10.1111/acel.12081
}}
}}
==FLNA==
==FLNA==
Строка 10 676: Строка 11 948:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28978821
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28978821
|full-text-url=https://sci-hub.do/10.11406/rinketsu.58.1828
|full-text-url=https://sci-hub.do/10.11406/rinketsu.58.1828
}}
==FLT4==
* {{medline-title
|title=Impact of Aging on the Phenotype of Invariant Natural Killer T Cells in Mouse Thymus.
|date=2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33193368
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662090
}}
}}
==FMN2==
==FMN2==
Строка 10 720: Строка 12 000:


* {{medline-title
* {{medline-title
|title=LncRNA GUARDIN suppresses cellular senescence through a LRP130-PGC1α-FOXO4-p21-dependent signaling axis.
|title=LncRNA GUARDIN suppresses cellular senescence through a LRP130-PGC1α-[[FOXO4]]-p21-dependent signaling axis.
|date=03.04.2020
|date=03.04.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32149459
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32149459
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132339
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132339
}}
==FOXA3==
* {{medline-title
|title=Glucose restriction delays senescence and promotes proliferation of HUVECs via the AMPK/[[SIRT1]]-[[FOXA3]]-Beclin1 pathway.
|date=01.10.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32768436
|full-text-url=https://sci-hub.do/10.1016/j.exger.2020.111053
}}
}}
==FOXD1==
==FOXD1==
Строка 10 732: Строка 12 020:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30225541
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30225541
|full-text-url=https://sci-hub.do/10.1007/s00432-018-2745-y
|full-text-url=https://sci-hub.do/10.1007/s00432-018-2745-y
}}
==FOXP2==
* {{medline-title
|title=Identification of the neurotransmitter profile of AmFoxP expressing neurons in the honeybee brain using double-label in situ hybridization.
|date=06.11.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30400853
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219247
}}
}}
==FOXP4==
==FOXP4==
Строка 10 781: Строка 12 061:
|full-text-url=https://sci-hub.do/10.1017/S2040174419000060
|full-text-url=https://sci-hub.do/10.1017/S2040174419000060
}}
}}
==FSTL1==
==FSHB==


* {{medline-title
* {{medline-title
|title=Blocking the [[FSTL1]]-[[DIP2A]] Axis Improves Anti-tumor Immunity.
|title=Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome.
|date=14.08.2018
|date=29.09.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30110636
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26416764
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2018.07.043
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598835
}}
}}
==FSTL5==
==FSTL5==
Строка 10 796: Строка 12 076:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27878761
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27878761
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441979
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441979
}}
==FTL==
* {{medline-title
|title=Noncoding variation of the gene for ferritin light chain in hereditary and age-related cataract.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23592921
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3626299
}}
}}
==FZD1==
==FZD1==
Строка 10 861: Строка 12 149:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5764388
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5764388
}}
}}
==GABARAP==
==GABRR3==


* {{medline-title
* {{medline-title
|title=Age-dependent loss of adipose Rubicon promotes metabolic disorders via excess autophagy.
|title=Discovery of novel non-synonymous SNP variants in 988 candidate genes from 6 centenarians by target capture and next-generation sequencing.
|date=18.08.2020
|date=10.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32811819
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23376243
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7434891
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787996
}}
}}
==GADD45B==
==GADD45B==
Строка 10 893: Строка 12 181:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5453174
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5453174
}}
}}
==GAK==
==GAGE10==
 
* {{medline-title
|title=An epigenome-wide association study of sex-specific chronological ageing.
|date=31.12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31892350
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938636
}}
==GALNT18==


* {{medline-title
* {{medline-title
|title=Auxilin Underlies Progressive Locomotor Deficits and Dopaminergic Neuron Loss in a Drosophila Model of Parkinson's Disease.
|title=Genome-wide association study identifies [i]SIAH3[/i] locus influencing the rate of ventricular enlargement in non-demented elders.
|date=31.01.2017
|date=11.11.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28147270
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31711042
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2017.01.005
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874439
}}
}}
==GALNT3==
==GAR1==


* {{medline-title
* {{medline-title
|title=N-ethyl-N-Nitrosourea (ENU) induced mutations within the klotho gene lead to ectopic calcification and reduced lifespan in mouse models.
|title=Pseudouridylation defect due to [i]DKC1[/i] and [i][[NOP10]][/i] mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis.
|date=2015
|date=30.06.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25860694
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32554502
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393098
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334496
}}
}}
==GART==
==GART==
Строка 10 940: Строка 12 236:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31299382
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31299382
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6708771
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6708771
}}
==GBA2==
* {{medline-title
|title=Reduced sphingolipid hydrolase activities, substrate accumulation and ganglioside decline in Parkinson's disease.
|date=08.11.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31703585
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842240
}}
}}
==GBF1==
==GBF1==
Строка 10 964: Строка 12 268:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27871051
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27871051
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209269
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209269
}}
==GCNA==
* {{medline-title
|title=Acceleration of age-associated methylation patterns in HIV-1-infected adults.
|date=2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25807146
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4373843
}}
}}
==GCNT2==
==GCNT2==
Строка 11 140: Строка 12 436:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24936415
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24936415
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053639
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053639
}}
==GNA11==
* {{medline-title
|title=[[GNAQ]]  expression initiated in multipotent neural crest cells drives aggressive melanoma of the central nervous system.
|date=01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31680437
|full-text-url=https://sci-hub.do/10.1111/pcmr.12843
}}
}}
==GNA14==
==GNA14==
Строка 11 149: Строка 12 453:
|full-text-url=https://sci-hub.do/10.4238/gmr16029091
|full-text-url=https://sci-hub.do/10.4238/gmr16029091
}}
}}
==GNAQ==
==GNG11==
 
* {{medline-title
|title=[[GNAQ]]  expression initiated in multipotent neural crest cells drives aggressive melanoma of the central nervous system.
|date=01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31680437
|full-text-url=https://sci-hub.do/10.1111/pcmr.12843
}}
==GNG11==


* {{medline-title
* {{medline-title
Строка 11 180: Строка 12 476:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30128650
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30128650
|full-text-url=https://sci-hub.do/10.1007/s12035-018-1307-2
|full-text-url=https://sci-hub.do/10.1007/s12035-018-1307-2
}}
==GNPDA2==
* {{medline-title
|title=The influence of obesity-related single nucleotide polymorphisms on BMI across the life course: the PAGE study.
|date=05.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23300277
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636619
}}
}}
==GNRH2==
==GNRH2==
Строка 11 204: Строка 12 508:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29995770
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29995770
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076205
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076205
}}
==GOT2==
* {{medline-title
|title=An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence.
|date=12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31531781
|full-text-url=https://sci-hub.do/10.1007/s00425-019-03272-6
}}
}}
==GP1BA==
==GP1BA==
Строка 11 213: Строка 12 525:
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204
}}
}}
==GP2==
==GP9==


* {{medline-title
* {{medline-title
|title=Estimation of human age using N-glycan profiles from bloodstains.
|title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity.
|date=09.2015
|date=31.01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25787342
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4550657
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708
}}
}}
==GPBAR1==
==GPBAR1==
Строка 11 268: Строка 12 580:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29163355
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29163355
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5663685
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5663685
}}
==GPR158==
* {{medline-title
|title=RbAp48 Protein Is a Critical Component of [[GPR158]]/OCN Signaling and Ameliorates Age-Related Memory Loss.
|date=23.10.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30355501
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725275
}}
}}
==GPR173==
==GPR173==
Строка 11 308: Строка 12 612:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29656342
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29656342
|full-text-url=https://sci-hub.do/10.1007/s00441-018-2835-9
|full-text-url=https://sci-hub.do/10.1007/s00441-018-2835-9
}}
==GPR4==
* {{medline-title
|title=The proton-activated receptor [[GPR4]] modulates glucose homeostasis by increasing insulin sensitivity.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24296356
|full-text-url=https://sci-hub.do/10.1159/000356578
}}
}}
==GPR6==
==GPR6==
Строка 11 316: Строка 12 628:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32959881
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32959881
|full-text-url=https://sci-hub.do/10.1093/infdis/jiaa599
|full-text-url=https://sci-hub.do/10.1093/infdis/jiaa599
}}
==GPR78==
* {{medline-title
|title=A meta-analysis of genome-wide association studies identifies multiple longevity genes.
|date=14.08.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31413261
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6694136
}}
}}
==GPRC5C==
==GPRC5C==
Строка 11 340: Строка 12 660:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29659168
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29659168
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052468
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052468
}}
==GRAP==
* {{medline-title
|title=ASSOCIATION OF PREVASCUL[[AR]] [[VIT]]REOUS FISSURES AND CISTERNS WI[[TH]] [[VIT]]REOUS DEGENERATION AS ASSESSED BY SWEPT SOURCE OPTICAL COHE[[REN]]CE TO[[MOG]]RAPHY.
|date=09.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25874366
|full-text-url=https://sci-hub.do/10.1097/IAE.0000000000000540
}}
}}
==GREM1==
==GREM1==
Строка 11 432: Строка 12 744:


* {{medline-title
* {{medline-title
|title=The loss of glucose-regulated protein 78 ([[GRP]]78) during normal aging or from siRNA knockdown augments human alpha-synuclein (α-syn) toxicity to rat nigral neurons.
|title=A new approach to quantifying the EEG during walking: Initial evidence of gait related potentials and their changes with aging and dual tasking.
|date=06.2015
|date=15.10.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25863526
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31449852
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4433578
|full-text-url=https://sci-hub.do/10.1016/j.exger.2019.110709
}}
}}
==GRPR==
==GRPR==
Строка 11 452: Строка 12 764:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30240538
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30240538
|full-text-url=https://sci-hub.do/10.1002/tox.22651
|full-text-url=https://sci-hub.do/10.1002/tox.22651
}}
==GSR==
* {{medline-title
|title=Meeting the Need for Training in Geriatrics: The Geriatrics Education for Specialty Residents Program.
|date=10.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28513843
|full-text-url=https://sci-hub.do/10.1111/jgs.14966
}}
}}
==GSTA3==
==GSTA3==
Строка 11 468: Строка 12 772:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25001375
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25001375
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150915
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150915
}}
==GSTK1==
* {{medline-title
|title=Age-associated changes in GSH S-transferase gene/proteins in livers of rats.
|date=12.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30444463
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748684
}}
}}
==GSTM2==
==GSTM2==
Строка 11 500: Строка 12 796:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30444463
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30444463
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748684
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748684
}}
==GTF3C4==
* {{medline-title
|title=A multidimensional systems biology analysis of cellular senescence in aging and disease.
|date=07.04.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264951
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333371
}}
}}
==GTSF1==
==GTSF1==
Строка 11 516: Строка 12 820:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32232569
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32232569
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367712
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367712
}}
==GUSB==
* {{medline-title
|title=Identification of reference genes for RT-qPCR data normalisation in aging studies.
|date=27.09.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31562345
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764958
}}
}}
==GYS2==
==GYS2==
Строка 11 572: Строка 12 884:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30622695
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30622695
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317223
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317223
}}
==HAMP==
* {{medline-title
|title=A potent tilapia secreted granulin peptide enhances the survival of transgenic zebrafish infected by Vibrio vulnificus via modulation of innate immunity.
|date=04.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29408220
|full-text-url=https://sci-hub.do/10.1016/j.fsi.2018.01.044
}}
}}
==HAP1==
==HAP1==
Строка 11 581: Строка 12 901:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6009585
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6009585
}}
}}
==HAS3==
==HAUS4==


* {{medline-title
* {{medline-title
|title=Microneedle fractional radiofrequency increases epidermal hyaluronan and reverses age-related epidermal dysfunction.
|title=A multidimensional systems biology analysis of cellular senescence in aging and disease.
|date=02.2016
|date=07.04.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26415023
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264951
|full-text-url=https://sci-hub.do/10.1002/lsm.22420
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333371
}}
}}
==HAX1==
==HAX1==
Строка 11 613: Строка 12 933:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4926181
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4926181
}}
}}
==HCRT==
==HDAC10==


* {{medline-title
* {{medline-title
|title=Age-related central regulation of orexin and [[NPY]] in the short-lived African killifish Nothobranchius furzeri.
|title=Middle-aged female rats lack changes in histone H3 acetylation in the anterior hypothalamus observed in young females on the day of a luteinizing hormone surge.
|date=15.05.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30666646
|full-text-url=https://sci-hub.do/10.1002/cne.24638
}}
==HDAC10==
 
* {{medline-title
|title=Middle-aged female rats lack changes in histone H3 acetylation in the anterior hypothalamus observed in young females on the day of a luteinizing hormone surge.
|date=17.09.2019
|date=17.09.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31434815
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31434815
Строка 11 644: Строка 12 956:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29951776
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29951776
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096771
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096771
}}
==HDAC9==
* {{medline-title
|title=MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation.
|date=04.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25751060
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4396470
}}
}}
==HDC==
==HDC==
Строка 11 668: Строка 12 972:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28105936
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28105936
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5249001
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5249001
}}
==HELLS==
* {{medline-title
|title=The Ubiquitin-like with PHD and Ring Finger Domains 1 ([[UHRF1]])/DNA Methyltransferase 1 ([[DNMT1]]) Axis Is a Primary Regulator of Cell Senescence.
|date=03.03.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28100769
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5339756
}}
}}
==HEPN1==
==HEPN1==
Строка 11 740: Строка 13 036:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27314075
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27314075
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4909421
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4909421
}}
==HJURP==
* {{medline-title
|title=[[HJURP]] regulates cellular senescence in human fibroblasts and endothelial cells via a p53-dependent pathway.
|date=08.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23292286
|full-text-url=https://sci-hub.do/10.1093/gerona/gls257
}}
}}
==HJV==
==HJV==
Строка 11 748: Строка 13 052:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30884219
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30884219
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596404
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596404
}}
==HK1==
* {{medline-title
|title=Genome-wide association study identifies common loci influencing circulating glycated hemoglobin (HbA1c) levels in non-diabetic subjects: the Long Life Family Study (LLFS).
|date=04.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24405752
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965585
}}
}}
==HLA-DMA==
==HLA-DMA==
Строка 11 820: Строка 13 116:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28178143
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28178143
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5313000
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5313000
}}
==HMGA1==
* {{medline-title
|title=Characterization of [i][[HMGA1]]P6[/i] transgenic mouse embryonic fibroblasts.
|date=09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32787507
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513866
}}
}}
==HMGCS2==
==HMGCS2==
Строка 11 836: Строка 13 124:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24597284
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24597284


}}
==HMGN2==
* {{medline-title
|title=FAM96B inhibits the senescence of dental pulp stem cells.
|date=05.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32039527
|full-text-url=https://sci-hub.do/10.1002/cbin.11319
}}
}}
==HMMR==
==HMMR==
Строка 11 853: Строка 13 149:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5249001
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5249001
}}
}}
==HNF4A==
==HNF1A==
 
* {{medline-title
|title=The Impact of Biomarker Screening and Cascade Genetic Testing on the Cost-Effectiveness of MODY Genetic Testing.
|date=12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31558549
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868460
}}
==HNMT==


* {{medline-title
* {{medline-title
|title=Hepatocyte Nuclear Factor-4α P2 Promoter Variants Are Associated With the Risk of Metabolic Syndrome and Testosterone Deficiency in Aging Taiwanese Men.
|title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity.
|date=11.2018
|date=31.01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30415809
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721
|full-text-url=https://sci-hub.do/10.1016/j.jsxm.2018.09.012
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708
}}
}}
==HNRNPA0==
==HNRNPA0==
Строка 11 909: Строка 13 213:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718529
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718529
}}
}}
==HOXA5==
==HOXA9==


* {{medline-title
* {{medline-title
|title=[[HOXA5]] localization in postnatal and adult mouse brain is suggestive of regulatory roles in postmitotic neurons.
|title=Co-regulation of senescence-associated genes by oncogenic homeobox proteins and polycomb repressive complexes.
|date=01.04.2017
|date=15.07.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27650319
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24067365
|full-text-url=https://sci-hub.do/10.1002/cne.24123
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3755069
}}
}}
==HOXB7==
==HOXB7==
Строка 11 956: Строка 13 260:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24486986
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24486986
|full-text-url=https://sci-hub.do/10.1088/1748-6041/9/2/025001
|full-text-url=https://sci-hub.do/10.1088/1748-6041/9/2/025001
}}
==HPR==
* {{medline-title
|title=Sod1 gene ablation in adult mice leads to physiological changes at the neuromuscular junction similar to changes that occur in old wild-type mice.
|date=07.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25841780
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762177
}}
}}
==HPSE==
==HPSE==
Строка 11 988: Строка 13 284:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30074739
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30074739


}}
==HRK==
* {{medline-title
|title=Gene expression of key regulators of mitochondrial biogenesis is sex dependent in mice with growth hormone receptor deletion in liver.
|date=03.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25855408
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4394730
}}
}}
==HS2ST1==
==HS2ST1==
Строка 12 028: Строка 13 316:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29341299
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29341299
|full-text-url=https://sci-hub.do/10.1111/bpa.12586
|full-text-url=https://sci-hub.do/10.1111/bpa.12586
}}
==HSF4==
* {{medline-title
|title=Effect of [[HSF4]]b on age related cataract may through its novel downstream target Hif1α.
|date=24.10.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25088997
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2014.07.118
}}
}}
==HSPA13==
==HSPA13==
Строка 12 052: Строка 13 332:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31965731
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31965731
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059143
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059143
}}
==HSPA4==
* {{medline-title
|title=Assessment of the risk of blastomere biopsy during preimplantation genetic diagnosis in a mouse model: reducing female ovary function with an increase in age by proteomics method.
|date=06.12.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24156634
|full-text-url=https://sci-hub.do/10.1021/pr400366j
}}
}}
==HSPA5==
==HSPA5==
Строка 12 084: Строка 13 372:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26636753
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26636753
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4670163
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4670163
}}
==HTR1B==
* {{medline-title
|title=Polymorphic variants of neurotransmitter receptor genes may affect sexual function in aging males: data from the HALS study.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23485949
|full-text-url=https://sci-hub.do/10.1159/000350324
}}
}}
==HTR2A==
==HTR2A==
Строка 12 116: Строка 13 412:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26636753
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26636753
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4670163
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4670163
}}
==HTRA2==
* {{medline-title
|title=A novel role for the mitochondrial [[HTRA2]]/OMI protease in aging.
|date=03.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23242108
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3590264
}}
}}
==HYOU1==
==HYOU1==
Строка 12 149: Строка 13 453:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031079
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031079
}}
}}
==ID2==
==IFI27==


* {{medline-title
* {{medline-title
|title=Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength.
|title=Ultraviolet B irradiation-induced keratinocyte senescence and impaired development of 3D epidermal reconstruct.
|date=10.2019
|date=01.06.2021
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31254144
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33151171
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733812
}}
==IDO1==
 
* {{medline-title
|title=Advanced age negatively impacts survival in an experimental brain tumor model.
|date=06.09.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27493076
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5006183
}}
==IFI27==
 
* {{medline-title
|title=Ultraviolet B irradiation-induced keratinocyte senescence and impaired development of 3D epidermal reconstruct.
|date=01.06.2021
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33151171
|full-text-url=https://sci-hub.do/10.2478/acph-2021-0011
|full-text-url=https://sci-hub.do/10.2478/acph-2021-0011
}}
}}
Строка 12 180: Строка 13 468:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29066255
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29066255
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821569
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821569
}}
==IFITM1==
* {{medline-title
|title=Age-Associated Changes in the Respiratory Epithelial Response to Influenza Infection.
|date=10.11.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29878083
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6230210
}}
==IFITM3==
* {{medline-title
|title=Small Extracellular Vesicles Are Key Regulators of Non-cell Autonomous Intercellular Communication in Senescence via the Interferon Protein [[IFITM3]].
|date=25.06.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31242426
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613042
}}
}}
==IFNAR2==
==IFNAR2==
Строка 12 220: Строка 13 492:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25866968
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25866968
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4463211
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4463211
}}
==IFT122==
* {{medline-title
|title=Co-chaperone p23 regulates C. elegans Lifespan in Response to Temperature.
|date=04.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25830239
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382338
}}
}}
==IFT140==
==IFT140==
Строка 12 260: Строка 13 524:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29080277
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29080277
|full-text-url=https://sci-hub.do/10.1111/rda.13091
|full-text-url=https://sci-hub.do/10.1111/rda.13091
}}
==IGHD==
* {{medline-title
|title=Growth Hormone Deficiency: Health and Longevity.
|date=01.04.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30576428
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416709
}}
}}
==IGHG2==
==IGHG2==
Строка 12 292: Строка 13 548:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26638776
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26638776
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686820
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686820
}}
==IGSF1==
* {{medline-title
|title=Age-related gene and miRNA expression changes in airways of healthy individuals.
|date=06.03.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30842487
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403379
}}
}}
==IKBKB==
==IKBKB==
Строка 12 324: Строка 13 572:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25878031
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25878031
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5175450
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5175450
}}
==IL12B==
* {{medline-title
|title=Association and Interaction Effects of Interleukin-12 Related Genes and Physical Activity on Cognitive Aging in Old Adults in the Taiwanese Population.
|date=2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31649612
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6795278
}}
}}
==IL13RA1==
==IL13RA1==
Строка 12 356: Строка 13 612:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29039977
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29039977
|full-text-url=https://sci-hub.do/10.1080/07420528.2017.1361436
|full-text-url=https://sci-hub.do/10.1080/07420528.2017.1361436
}}
==IL17RB==
* {{medline-title
|title=Identification of genes associated with endometrial cell aging.
|date=01.12.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33258951
|full-text-url=https://sci-hub.do/10.1093/molehr/gaaa078
}}
}}
==IL17RC==
==IL17RC==
Строка 12 364: Строка 13 628:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25089247
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25089247
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117863
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117863
}}
==IL18==
* {{medline-title
|title=Aging and the Inflammasomes.
|date=2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30536177
|full-text-url=https://sci-hub.do/10.1007/978-3-319-89390-7_13
}}
}}
==IL18RAP==
==IL18RAP==
Строка 12 380: Строка 13 636:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26281980
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26281980
|full-text-url=https://sci-hub.do/10.1007/s00586-015-4181-x
|full-text-url=https://sci-hub.do/10.1007/s00586-015-4181-x
}}
==IL1R2==
* {{medline-title
|title=Lower levels of interleukin-1β gene expression are associated with impaired Langerhans' cell migration in aged human skin.
|date=01.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28777886
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5721243
}}
}}
==IL1RN==
==IL1RN==
Строка 12 436: Строка 13 700:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26351429
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26351429
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4560317
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4560317
}}
==IL5==
* {{medline-title
|title=Low Molecular Weight Hyaluronan Induces an Inflammatory Response in Ovarian Stromal Cells and Impairs Gamete Development In Vitro.
|date=04.02.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32033185
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036885
}}
}}
==IL6ST==
==IL6ST==
Строка 12 445: Строка 13 717:
|full-text-url=https://sci-hub.do/10.1016/j.exger.2019.02.014
|full-text-url=https://sci-hub.do/10.1016/j.exger.2019.02.014
}}
}}
==IL9==
==IMMP2L==
 
* {{medline-title
|title=Transcription factor networks in aged naïve [[CD4]] T cells bias lineage differentiation.
|date=08.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31264370
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612640
}}
==IMMP2L==


* {{medline-title
* {{medline-title
Строка 12 460: Строка 13 724:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29808012
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29808012
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993829
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993829
}}
==IMMT==
* {{medline-title
|title=A multidimensional systems biology analysis of cellular senescence in aging and disease.
|date=07.04.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264951
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333371
}}
}}
==IMPA1==
==IMPA1==
Строка 12 476: Строка 13 748:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26168237
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26168237
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567
}}
==INA==
* {{medline-title
|title=X[[RCC1]] and XPD genetic polymorphisms and susceptibility to age-related cataract: a meta-analysis.
|date=2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25873778
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384174
}}
}}
==INHBA==
==INHBA==
Строка 12 524: Строка 13 788:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26168237
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26168237
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567
}}
==INSR==
* {{medline-title
|title=The Ubiquitin Ligase CHIP Integrates Proteostasis and Aging by Regulation of Insulin Receptor Turnover.
|date=20.04.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28431247
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5406386
}}
}}
==IP6K1==
==IP6K1==
Строка 12 556: Строка 13 812:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30744060
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30744060
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410091
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410091
}}
==IRAK1==
* {{medline-title
|title=Age-associated changes in microRNA expression in bone marrow derived dendritic cells.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23252865
|full-text-url=https://sci-hub.do/10.3109/08820139.2012.717328
}}
}}
==IRAK4==
==IRAK4==
Строка 12 580: Строка 13 844:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28905935
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28905935
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5672072
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5672072
}}
==IRF9==
* {{medline-title
|title=Bioinformatic characterization of angiotensin-converting enzyme 2, the entry receptor for SARS-CoV-2.
|date=2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33112891
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7592753
}}
}}
==IRX2==
==IRX2==
Строка 12 588: Строка 13 860:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28105936
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28105936
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5249001
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5249001
}}
==ISG15==
* {{medline-title
|title=Transcriptome analysis reveals immune-related gene expression changes with age in giant panda ([i]Ailuropoda melanoleuca[/i]) blood.
|date=14.01.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30641486
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339791
}}
}}
==ISG20==
==ISG20==
Строка 12 604: Строка 13 868:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27764096
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27764096
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072625
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072625
}}
==ISL1==
* {{medline-title
|title=Deterioration of the Medial Olivocochlear Efferent System Accelerates Age-Related Hearing Loss in Pax2-Isl1 Transgenic Mice.
|date=05.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25990412
|full-text-url=https://sci-hub.do/10.1007/s12035-015-9215-1
}}
}}
==ISYNA1==
==ISYNA1==
Строка 12 660: Строка 13 916:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30063456
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30063456
|full-text-url=https://sci-hub.do/10.1080/17446651.2017.1312341
|full-text-url=https://sci-hub.do/10.1080/17446651.2017.1312341
}}
==ITGA8==
* {{medline-title
|title=Comparative Analysis of Gene Expression Patterns for Oral Epithelium-Related Functions with Aging.
|date=2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31732940
|full-text-url=https://sci-hub.do/10.1007/978-3-030-28524-1_11
}}
}}
==ITGB1==
==ITGB1==
Строка 12 668: Строка 13 932:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29599141
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29599141
|full-text-url=https://sci-hub.do/10.1161/ATVBAHA.117.310685
|full-text-url=https://sci-hub.do/10.1161/ATVBAHA.117.310685
}}
==ITGB2==
* {{medline-title
|title=A Microglial Signature Directing Human Aging and Neurodegeneration-Related Gene Networks.
|date=2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30733664
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6353788
}}
}}
==ITGB4==
==ITGB4==
Строка 12 764: Строка 14 020:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29123987
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29123987
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666393
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666393
}}
==JHY==
* {{medline-title
|title=Disruption of the mouse Jhy gene causes abnormal ciliary microtubule patterning and juvenile hydrocephalus.
|date=01.10.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23906841
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783533
}}
==JMJD1C==
* {{medline-title
|title=[[JMJD1C]], a JmjC domain-containing protein, is required for long-term maintenance of male germ cells in mice.
|date=10.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24006281
|full-text-url=https://sci-hub.do/10.1095/biolreprod.113.108597
}}
}}
==JUNB==
==JUNB==
Строка 12 836: Строка 14 108:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24850809
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24850809
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4141024
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4141024
}}
==KCNE1==
* {{medline-title
|title=Delayed pharyngeal repolarization promotes abnormal calcium buildup in aging muscle.
|date=12.04.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23510998
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2013.03.011
}}
}}
==KCNE3==
==KCNE3==
Строка 12 861: Строка 14 141:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472403
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472403
}}
}}
==KCNJ6==
==KCNJ10==


* {{medline-title
* {{medline-title
|title=Genetic correlates of the development of theta event related oscillations in adolescents and young adults.
|title=Compromised potassium recycling in the cochlea contributes to conservation of endocochlear potential in a mouse model of age-related hearing loss.
|date=05.2017
|date=25.10.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27847216
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24055606
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456461
|full-text-url=https://sci-hub.do/10.1016/j.neulet.2013.09.028
}}
}}
==KCNK2==
==KCNJ11==


* {{medline-title
* {{medline-title
|title=Brain age prediction using deep learning uncovers associated sequence variants.
|title=A mouse model of human hyperinsulinism produced by the E1506K mutation in the sulphonylurea receptor SUR1.
|date=27.11.2019
|date=11.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31776335
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23903354
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6881321
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3806602
}}
}}
==KCNK4==
==KCNJ12==
 
* {{medline-title
|title=Altered expression of genes for Kir ion channels in dilated cardiomyopathy.
|date=08.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23889090
|full-text-url=https://sci-hub.do/10.1139/cjpp-2012-0413
}}
==KCNJ14==
 
* {{medline-title
|title=Altered expression of genes for Kir ion channels in dilated cardiomyopathy.
|date=08.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23889090
|full-text-url=https://sci-hub.do/10.1139/cjpp-2012-0413
}}
==KCNJ2==
 
* {{medline-title
|title=Altered expression of genes for Kir ion channels in dilated cardiomyopathy.
|date=08.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23889090
|full-text-url=https://sci-hub.do/10.1139/cjpp-2012-0413
}}
==KCNJ4==
 
* {{medline-title
|title=Altered expression of genes for Kir ion channels in dilated cardiomyopathy.
|date=08.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23889090
|full-text-url=https://sci-hub.do/10.1139/cjpp-2012-0413
}}
==KCNJ6==
 
* {{medline-title
|title=Genetic correlates of the development of theta event related oscillations in adolescents and young adults.
|date=05.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27847216
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456461
}}
==KCNK2==
 
* {{medline-title
|title=Brain age prediction using deep learning uncovers associated sequence variants.
|date=27.11.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31776335
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6881321
}}
==KCNK4==


* {{medline-title
* {{medline-title
Строка 12 888: Строка 14 216:


* {{medline-title
* {{medline-title
|title=Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis.
|title=Compromised potassium recycling in the cochlea contributes to conservation of endocochlear potential in a mouse model of age-related hearing loss.
|date=12.2015
|date=25.10.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25824446
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24055606
|full-text-url=https://sci-hub.do/10.1136/bjsports-2014-094073
|full-text-url=https://sci-hub.do/10.1016/j.neulet.2013.09.028
}}
}}
==KCNQ1DN==
==KCNQ1DN==
Строка 12 916: Строка 14 244:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32327991
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32327991
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7160671
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7160671
}}
==KCNS3==
* {{medline-title
|title=Vitamin D-responsive [[SGPP2]] variants associated with lung cell expression and lung function.
|date=25.11.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24274704
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907038
}}
}}
==KCP==
==KCP==
Строка 12 940: Строка 14 276:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28463974
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28463974
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413005
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413005
}}
==KDM1A==
* {{medline-title
|title=Modulation of [[KDM1A]] with vafidemstat rescues memory deficit and behavioral alterations.
|date=2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32469975
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259601
}}
}}
==KDM2A==
==KDM2A==


* {{medline-title
* {{medline-title
|title=SIRT6 mono-ADP ribosylates [[KDM2A]] to locally increase H3K36me2 at DNA damage sites to inhibit transcription and promote repair.
|title=[[SIRT6]] mono-ADP ribosylates [[KDM2A]] to locally increase H3K36me2 at DNA damage sites to inhibit transcription and promote repair.
|date=25.06.2020
|date=25.06.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32584788
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32584788
Строка 12 956: Строка 14 300:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30650517
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30650517
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6360022
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6360022
}}
==KDM4B==
* {{medline-title
|title=Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases.
|date=03.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27114850
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809609
}}
==KDM4C==
* {{medline-title
|title=Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases.
|date=03.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27114850
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809609
}}
}}
==KDM5A==
==KDM5A==
Строка 13 004: Строка 14 332:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28334068
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28334068
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5905272
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5905272
}}
==KIAA0930==
* {{medline-title
|title=Genetics of facial telangiectasia in the Rotterdam Study: a genome-wide association study and candidate gene approach.
|date=23.10.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33095951
|full-text-url=https://sci-hub.do/10.1111/jdv.17014
}}
==KIAA1755==
* {{medline-title
|title=Identifying blood-specific age-related DNA methylation markers on the Illumina MethylationEPIC® BeadChip.
|date=10.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31546163
|full-text-url=https://sci-hub.do/10.1016/j.forsciint.2019.109944
}}
}}
==KIF11==
==KIF11==
Строка 13 028: Строка 14 372:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24728190
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24728190
|full-text-url=https://sci-hub.do/10.1093/hmg/ddu166
|full-text-url=https://sci-hub.do/10.1093/hmg/ddu166
}}
==KIF4A==
* {{medline-title
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335
}}
}}
==KIF5C==
==KIF5C==
Строка 13 044: Строка 14 396:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26772723
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26772723
|full-text-url=https://sci-hub.do/10.1016/j.cca.2016.01.005
|full-text-url=https://sci-hub.do/10.1016/j.cca.2016.01.005
}}
==KIR3DL2==
* {{medline-title
|title=Expression of aberrant HLA-B27 molecules is dependent on B27 dosage and peptide supply.
|date=04.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23625978
|full-text-url=https://sci-hub.do/10.1136/annrheumdis-2012-203080
}}
}}
==KLB==
==KLB==
Строка 13 072: Строка 14 432:


* {{medline-title
* {{medline-title
|title=[[KLF2]] induces the senescence of pancreatic cancer cells by cooperating with FOXO4 to upregulate p21.
|title=[[KLF2]] induces the senescence of pancreatic cancer cells by cooperating with [[FOXO4]] to upregulate p21.
|date=01.03.2020
|date=01.03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31866399
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31866399
|full-text-url=https://sci-hub.do/10.1016/j.yexcr.2019.111784
|full-text-url=https://sci-hub.do/10.1016/j.yexcr.2019.111784
}}
==KLF5==
* {{medline-title
|title=[[EGR1]] promotes the cartilage degeneration and hypertrophy by activating the Krüppel-like factor 5 and β-catenin signaling.
|date=01.09.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31201921
|full-text-url=https://sci-hub.do/10.1016/j.bbadis.2019.06.010
}}
==KLF6==
* {{medline-title
|title=Krüppel-Like Factor 6 Is Required for Oxidative and Oncogene-Induced Cellular Senescence.
|date=2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31824948
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882731
}}
}}
==KLHL13==
==KLHL13==
Строка 13 165: Строка 14 509:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393366
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393366
}}
}}
==L3MBTL1==
==KY==
 
* {{medline-title
|title=Combination of acupuncture and Chinese herbal formula for elderly adults with mild cognitive impairment: protocol for a randomized controlled trial.
|date=11.02.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30744676
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6371495
}}
==L3MBTL1==


* {{medline-title
* {{medline-title
Строка 13 220: Строка 14 572:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24597284
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24597284


}}
==LDLRAD4==
* {{medline-title
|title=Epigenetics of neuroinflammation: Immune response, inflammatory response and cholinergic synaptic involvement evidenced by genome-wide DNA methylation analysis of delirious inpatients.
|date=10.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32590150
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486988
}}
}}
==LEF1==
==LEF1==
Строка 13 228: Строка 14 588:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29520849
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29520849
|full-text-url=https://sci-hub.do/10.1002/jcb.26738
|full-text-url=https://sci-hub.do/10.1002/jcb.26738
}}
==LGALS1==
* {{medline-title
|title=Quantitative proteomic profiling of tumor cell response to telomere dysfunction using isotope-coded protein labeling (ICPL) reveals interaction network of candidate senescence markers.
|date=08.10.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23969227
|full-text-url=https://sci-hub.do/10.1016/j.jprot.2013.08.007
}}
}}
==LGALS3==
==LGALS3==
Строка 13 236: Строка 14 604:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30270325
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30270325
|full-text-url=https://sci-hub.do/10.1248/bpb.b18-00217
|full-text-url=https://sci-hub.do/10.1248/bpb.b18-00217
}}
==LGI1==
* {{medline-title
|title=Antibody-associated CNS syndromes without signs of inflammation in the elderly.
|date=03.10.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28878050
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5631166
}}
}}
==LGR6==
==LGR6==
Строка 13 252: Строка 14 612:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32614135
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32614135
|full-text-url=https://sci-hub.do/10.1111/jocd.13424
|full-text-url=https://sci-hub.do/10.1111/jocd.13424
}}
==LHB==
* {{medline-title
|title='Carriers of variant luteinizing hormone (V-LH) among 1593 Baltic men have significantly higher serum LH'.
|date=05.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25820123
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4832392
}}
==LHCGR==
* {{medline-title
|title=Comparative Study of the Steroidogenic Effects of Human Chorionic Gonadotropin and Thieno[2,3-D]pyrimidine-Based Allosteric Agonist of Luteinizing Hormone Receptor in Young Adult, Aging and Diabetic Male Rats.
|date=11.10.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33050653
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7590010
}}
}}
==LIMK2==
==LIMK2==
Строка 13 276: Строка 14 620:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27678468
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27678468
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5227678
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5227678
}}
==LIN28B==
* {{medline-title
|title=Genetic variations, reproductive aging, and breast cancer risk in African American and European American women: The Women's Circle of Health Study.
|date=2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29073238
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5658184
}}
}}
==LINC00862==
==LINC00862==
Строка 13 293: Строка 14 629:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441979
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441979
}}
}}
==LIPA==
==LIPC==
 
* {{medline-title
|title=Quantitative and Qualitative Role of Antagonistic Heterogeneity in Genetics of Blood Lipids.
|date=25.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31566214
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518561
}}
==LIPG==


* {{medline-title
* {{medline-title
|title=Influence of Habitual Physical Behavior - Sleeping, Sedentarism, Physical Activity - On Bone Health in Community-Dwelling Older People.
|title=Quantitative and Qualitative Role of Antagonistic Heterogeneity in Genetics of Blood Lipids.
|date=2019
|date=25.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31037056
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31566214
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6476278
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518561
}}
}}
==LMNB2==
==LMNB2==
Строка 13 324: Строка 14 668:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30318292
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30318292
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234859
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234859
}}
==LMX1B==
* {{medline-title
|title=[[LMX1B]] is essential for the maintenance of differentiated podocytes in adult kidneys.
|date=11.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23990680
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810075
}}
}}
==LOXL4==
==LOXL4==
Строка 13 372: Строка 14 724:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31269452
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31269452
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2019.06.002
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2019.06.002
}}
==LRRC23==
* {{medline-title
|title=Common genetic variants in [[ARNTL]] and [[NPAS2]] and at chromosome 12p13 are associated with objectively measured sleep traits in the elderly.
|date=01.03.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23449886
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571755
}}
}}
==LRRC34==
==LRRC34==
Строка 13 436: Строка 14 796:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29750252
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29750252
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696723
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696723
}}
==MACROD2==
* {{medline-title
|title=Survival analyses in Holstein cows considering direct disease diagnoses and specific SNP marker effects.
|date=09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32684467
|full-text-url=https://sci-hub.do/10.3168/jds.2020-18174
}}
}}
==MADD==
==MADD==
Строка 13 460: Строка 14 828:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26206181
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26206181
|full-text-url=https://sci-hub.do/10.1016/j.jprot.2015.07.010
|full-text-url=https://sci-hub.do/10.1016/j.jprot.2015.07.010
}}
==MAK==
* {{medline-title
|title=Age-dependent autophagy induction after injury promotes axon regeneration by limiting NOTCH.
|date=11.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31920157
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595581
}}
==MANBA==
* {{medline-title
|title=A meta-analysis of genome-wide association studies of epigenetic age acceleration.
|date=11.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31738745
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6886870
}}
}}
==MANF==
==MANF==
Строка 13 468: Строка 14 852:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24462098
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24462098
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4863472
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4863472
}}
==MAOB==
* {{medline-title
|title=Modulation of [[KDM1A]] with vafidemstat rescues memory deficit and behavioral alterations.
|date=2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32469975
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259601
}}
}}
==MAP2K3==
==MAP2K3==
Строка 13 549: Строка 14 941:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651490
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651490
}}
}}
==MAS1==
==MARK4==
 
* {{medline-title
|title=Two-stage Bayesian GWAS of 9576 individuals identifies SNP regions that are targeted by miRNAs inversely expressed in Alzheimer's and cancer.
|date=01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31914222
|full-text-url=https://sci-hub.do/10.1002/alz.12003
}}
==MAS1==


* {{medline-title
* {{medline-title
Строка 13 556: Строка 14 956:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29667931
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29667931
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940107
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940107
}}
==MASP1==
* {{medline-title
|title=Polymorphisms in the [[MASP1]] gene are associated with serum levels of MASP-1, MASP-3, and MAp44.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24023860
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759447
}}
==MATN2==
* {{medline-title
|title=Mice Lacking the Matrilin Family of Extracellular Matrix Proteins Develop Mild Skeletal Abnormalities and Are Susceptible to Age-Associated Osteoarthritis.
|date=19.01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31963938
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013758
}}
}}
==MATN3==
==MATN3==
* {{medline-title
|title=Mice Lacking the Matrilin Family of Extracellular Matrix Proteins Develop Mild Skeletal Abnormalities and Are Susceptible to Age-Associated Osteoarthritis.
|date=19.01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31963938
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013758
}}
==MATN4==


* {{medline-title
* {{medline-title
Строка 13 581: Строка 15 005:
|full-text-url=https://sci-hub.do/10.1007/s11596-019-2001-y
|full-text-url=https://sci-hub.do/10.1007/s11596-019-2001-y
}}
}}
==MBL2==
==MBOAT2==


* {{medline-title
* {{medline-title
|title=Recurrent respiratory tract infections (RRTI) in the elderly: A late onset mild immunodeficiency?
|title=Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies.
|date=07.2017
|date=03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28487087
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109663
|full-text-url=https://sci-hub.do/10.1016/j.clim.2017.05.008
|full-text-url=https://sci-hub.do/10.1016/j.atherosclerosis.2020.02.005
}}
}}
==MC4R==
==MBTD1==


* {{medline-title
* {{medline-title
|title=Melanocortin-4 receptor rs17782313 polymorphisms are associated with serum triglycerides in older Chinese women.
|title=LncRNA [[TTN]]-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/[[MBTD1]] axis.
|date=2016
|date=10.10.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26965781
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31600142
|full-text-url=https://sci-hub.do/10.6133/apjcn.2016.25.1.18
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814585
}}
}}
==MCF2L==
==MCF2L==
Строка 13 605: Строка 15 029:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058387
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058387
}}
}}
==MCM4==
==MCM3AP==


* {{medline-title
* {{medline-title
|title=Changes in [[MCM2]]-7 proteins at senescence.
|title=Nodes and biological processes identified on the basis of network analysis in the brain of the senescence accelerated mice as an Alzheimer's disease animal model.
|date=27.07.2019
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31092751
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24194717
|full-text-url=https://sci-hub.do/10.1266/ggs.18-00062
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810591
}}
}}
==MCM5==
==MCM5==
Строка 13 644: Строка 15 068:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31219803
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31219803
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628988
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628988
}}
==MDM4==
* {{medline-title
|title=Germline genetics of the p53 pathway affect longevity in a gender specific manner.
|date=2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24654968
|full-text-url=https://sci-hub.do/10.2174/1874609807666140321150751
}}
}}
==MDN1==
==MDN1==
Строка 13 692: Строка 15 108:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26195288
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26195288
|full-text-url=https://sci-hub.do/10.1007/s00709-015-0853-y
|full-text-url=https://sci-hub.do/10.1007/s00709-015-0853-y
}}
==MEFV==
* {{medline-title
|title=The grandfather's fever.
|date=02.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31401792
|full-text-url=https://sci-hub.do/10.1007/s10067-019-04741-9
}}
}}
==MEIS2==
==MEIS2==
Строка 13 709: Строка 15 117:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4958316
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4958316
}}
}}
==MELK==
==MEPE==


* {{medline-title
* {{medline-title
|title=[[MELK]]-T1, a small-molecule inhibitor of protein kinase [[MELK]], decreases DNA-damage tolerance in proliferating cancer cells.
|title=Remodeling process in bone of aged rats in response to resistance training.
|date=02.10.2015
|date=01.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26431963
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32593709
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643329
|full-text-url=https://sci-hub.do/10.1016/j.lfs.2020.118008
}}
}}
==MERTK==
==MERTK==
Строка 13 756: Строка 15 164:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31861865
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31861865
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981746
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981746
}}
==MIB1==
* {{medline-title
|title=Immunohistochemical detection of senescence markers in human sarcomas.
|date=02.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31899047
|full-text-url=https://sci-hub.do/10.1016/j.prp.2019.152800
}}
}}
==MICB==
==MICB==
Строка 13 780: Строка 15 180:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31377553
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31377553
|full-text-url=https://sci-hub.do/10.1016/j.ceca.2019.102055
|full-text-url=https://sci-hub.do/10.1016/j.ceca.2019.102055
}}
==MIPEP==
* {{medline-title
|title=[Metabolic Alteration in Aging Process: Metabolic Remodeling in White Adipose Tissue by Caloric Restriction].
|date=2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32115557
|full-text-url=https://sci-hub.do/10.1248/yakushi.19-00193-2
}}
==MKRN1==
* {{medline-title
|title=Endothelial senescence-associated secretory phenotype (SASP) is regulated by Makorin-1 ubiquitin E3 ligase.
|date=11.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31476350
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059097
}}
}}
==MLH3==
==MLH3==
Строка 13 797: Строка 15 213:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4740877
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4740877
}}
}}
==MMP10==
==MMP20==


* {{medline-title
* {{medline-title
|title=Bone biology-related gingival transcriptome in ageing and periodontitis in non-human primates.
|title=Identification of the effects of aging-related gene-matrix metalloproteinase on allograft outcomes in kidney transplantation.
|date=05.2016
|date=07-08.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26859687
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23953525
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844783
|full-text-url=https://sci-hub.do/10.1016/j.transproceed.2013.03.020
}}
}}
==MMP14==
==MOB1B==
 
 
* {{medline-title
* {{medline-title
|title=Overexpression of microRNA-1470 promotes proliferation and migration, and inhibits senescence of esophageal squamous carcinoma cells.
|title=Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length.
|date=12.2017
|date=05.03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29344220
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109421
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5755030
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058826
}}
==MMP8==
 
* {{medline-title
|title=Bone biology-related gingival transcriptome in ageing and periodontitis in non-human primates.
|date=05.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26859687
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844783
}}
}}
==MOG==
==MOG==


* {{medline-title
* {{medline-title
|title=ASSOCIATION OF PREVASCUL[[AR]] [[VIT]]REOUS FISSURES AND CISTERNS WI[[TH]] [[VIT]]REOUS DEGENERATION AS ASSESSED BY SWEPT SOURCE OPTICAL COHE[[REN]]CE TO[[MOG]]RAPHY.
|title=Efficacy of vitamin D in treating multiple sclerosis-like neuroinflammation depends on developmental stage.
|date=09.2015
|date=11.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25874366
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23954214
|full-text-url=https://sci-hub.do/10.1097/IAE.0000000000000540
|full-text-url=https://sci-hub.do/10.1016/j.expneurol.2013.08.002
}}
}}
==MORF4L1==
==MORF4L1==
Строка 13 868: Строка 15 276:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28948454
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28948454
|full-text-url=https://sci-hub.do/10.1007/s11899-017-0411-0
|full-text-url=https://sci-hub.do/10.1007/s11899-017-0411-0
}}
==MPP3==
* {{medline-title
|title=[[MPP3]] regulates levels of PALS1 and adhesion between photoreceptors and Müller cells.
|date=10.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23893895
|full-text-url=https://sci-hub.do/10.1002/glia.22545
}}
}}
==MPP4==
==MPP4==
Строка 13 892: Строка 15 308:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25861990
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25861990
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447960
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447960
}}
==MR1==
* {{medline-title
|title=Human blood MAIT cell subsets defined using [[MR1]] tetramers.
|date=05.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29437263
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446826
}}
}}
==MRC1==
==MRC1==
Строка 13 956: Строка 15 380:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26193622
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26193622
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4853027
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4853027
}}
==MSH6==
* {{medline-title
|title=RNA-Seq analysis of differentially expressed genes relevant to mismatch repair in aging hematopoietic stem-progenitor cells.
|date=25.02.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30805972
|full-text-url=https://sci-hub.do/10.1002/jcb.28417
}}
}}
==MSN==
==MSN==
Строка 14 020: Строка 15 436:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28118095
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28118095
|full-text-url=https://sci-hub.do/10.1089/omi.2016.0157
|full-text-url=https://sci-hub.do/10.1089/omi.2016.0157
}}
==MTCH2==
* {{medline-title
|title=The influence of obesity-related single nucleotide polymorphisms on BMI across the life course: the PAGE study.
|date=05.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23300277
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636619
}}
==MTHFD2==
* {{medline-title
|title=A multidimensional systems biology analysis of cellular senescence in aging and disease.
|date=07.04.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264951
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333371
}}
}}
==MTNR1A==
==MTNR1A==
Строка 14 029: Строка 15 461:
|full-text-url=https://sci-hub.do/10.1016/j.anireprosci.2014.07.022
|full-text-url=https://sci-hub.do/10.1016/j.anireprosci.2014.07.022
}}
}}
==MUC1==
==MTTP==


* {{medline-title
* {{medline-title
|title=Sensitivity of neoplastic cells to senescence unveiled under standard cell culture conditions.
|title=Active vitamin D supplementation alleviates initiation and progression of nonalcoholic fatty liver disease by repressing the p53 pathway.
|date=05.2015
|date=15.01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25964555
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31756344
 
|full-text-url=https://sci-hub.do/10.1016/j.lfs.2019.117086
}}
}}
==MUC7==
==MUC7==
Строка 14 061: Строка 15 493:
|full-text-url=https://sci-hub.do/10.1002/jhbp.256
|full-text-url=https://sci-hub.do/10.1002/jhbp.256
}}
}}
==MX1==
==MVP==


* {{medline-title
* {{medline-title
|title=Age-Associated Changes in the Respiratory Epithelial Response to Influenza Infection.
|title=Reexamining the minimum viable population concept for long-lived species.
|date=10.11.2018
|date=06.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29878083
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23458501
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6230210
|full-text-url=https://sci-hub.do/10.1111/cobi.12028
}}
}}
==MYBBP1A==
==MYBBP1A==
Строка 14 076: Строка 15 508:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27699588
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27699588
|full-text-url=https://sci-hub.do/10.1007/s11010-016-2836-5
|full-text-url=https://sci-hub.do/10.1007/s11010-016-2836-5
}}
==MYBL2==
* {{medline-title
|title=Molecular mechanism of G  arrest and cellular senescence induced by LEE011, a novel [[CDK4]]/CDK6 inhibitor, in leukemia cells.
|date=2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28286417
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5340031
}}
}}
==MYBPC1==
==MYBPC1==
Строка 14 096: Строка 15 520:


* {{medline-title
* {{medline-title
|title=Silencing of AURKA augments the antitumor efficacy of the AURKA inhibitor MLN8237 on neuroblastoma cells.
|title=Silencing of [[AURKA]] augments the antitumor efficacy of the [[AURKA]] inhibitor MLN8237 on neuroblastoma cells.
|date=2020
|date=2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31920463
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31920463
Строка 14 140: Строка 15 564:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24478790
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24478790
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894567
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894567
}}
==MYO18B==
* {{medline-title
|title=A common variant in myosin-18B contributes to mathematical abilities in children with dyslexia and intraparietal sulcus variability in adults.
|date=19.02.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23423138
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591001
}}
}}
==MYO1F==
==MYO1F==
Строка 14 164: Строка 15 596:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30389787
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30389787
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311499
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311499
}}
==MYOCD==
* {{medline-title
|title=Aging-associated changes in microRNA expression profile of internal anal sphincter smooth muscle: Role of microRNA-133a.
|date=01.11.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27634012
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5130548
}}
}}
==MYOF==
==MYOF==
Строка 14 212: Строка 15 636:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31699646
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31699646
|full-text-url=https://sci-hub.do/10.1016/j.wem.2019.06.016
|full-text-url=https://sci-hub.do/10.1016/j.wem.2019.06.016
}}
==NAF1==
* {{medline-title
|title=Telomere length and aging-related outcomes in humans: A Mendelian randomization study in 261,000 older participants.
|date=12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31444995
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826144
}}
}}
==NAIP==
==NAIP==
Строка 14 229: Строка 15 661:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861859
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861859
}}
}}
==NCAM1==
==NCAPD2==
 
* {{medline-title
|title=[[KDM3A]] and [[KDM4C]] Regulate Mesenchymal Stromal Cell Senescence and Bone Aging via Condensin-mediated Heterochromatin Reorganization.
|date=22.11.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31704649
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888768
}}
==NCAPG2==


* {{medline-title
* {{medline-title
|title=Resistance Training Enhances Skeletal Muscle Innervation Without Modifying the Number of Satellite Cells or their Myofiber Association in Obese Older Adults.
|title=[[KDM3A]] and [[KDM4C]] Regulate Mesenchymal Stromal Cell Senescence and Bone Aging via Condensin-mediated Heterochromatin Reorganization.
|date=10.2016
|date=22.11.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26447161
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31704649
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5018557
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888768
}}
}}
==NCK2==
==NCK2==
Строка 14 252: Строка 15 692:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30045751
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30045751
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058387
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058387
}}
==NCSTN==
* {{medline-title
|title=The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells.
|date=29.07.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32727592
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392710
}}
}}
==NDN==
==NDN==
Строка 14 268: Строка 15 716:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27911302
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27911302
|full-text-url=https://sci-hub.do/10.3233/JAD-160655
|full-text-url=https://sci-hub.do/10.3233/JAD-160655
}}
==NDUFA8==
* {{medline-title
|title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity.
|date=31.01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708
}}
}}
==NDUFA9==
==NDUFA9==
Строка 14 285: Строка 15 741:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795392
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795392
}}
}}
==NDUFS3==
==NDUFS4==


* {{medline-title
* {{medline-title
|title=Elucidation of the mechanism of changes in the antioxidant function with the aging in the liver of the senescence-accelerated mouse P10 (SAMP10).
|title=Low abundance of [[NDUFV2]] and [[NDUFS4]] subunits of the hydrophilic complex I domain and [[VDAC1]] predicts mammalian longevity.
|date=06.2018
|date=07.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29477336
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32353747
|full-text-url=https://sci-hub.do/10.1016/j.exger.2018.02.025
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191849
}}
}}
==NDUFS7==
==NDUFS7==
Строка 14 325: Строка 15 781:
|full-text-url=https://sci-hub.do/10.1517/14712598.2014.960387
|full-text-url=https://sci-hub.do/10.1517/14712598.2014.960387
}}
}}
==NEDD4==
==NEDD4L==


* {{medline-title
* {{medline-title
|title=Estrogen receptor β, a regulator of androgen receptor signaling in the mouse ventral prostate.
|title=DP1 Activation Reverses Age-Related Hypertension Via [[NEDD4L]]-Mediated T-Bet Degradation in T Cells.
|date=09.05.2017
|date=25.02.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28439009
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31893939
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441728
|full-text-url=https://sci-hub.do/10.1161/CIRCULATIONAHA.119.042532
}}
}}
==NEIL2==
==NEGR1==


* {{medline-title
* {{medline-title
|title=Neil2-null Mice Accumulate Oxidized DNA Bases in the Transcriptionally Active Sequences of the Genome and Are Susceptible to Innate Inflammation.
|title=The influence of obesity-related single nucleotide polymorphisms on BMI across the life course: the PAGE study.
|date=09.10.2015
|date=05.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26245904
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23300277
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598976
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636619
}}
}}
==NEIL3==
==NEIL3==
Строка 14 348: Строка 15 804:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31167196
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31167196
|full-text-url=https://sci-hub.do/10.1159/000500091
|full-text-url=https://sci-hub.do/10.1159/000500091
}}
==NEK2==
* {{medline-title
|title=Upregulation of [[FOXM1]] leads to diminished drug sensitivity in myeloma.
|date=21.11.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30463534
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6249818
}}
}}
==NEK9==
==NEK9==
Строка 14 428: Строка 15 876:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28031022
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28031022
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5198498
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5198498
}}
==NHP2==
* {{medline-title
|title=Pseudouridylation defect due to [i]DKC1[/i] and [i][[NOP10]][/i] mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis.
|date=30.06.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32554502
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334496
}}
}}
==NIN==
==NIN==
Строка 14 436: Строка 15 892:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24709042
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24709042
|full-text-url=https://sci-hub.do/10.1016/j.neuroscience.2014.03.040
|full-text-url=https://sci-hub.do/10.1016/j.neuroscience.2014.03.040
}}
==NIPA2==
* {{medline-title
|title=A multidimensional systems biology analysis of cellular senescence in aging and disease.
|date=07.04.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264951
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333371
}}
}}
==NKAP==
==NKAP==
Строка 14 476: Строка 15 940:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31500828
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31500828
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6768570
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6768570
}}
==NLRC5==
* {{medline-title
|title=Methylation of the genes ROD1, [[NLRC5]], and HKR1 is associated with aging in Hainan centenarians.
|date=02.02.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29394898
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5797414
}}
}}
==NLRP5==
==NLRP5==
Строка 14 524: Строка 15 980:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30283350
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30283350
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156423
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156423
}}
==NMU==
* {{medline-title
|title=[Medicinal Chemistry Focused on Mid-sized Peptides Derived from Biomolecules].
|date=2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31685733
|full-text-url=https://sci-hub.do/10.1248/yakushi.19-00149
}}
}}
==NMUR1==
==NMUR1==
* {{medline-title
|title=[Medicinal Chemistry Focused on Mid-sized Peptides Derived from Biomolecules].
|date=2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31685733
|full-text-url=https://sci-hub.do/10.1248/yakushi.19-00149
}}
==NMUR2==


* {{medline-title
* {{medline-title
Строка 14 572: Строка 16 044:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31920157
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31920157
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595581
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595581
}}
==NPB==
* {{medline-title
|title=The Role of the IGF-1 Signaling Cascade in Muscle Protein Synthesis and Anabolic Resistance in Aging Skeletal Muscle.
|date=2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31552262
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6746962
}}
}}
==NPBWR1==
==NPBWR1==
Строка 14 613: Строка 16 093:
|full-text-url=https://sci-hub.do/10.1038/s41586-018-0128-9
|full-text-url=https://sci-hub.do/10.1038/s41586-018-0128-9
}}
}}
==NPY1R==
==NPSR1==


* {{medline-title
* {{medline-title
|title=[[NPY]]/neuropeptide Y enhances autophagy in the hypothalamus: a mechanism to delay aging?
|title=Variants of asthma and chronic obstructive pulmonary disease genes and lung function decline in aging.
|date=2015
|date=07.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26086271
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24253534
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4590601
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111635
}}
}}
==NPY2R==
==NPY2R==
Строка 14 628: Строка 16 108:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25765287
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25765287
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475460
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475460
}}
==NPY5R==
* {{medline-title
|title=[[NPY]]/neuropeptide Y enhances autophagy in the hypothalamus: a mechanism to delay aging?
|date=2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26086271
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4590601
}}
}}
==NQO2==
==NQO2==
Строка 14 644: Строка 16 116:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28346733
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28346733
|full-text-url=https://sci-hub.do/10.1002/jbt.21921
|full-text-url=https://sci-hub.do/10.1002/jbt.21921
}}
==NR1D1==
* {{medline-title
|title=Quercetin, caffeic acid and resveratrol regulate circadian clock genes and aging-related genes in young and old human lung fibroblast cells.
|date=02.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31773385
|full-text-url=https://sci-hub.do/10.1007/s11033-019-05194-8
}}
}}
==NR1H3==
==NR1H3==
Строка 14 660: Строка 16 140:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24702179
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24702179
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4042077
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4042077
}}
==NR2F2==
* {{medline-title
|title=Fine mapping genetic variants associated with age at puberty and sow fertility using SowPro90 genotyping array.
|date=01.10.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32888012
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568434
}}
}}
==NR5A2==
==NR5A2==
Строка 14 676: Строка 16 164:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30274778
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30274778
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2018.09.045
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2018.09.045
}}
==NRL==
* {{medline-title
|title=Development of a cyclophosphamide stress test to predict resilience to aging in mice.
|date=12.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32613492
|full-text-url=https://sci-hub.do/10.1007/s11357-020-00222-z
}}
==NRP1==
* {{medline-title
|title=Neuropilin 1 is essential for gastrointestinal smooth muscle contractility and motility in aged mice.
|date=2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25659123
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319892
}}
}}
==NRSN2==
==NRSN2==
Строка 14 708: Строка 16 180:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28013231
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28013231
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5654756
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5654756
}}
==NSD1==
* {{medline-title
|title=Screening for genes that accelerate the epigenetic aging clock in humans reveals a role for the H3K36 methyltransferase [[NSD1]].
|date=14.08.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31409373
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693144
}}
}}
==NSF==
==NSF==
Строка 14 773: Строка 16 253:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6280426
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6280426
}}
}}
==NTRK2==
==NTNG2==


* {{medline-title
* {{medline-title
|title=The Role of [[BDNF]] in Age-Dependent Changes of Excitatory and Inhibitory Synaptic Markers in the Human Prefrontal Cortex.
|title=Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies.
|date=12.2016
|date=03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27417517
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109663
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5101556
|full-text-url=https://sci-hub.do/10.1016/j.atherosclerosis.2020.02.005
}}
}}
==NUBP2==
==NUBP2==
Строка 14 796: Строка 16 276:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31906085
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31906085
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019235
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019235
}}
==NUDT12==
* {{medline-title
|title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity.
|date=31.01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708
}}
}}
==NUPR1==
==NUPR1==
Строка 14 804: Строка 16 292:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29130426
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29130426
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5959327
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5959327
}}
==NUSAP1==
* {{medline-title
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335
}}
}}
==NVL==
==NVL==
Строка 14 812: Строка 16 308:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25345635
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25345635


}}
==NXF1==
* {{medline-title
|title=[[WRN]] modulates translation by influencing nuclear mRNA export in HeLa cancer cells.
|date=14.10.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33054770
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557079
}}
==OAS1==
* {{medline-title
|title=Fine mapping genetic variants associated with age at puberty and sow fertility using SowPro90 genotyping array.
|date=01.10.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32888012
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568434
}}
==OASL==
* {{medline-title
|title=Effect of age on the pathogenesis of DHV-1 in Pekin ducks and on the innate immune responses of ducks to infection.
|date=05.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24162826
|full-text-url=https://sci-hub.do/10.1007/s00705-013-1900-7
}}
==OAZ1==
* {{medline-title
|title=Identification of reference genes for RT-qPCR data normalisation in aging studies.
|date=27.09.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31562345
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764958
}}
}}
==OCLN==
==OCLN==
Строка 14 829: Строка 16 357:
|full-text-url=https://sci-hub.do/10.1007/s00467-016-3535-x
|full-text-url=https://sci-hub.do/10.1007/s00467-016-3535-x
}}
}}
==OGFOD1==
==ODC1==


* {{medline-title
* {{medline-title
|title=2-Oxoglutarate-dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process.
|title=The curious case of polyamines: spermidine drives reversal of B cell senescence.
|date=10.2015
|date=03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26118662
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31795807
|full-text-url=https://sci-hub.do/10.1007/s00018-015-1978-z
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999633
}}
}}
==OGN==
==OGDH==


* {{medline-title
* {{medline-title
|title=Muscle and bone, two interconnected tissues.
|title=An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence.
|date=05.2015
|date=12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25804855
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31531781
|full-text-url=https://sci-hub.do/10.1016/j.arr.2015.03.002
|full-text-url=https://sci-hub.do/10.1007/s00425-019-03272-6
}}
==OGFOD1==
 
* {{medline-title
|title=2-Oxoglutarate-dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process.
|date=10.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26118662
|full-text-url=https://sci-hub.do/10.1007/s00018-015-1978-z
}}
}}
==OLFML3==
==OLFML3==
Строка 14 861: Строка 16 397:
|full-text-url=https://sci-hub.do/10.1016/j.molmed.2016.02.007
|full-text-url=https://sci-hub.do/10.1016/j.molmed.2016.02.007
}}
}}
==OMD==
==ONECUT1==


* {{medline-title
* {{medline-title
|title=Genome-wide associations and detection of potential candidate genes for direct genetic and maternal genetic effects influencing dairy cattle body weight at different ages.
|title=Survival analyses in Holstein cows considering direct disease diagnoses and specific SNP marker effects.
|date=06.02.2019
|date=09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30727969
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32684467
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6366057
|full-text-url=https://sci-hub.do/10.3168/jds.2020-18174
}}
}}
==OOEP==
==OOEP==
Строка 14 877: Строка 16 413:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6085769
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6085769
}}
}}
==OPTN==
==OPLAH==
 
* {{medline-title
|title=An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence.
|date=12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31531781
|full-text-url=https://sci-hub.do/10.1007/s00425-019-03272-6
}}
==OPRD1==


* {{medline-title
* {{medline-title
|title=Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis.
|title=A commonly carried genetic variant in the delta opioid receptor gene, [[OPRD1]], is associated with smaller regional brain volumes: replication in elderly and young populations.
|date=24.02.2016
|date=04.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26912063
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23427138
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765225
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046708
}}
}}
==OR2AG1==
==OR2AG1==
Строка 14 909: Строка 16 453:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217014
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217014
}}
}}
==ORAI1==
==ORC1==


* {{medline-title
* {{medline-title
|title=Calcium Dynamics of Ex Vivo Long-Term Cultured CD8  T Cells Are Regulated by Changes in Redox Metabolism.
|title=The hyperornithinemia-hyperammonemia-homocitrullinuria syndrome.
|date=2016
|date=11.03.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27526200
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25874378
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4985122
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358699
}}
}}
==ORC2==
==ORMDL3==


* {{medline-title
* {{medline-title
|title=mTOR signaling in aging and neurodegeneration: At the crossroad between metabolism dysfunction and impairment of autophagy.
|title=Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women.
|date=12.2015
|date=12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25796566
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31508907
|full-text-url=https://sci-hub.do/10.1016/j.nbd.2015.03.014
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6903450
}}
}}
==OSCAR==
==OSCAR==


* {{medline-title
* {{medline-title
|title=Awareness tool for safe and responsible driving ([[OSC[[AR]]]]): a potential educational intervention for increasing interest, openness and knowledge about the abilities required and compensatory strategies among older drivers.
|title=Awareness tool for safe and responsible driving ([[OSCAR]]): a potential educational intervention for increasing interest, openness and knowledge about the abilities required and compensatory strategies among older drivers.
|date=2015
|date=2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25802971
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25802971
Строка 14 940: Строка 16 484:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30975089
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30975089
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458604
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458604
}}
==OTUD7A==
* {{medline-title
|title=A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium.
|date=07.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23650146
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990406
}}
==OXT==
* {{medline-title
|title=Medial amygdala lesions modify aggressive behavior and immediate early gene expression in oxytocin and vasopressin neurons during intermale exposure.
|date=15.05.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23403283
|full-text-url=https://sci-hub.do/10.1016/j.bbr.2013.02.002
}}
==P2RX3==
* {{medline-title
|title=Fine mapping genetic variants associated with age at puberty and sow fertility using SowPro90 genotyping array.
|date=01.10.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32888012
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568434
}}
==P2RX4==
* {{medline-title
|title=A rare functional haplotype of the [[P2RX4]] and [[P2RX7]] genes leads to loss of innate phagocytosis and confers increased risk of age-related macular degeneration.
|date=04.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23303206
|full-text-url=https://sci-hub.do/10.1096/fj.12-215368
}}
}}
==P2RY10==
==P2RY10==
Строка 14 996: Строка 16 572:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26794818
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26794818
|full-text-url=https://sci-hub.do/10.7417/T.2015.1902
|full-text-url=https://sci-hub.do/10.7417/T.2015.1902
}}
==PALB2==
* {{medline-title
|title=A Multigene Test Could Cost-Effectively Help Extend Life Expectancy for Women at Risk of Hereditary Breast Cancer.
|date=04.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28407996
|full-text-url=https://sci-hub.do/10.1016/j.jval.2017.01.006
}}
}}
==PALM==
==PALM==
Строка 15 021: Строка 16 589:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894567
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894567
}}
}}
==PARG==
==PARN==


* {{medline-title
* {{medline-title
|title=[Genotype and allele frequencies of U[[CP]] and PP[[AR]] gene families in residents of besieged Leningrad and in the control group].
|title=CD8  T-cell senescence and skewed lymphocyte subsets in young Dyskeratosis Congenita patients with [[PARN]] and [[DKC1]] mutations.
|date=2014
|date=09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25826986
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32452087
 
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521304
}}
}}
==PARP2==
==PARP2==
Строка 15 076: Строка 16 644:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31518338
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31518338
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6781991
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6781991
}}
==PBX4==
* {{medline-title
|title=Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women.
|date=12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31508907
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6903450
}}
}}
==PCBP2==
==PCBP2==
Строка 15 117: Строка 16 693:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294724
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294724
}}
}}
==PCK1==
==PCGF2==


* {{medline-title
* {{medline-title
|title=[[PCK1]] is negatively regulated by bta-miR-26a, and a single-nucleotide polymorphism in the 3' untranslated region is involved in semen quality and longevity of Holstein bulls.
|title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development.
|date=03.2016
|date=24.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26725319
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540
|full-text-url=https://sci-hub.do/10.1002/mrd.22613
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659
}}
}}
==PCMTD1==
==PCGF3==


* {{medline-title
* {{medline-title
|title=Genome-wide association study and annotating candidate gene networks affecting age at first calving in Nellore cattle.
|title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development.
|date=12.2017
|date=24.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28994157
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540
|full-text-url=https://sci-hub.do/10.1111/jbg.12299
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659
}}
==PCGF5==
 
* {{medline-title
|title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development.
|date=24.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659
}}
==PCK1==
 
* {{medline-title
|title=[[PCK1]] is negatively regulated by bta-miR-26a, and a single-nucleotide polymorphism in the 3' untranslated region is involved in semen quality and longevity of Holstein bulls.
|date=03.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26725319
|full-text-url=https://sci-hub.do/10.1002/mrd.22613
}}
==PCMTD1==
 
* {{medline-title
|title=Genome-wide association study and annotating candidate gene networks affecting age at first calving in Nellore cattle.
|date=12.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28994157
|full-text-url=https://sci-hub.do/10.1111/jbg.12299
}}
}}
==PCP4==
==PCP4==
Строка 15 141: Строка 16 741:
|full-text-url=https://sci-hub.do/10.1016/j.brainres.2016.06.003
|full-text-url=https://sci-hub.do/10.1016/j.brainres.2016.06.003
}}
}}
==PDE2A==
==PDE11A==
 
* {{medline-title
|title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain.
|date=02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007
}}
==PDE1B==
 
* {{medline-title
|title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain.
|date=02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007
}}
==PDE3B==
 
* {{medline-title
|title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain.
|date=02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007
}}
==PDE4A==
 
* {{medline-title
|title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain.
|date=02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007
}}
==PDE7A==


* {{medline-title
* {{medline-title
|title=TAK-915, a phosphodiesterase 2A inhibitor, ameliorates the cognitive impairment associated with aging in rodent models.
|title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain.
|date=30.12.2019
|date=02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31521738
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653
|full-text-url=https://sci-hub.do/10.1016/j.bbr.2019.112192
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007
}}
}}
==PDE3A==
==PDE7B==


* {{medline-title
* {{medline-title
|title=Effects of aging on gene expression and mitochondrial DNA in the equine oocyte and follicle cells.
|title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain.
|date=07.2015
|date=02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25786490
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653
|full-text-url=https://sci-hub.do/10.1071/RD14472
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007
}}
}}
==PDE5A==
==PDE8A==


* {{medline-title
* {{medline-title
|title=Repurposing erectile dysfunction drugs tadalafil and vardenafil to increase bone mass.
|title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain.
|date=23.06.2020
|date=02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32513693
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7321982
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007
}}
}}
==PDE9A==
==PDE8B==


* {{medline-title
* {{medline-title
|title=Identification of new [[PDE9A]] isoforms and how their expression and subcellular compartmentalization in the brain change across the life span.
|title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain.
|date=05.2018
|date=02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29505961
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5871571
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007
}}
}}
==PDGFRA==
==PDGFRA==
Строка 15 180: Строка 16 812:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27579614
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27579614
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342491
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342491
}}
==PDHB==
* {{medline-title
|title=Neuron-specific knockdown of Drosophila [[PDHB]] induces reduction of lifespan, deficient locomotive ability, abnormal morphology of motor neuron terminals and photoreceptor axon targeting.
|date=15.05.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29501567
|full-text-url=https://sci-hub.do/10.1016/j.yexcr.2018.02.035
}}
}}
==PDP1==
==PDP1==
Строка 15 260: Строка 16 884:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26802463
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26802463
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2016.01.114
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2016.01.114
}}
==PGAM1==
* {{medline-title
|title=The aged testis. A good model to find proteins involved in age-related changes of testis by proteomic analysis.
|date=01-02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24597284
}}
}}
==PGAP1==
==PGAP1==
Строка 15 300: Строка 16 916:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24439372
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24439372
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3928474
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3928474
}}
==PGLYRP2==
* {{medline-title
|title=Innate immune response to LPS in airway epithelium is dependent on chronological age and antecedent exposures.
|date=11.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23600597
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931090
}}
}}
==PGM1==
==PGM1==
Строка 15 309: Строка 16 933:
|full-text-url=https://sci-hub.do/10.1016/j.jprot.2019.03.004
|full-text-url=https://sci-hub.do/10.1016/j.jprot.2019.03.004
}}
}}
==PHF19==
==PHAX==
 
* {{medline-title
|title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity.
|date=31.01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708
}}
==PHF19==


* {{medline-title
* {{medline-title
Строка 15 356: Строка 16 988:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26001726
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26001726
|full-text-url=https://sci-hub.do/10.1016/j.freeradbiomed.2015.05.019
|full-text-url=https://sci-hub.do/10.1016/j.freeradbiomed.2015.05.019
}}
==PIAS1==
* {{medline-title
|title=Age-Dependent and -Independent Effects of Perivascular Adipose Tissue and Its Paracrine Activities during Neointima Formation.
|date=31.12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31906225
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981748
}}
}}
==PICK1==
==PICK1==
Строка 15 380: Строка 17 020:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30641220
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30641220
|full-text-url=https://sci-hub.do/10.1016/j.gene.2018.12.063
|full-text-url=https://sci-hub.do/10.1016/j.gene.2018.12.063
}}
==PIK3C2B==
* {{medline-title
|title=In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases.
|date=12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31520345
|full-text-url=https://sci-hub.do/10.1007/s10522-019-09834-1
}}
}}
==PIK3C3==
==PIK3C3==
Строка 15 436: Строка 17 084:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28058013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28058013
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5175245
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5175245
}}
==PIR==
* {{medline-title
|title=Proteomic analysis of changes in mitochondrial protein expression during peach fruit ripening and senescence.
|date=16.09.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27288903
|full-text-url=https://sci-hub.do/10.1016/j.jprot.2016.06.005
}}
}}
==PKD1==
==PKD1==
Строка 15 469: Строка 17 109:
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2016.01.114
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2016.01.114
}}
}}
==PKP2==
==PKNOX1==


* {{medline-title
* {{medline-title
|title=Molecular disturbance underlies to arrhythmogenic cardiomyopathy induced by transgene content, age and exercise in a truncated [[PKP2]] mouse model.
|title=The effects of environmental stressors on candidate aging associated genes.
|date=01.09.2016
|date=08.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27412010
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32344118
|full-text-url=https://sci-hub.do/10.1093/hmg/ddw213
|full-text-url=https://sci-hub.do/10.1016/j.exger.2020.110952
}}
}}
==PLA2G4A==
==PLA2G4A==
Строка 15 484: Строка 17 124:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24963629
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24963629
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070994
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070994
}}
==PLA2G4B==
* {{medline-title
|title=Monocytes present age-related changes in phospholipid concentration and decreased energy metabolism.
|date=04.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32107839
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189998
}}
==PLA2G7==
* {{medline-title
|title=Elevated [[PLA2G7]] gene promoter methylation as a gender-specific marker of aging increases the risk of coronary heart disease in females.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23555769
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3610900
}}
}}
==PLAGL1==
==PLAGL1==
Строка 15 532: Строка 17 188:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24496748
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24496748
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209016
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209016
}}
==PLEKHA6==
* {{medline-title
|title=In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases.
|date=12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31520345
|full-text-url=https://sci-hub.do/10.1007/s10522-019-09834-1
}}
}}
==PLEKHO1==
==PLEKHO1==
Строка 15 548: Строка 17 212:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28555711
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28555711
|full-text-url=https://sci-hub.do/10.14283/jfa.2017.13
|full-text-url=https://sci-hub.do/10.14283/jfa.2017.13
}}
==PLK1==
* {{medline-title
|title=Dynactin pathway-related gene expression is altered by aging, but not by vitrification.
|date=09.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31260804
|full-text-url=https://sci-hub.do/10.1016/j.reprotox.2019.06.011
}}
}}
==PLK2==
==PLK2==
Строка 15 564: Строка 17 220:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27032368
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27032368
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890980
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890980
}}
==PLP1==
* {{medline-title
|title=Age-related changes in a patient with Pelizaeus-Merzbacher disease determined by repeated 1H-magnetic resonance spectroscopy.
|date=02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24056155
|full-text-url=https://sci-hub.do/10.1177/0883073813499635
}}
==PLTP==
* {{medline-title
|title=[[PLTP]] deficiency impairs learning and memory capabilities partially due to alteration of amyloid-β metabolism in old mice.
|date=2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24121956
|full-text-url=https://sci-hub.do/10.3233/JAD-130812
}}
}}
==PLXNA4==
==PLXNA4==
Строка 15 580: Строка 17 252:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26940433
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26940433
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4892659
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4892659
}}
==PMP22==
* {{medline-title
|title=Role of microRNAs in senescence and its contribution to peripheral neuropathy in the arsenic exposed population of West Bengal, India.
|date=02.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29107899
|full-text-url=https://sci-hub.do/10.1016/j.envpol.2017.09.063
}}
}}
==PMS1==
==PMS1==
* {{medline-title
|title=RNA-Seq analysis of differentially expressed genes relevant to mismatch repair in aging hematopoietic stem-progenitor cells.
|date=25.02.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30805972
|full-text-url=https://sci-hub.do/10.1002/jcb.28417
}}
==PMS2==


* {{medline-title
* {{medline-title
Строка 15 688: Строка 17 344:


* {{medline-title
* {{medline-title
|title=[Genotype and allele frequencies of U[[CP]] and PP[[AR]] gene families in residents of besieged Leningrad and in the control group].
|title=[Genotype and allele frequencies of UCP and PPAR gene families in residents of besieged Leningrad and in the control group].
|date=2014
|date=2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25826986
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25826986


}}
==PPCDC==
* {{medline-title
|title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity.
|date=31.01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708
}}
}}
==PPFIA1==
==PPFIA1==
Строка 15 725: Строка 17 389:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861946
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861946
}}
}}
==PPP1R3C==
==PPP1R15B==
 
* {{medline-title
|title=In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases.
|date=12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31520345
|full-text-url=https://sci-hub.do/10.1007/s10522-019-09834-1
}}
==PPP1R1B==
 
* {{medline-title
|title=Effects of [[PPP1R1B]] (DARPP-32) Polymorphism on Feedback-Related Brain Potentials Across the Life Span.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23459765
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586677
}}
==PPP1R3C==


* {{medline-title
* {{medline-title
Строка 15 757: Строка 17 437:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6413667
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6413667
}}
}}
==PPP3CB==
==PPT1==


* {{medline-title
* {{medline-title
|title=Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex.
|title=Neuroprotection and lifespan extension in Ppt1(-/-) mice by NtBuHA: therapeutic implications for INCL.
|date=2018
|date=11.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30210331
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24056696
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6119720
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812271
}}
}}
==PRDM1==
==PRDM1==
Строка 15 780: Строка 17 460:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32819411
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32819411
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439574
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439574
}}
==PRDX2==
* {{medline-title
|title=Regulation of [[PRDX1]] peroxidase activity by Pin1.
|date=15.03.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23421996
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637353
}}
==PRDX5==
* {{medline-title
|title=The antioxidant icariin protects porcine oocytes from age-related damage in vitro.
|date=12.05.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32777912
|full-text-url=https://sci-hub.do/10.5713/ajas.20.0046
}}
}}
==PRG2==
==PRG2==
Строка 15 788: Строка 17 484:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28439450
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28439450
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391678
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391678
}}
==PRG4==
* {{medline-title
|title=Inhibition of Wnt/β-catenin signaling ameliorates osteoarthritis in a murine model of experimental osteoarthritis.
|date=08.02.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29415892
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821202
}}
}}
==PRKAA1==
==PRKAA1==
Строка 15 805: Строка 17 493:
|full-text-url=https://sci-hub.do/10.1016/j.clnesp.2018.10.003
|full-text-url=https://sci-hub.do/10.1016/j.clnesp.2018.10.003
}}
}}
==PRKAA2==
==PRKACA==


* {{medline-title
* {{medline-title
|title=Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone.
|title=Intratumoral heterogeneity of the tumor cells based on in situ cortisol excess in cortisol-producing adenomas; ∼An association among morphometry, genotype and cellular senescence∼.
|date=07.2014
|date=11.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24760536
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33002589
|full-text-url=https://sci-hub.do/10.1530/EJE-14-0006
|full-text-url=https://sci-hub.do/10.1016/j.jsbmb.2020.105764
}}
}}
==PRKCB==
==PRKCB==
Строка 15 884: Строка 17 572:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28264926
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28264926
|full-text-url=https://sci-hub.do/10.1242/jcs.196469
|full-text-url=https://sci-hub.do/10.1242/jcs.196469
}}
==PROX1==
* {{medline-title
|title=Molecular control of two novel migratory paths for CGE-derived interneurons in the developing mouse brain.
|date=15.05.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27034423
|full-text-url=https://sci-hub.do/10.1242/dev.131102
}}
}}
==PRR9==
==PRR9==
Строка 15 900: Строка 17 580:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30065116
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30065116
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6099856
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6099856
}}
==PRRC2A==
* {{medline-title
|title=Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length.
|date=05.03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109421
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058826
}}
}}
==PRRX1==
==PRRX1==
Строка 15 948: Строка 17 636:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24393841
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24393841
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2013.12.113
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2013.12.113
}}
==PSMB8==
* {{medline-title
|title=[Target protein candidates of hypothalamus in aging rats with intervention by Qiongyugao].
|date=04.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28879748
|full-text-url=https://sci-hub.do/10.4268/cjcmm20160724
}}
}}
==PSMB9==
==PSMB9==
Строка 15 996: Строка 17 676:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29570707
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29570707
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884551
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884551
}}
==PSTK==
* {{medline-title
|title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity.
|date=31.01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708
}}
}}
==PTCH1==
==PTCH1==
Строка 16 004: Строка 17 692:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30391523
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30391523
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6342483
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6342483
}}
==PTER==
* {{medline-title
|title=[[TH]]E EFFECTS OF XAN[[TH]]O[[TOX]]IN ON [[TH]]E BIOLOGY AND BIOCHEMISTRY OF Galleria mellonella L. ([[LEP]]IDO[[PTER]]A: PYRALIDAE).
|date=08.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25821173
|full-text-url=https://sci-hub.do/10.1002/arch.21236
}}
}}
==PTGDR==
==PTGDR==
Строка 16 060: Строка 17 740:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24930376
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24930376
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203112
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203112
}}
==PTK7==
* {{medline-title
|title=Innate and adaptive immune dysregulation in critically ill ICU patients.
|date=05.07.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29976949
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6033948
}}
}}
==PTP4A3==
==PTP4A3==
Строка 16 077: Строка 17 749:
|full-text-url=https://sci-hub.do/10.1002/adbi.202000044
|full-text-url=https://sci-hub.do/10.1002/adbi.202000044
}}
}}
==PTPN1==
==PTPN7==
 
* {{medline-title
|title=The genetic component of human longevity: New insights from the analysis of pathway-based SNP-SNP interactions.
|date=06.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29577582
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946073
}}
==PTPN7==


* {{medline-title
* {{medline-title
Строка 16 124: Строка 17 788:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28077804
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28077804
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5310665
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5310665
}}
==PTTG1==
* {{medline-title
|title=[Down-regulated [[PTTG1]] expression promotes the senescence of human prostate cancer LNCaP-AI].
|date=03.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32216239
}}
}}
==PUM1==
==PUM1==
Строка 16 156: Строка 17 812:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29027019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29027019
|full-text-url=https://sci-hub.do/10.1007/s00702-017-1796-6
|full-text-url=https://sci-hub.do/10.1007/s00702-017-1796-6
}}
==RAB10==
* {{medline-title
|title=Aberrant mitochondrial morphology and function associated with impaired mitophagy and [[DNM1L]]-MAPK/ERK signaling are found in aged mutant Parkinsonian [[LRRK2]]  mice.
|date=10.12.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33300446
|full-text-url=https://sci-hub.do/10.1080/15548627.2020.1850008
}}
}}
==RAB1B==
==RAB1B==
Строка 16 164: Строка 17 828:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30837897
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30837897
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390296
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390296
}}
==RAB27A==
* {{medline-title
|title=Reduced expression level of the cyclic adenosine monophosphate response element-binding protein contributes to lung aging.
|date=01.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23991634
|full-text-url=https://sci-hub.do/10.1165/rcmb.2013-0057OC
}}
}}
==RAC3==
==RAC3==
Строка 16 188: Строка 17 860:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30837897
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30837897
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390296
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390296
}}
==RAD51B==
* {{medline-title
|title=Increased age-adjusted hazard of death associated with a common single nucleotide polymorphism of the human [[RAD52]] gene in a cardiovascular cohort.
|date=10.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29024686
|full-text-url=https://sci-hub.do/10.1016/j.mad.2017.10.003
}}
}}
==RAD51C==
==RAD51C==
Строка 16 228: Строка 17 892:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26010764
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26010764
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933107
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933107
}}
==RAMP2==
* {{medline-title
|title=Vascular endothelial adrenomedullin-[[RAMP2]] system is essential for vascular integrity and organ homeostasis.
|date=19.02.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23355623
|full-text-url=https://sci-hub.do/10.1161/CIRCULATIONAHA.112.000756
}}
}}
==RAPGEF2==
==RAPGEF2==
Строка 16 268: Строка 17 940:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24409144
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24409144
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3867747
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3867747
}}
==RASGRP1==
* {{medline-title
|title=Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans.
|date=12.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27878761
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441979
}}
}}
==RB1CC1==
==RB1CC1==
Строка 16 292: Строка 17 956:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26491019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26491019
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705941
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705941
}}
==RBFOX1==
* {{medline-title
|title=Genetics of Gene Expression in the Aging Human Brain Reveal TDP-43 Proteinopathy Pathophysiology.
|date=05.08.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32526197
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416464
}}
}}
==RBL1==
==RBL1==
Строка 16 316: Строка 17 988:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30399610
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30399610
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311128
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311128
}}
==RBM34==
* {{medline-title
|title=The association between poverty and gene expression within peripheral blood mononuclear cells in a diverse Baltimore City cohort.
|date=2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32970748
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514036
}}
}}
==RBM38==
==RBM38==
Строка 16 349: Строка 18 029:
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2019.06.151
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2019.06.151
}}
}}
==RCC1==
==RC3H2==


* {{medline-title
* {{medline-title
|title=X[[RCC1]] and XPD genetic polymorphisms and susceptibility to age-related cataract: a meta-analysis.
|title=The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells.
|date=2015
|date=29.07.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25873778
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32727592
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384174
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392710
}}
==RDX==
 
* {{medline-title
|title=Toxicity of the conventional energetics TNT and [[RDX]] relative to new insensitive munitions constituents DNAN and NTO in Rana pipiens tadpoles.
|date=04.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25586961
|full-text-url=https://sci-hub.do/10.1002/etc.2890
}}
}}
==RCC2==
==REEP4==


* {{medline-title
* {{medline-title
|title=X[[RCC1]] and XPD genetic polymorphisms and susceptibility to age-related cataract: a meta-analysis.
|title=Chromosome Missegregation in Single Human Oocytes Is Related to the Age and Gene Expression Profile.
|date=2015
|date=12.03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25873778
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32178390
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384174
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139522
}}
}}
==REL==
==REL==
Строка 16 388: Строка 18 076:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33168727
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33168727
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7682577
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7682577
}}
==RFWD3==
* {{medline-title
|title=Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length.
|date=05.03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109421
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058826
}}
}}
==RGL1==
==RGL1==
Строка 16 396: Строка 18 092:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28735023
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28735023
|full-text-url=https://sci-hub.do/10.1016/j.molp.2017.07.008
|full-text-url=https://sci-hub.do/10.1016/j.molp.2017.07.008
}}
==RGS1==
* {{medline-title
|title=Age-related changes in regulator of G-protein signaling (RGS)-10 expression in peripheral and central immune cells may influence the risk for age-related degeneration.
|date=05.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25784210
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4417042
}}
}}
==RGS10==
==RGS10==
Строка 16 436: Строка 18 124:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31170090
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31170090
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594797
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594797
}}
==RHD==
* {{medline-title
|title=Suppression and narrative time shifts in adults with right-hemisphere brain damage.
|date=05.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23695902
|full-text-url=https://sci-hub.do/10.1044/1058-0360(2012/12-0072)
}}
}}
==RHEBL1==
==RHEBL1==
Строка 16 525: Строка 18 221:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6732230
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6732230
}}
}}
==RNF168==
==RORB==


* {{medline-title
* {{medline-title
|title=[[PML]] nuclear bodies are recruited to persistent DNA damage lesions in an [[RNF168]]-53BP1 dependent manner and contribute to DNA repair.
|title=Effects of circadian clock genes and environmental factors on cognitive aging in old adults in a Taiwanese population.
|date=06.2019
|date=11.04.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31009828
|full-text-url=https://sci-hub.do/10.1016/j.dnarep.2019.04.001
}}
==RORB==
 
* {{medline-title
|title=Effects of circadian clock genes and environmental factors on cognitive aging in old adults in a Taiwanese population.
|date=11.04.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28412756
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28412756
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421829
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421829
Строка 16 549: Строка 18 237:
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204
}}
}}
==RP1==
==RPA1==


* {{medline-title
* {{medline-title
|title=Age-Related Decline in Brain and Hepatic Clearance of Amyloid-Beta is Rectified by the Cholinesterase Inhibitors Donepezil and Rivastigmine in Rats.
|title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity.
|date=20.05.2015
|date=31.01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25782004
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5248655
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708
}}
}}
==RPA2==
==RPA2==
Строка 16 564: Строка 18 252:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28841467
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28841467
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.07.015
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.07.015
}}
==RPL10==
* {{medline-title
|title=Comprehensive analysis of the ubiquitinome during oncogene-induced senescence in human fibroblasts.
|date=2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25785348
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4614229
}}
}}
==RPL13==
==RPL13==
Строка 16 582: Строка 18 262:
}}
}}
==RPL18==
==RPL18==
* {{medline-title
|title=Comprehensive analysis of the ubiquitinome during oncogene-induced senescence in human fibroblasts.
|date=2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25785348
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4614229
}}
==RPL3==


* {{medline-title
* {{medline-title
Строка 16 612: Строка 18 284:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30915334
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30915334
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421261
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421261
}}
==RPL35==
* {{medline-title
|title=Comprehensive analysis of the ubiquitinome during oncogene-induced senescence in human fibroblasts.
|date=2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25785348
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4614229
}}
}}
==RPL36==
==RPL36==
Строка 16 660: Строка 18 324:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32659678
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32659678
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2020.153275
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2020.153275
}}
==RPS2==
* {{medline-title
|title=Comprehensive analysis of the ubiquitinome during oncogene-induced senescence in human fibroblasts.
|date=2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25785348
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4614229
}}
==RPS20==
* {{medline-title
|title=Comprehensive analysis of the ubiquitinome during oncogene-induced senescence in human fibroblasts.
|date=2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25785348
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4614229
}}
==RPS4X==
* {{medline-title
|title=Comprehensive analysis of the ubiquitinome during oncogene-induced senescence in human fibroblasts.
|date=2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25785348
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4614229
}}
}}
==RPS6KA1==
==RPS6KA1==
Строка 16 716: Строка 18 356:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30391675
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30391675
|full-text-url=https://sci-hub.do/10.1016/j.freeradbiomed.2018.10.457
|full-text-url=https://sci-hub.do/10.1016/j.freeradbiomed.2018.10.457
}}
==RRM2==
* {{medline-title
|title=Increased Rrm2 gene dosage reduces fragile site breakage and prolongs survival of [[ATR]] mutant mice.
|date=01.04.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25838540
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4387711
}}
}}
==RRM2B==
==RRM2B==
Строка 16 820: Строка 18 452:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30216632
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30216632
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6260923
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6260923
}}
==RXRG==
* {{medline-title
|title=Genetic variations, reproductive aging, and breast cancer risk in African American and European American women: The Women's Circle of Health Study.
|date=2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29073238
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5658184
}}
}}
==RYR3==
==RYR3==
Строка 16 836: Строка 18 460:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24423397
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24423397
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898238
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898238
}}
==S100A10==
* {{medline-title
|title=Age-related and depot-specific changes in white adipose tissue of growth hormone receptor-null mice.
|date=01.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23873966
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3859361
}}
}}
==S100A13==
==S100A13==
Строка 16 844: Строка 18 476:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30670674
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30670674
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6366962
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6366962
}}
==S100A6==
* {{medline-title
|title=Sex differences in distribution of cannabinoid receptors (CB1 and CB2), [[S100A6]] and CacyBP/SIP in human ageing hearts.
|date=27.11.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30482253
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6258148
}}
}}
==S100A7==
==S100A7==
Строка 16 972: Строка 18 596:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25761685
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25761685
|full-text-url=https://sci-hub.do/10.1134/S0006297915030062
|full-text-url=https://sci-hub.do/10.1134/S0006297915030062
}}
==SCN1A==
* {{medline-title
|title=Effects of normal aging and [[SCN1A]] risk-gene expression on brain metabolites: evidence for an association between [[SCN1A]] and myo-inositol.
|date=02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24357141
|full-text-url=https://sci-hub.do/10.1002/nbm.3057
}}
}}
==SCN2A==
==SCN2A==
Строка 17 005: Строка 18 637:
|full-text-url=https://sci-hub.do/10.1007/978-1-0716-0471-7_12
|full-text-url=https://sci-hub.do/10.1007/978-1-0716-0471-7_12
}}
}}
==SCO2==
==SCPEP1==


* {{medline-title
* {{medline-title
|title=Role of SCOX in determination of Drosophila melanogaster lifespan.
|title=Structural and kinetic evidence of aging after organophosphate inhibition of human Cathepsin A.
|date=2014
|date=07.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25057436
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32305437
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4106651
|full-text-url=https://sci-hub.do/10.1016/j.bcp.2020.113980
}}
}}
==SCRIB==
==SCRIB==
Строка 17 045: Строка 18 677:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627677
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627677
}}
}}
==SDHC==
==SDHAF2==
 
* {{medline-title
|title=Long-term prognosis of patients with pediatric pheochromocytoma.
|date=02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24169644
|full-text-url=https://sci-hub.do/10.1530/ERC-13-0415
}}
==SDHD==


* {{medline-title
* {{medline-title
|title=Endogenous reactive oxygen species cause astrocyte defects and neuronal dysfunctions in the hippocampus: a new model for aging brain.
|title=Long-term prognosis of patients with pediatric pheochromocytoma.
|date=02.2017
|date=02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27623715
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24169644
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5242301
|full-text-url=https://sci-hub.do/10.1530/ERC-13-0415
}}
}}
==SEC23A==
==SEC23A==
Строка 17 164: Строка 18 804:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32827359
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32827359
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7576240
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7576240
}}
==SENP7==
* {{medline-title
|title=Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length.
|date=05.03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109421
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058826
}}
}}
==SERPINA1==
==SERPINA1==
Строка 17 173: Строка 18 821:
|full-text-url=https://sci-hub.do/10.1111/rda.13091
|full-text-url=https://sci-hub.do/10.1111/rda.13091
}}
}}
==SERPINB2==
==SERPINB3==


* {{medline-title
* {{medline-title
|title=An Endogenous Anti-aging Factor, Sonic Hedgehog, Suppresses Endometrial Stem Cell Aging through [[SERPINB2]].
|title=[[SERPINB3]] is associated with longer survival in transgenic mice.
|date=03.07.2019
|date=28.10.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31080015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24162160
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612665
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808827
}}
}}
==SESN1==
==SESN1==
Строка 17 229: Строка 18 877:
|full-text-url=https://sci-hub.do/10.1136/bjsports-2014-094073
|full-text-url=https://sci-hub.do/10.1136/bjsports-2014-094073
}}
}}
==SGK1==
==SGPP2==


* {{medline-title
* {{medline-title
|title=Epigenetic Regulation of KL (Klotho) via H3K27me3 (Histone 3 Lysine [K] 27 Trimethylation) in Renal Tubule Cells.
|title=Vitamin D-responsive [[SGPP2]] variants associated with lung cell expression and lung function.
|date=05.2020
|date=25.11.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32223380
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24274704
|full-text-url=https://sci-hub.do/10.1161/HYPERTENSIONAHA.120.14642
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907038
}}
}}
==SGSH==
==SGSH==
Строка 17 268: Строка 18 916:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26802937
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26802937
|full-text-url=https://sci-hub.do/10.1016/j.plefa.2015.10.006
|full-text-url=https://sci-hub.do/10.1016/j.plefa.2015.10.006
}}
==SHCBP1==
* {{medline-title
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335
}}
}}
==SHD==
==SHD==
Строка 17 380: Строка 19 036:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26373937
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26373937
|full-text-url=https://sci-hub.do/10.1007/s00425-015-2402-5
|full-text-url=https://sci-hub.do/10.1007/s00425-015-2402-5
}}
==SLAMF1==
* {{medline-title
|title=Systemic Inflammation and the Increased Risk of Inflamm-Aging and Age-Associated Diseases in People Living With HIV on Long Term Suppressive Antiretroviral Therapy.
|date=2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31507593
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718454
}}
}}
==SLAMF7==
==SLAMF7==
Строка 17 388: Строка 19 052:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24708744
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24708744
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4234188
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4234188
}}
==SLC11A1==
* {{medline-title
|title=The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells.
|date=29.07.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32727592
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392710
}}
}}
==SLC12A5==
==SLC12A5==
Строка 17 396: Строка 19 068:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28419903
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28419903
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.04.006
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.04.006
}}
==SLC12A8==
* {{medline-title
|title=Identifying blood-specific age-related DNA methylation markers on the Illumina MethylationEPIC® BeadChip.
|date=10.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31546163
|full-text-url=https://sci-hub.do/10.1016/j.forsciint.2019.109944
}}
}}
==SLC15A1==
==SLC15A1==
Строка 17 413: Строка 19 093:
|full-text-url=https://sci-hub.do/10.1007/s11010-018-3413-x
|full-text-url=https://sci-hub.do/10.1007/s11010-018-3413-x
}}
}}
==SLC16A7==
==SLC16A10==
 
* {{medline-title
|title=The SLC16 gene family - structure, role and regulation in health and disease.
|date=04-06.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23506875
|full-text-url=https://sci-hub.do/10.1016/j.mam.2012.05.003
}}
==SLC16A2==
 
* {{medline-title
|title=The SLC16 gene family - structure, role and regulation in health and disease.
|date=04-06.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23506875
|full-text-url=https://sci-hub.do/10.1016/j.mam.2012.05.003
}}
==SLC16A3==


* {{medline-title
* {{medline-title
|title=Genetics of facial telangiectasia in the Rotterdam Study: a genome-wide association study and candidate gene approach.
|title=The SLC16 gene family - structure, role and regulation in health and disease.
|date=23.10.2020
|date=04-06.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33095951
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23506875
|full-text-url=https://sci-hub.do/10.1111/jdv.17014
|full-text-url=https://sci-hub.do/10.1016/j.mam.2012.05.003
}}
}}
==SLC17A3==
==SLC17A3==
Строка 17 444: Строка 19 140:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30909319
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30909319
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6516164
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6516164
}}
==SLC22A12==
* {{medline-title
|title=[[ABCG2]] rs2231142 variant in hyperuricemia is modified by [[SLC2A9]] and [[SLC22A12]] polymorphisms and cardiovascular risk factors in an elderly community-dwelling population.
|date=17.03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32183743
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7077001
}}
}}
==SLC22A14==
==SLC22A14==
Строка 17 468: Строка 19 172:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29384103
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29384103
|full-text-url=https://sci-hub.do/10.1051/medsci/20183401020
|full-text-url=https://sci-hub.do/10.1051/medsci/20183401020
}}
==SLC25A1==
* {{medline-title
|title=The hyperornithinemia-hyperammonemia-homocitrullinuria syndrome.
|date=11.03.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25874378
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358699
}}
}}
==SLC25A15==
==SLC25A15==
Строка 17 484: Строка 19 180:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25874378
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25874378
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358699
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358699
}}
==SLC26A2==
* {{medline-title
|title=Phenotypic characterization of Slc26a2 mutant mice reveals a multifactorial etiology of spondylolysis.
|date=01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31914611
|full-text-url=https://sci-hub.do/10.1096/fj.201901040RR
}}
}}
==SLC27A1==
==SLC27A1==
Строка 17 501: Строка 19 189:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5480610
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5480610
}}
}}
==SLC2A4==
==SLC2A4RG==


* {{medline-title
* {{medline-title
|title=Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats.
|title=Genome-wide association study for lactation persistency, female fertility, longevity, and lifetime profit index traits in Holstein dairy cattle.
|date=02.2019
|date=02.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30661688
|full-text-url=https://sci-hub.do/10.1016/j.clnesp.2018.10.003
}}
==SLC2A4RG==
 
* {{medline-title
|title=Genome-wide association study for lactation persistency, female fertility, longevity, and lifetime profit index traits in Holstein dairy cattle.
|date=02.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27889128
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27889128
|full-text-url=https://sci-hub.do/10.3168/jds.2016-11770
|full-text-url=https://sci-hub.do/10.3168/jds.2016-11770
}}
==SLC2A9==
* {{medline-title
|title=MicroRNA-Based Linkage between Aging and Cancer: from Epigenetics View Point.
|date=07-09.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27540517
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4988411
}}
}}
==SLC30A1==
==SLC30A1==
Строка 17 564: Строка 19 236:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28083894
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28083894
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5334531
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5334531
}}
==SLC39A5==
* {{medline-title
|title=Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients.
|date=03.09.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31560770
|full-text-url=https://sci-hub.do/10.1167/iovs.19-27921
}}
}}
==SLC39A6==
==SLC39A6==
Строка 17 580: Строка 19 260:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31076559
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31076559
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535063
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535063
}}
==SLC4A7==
* {{medline-title
|title=Multivariate genomic scan implicates novel loci and haem metabolism in human ageing.
|date=16.07.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32678081
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366647
}}
}}
==SLC52A2==
==SLC52A2==
Строка 17 596: Строка 19 284:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29053833
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29053833
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5808726
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5808726
}}
==SLCO1B1==
* {{medline-title
|title=The [[SLCO1B1]] c.521T>C polymorphism is associated with dose decrease or switching during statin therapy in the Rotterdam Study.
|date=01.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24263182
|full-text-url=https://sci-hub.do/10.1097/FPC.0000000000000018
}}
}}
==SLCO1B3==
==SLCO1B3==
Строка 17 636: Строка 19 332:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28321525
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28321525
|full-text-url=https://sci-hub.do/10.1007/s10695-017-0360-5
|full-text-url=https://sci-hub.do/10.1007/s10695-017-0360-5
}}
==SMARCA4==
* {{medline-title
|title=GBM-associated mutations and altered protein expression are more common in young patients.
|date=25.10.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27579614
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342491
}}
}}
==SMARCA5==
==SMARCA5==
Строка 17 708: Строка 19 396:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28302748
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28302748
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5450844
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5450844
}}
==SMG1==
* {{medline-title
|title=[[SMG1]] heterozygosity exacerbates haematopoietic cancer development in Atm null mice by increasing persistent DNA damage and oxidative stress.
|date=12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31565865
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850945
}}
}}
==SMG6==
==SMG6==
Строка 17 717: Строка 19 413:
|full-text-url=https://sci-hub.do/10.1159/000438900
|full-text-url=https://sci-hub.do/10.1159/000438900
}}
}}
==SMPD1==
==SMPD3==


* {{medline-title
* {{medline-title
|title=Alterations in Lipid Profile of the Aging Kidney Identified by MALDI Imaging Mass Spectrometry.
|title=Endoplasmic Reticulum Stress Mediates Vascular Smooth Muscle Cell Calcification via Increased Release of Grp78-Loaded Extracellular Vesicles.
|date=05.07.2019
|date=10.12.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31244212
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33297752
|full-text-url=https://sci-hub.do/10.1021/acs.jproteome.9b00108
|full-text-url=https://sci-hub.do/10.1161/ATVBAHA.120.315506
}}
}}
==SMURF2==
==SMURF2==
Строка 17 772: Строка 19 468:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27049449
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27049449
|full-text-url=https://sci-hub.do/10.1016/j.jvoice.2016.02.019
|full-text-url=https://sci-hub.do/10.1016/j.jvoice.2016.02.019
}}
==SNRPE==
* {{medline-title
|title=In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases.
|date=12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31520345
|full-text-url=https://sci-hub.do/10.1007/s10522-019-09834-1
}}
==SNRPN==
* {{medline-title
|title=Age-associated changes in gene expression of goat oocytes.
|date=01.09.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23746875
|full-text-url=https://sci-hub.do/10.1016/j.theriogenology.2013.04.019
}}
}}
==SNX15==
==SNX15==
Строка 17 812: Строка 19 524:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30669571
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30669571
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356397
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356397
}}
==SOX1==
* {{medline-title
|title=The [[APOE]] gene cluster responds to air pollution factors in mice with coordinated expression of genes that differs by age in humans.
|date=20.11.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33215813
|full-text-url=https://sci-hub.do/10.1002/alz.12230
}}
}}
==SOX10==
==SOX10==
Строка 17 844: Строка 19 564:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28381471
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28381471
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472005
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472005
}}
==SOX6==
* {{medline-title
|title=Gene expression markers in horse articular chondrocytes: Chondrogenic differentiaton IN VITRO depends on the proliferative potential and ageing. Implication for tissue engineering of cartilage.
|date=02.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31778851
|full-text-url=https://sci-hub.do/10.1016/j.rvsc.2019.10.024
}}
}}
==SP2==
==SP2==
Строка 17 852: Строка 19 580:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28791483
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28791483
|full-text-url=https://sci-hub.do/10.1007/s00484-017-1415-0
|full-text-url=https://sci-hub.do/10.1007/s00484-017-1415-0
}}
==SP3==
* {{medline-title
|title=A genome-wide scan reveals important roles of DNA methylation in human longevity by regulating age-related disease genes.
|date=2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25793257
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4368809
}}
==SP5==
* {{medline-title
|title=Novel 5-HT5A receptor antagonists ameliorate scopolamine-induced working memory deficit in mice and reference memory impairment in aged rats.
|date=03.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25837935
|full-text-url=https://sci-hub.do/10.1016/j.jphs.2015.02.006
}}
}}
==SP7==
==SP7==
Строка 17 900: Строка 19 612:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30585438
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30585438
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6818258
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6818258
}}
==SPG11==
* {{medline-title
|title=[i]Malassezia[/i] and Parkinson's Disease.
|date=2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31396143
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6667642
}}
}}
==SPG21==
==SPG21==
Строка 17 941: Строка 19 661:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066205
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066205
}}
}}
==SPN==
==SPO11==


* {{medline-title
* {{medline-title
|title=[Identification of single nucleotide polymorphisms in centenarians].
|title="Mitotic Slippage" and Extranuclear DNA in Cancer Chemoresistance: A Focus on Telomeres.
|date=05-06.2016
|date=16.04.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26541311
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32316332
|full-text-url=https://sci-hub.do/10.1016/j.regg.2015.09.006
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7215480
}}
}}
==SPX==
==SPX==
Строка 17 957: Строка 19 677:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253468
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253468
}}
}}
==SRL==
==SREBF1==
 
* {{medline-title
|title=The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators.
|date=29.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32997995
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527782
}}
==SRI==
 
* {{medline-title
|title=The Role of Aging, Drug Dependence, and Hepatitis C Comorbidity in Alcoholism Cortical Compromise.
|date=01.05.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29541774
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5875381
}}
==SRL==


* {{medline-title
* {{medline-title
Строка 18 037: Строка 19 773:
|full-text-url=https://sci-hub.do/10.4268/cjcmm20160724
|full-text-url=https://sci-hub.do/10.4268/cjcmm20160724
}}
}}
==STAT4==
==STAT5B==


* {{medline-title
* {{medline-title
|title=RNA-Seq analysis reveals new evidence for inflammation-related changes in aged kidney.
|title=Reductions in serum IGF-1 during aging impair health span.
|date=24.05.2016
|date=06.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27153548
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24341939
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5058662
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326899
}}
}}
==STC1==
==STC1==
Строка 18 056: Строка 19 792:


* {{medline-title
* {{medline-title
|title=Genome-wide Associations Reveal Human-Mouse Genetic Convergence and Modifiers of Myogenesis, CPNE1 and [[STC2]].
|title=Genome-wide Associations Reveal Human-Mouse Genetic Convergence and Modifiers of Myogenesis, [[CPNE1]] and [[STC2]].
|date=05.12.2019
|date=05.12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31761296
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31761296
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904802
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904802
}}
==STIP1==
* {{medline-title
|title=The E3 ubiquitin ligase [[STUB1]] attenuates cell senescence by promoting the ubiquitination and degradation of the core circadian regulator BMAL1.
|date=03.04.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32041778
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7135990
}}
}}
==STK11==
==STK11==
Строка 18 100: Строка 19 844:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27189978
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27189978
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4970611
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4970611
}}
==STX16==
* {{medline-title
|title=Clinical characterization and molecular classification of 12 Korean patients with pseudohypoparathyroidism and pseudopseudohypoparathyroidism.
|date=10.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24127307
|full-text-url=https://sci-hub.do/10.1055/s-0033-1349867
}}
}}
==STX17==
==STX17==
Строка 18 108: Строка 19 860:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31251987
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31251987
|full-text-url=https://sci-hub.do/10.1016/j.bbadis.2019.05.017
|full-text-url=https://sci-hub.do/10.1016/j.bbadis.2019.05.017
}}
==SUCLA2==
* {{medline-title
|title=An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence.
|date=12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31531781
|full-text-url=https://sci-hub.do/10.1007/s00425-019-03272-6
}}
}}
==SUCNR1==
==SUCNR1==
Строка 18 140: Строка 19 900:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28153492
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28153492
|full-text-url=https://sci-hub.do/10.1016/j.dmpk.2016.10.409
|full-text-url=https://sci-hub.do/10.1016/j.dmpk.2016.10.409
}}
==SULT2A1==
* {{medline-title
|title=Sex-, age-, and race/ethnicity-dependent variations in drug-processing and NRF2-regulated genes in human livers.
|date=08.11.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33162398
|full-text-url=https://sci-hub.do/10.1124/dmd.120.000181
}}
}}
==SUMO1==
==SUMO1==
Строка 18 172: Строка 19 940:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30808750
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30808750
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397528
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397528
}}
==SUSD1==
* {{medline-title
|title=A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium.
|date=07.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23650146
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990406
}}
==SUSD2==
* {{medline-title
|title=Comparing the Effect of TGF-β Receptor Inhibition on Human Perivascular Mesenchymal Stromal Cells Derived from Endometrium, Bone Marrow and Adipose Tissues.
|date=01.12.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33271899
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712261
}}
}}
==SV2B==
==SV2B==
Строка 18 220: Строка 20 004:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31741263
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31741263
|full-text-url=https://sci-hub.do/10.1007/s11033-019-05184-w
|full-text-url=https://sci-hub.do/10.1007/s11033-019-05184-w
}}
==SYNE2==
* {{medline-title
|title=Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies.
|date=03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109663
|full-text-url=https://sci-hub.do/10.1016/j.atherosclerosis.2020.02.005
}}
}}
==SYNJ2==
==SYNJ2==
Строка 18 268: Строка 20 060:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25765287
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25765287
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475460
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475460
}}
==TACR3==
* {{medline-title
|title=Association of a neurokinin 3 receptor polymorphism with the anterior basal forebrain.
|date=06.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25976010
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2014.12.031
}}
}}
==TAF15==
==TAF15==
Строка 18 300: Строка 20 084:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31065688
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31065688
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052986
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052986
}}
==TANK==
* {{medline-title
|title=Aging aggravated liver ischemia and reperfusion injury by promoting STING-mediated [[NLRP3]] activation in macrophages.
|date=08.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32666684
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431827
}}
==TAP1==
* {{medline-title
|title=Age-associated methylation change of [[TAP1]] promoter in piglet.
|date=15.11.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26169022
|full-text-url=https://sci-hub.do/10.1016/j.gene.2015.07.026
}}
}}
==TAP2==
==TAP2==
Строка 18 317: Строка 20 117:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6213100
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6213100
}}
}}
==TBC1D4==
==TBC1D2==


* {{medline-title
* {{medline-title
|title=Effects of Exercise Training on Regulation of Skeletal Muscle Glucose Metabolism in Elderly Men.
|title=Genome-wide association study identifies [i]SIAH3[/i] locus influencing the rate of ventricular enlargement in non-demented elders.
|date=07.2015
|date=11.11.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25991826
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31711042
|full-text-url=https://sci-hub.do/10.1093/gerona/glv012
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874439
}}
}}
==TBR1==
==TBR1==
Строка 18 332: Строка 20 132:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28419903
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28419903
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.04.006
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.04.006
}}
==TBX21==
* {{medline-title
|title=[Study of gene expression of transcription factors T cells during aging].
|date=2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28509479
}}
}}
==TBX3==
==TBX3==
Строка 18 372: Строка 20 164:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29748384
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29748384
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6016453
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6016453
}}
==TCF4==
* {{medline-title
|title=Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans.
|date=12.2017
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27878761
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441979
}}
}}
==TCF7L1==
==TCF7L1==
Строка 18 389: Строка 20 173:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5438253
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5438253
}}
}}
==TCTA==
==TCP1==
 
* {{medline-title
|title=Proteometabolomic characterization of apical bud maturation in Pinus pinaster.
|date=01.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32870277
|full-text-url=https://sci-hub.do/10.1093/treephys/tpaa111
}}
==TCTA==


* {{medline-title
* {{medline-title
Строка 18 397: Строка 20 189:
|full-text-url=https://sci-hub.do/10.1021/acsami.7b15034
|full-text-url=https://sci-hub.do/10.1021/acsami.7b15034
}}
}}
==TDRD7==
==TDRD1==
 
* {{medline-title
|title=Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice.
|date=01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31472347
|full-text-url=https://sci-hub.do/10.1016/j.chemosphere.2019.124650
}}
==TDRD6==
 
* {{medline-title
|title=Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice.
|date=01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31472347
|full-text-url=https://sci-hub.do/10.1016/j.chemosphere.2019.124650
}}
==TEAD4==


* {{medline-title
* {{medline-title
|title=RNA granule component [[TDRD7]] gene polymorphisms in a Han Chinese population with age-related cataract.
|title=Clinical, polysomnographic and genome-wide association analyses of narcolepsy with cataplexy: a European Narcolepsy Network study.
|date=02.2014
|date=10.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24435515
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23496005
|full-text-url=https://sci-hub.do/10.1177/0300060513504702
|full-text-url=https://sci-hub.do/10.1111/jsr.12044
}}
}}
==TECPR2==
==TECPR2==
Строка 18 413: Строка 20 221:
|full-text-url=https://sci-hub.do/10.1097/WAD.0000000000000294
|full-text-url=https://sci-hub.do/10.1097/WAD.0000000000000294
}}
}}
==TEF==
==TEP1==


* {{medline-title
* {{medline-title
|title=Expression of human HSP27 in yeast extends replicative lifespan and uncovers a hormetic response.
|title=[Influence of Age on the Susceptibility of  Anopheles stephensi to Plasmodium berghei Infection].
|date=10.2020
|date=12.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32189112
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30141604
|full-text-url=https://sci-hub.do/10.1007/s10522-020-09869-9
 
}}
}}
==TEN1==
==TERF2IP==


* {{medline-title
* {{medline-title
|title=Stimulation of cell proliferation by glutathione monoethyl ester in aged bone marrow stromal cells is associated with the assistance of [[TERT]] gene expression and telomerase activity.
|title=Endothelial senescence-associated secretory phenotype (SASP) is regulated by Makorin-1 ubiquitin E3 ligase.
|date=08.2016
|date=11.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27251157
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31476350
|full-text-url=https://sci-hub.do/10.1007/s11626-016-0021-5
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059097
}}
}}
==TEP1==
==TESC==


* {{medline-title
* {{medline-title
|title=[Influence of Age on the Susceptibility of  Anopheles stephensi to Plasmodium berghei Infection].
|title=Clonogenic Culture of Mouse Thymic Epithelial Cells.
|date=12.2016
|date=2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30141604
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31396938
 
|full-text-url=https://sci-hub.do/10.1007/978-1-4939-9728-2_15
}}
}}
==TFAP2A==
==TFAP2A==
Строка 18 444: Строка 20 252:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25763115
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25763115
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356053
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356053
}}
==TFE3==
* {{medline-title
|title=Towards Age-Related Anti-Inflammatory Therapy: Klotho Suppresses Activation of ER and Golgi Stress Response in Senescent Monocytes.
|date=21.01.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31972978
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072557
}}
==TFG==
* {{medline-title
|title=[[TFG]]-maintaining stability of overlooked [[FANCD2]] confers early DNA-damage response.
|date=24.10.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33099537
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7655164
}}
}}
==TFPI==
==TFPI==
Строка 18 462: Строка 20 286:
}}
}}
==TGFB2==
==TGFB2==
* {{medline-title
|title=Seminal plasma transforming growth factor-β, activin A and follistatin fluctuate within men over time.
|date=10.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27609985
|full-text-url=https://sci-hub.do/10.1093/humrep/dew185
}}
==TGFB3==


* {{medline-title
* {{medline-title
Строка 18 484: Строка 20 300:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29948944
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29948944
|full-text-url=https://sci-hub.do/10.1007/s12035-018-1156-z
|full-text-url=https://sci-hub.do/10.1007/s12035-018-1156-z
}}
==TGFBR2==
* {{medline-title
|title=TGF-β type 2 receptor-mediated modulation of the IL-36 family can be therapeutically targeted in osteoarthritis.
|date=08.05.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31068441
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7102613
}}
}}
==TGM2==
==TGM2==
Строка 18 540: Строка 20 348:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27239547
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27239547
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4879650
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4879650
}}
==TIE1==
* {{medline-title
|title=Cerebrovascular Senescence Is Associated With Tau Pathology in Alzheimer's Disease.
|date=2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33041998
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7525127
}}
==TIMP3==
* {{medline-title
|title=Enhanced tissue regeneration potential of juvenile articular cartilage.
|date=11.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24043472
|full-text-url=https://sci-hub.do/10.1177/0363546513502945
}}
}}
==TINF2==
==TINF2==
Строка 18 557: Строка 20 381:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6900071
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6900071
}}
}}
==TLR6==
==TLR10==


* {{medline-title
* {{medline-title
|title=Decreased [[NLRP3]] inflammasome expression in aged lung may contribute to increased susceptibility to secondary Streptococcus pneumoniae infection.
|title=Innate immune response to LPS in airway epithelium is dependent on chronological age and antecedent exposures.
|date=05.2018
|date=11.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29203400
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23600597
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869149
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931090
}}
}}
==TM9SF1==
==TM9SF1==
Строка 18 572: Строка 20 396:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28286171
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28286171
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501279
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501279
}}
==TMEM127==
* {{medline-title
|title=Long-term prognosis of patients with pediatric pheochromocytoma.
|date=02.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24169644
|full-text-url=https://sci-hub.do/10.1530/ERC-13-0415
}}
}}
==TMEM135==
==TMEM135==
Строка 18 581: Строка 20 413:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5117855
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5117855
}}
}}
==TMEM18==
==TMEM38B==


* {{medline-title
* {{medline-title
|title=Sequence variation in [[TMEM18]] in association with body mass index: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study.
|title=Genome wide association study of age at menarche in the Japanese population.
|date=06.2014
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24951660
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23667675
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4135723
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646805
}}
}}
==TMEM51==
==TMEM51==
Строка 18 596: Строка 20 428:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28130229
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28130229
|full-text-url=https://sci-hub.do/10.1093/bioinformatics/btx040
|full-text-url=https://sci-hub.do/10.1093/bioinformatics/btx040
}}
==TNFAIP3==
* {{medline-title
|title=[[TNFAIP3]] Plays a Role in Aging of the Hematopoietic System.
|date=2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33224133
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7670064
}}
}}
==TNFRSF11B==
==TNFRSF11B==
Строка 18 612: Строка 20 452:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28163108
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28163108
|full-text-url=https://sci-hub.do/10.1016/j.mad.2017.01.011
|full-text-url=https://sci-hub.do/10.1016/j.mad.2017.01.011
}}
==TNFSF10==
* {{medline-title
|title=Role of mitochondrial function in cell death and body metabolism.
|date=01.06.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27100503
|full-text-url=https://sci-hub.do/10.2741/4453
}}
}}
==TNFSF13==
==TNFSF13==
Строка 18 644: Строка 20 476:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28631188
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28631188
|full-text-url=https://sci-hub.do/10.1007/s12035-017-0547-x
|full-text-url=https://sci-hub.do/10.1007/s12035-017-0547-x
}}
==TNKS2==
* {{medline-title
|title=Gene expression in human mesenchymal stem cell aging cultures: modulation by short peptides.
|date=06.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32399807
|full-text-url=https://sci-hub.do/10.1007/s11033-020-05506-3
}}
}}
==TNNI1==
==TNNI1==
Строка 18 652: Строка 20 492:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30820991
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30820991
|full-text-url=https://sci-hub.do/10.1113/EP087564
|full-text-url=https://sci-hub.do/10.1113/EP087564
}}
==TNNT1==
* {{medline-title
|title=Improved knee extensor strength with resistance training associates with muscle specific miRNAs in older adults.
|date=02.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25560803
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314447
}}
}}
==TNP1==
==TNP1==
Строка 18 692: Строка 20 524:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27329260
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27329260
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013013
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013013
}}
==TOP3A==
* {{medline-title
|title=Replication Stress at Telomeric and Mitochondrial DNA: Common Origins and Consequences on Ageing.
|date=08.10.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31597307
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6801922
}}
}}
==TOR2A==
==TOR2A==
Строка 18 732: Строка 20 572:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28912086
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28912086
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5944352
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5944352
}}
==TPCN1==
* {{medline-title
|title=Effect of aging on calcium signaling in C57Bl6J mouse cerebral arteries.
|date=06.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23238969
|full-text-url=https://sci-hub.do/10.1007/s00424-012-1195-7
}}
}}
==TPP2==
==TPP2==
Строка 18 748: Строка 20 596:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30975089
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30975089
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458604
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458604
}}
==TPX2==
* {{medline-title
|title=Targeting [[DTL]] induces cell cycle arrest and senescence and suppresses cell growth and colony formation through [[TPX2]] inhibition in human hepatocellular carcinoma cells.
|date=2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29606879
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5868578
}}
==TRADD==
* {{medline-title
|title=TNF/TNFR₁ pathway and endoplasmic reticulum stress are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes.
|date=15.04.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24582689
|full-text-url=https://sci-hub.do/10.1016/j.taap.2014.02.003
}}
==TRAF6==
* {{medline-title
|title=Elevated A20 contributes to age-dependent macrophage dysfunction in the lungs.
|date=06.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24440463
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3989429
}}
}}
==TRAV1-2==
==TRAV1-2==
Строка 18 804: Строка 20 628:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25545807
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25545807
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461024
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461024
}}
==TRHR==
* {{medline-title
|title=Association between polymorphisms in the [[TRHR]] gene, fat-free mass, and muscle strength in older women.
|date=12.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23543262
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3824979
}}
}}
==TRIB2==
==TRIB2==
Строка 18 820: Строка 20 652:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30025493
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30025493
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152528
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152528
}}
==TRIM21==
* {{medline-title
|title=[[TRIM21]] overexpression promotes tumor progression by regulating cell proliferation, cell migration and cell senescence in human glioma.
|date=2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32064156
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7017742
}}
}}
==TRIM27==
==TRIM27==
Строка 18 844: Строка 20 668:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27764096
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27764096
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072625
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072625
}}
==TRO==
* {{medline-title
|title=Post-mortem findings and piglet mortality in relation to strategic use of straw at farrowing.
|date=01.05.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25792335
|full-text-url=https://sci-hub.do/10.1016/j.prevetmed.2015.02.023
}}
}}
==TRPC1==
==TRPC1==
Строка 18 924: Строка 20 740:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28419903
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28419903
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.04.006
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.04.006
}}
==TTF1==
* {{medline-title
|title=Senescence and autophagy in usual interstitial pneumonia of different etiology.
|date=27.08.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32851507
|full-text-url=https://sci-hub.do/10.1007/s00428-020-02917-2
}}
==TUBA1A==
* {{medline-title
|title=Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease.
|date=2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31733664
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939615
}}
==TUBAL3==
* {{medline-title
|title=Identification of biomarkers of human skin ageing in both genders. Wnt signalling - a label of skin ageing?
|date=2012
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23226273
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3511529
}}
}}
==TWIST2==
==TWIST2==
Строка 18 988: Строка 20 828:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28093506
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28093506
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451163
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451163
}}
==TYRP1==
* {{medline-title
|title=Thymocid , a Standardized Black Cumin ([i]Nigella sativa[/i]) Seed Extract, Modulates Collagen Cross-Linking, Collagenase and Elastase Activities, and Melanogenesis in Murine B16F10 Melanoma Cells.
|date=19.07.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32707654
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400895
}}
}}
==UACA==
==UACA==
Строка 19 012: Строка 20 860:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30915334
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30915334
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421261
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421261
}}
==UBE2C==
* {{medline-title
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335
}}
}}
==UBE2D2==
==UBE2D2==
Строка 19 037: Строка 20 893:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4321442
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4321442
}}
}}
==UBE4B==
==UBE2T==
 
* {{medline-title
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335
}}
==UBE4B==


* {{medline-title
* {{medline-title
Строка 19 084: Строка 20 948:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28994181
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28994181
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5676066
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5676066
}}
==UBXN2B==
* {{medline-title
|title=Clinical, polysomnographic and genome-wide association analyses of narcolepsy with cataplexy: a European Narcolepsy Network study.
|date=10.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23496005
|full-text-url=https://sci-hub.do/10.1111/jsr.12044
}}
}}
==UCHL3==
==UCHL3==
Строка 19 204: Строка 21 076:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30084918
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30084918
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6454504
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6454504
}}
==USP10==
* {{medline-title
|title=Long noncoding RNA H19 mediates melatonin inhibition of premature senescence of c-kit( ) cardiac progenitor cells by promoting miR-675.
|date=08.2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27062045
|full-text-url=https://sci-hub.do/10.1111/jpi.12331
}}
==USP14==
* {{medline-title
|title=Low expression of aging-related [[[[NRXN3]]]] is associated with Alzheimer disease: A systematic review and meta-analysis.
|date=07.2018
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29995770
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076205
}}
}}
==USP15==
==USP15==
Строка 19 268: Строка 21 124:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28277545
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28277545
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386568
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386568
}}
==UVRAG==
* {{medline-title
|title=Essential role for [[UVRAG]] in autophagy and maintenance of cardiac function.
|date=01.01.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24081163
|full-text-url=https://sci-hub.do/10.1093/cvr/cvt223
}}
}}
==UVSSA==
==UVSSA==
Строка 19 316: Строка 21 180:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29397922
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29397922
|full-text-url=https://sci-hub.do/10.1016/j.cryobiol.2018.01.014
|full-text-url=https://sci-hub.do/10.1016/j.cryobiol.2018.01.014
}}
==VCPIP1==
* {{medline-title
|title=Tandem Deubiquitination and Acetylation of [[SPRTN]] Promotes DNA-Protein Crosslink Repair and Protects against Aging.
|date=03.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32649882
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7484104
}}
}}
==VDAC3==
==VDAC3==
Строка 19 349: Строка 21 221:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5664652
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5664652
}}
}}
==VIPR2==
==VIT==


* {{medline-title
* {{medline-title
|title=Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology.
|title=Autophagy-mediated longevity is modulated by lipoprotein biogenesis.
|date=15.11.2018
|date=2016
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26671266
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4836030
}}
}}
==VPREB3==
==VPREB3==
Строка 19 396: Строка 21 268:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27922854
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27922854
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5263111
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5263111
}}
==VPS4A==
* {{medline-title
|title=The expression changes of vacuolar protein sorting 4B ([[VPS4B]]) following middle cerebral artery occlusion (MCAO) in adult rats brain hippocampus.
|date=01.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24077878
|full-text-url=https://sci-hub.do/10.1007/s10571-013-9989-5
}}
==VPS4B==
* {{medline-title
|title=The expression changes of vacuolar protein sorting 4B ([[VPS4B]]) following middle cerebral artery occlusion (MCAO) in adult rats brain hippocampus.
|date=01.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24077878
|full-text-url=https://sci-hub.do/10.1007/s10571-013-9989-5
}}
==VRK2==
* {{medline-title
|title=Accelerated Epigenetic Aging and Methylation Disruptions Occur in Human Immunodeficiency Virus Infection Prior to Antiretroviral Therapy.
|date=22.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32959881
|full-text-url=https://sci-hub.do/10.1093/infdis/jiaa599
}}
}}
==VSIG4==
==VSIG4==
Строка 19 412: Строка 21 308:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27267879
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27267879
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897877
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897877
}}
==WAC==
* {{medline-title
|title=Implementation of Writing Across the Curriculum ([[WAC]]) learning approaches in social work and sociology gerontology courses.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23383857
|full-text-url=https://sci-hub.do/10.1080/02701960.2012.718011
}}
}}
==WASL==
==WASL==
Строка 19 420: Строка 21 324:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32434991
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32434991
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259520
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259520
}}
==WBP11==
* {{medline-title
|title=Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of mRNA splicing relevant proteins in aging HSPCs.
|date=05.03.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32141009
|full-text-url=https://sci-hub.do/10.1007/s40520-020-01509-z
}}
}}
==WDR48==
==WDR48==
Строка 19 500: Строка 21 412:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29431914
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29431914
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5827750
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5827750
}}
==WNT5B==
* {{medline-title
|title=Dysregulation of the Wnt Signaling Pathway and Synovial Stem Cell Dysfunction in Osteoarthritis Development.
|date=01.04.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31964233
|full-text-url=https://sci-hub.do/10.1089/scd.2019.0260
}}
}}
==WNT7A==
==WNT7A==
Строка 19 508: Строка 21 428:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32436833
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32436833
|full-text-url=https://sci-hub.do/10.2174/1871520620666200521114100
|full-text-url=https://sci-hub.do/10.2174/1871520620666200521114100
}}
==WWC1==
* {{medline-title
|title=[[WWC1]] genotype modulates age-related decline in episodic memory function across the adult life span.
|date=01.05.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24290728
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3989426
}}
}}
==XAF1==
==XAF1==
Строка 19 516: Строка 21 444:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26802028
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26802028
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4868675
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4868675
}}
==XCL1==
* {{medline-title
|title=Cathelicidin related antimicrobial peptide, laminin, Toll-like receptors and chemokines levels in experimental hypersensitivity pneumonitis in mice.
|date=06.2015
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25834936
|full-text-url=https://sci-hub.do/10.1016/j.patbio.2015.03.002
}}
}}
==XG==
==XG==
Строка 19 548: Строка 21 468:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29768192
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29768192
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5991088
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5991088
}}
==XRCC2==
* {{medline-title
|title=Copy neutral loss of heterozygosity is more frequent in older ovarian cancer patients.
|date=09.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23716468
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3767172
}}
==XRCC5==
* {{medline-title
|title=Repairing DNA damage by [[XRCC6]]/KU70 reverses [[TLR4]]-deficiency-worsened HCC development via restoring senescence and autophagic flux.
|date=01.06.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23518600
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3672303
}}
}}
==YBX2==
==YBX2==
Строка 19 564: Строка 21 500:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30341976
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30341976
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6224233
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6224233
}}
==YY1==
* {{medline-title
|title=Low mitochondrial DNA content associates with familial longevity: the Leiden Longevity Study.
|date=06.2014
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24554339
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082602
}}
}}
==ZAP70==
==ZAP70==
Строка 19 588: Строка 21 516:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27532432
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27532432
|full-text-url=https://sci-hub.do/10.1080/10495398.2016.1212060
|full-text-url=https://sci-hub.do/10.1080/10495398.2016.1212060
}}
==ZBTB7A==
* {{medline-title
|title=The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators.
|date=29.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32997995
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527782
}}
==ZC3H11A==
* {{medline-title
|title=In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases.
|date=12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31520345
|full-text-url=https://sci-hub.do/10.1007/s10522-019-09834-1
}}
}}
==ZFHX3==
==ZFHX3==
Строка 19 612: Строка 21 556:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204
}}
==ZIC1==
* {{medline-title
|title=The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators.
|date=29.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32997995
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527782
}}
}}
==ZNF14==
==ZNF14==
Строка 19 628: Строка 21 580:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29196338
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29196338
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795392
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795392
}}
==ZNF211==
* {{medline-title
|title=Genetics of facial telangiectasia in the Rotterdam Study: a genome-wide association study and candidate gene approach.
|date=23.10.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33095951
|full-text-url=https://sci-hub.do/10.1111/jdv.17014
}}
}}
==ZNF367==
==ZNF367==
Строка 19 652: Строка 21 612:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204
}}
==ZNF483==
* {{medline-title
|title=Genome wide association study of age at menarche in the Japanese population.
|date=2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23667675
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646805
}}
==ZNF518B==
* {{medline-title
|title=The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators.
|date=29.09.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32997995
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527782
}}
}}
==ZNF616==
==ZNF616==
Строка 19 660: Строка 21 636:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26029164
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26029164
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432801
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432801
}}
==ZNF619==
* {{medline-title
|title=Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women.
|date=12.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31508907
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6903450
}}
==ZNF644==
* {{medline-title
|title=Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients.
|date=03.09.2019
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31560770
|full-text-url=https://sci-hub.do/10.1167/iovs.19-27921
}}
}}
==ZNF704==
==ZNF704==
Строка 19 669: Строка 21 661:
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506316
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506316
}}
}}
==ZP2==
==ZPBP2==


* {{medline-title
* {{medline-title
|title=Melatonin improves the fertilization ability of post-ovulatory aged mouse oocytes by stabilizing ovastacin and Juno to promote sperm binding and fusion.
|title=Sex- and age-dependent DNA methylation at the 17q12-q21 locus associated with childhood asthma.
|date=01.03.2017
|date=07.2013
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28137755
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23546690
|full-text-url=https://sci-hub.do/10.1093/humrep/dew362
|full-text-url=https://sci-hub.do/10.1007/s00439-013-1298-z
}}
}}
==ZRSR2==
==ZRSR2==
Строка 19 684: Строка 21 676:
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27147278
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27147278
|full-text-url=https://sci-hub.do/10.1111/ejh.12771
|full-text-url=https://sci-hub.do/10.1111/ejh.12771
}}
==ZSCAN4==
* {{medline-title
|title=Genetics of facial telangiectasia in the Rotterdam Study: a genome-wide association study and candidate gene approach.
|date=23.10.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33095951
|full-text-url=https://sci-hub.do/10.1111/jdv.17014
}}
==ZW10==
* {{medline-title
|title=Multivariate genomic scan implicates novel loci and haem metabolism in human ageing.
|date=16.07.2020
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32678081
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366647
}}
}}

Текущая версия от 16:42, 29 апреля 2021

AACS[править]

  • Sex differences in subjective age-associated changes in sleep: a prospective elderly cohort study. / 07.11.2020 / PubMed / Full text
  • Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text

ABCC2[править]

  • Proteomic Analysis of the Developmental Trajectory of Human Hepatic Membrane Transporter Proteins in the First Three Months of Life. / 07.2016 / PubMed / Full text
  • Developmental characteristics of urinary coproporphyrin I/(I III) ratio. / 10.2016 / PubMed / Full text

ABCG1[править]

  • Disrupted cholesterol metabolism promotes age-related photoreceptor neurodegeneration. / 08.2018 / PubMed / Full text
  • Elevated COX2 expression and PGE2 production by downregulation of RXRα in senescent macrophages. / 11.10.2013 / PubMed / Full text

ABCG5[править]

  • 2, 3, 4', 5-tetrahydroxystilbene-2-0-β-d Glycoside Attenuates Age- and Diet-Associated Non-Alcoholic Steatohepatitis and Atherosclerosis in LDL Receptor Knockout Mice and Its Possible Mechanisms. / 01.04.2019 / PubMed / Full text
  • Genetic determinants of macular pigments in women of the Carotenoids in Age-Related Eye Disease Study. / 28.03.2013 / PubMed / Full text

ABI3[править]

  • Arabidopsis seed-specific vacuolar aquaporins are involved in maintaining seed longevity under the control of ABSCISIC ACID INSENSITIVE 3. / 08.2015 / PubMed / Full text
  • A forward genetic approach in Arabidopsis thaliana identifies a RING-type ubiquitin ligase as a novel determinant of seed longevity. / 02.2014 / PubMed / Full text

ACACA[править]

  • Expression of lipogenic markers is decreased in subcutaneous adipose tissue and adipocytes of older women and is negatively linked to GDF15 expression. / 08.2019 / PubMed / Full text
  • GH prevents adipogenic differentiation of mesenchymal stromal stem cells derived from human trabecular bone via canonical Wnt signaling. / 07.2018 / PubMed / Full text

ACAT2[править]

  • Cholesterol Homeostasis: An In Silico Investigation into How Aging Disrupts Its Key Hepatic Regulatory Mechanisms. / 30.09.2020 / PubMed / Full text
  • Serum starvation of ARPE-19 changes the cellular distribution of cholesterol and Fibulin3 in patterns reminiscent of age-related macular degeneration. / 15.12.2017 / PubMed / Full text

ACTA1[править]

  • Explaining meat quality of bulls and steers by differential proteome and phosphoproteome analysis of skeletal muscle. / 15.05.2019 / PubMed / Full text
  • Serum starvation of ARPE-19 changes the cellular distribution of cholesterol and Fibulin3 in patterns reminiscent of age-related macular degeneration. / 15.12.2017 / PubMed / Full text

ACTB[править]

  • Selection of a Real-Time PCR Housekeeping Gene Panel in Human Endothelial Colony Forming Cells for Cellular Senescence Studies. / 2019 / PubMed / Full text
  • WNT-activated bone grafts repair osteonecrotic lesions in aged animals. / 27.10.2017 / PubMed / Full text

ACVR1[править]

  • Fibrodysplasia Ossificans Progressiva (FOP): A Segmental Progeroid Syndrome. / 2019 / PubMed / Full text
  • BMP-SMAD-ID promotes reprogramming to pluripotency by inhibiting p16/INK4A-dependent senescence. / 15.11.2016 / PubMed / Full text

ADAMTS4[править]

  • Influences of circulatory factors on intervertebral disc aging phenotype. / 11.06.2020 / PubMed / Full text
  • Genotoxic stress accelerates age-associated degenerative changes in intervertebral discs. / 01-02.2013 / PubMed / Full text

ADH5[править]

  • Can Serum Nitrosoproteome Predict Longevity of Aged Women? / 27.11.2020 / PubMed / Full text
  • Denitrosylate and live longer: how ADH5/GSNOR links mitophagy to aging. / 2018 / PubMed / Full text

ADIPOR1[править]

  • A Novel [i]Dnmt3a1[/i] Transcript Inhibits Adipogenesis. / 2018 / PubMed / Full text
  • Contribution of adiponectin and its type 1 receptor to age-related hearing impairment. / 06.2015 / PubMed / Full text

ADNP[править]

  • ADNP differentially interact with genes/proteins in correlation with aging: a novel marker for muscle aging. / 06.2019 / PubMed / Full text
  • ADNP: A major autism mutated gene is differentially distributed (age and gender) in the songbird brain. / 10.2015 / PubMed / Full text

ADRA2B[править]

  • Aging and the Combined effects of ADRA2B and CB1 deletions on Affective Working Memory. / 11.03.2019 / PubMed / Full text
  • Aging and the genetic road towards the positivity effect in memory. / 09.2016 / PubMed / Full text

ADRB2[править]

  • Interactions between social/ behavioral factors and ADRB2 genotypes may be associated with health at advanced ages in China. / 09.09.2013 / PubMed / Full text
  • ADRB2, brain white matter integrity and cognitive ageing in the Lothian Birth Cohort 1936. / 01.2013 / PubMed / Full text

AGO2[править]

  • Profiling of m6A RNA modifications identified an age-associated regulation of AGO2 mRNA stability. / 06.2018 / PubMed / Full text
  • miRNA processing gene polymorphisms, blood DNA methylation age and long-term ambient PM exposure in elderly men. / 12.2017 / PubMed / Full text

AHCY[править]

  • Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. / 11.2018 / PubMed / Full text
  • Tissue-specific down-regulation of S-adenosyl-homocysteine via suppression of dAhcyL1/dAhcyL2 extends health span and life span in Drosophila. / 15.06.2016 / PubMed / Full text

AIDA[править]

  • Identification of Postharvest Senescence Regulators Through Map-Based Cloning Using Detached Arabidopsis Inflorescences as a Model Tissue. / 2018 / PubMed / Full text
  • Interaction of DHPG-LTD and synaptic-LTD at senescent CA3-CA1 hippocampal synapses. / 04.2014 / PubMed / Full text

AKT2[править]

  • A conserved role of the insulin-like signaling pathway in diet-dependent uric acid pathologies in Drosophila melanogaster. / 08.2019 / PubMed / Full text
  • Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats. / 02.2019 / PubMed / Full text

AKT3[править]

  • Oxidative stress-induced miRNAs modulate AKT signaling and promote cellular senescence in uterine leiomyoma. / 10.2018 / PubMed / Full text
  • MicroRNA-22 induces endothelial progenitor cell senescence by targeting AKT3. / 2014 / PubMed / Full text

AKTIP[править]

  • Mice with reduced expression of the telomere-associated protein Ft1 develop p53-sensitive progeroid traits. / 08.2018 / PubMed / Full text
  • The telomeric protein AKTIP interacts with A- and B-type lamins and is involved in regulation of cellular senescence. / 08.2016 / PubMed / Full text

ALDOA[править]

  • Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. / 2019 / PubMed / Full text
  • An Adult Drosophila Glioma Model for Studying Pathometabolic Pathways of Gliomagenesis. / 06.2019 / PubMed / Full text

ALKBH8[править]

  • Loss of epitranscriptomic control of selenocysteine utilization engages senescence and mitochondrial reprogramming . / 01.2020 / PubMed / Full text
  • ALKB-8, a 2-Oxoglutarate-Dependent Dioxygenase and S-Adenosine Methionine-Dependent Methyltransferase Modulates Metabolic Events Linked to Lysosome-Related Organelles and Aging in C. elegans. / 2018 / PubMed

ALOX5[править]

  • Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis. / 19.12.2019 / PubMed / Full text
  • Functional Characterization of Knock-In Mice Expressing a 12/15-Lipoxygenating Alox5 Mutant Instead of the 5-Lipoxygenating Wild-Type Enzyme. / 01.01.2020 / PubMed / Full text

ANK1[править]

  • Alzheimer's Disease Associated Genes Ankyrin and Tau Cause Shortened Lifespan and Memory Loss in [i]Drosophila[/i]. / 2019 / PubMed / Full text
  • DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. / 25.07.2018 / PubMed / Full text

ANK3[править]

  • Age-related atrophy of cortical thickness and genetic effect of ANK3 gene in first episode MDD patients. / 26.08.2020 / PubMed / Full text
  • Mood, stress and longevity: convergence on ANK3. / 08.2016 / PubMed / Full text

AP2B1[править]

  • Circular RNA NF1-419 enhances autophagy to ameliorate senile dementia by binding Dynamin-1 and Adaptor protein 2 B1 in AD-like mice. / 20.12.2019 / PubMed / Full text
  • Investigating the specific core genetic-and-epigenetic networks of cellular mechanisms involved in human aging in peripheral blood mononuclear cells. / 23.02.2016 / PubMed / Full text

APOD[править]

  • Identification of reference genes for RT-qPCR data normalisation in aging studies. / 27.09.2019 / PubMed / Full text
  • Apolipoprotein D takes center stage in the stress response of the aging and degenerative brain. / 07.2014 / PubMed / Full text

APOL1[править]

  • APOL1 Risk Alleles Are Associated with Exaggerated Age-Related Changes in Glomerular Number and Volume in African-American Adults: An Autopsy Study. / 12.2015 / PubMed / Full text
  • Apolipoprotein L1, income and early kidney damage. / 10.02.2015 / PubMed / Full text

APPL2[править]

  • The reversal effect of physical exercise on aging-related increases in APPL2 content in skeletal muscle. / 01.10.2018 / PubMed / Full text
  • Adaptor Protein APPL2 Affects Adult Antidepressant Behaviors and Hippocampal Neurogenesis via Regulating the Sensitivity of Glucocorticoid Receptor. / 07.2018 / PubMed / Full text

AQP2[править]

  • A bell-shaped pattern of urinary aquaporin-2-bearing extracellular vesicle release in an experimental model of nephronophthisis. / 05.2019 / PubMed / Full text
  • Nitric oxide and AQP2 in hypothyroid rats: a link between aging and water homeostasis. / 09.2013 / PubMed / Full text

AQP3[править]

  • Transbuccal platform for delivery of lipogenic actives to facial skin: Because fat matters. / 08.2020 / PubMed / Full text
  • [Age-related changes of water transport by corneal endothelial cells in rats.] / 2017 / PubMed

ARID1B[править]

  • A 69-year-old woman with Coffin-Siris syndrome. / 08.2018 / PubMed / Full text
  • SWI/SNF regulates a transcriptional program that induces senescence to prevent liver cancer. / 01.10.2016 / PubMed / Full text

ARX[править]

  • Converting Adult Pancreatic Islet α Cells into β Cells by Targeting Both Dnmt1 and Arx. / 07.03.2017 / PubMed / Full text
  • Acacetin 7-O-α-l-rhamnopyranosyl (1-2) β-D-xylopyranoside Elicits Life-span Extension and Stress Resistance in Caenorhabditis elegans. / 09.2016 / PubMed / Full text

ASXL2[править]

  • Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. / 10.2016 / PubMed / Full text
  • The BAP1/ASXL2 Histone H2A Deubiquitinase Complex Regulates Cell Proliferation and Is Disrupted in Cancer. / 27.11.2015 / PubMed / Full text

ATF2[править]

  • Transcriptional regulation of stress kinase JNK2 in pro-arrhythmic CaMKIIδ expression in the aged atrium. / 01.04.2018 / PubMed / Full text
  • Prmt7 Deficiency Causes Reduced Skeletal Muscle Oxidative Metabolism and Age-Related Obesity. / 07.2016 / PubMed / Full text

ATF7[править]

  • Stress-induced and ATF7-dependent epigenetic change influences cellular senescence. / 09.2019 / PubMed / Full text
  • Identification of ATF-7 and the insulin signaling pathway in the regulation of metallothionein in C. elegans suggests roles in aging and reactive oxygen species. / 2017 / PubMed / Full text

ATG9A[править]

  • SIRT1 protects cochlear hair cell and delays age-related hearing loss via autophagy. / 08.2019 / PubMed / Full text
  • Activation of miR-34a impairs autophagic flux and promotes cochlear cell death via repressing ATG9A: implications for age-related hearing loss. / 05.10.2017 / PubMed / Full text

ATOH1[править]

  • In Vivo Interplay between p27 , GATA3, ATOH1, and POU4F3 Converts Non-sensory Cells to Hair Cells in Adult Mice. / 11.04.2017 / PubMed / Full text
  • A new mutation of the Atoh1 gene in mice with normal life span allows analysis of inner ear and cerebellar phenotype in aging. / 2013 / PubMed / Full text

ATP1A2[править]

  • SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text
  • The Influence of Na( ), K( )-ATPase on Glutamate Signaling in Neurodegenerative Diseases and Senescence. / 2016 / PubMed / Full text

ATP6V1E1[править]

  • Low expression of aging-related [[NRXN3]] is associated with Alzheimer disease: A systematic review and meta-analysis. / 07.2018 / PubMed / Full text
  • Chemical screening identifies ATM as a target for alleviating senescence. / 06.2017 / PubMed / Full text

ATP7A[править]

  • Adipocyte-specific disruption of ATPase copper transporting α in mice accelerates lipoatrophy. / 12.2019 / PubMed / Full text
  • TAp73 regulates ATP7A: possible implications for ageing-related diseases. / 08.12.2018 / PubMed / Full text

ATXN3[править]

  • Rescue of ATXN3 neuronal toxicity in [i]Caenorhabditis[/i][i]elegans[/i] by chemical modification of endoplasmic reticulum stress. / 19.12.2017 / PubMed / Full text
  • Sodium valproate alleviates neurodegeneration in SCA3/MJD via suppressing apoptosis and rescuing the hypoacetylation levels of histone H3 and H4. / 2013 / PubMed / Full text

AXL[править]

  • Extracellular acidosis triggers a senescence-like phenotype in human melanoma cells. / 01.2020 / PubMed / Full text
  • CSF protein changes associated with hippocampal sclerosis risk gene variants highlight impact of GRN/PGRN. / 04.2017 / PubMed / Full text

B4GALT1[править]

  • Expression of β-1,4-galactosyltransferases during Aging in Caenorhabditis elegans. / 2020 / PubMed / Full text
  • Glycobiology of Aging. / 2018 / PubMed / Full text

BACH2[править]

  • Age-related changes in the BACH2 and PRDM1 genes in lymphocytes from healthy donors and chronic lymphocytic leukemia patients. / 17.01.2019 / PubMed / Full text
  • BACH2: a marker of DNA damage and ageing. / 11.2013 / PubMed / Full text

BAG3[править]

  • Nrf2 mediates the expression of BAG3 and autophagy cargo adaptor proteins and tau clearance in an age-dependent manner. / 03.2018 / PubMed / Full text
  • Age-related obesity and type 2 diabetes dysregulate neuronal associated genes and proteins in humans. / 06.10.2015 / PubMed / Full text

BANF1[править]

  • An additional case of Néstor-Guillermo progeria syndrome diagnosed in early childhood. / 10.2020 / PubMed / Full text
  • Néstor-Guillermo Progeria Syndrome: a biochemical insight into Barrier-to-Autointegration Factor 1, alanine 12 threonine mutation. / 12.12.2014 / PubMed / Full text

BARD1[править]

  • BRCA1 and BARD1 mediate apoptotic resistance but not longevity upon mitochondrial stress in [i]Caenorhabditis elegans[/i]. / 12.2018 / PubMed / Full text
  • The Histone Variant MacroH2A1 Is a BRCA1 Ubiquitin Ligase Substrate. / 30.05.2017 / PubMed / Full text

BCL11B[править]

  • Responders and non-responders to influenza vaccination: A DNA methylation approach on blood cells. / 05.2018 / PubMed / Full text
  • Age-related profiling of DNA methylation in CD8 T cells reveals changes in immune response and transcriptional regulator genes. / 19.08.2015 / PubMed / Full text

BCL2L1[править]

  • The transcription factor ETS1 promotes apoptosis resistance of senescent cholangiocytes by epigenetically up-regulating the apoptosis suppressor BCL2L1. / 06.12.2019 / PubMed / Full text
  • SIRT6 histone deacetylase functions as a potential oncogene in human melanoma. / 09.2017 / PubMed / Full text

BMPR1B[править]

  • Growth hormone during in vitro fertilization in older women modulates the density of receptors in granulosa cells, with improved pregnancy outcomes. / 12.2018 / PubMed / Full text
  • Dysregulation of granulosal bone morphogenetic protein receptor 1B density is associated with reduced ovarian reserve and the age-related decline in human fertility. / 15.04.2016 / PubMed / Full text

BMX[править]

  • Inducible Activation of FGFR2 in Adult Mice Promotes Bone Formation After Bone Marrow Ablation. / 11.2017 / PubMed / Full text
  • Enhanced activity of an angiotensin-(1-7) neuropeptidase in glucocorticoid-induced fetal programming. / 02.2014 / PubMed / Full text

BRD2[править]

  • Brd2 haploinsufficiency extends lifespan and healthspan in C57B6/J mice. / 2020 / PubMed / Full text
  • Genetic architecture differences between pediatric and adult-onset inflammatory bowel diseases in the Polish population. / 23.12.2016 / PubMed / Full text

BTC[править]

  • Behavioral tagging and capture: long-term memory decline in middle-aged rats. / 07.2018 / PubMed / Full text
  • Estimates of genetic parameters for content of boar taint compounds in adipose tissue of intact males at 160 and 220 days of age. / 09.2015 / PubMed / Full text

BTG1[править]

  • Effects of hydrogen peroxide, doxorubicin and ultraviolet irradiation on senescence of human dental pulp stem cells. / 09.2020 / PubMed / Full text
  • Tumor cell escape from therapy-induced senescence. / 04.2019 / PubMed / Full text

BTK[править]

  • Amelioration of age-related brain function decline by Bruton's tyrosine kinase inhibition. / 01.2020 / PubMed / Full text
  • BTK suppresses myeloma cellular senescence through activating AKT/P27/Rb signaling. / 22.08.2017 / PubMed / Full text

BTLA[править]

  • Combinatorial approach to cancer immunotherapy: strength in numbers. / 08.2016 / PubMed / Full text
  • BTLA expression declines on B cells of the aged and is associated with low responsiveness to the trivalent influenza vaccine. / 14.08.2015 / PubMed / Full text

CA12[править]

  • Co-culturing nucleus pulposus mesenchymal stem cells with notochordal cell-rich nucleus pulposus explants attenuates tumor necrosis factor-α-induced senescence. / 26.06.2018 / PubMed / Full text
  • Notochordal and nucleus pulposus marker expression is maintained by sub-populations of adult human nucleus pulposus cells through aging and degeneration. / 04.05.2017 / PubMed / Full text

CACNA1C[править]

  • Profiling gene expression in the human dentate gyrus granule cell layer reveals insights into schizophrenia and its genetic risk. / 04.2020 / PubMed / Full text
  • Epigenetic regulation of L-type voltage-gated Ca channels in mesenteric arteries of aging hypertensive rats. / 05.2017 / PubMed / Full text

CALR[править]

  • Elevated circulating HtrA4 in preeclampsia may alter endothelial expression of senescence genes. / 15.01.2020 / PubMed / Full text
  • Molecular Pathogenesis of Myeloproliferative Neoplasms: Influence of Age and Gender. / 10.2017 / PubMed / Full text

CASK[править]

  • Integrated study on comparative transcriptome and skeletal muscle function in aged rats. / 01.2018 / PubMed / Full text
  • Neurexins 1-3 Each Have a Distinct Pattern of Expression in the Early Developing Human Cerebral Cortex. / 01.01.2017 / PubMed / Full text

CASP1[править]

  • White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy. / 02.2020 / PubMed / Full text
  • Gene expression of inflammasome components in peripheral blood mononuclear cells (PBMC) of vascular patients increases with age. / 2015 / PubMed / Full text

CASP7[править]

  • Global Characteristics of CSIG-Associated Gene Expression Changes in Human HEK293 Cells and the Implications for CSIG Regulating Cell Proliferation and Senescence. / 2015 / PubMed / Full text
  • Dual role of the caspase enzymes in satellite cells from aged and young subjects. / 12.12.2013 / PubMed / Full text

CASP8[править]

  • Crucial role of the terminal complement complex in chondrocyte death and hypertrophy after cartilage trauma. / 05.2020 / PubMed / Full text
  • [Association of polymorphic markers of CASP8, BCL2 and BAX genes with aging and longevity]. / 2012 / PubMed

CASQ2[править]

  • Single delivery of an adeno-associated viral construct to transfer the CASQ2 gene to knock-in mice affected by catecholaminergic polymorphic ventricular tachycardia is able to cure the disease from birth to advanced age. / 24.06.2014 / PubMed / Full text
  • The role of mutant protein level in autosomal recessive catecholamine dependent polymorphic ventricular tachycardia (CPVT2). / 01.12.2013 / PubMed / Full text

CAST[править]

  • Cytomatrix proteins CAST and ELKS regulate retinal photoreceptor development and maintenance. / 05.11.2018 / PubMed / Full text
  • Short Telomeres Induce p53 and Autophagy and Modulate Age-Associated Changes in Cardiac Progenitor Cell Fate. / 06.2018 / PubMed / Full text

CAV1[править]

  • Candesartan Neuroprotection in Rat Primary Neurons Negatively Correlates with Aging and Senescence: a Transcriptomic Analysis. / 03.2020 / PubMed / Full text
  • Broad range metabolomics coupled with network analysis for explaining possible mechanisms of Er-Zhi-Wan in treating liver-kidney Yin deficiency syndrome of Traditional Chinese medicine. / 24.04.2019 / PubMed / Full text

CBX4[править]

  • Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text
  • Maintenance of Nucleolar Homeostasis by CBX4 Alleviates Senescence and Osteoarthritis. / 26.03.2019 / PubMed / Full text

CBX8[править]

  • PIM1-catalyzed CBX8 phosphorylation promotes the oncogene-induced senescence of human diploid fibroblast. / 27.06.2018 / PubMed / Full text
  • CBX8 antagonizes the effect of Sirtinol on premature senescence through the AKT-RB-E2F1 pathway in K562 leukemia cells. / 22.01.2016 / PubMed / Full text

CCL13[править]

  • Age-specific changes in the molecular phenotype of patients with moderate-to-severe atopic dermatitis. / 07.2019 / PubMed / Full text
  • Differential Gene Expression Profiles Reflecting Macrophage Polarization in Aging and Periodontitis Gingival Tissues. / 2015 / PubMed / Full text

CCL17[править]

  • Aging and chronic high-fat feeding negatively affects kidney size, function, and gene expression in CTRP1-deficient mice. / 21.10.2020 / PubMed / Full text
  • Senescent thyrocytes and thyroid tumor cells induce M2-like macrophage polarization of human monocytes via a PGE2-dependent mechanism. / 21.05.2019 / PubMed / Full text

CCL24[править]

  • Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner. / 2019 / PubMed / Full text
  • Anserine/Carnosine Supplementation Suppresses the Expression of the Inflammatory Chemokine CCL24 in Peripheral Blood Mononuclear Cells from Elderly People. / 31.10.2017 / PubMed / Full text

CCL7[править]

  • Increased cardiovascular and atherosclerosis markers in blood of older patients with atopic dermatitis. / 01.2020 / PubMed / Full text
  • Advanced atherosclerosis is associated with inflammation, vascular dysfunction and oxidative stress, but not hypertension. / 02.2017 / PubMed / Full text

CCNG2[править]

  • A Novel [i]Dnmt3a1[/i] Transcript Inhibits Adipogenesis. / 2018 / PubMed / Full text
  • Hypoxia-inducible transcription factors, HIF1A and HIF2A, increase in aging mucosal tissues. / 07.2018 / PubMed / Full text

CCR4[править]

  • mTOR regulates the expression of DNA damage response enzymes in long-lived Snell dwarf, GHRKO, and PAPPA-KO mice. / 02.2017 / PubMed / Full text
  • Circulating T helper and T regulatory subsets in untreated early rheumatoid arthritis and healthy control subjects. / 10.2016 / PubMed / Full text

CD209[править]

  • Senescence in Monocytes Facilitates Dengue Virus Infection by Increasing Infectivity. / 2020 / PubMed / Full text
  • Comparative analysis of microbial sensing molecules in mucosal tissues with aging. / 03.2018 / PubMed / Full text

CD46[править]

  • Soluble forms of CD46 are detected in Bos taurus plasma and neutralize BVDV, the bovine pestivirus. / 12.2016 / PubMed / Full text
  • Brain innate immunity in the regulation of neuroinflammation: therapeutic strategies by modulating CD200-CD200R interaction involve the cannabinoid system. / 2014 / PubMed / Full text

CD70[править]

  • CD70 contributes to age-associated T cell defects and overwhelming inflammatory responses. / 19.06.2020 / PubMed / Full text
  • Molecular mechanisms involved in the aging of the T-cell immune response. / 12.2012 / PubMed / Full text

CDH1[править]

  • Cdc6 as a novel target in cancer: Oncogenic potential, senescence and subcellular localisation. / 15.09.2020 / PubMed / Full text
  • A Multigene Test Could Cost-Effectively Help Extend Life Expectancy for Women at Risk of Hereditary Breast Cancer. / 04.2017 / PubMed / Full text

CDKN1B[править]

  • A Novel [i]Dnmt3a1[/i] Transcript Inhibits Adipogenesis. / 2018 / PubMed / Full text
  • RNA methyltransferase NSUN2 promotes stress-induced HUVEC senescence. / 12.04.2016 / PubMed / Full text

CDKN1C[править]

  • Human iPSC-derived MSCs (iMSCs) from aged individuals acquire a rejuvenation signature. / 18.03.2019 / PubMed / Full text
  • Expansion of adipose tissue-derived stromal cells at "physiologic" hypoxia attenuates replicative senescence. / 06.2017 / PubMed / Full text

CDR1[править]

  • Two Distinct Pathways in Mice Generate Antinuclear Antigen-Reactive B Cell Repertoires. / 2018 / PubMed / Full text
  • Neuro-degeneration profile of Alzheimer's patients: A brain morphometry study. / 2017 / PubMed / Full text

CDX2[править]

  • Maternal ageing impairs mitochondrial DNA kinetics during early embryogenesis in mice. / 08.07.2019 / PubMed / Full text
  • Autophagic homeostasis is required for the pluripotency of cancer stem cells. / 02.2017 / PubMed / Full text

CEBPB[править]

  • Integrative Analysis of Hippocampus Gene Expression Profiles Identifies Network Alterations in Aging and Alzheimer's Disease. / 2018 / PubMed / Full text
  • The microRNA miR-17-3p inhibits mouse cardiac fibroblast senescence by targeting Par4. / 15.01.2015 / PubMed / Full text

CELF1[править]

  • Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text
  • Gene-based aggregate SNP associations between candidate AD genes and cognitive decline. / 04.2016 / PubMed / Full text

CHEK1[править]

  • Candesartan Neuroprotection in Rat Primary Neurons Negatively Correlates with Aging and Senescence: a Transcriptomic Analysis. / 03.2020 / PubMed / Full text
  • The Ubiquitin-like with PHD and Ring Finger Domains 1 (UHRF1)/DNA Methyltransferase 1 (DNMT1) Axis Is a Primary Regulator of Cell Senescence. / 03.03.2017 / PubMed / Full text

CHEK2[править]

  • Elevated circulating HtrA4 in preeclampsia may alter endothelial expression of senescence genes. / 15.01.2020 / PubMed / Full text
  • A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass. / 20.06.2019 / PubMed / Full text

CHI3L1[править]

  • Postsynaptic damage and microglial activation in AD patients could be linked CXCR4/CXCL12 expression levels. / 15.12.2020 / PubMed / Full text
  • Sex difference in CHI3L1 expression levels in human brain aging and in Alzheimer's disease. / 01.10.2019 / PubMed / Full text

CHIA[править]

  • Lipoprotein Profile in Aged Rats Fed Chia Oil- or Hydroxytyrosol-Enriched Pork in High Cholesterol/High Saturated Fat Diets. / 26.11.2018 / PubMed / Full text
  • Chia Oil-Enriched Restructured Pork Effects on Oxidative and Inflammatory Status of Aged Rats Fed High Cholesterol/High Fat Diets. / 05.2017 / PubMed / Full text

CHL1[править]

  • Close Homolog of L1 Regulates Dendritic Spine Density in the Mouse Cerebral Cortex Through Semaphorin 3B. / 07.08.2019 / PubMed / Full text
  • Age-dependent loss of parvalbumin-expressing hippocampal interneurons in mice deficient in CHL1, a mental retardation and schizophrenia susceptibility gene. / 11.2015 / PubMed / Full text

CHM[править]

  • [Molecular regulative mechanisms of aging and interventional effects of Chinese herbal medicine]. / 08.2017 / PubMed / Full text
  • [Molecular mechanisms of autophagy in regulating renal aging and interventional effects of Chinese herbal medicine]. / 11.2016 / PubMed / Full text

CIDEA[править]

  • Growth hormone receptor expression in human gluteal versus abdominal subcutaneous adipose tissue: Association with body shape. / 05.2016 / PubMed / Full text
  • The developmental transition of ovine adipose tissue through early life. / 01.2014 / PubMed / Full text

CIP2A[править]

  • Long-lived mice with reduced growth hormone signaling have a constitutive upregulation of hepatic chaperone-mediated autophagy. / 12.02.2020 / PubMed / Full text
  • Inhibition of CIP2A attenuates tumor progression by inducing cell cycle arrest and promoting cellular senescence in hepatocellular carcinoma. / 08.01.2018 / PubMed / Full text

CLC[править]

  • Impact of Intervention to Improve Nursing Home Resident-Staff Interactions and Engagement. / 13.07.2018 / PubMed / Full text
  • Effect of cholesterol loaded cyclodextrin on semen cryopreservation of Aksaray Malakli shepherd dogs of different ages. / 06.2018 / PubMed / Full text

CLEC3B[править]

  • CLEC3B p.S106G Mutant in a Caucasian Population of Successful Neurological Aging. / 16.09.2020 / PubMed / Full text
  • Exome-wide Association Study Identifies CLEC3B Missense Variant p.S106G as Being Associated With Extreme Longevity in East Asian Populations. / 01.03.2017 / PubMed / Full text

CLPP[править]

  • Mitochondrial unfolded protein response: a stress response with implications for fertility and reproductive aging. / 02.2019 / PubMed / Full text
  • Mitochondrial unfolded protein response gene Clpp is required to maintain ovarian follicular reserve during aging, for oocyte competence, and development of pre-implantation embryos. / 08.2018 / PubMed / Full text

CLSTN2[править]

  • Investigating the influence of KIBRA and CLSTN2 genetic polymorphisms on cross-sectional and longitudinal measures of memory performance and hippocampal volume in older individuals. / 11.2015 / PubMed / Full text
  • Genetic effects on old-age cognitive functioning: a population-based study. / 03.2013 / PubMed / Full text

CNP[править]

  • Environmental Enrichment Elicits a Transient Rise of Bioactive C-Type Natriuretic Peptide in Young but Not Aged Rats. / 2018 / PubMed / Full text
  • In aging, the vulnerability of rat brain mitochondria is enhanced due to reduced level of 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNP) and subsequently increased permeability transition in brain mitochondria in old animals. / 01.2015 / PubMed / Full text

CNTF[править]

  • Absence of axonal sprouting following unilateral lesion in 125-day-old rat supraoptic nucleus may be due to age-dependent decrease in protein levels of ciliary neurotrophic factor receptor alpha. / 01.10.2019 / PubMed / Full text
  • Maintenance of membrane organization in the aging mouse brain as the determining factor for preventing receptor dysfunction and for improving response to anti-Alzheimer treatments. / 06.2017 / PubMed / Full text

CNTNAP2[править]

  • Selective molecular biomarkers to predict biologic behavior in pituitary tumors. / 05.2017 / PubMed / Full text
  • A common copy number variation polymorphism in the CNTNAP2 gene: sexual dimorphism in association with healthy aging and disease. / 2015 / PubMed / Full text

COPE[править]

  • Patterns and characteristics of cognitive functioning in older patients approaching end stage kidney disease, the COPE-study. / 09.04.2020 / PubMed / Full text
  • Falls self-efficacy and falls incidence in community-dwelling older people: the mediating role of coping. / 05.2018 / PubMed / Full text

COQ7[править]

  • Reduction in the levels of CoQ biosynthetic proteins is related to an increase in lifespan without evidence of hepatic mitohormesis. / 18.09.2018 / PubMed / Full text
  • Gene expression differences in relation to age and social environment in queen and worker bumble bees. / 05.2016 / PubMed / Full text

COX5B[править]

  • Role of Mitochondrial Complex IV in Age-Dependent Obesity. / 13.09.2016 / PubMed / Full text
  • Loss of COX5B inhibits proliferation and promotes senescence via mitochondrial dysfunction in breast cancer. / 22.12.2015 / PubMed / Full text

CPNE1[править]

  • Prevalent intron retention fine-tunes gene expression and contributes to cellular senescence. / 04.12.2020 / PubMed / Full text
  • Genome-wide Associations Reveal Human-Mouse Genetic Convergence and Modifiers of Myogenesis, CPNE1 and STC2. / 05.12.2019 / PubMed / Full text

CPQ[править]

  • A Spanish Adaptation of the Computer and Mobile Device Proficiency Questionnaires (CPQ and MDPQ) for Older Adults. / 2019 / PubMed / Full text
  • Protective Effect of Semisynthetic and Natural Flavonoid on Aged Rat Microglia-enriched Cultures. / 11.2019 / PubMed / Full text

CPT1B[править]

  • Effects of carnitine palmitoyltransferases on cancer cellular senescence. / 02.2019 / PubMed / Full text
  • Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone. / 07.2014 / PubMed / Full text

CPT2[править]

  • The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats. / 09.2020 / PubMed / Full text
  • Glial β-oxidation regulates Drosophila energy metabolism. / 15.01.2015 / PubMed / Full text

CRABP2[править]

  • Preconception resveratrol intake against infertility: Friend or foe? / 04.2020 / PubMed / Full text
  • Cross platform analysis of transcriptomic data identifies ageing has distinct and opposite effects on tendon in males and females. / 31.10.2017 / PubMed / Full text

CREB5[править]

  • Cellular senescence induces replication stress with almost no affect on DNA replication timing. / 2018 / PubMed / Full text
  • Transcriptomic and epigenetic analyses reveal a gender difference in aging-associated inflammation: the Vitality 90 study. / 08.2015 / PubMed / Full text

CREBBP[править]

  • Systems biology and network pharmacology of frailty reveal novel epigenetic targets and mechanisms. / 22.07.2019 / PubMed / Full text
  • Genetic variants in a 'cAMP element binding protein' (CREB)-dependent histone acetylation pathway influence memory performance in cognitively healthy elderly individuals. / 12.2014 / PubMed / Full text

CRYAB[править]

  • Binding of a glaucoma-associated myocilin variant to the αB-crystallin chaperone impedes protein clearance in trabecular meshwork cells. / 28.12.2018 / PubMed / Full text
  • Quantitative proteomics analysis by iTRAQ in human nuclear cataracts of different ages and normal lens nuclei. / 08.2015 / PubMed / Full text

CSRP1[править]

  • FOXO3, a Molecular Search for the Fountain of Youth. / 07.03.2019 / PubMed / Full text
  • FOXO3-Engineered Human ESC-Derived Vascular Cells Promote Vascular Protection and Regeneration. / 07.03.2019 / PubMed / Full text

CYB5A[править]

  • 11-Oxygenated C19 Steroids Do Not Decline With Age in Women. / 01.07.2019 / PubMed / Full text
  • 3βHSD and CYB5A double positive adrenocortical cells during adrenal development/aging. / 2015 / PubMed / Full text

CYP11B2[править]

  • Expression of aldosterone synthase CYP11B2 was inversely correlated with longevity. / 07.2019 / PubMed / Full text
  • Age-Related Autonomous Aldosteronism. / 25.07.2017 / PubMed / Full text

CYP27A1[править]

  • Prenatal betaine exposure alleviates corticosterone-induced inhibition of CYP27A1 expression in the liver of juvenile chickens associated with its promoter DNA methylation. / 15.05.2017 / PubMed / Full text
  • Synergic hypocholesterolaemic effect of n-3 PUFA and oestrogen by modulation of hepatic cholesterol metabolism in female rats. / 14.12.2015 / PubMed / Full text

CYP2A6[править]

  • Analysis of the variability of the pharmacokinetics of multiple drugs in young adult and elderly subjects and its implications for acceptable daily exposures and cleaning validation limits. / 06.2017 / PubMed / Full text
  • Sex- and age-dependent gene expression in human liver: An implication for drug-metabolizing enzymes. / 02.2017 / PubMed / Full text

CYP2C8[править]

  • Paclitaxel-induced sensory peripheral neuropathy is associated with an ABCB1 single nucleotide polymorphism and older age in Japanese. / 06.2017 / PubMed / Full text
  • Determination of Human Hepatic CYP2C8 and CYP1A2 Age-Dependent Expression to Support Human Health Risk Assessment for Early Ages. / 05.2017 / PubMed / Full text

CYP3A7[править]

  • Dynamics of Cytosine Methylation in the Proximal Promoters of CYP3A4 and CYP3A7 in Pediatric and Prenatal Livers. / 07.2016 / PubMed / Full text
  • Predicting the "First dose in children" of CYP3A-metabolized drugs: Evaluation of scaling approaches and insights into the CYP3A7-CYP3A4 switch at young ages. / 09.2014 / PubMed / Full text

DAO[править]

  • Age- and gender-dependent D-amino acid oxidase activity in mouse brain and peripheral tissues: implication for aging and neurodegeneration. / 01.08.2019 / PubMed / Full text
  • Blood levels of D-amino acid oxidase vs. D-amino acids in reflecting cognitive aging. / 01.11.2017 / PubMed / Full text

DAPK1[править]

  • SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text
  • Degradation of Caytaxin Causes Learning and Memory Deficits via Activation of DAPK1 in Aging. / 05.2019 / PubMed / Full text

DAZL[править]

  • DAZL Regulates Germ Cell Survival through a Network of PolyA-Proximal mRNA Interactions. / 30.10.2018 / PubMed / Full text
  • No evidence for neo-oogenesis may link to ovarian senescence in adult monkey. / 11.2013 / PubMed / Full text

DBT[править]

  • Diurnal rhythms of heart and respiratory rates in donkeys of different age groups during the cold-dry and hot-dry seasons in a tropical savannah. / 09.2018 / PubMed / Full text
  • Anodal Transcranial Direct Current Stimulation Does Not Facilitate Dynamic Balance Task Learning in Healthy Old Adults. / 2017 / PubMed / Full text

DCTN3[править]

  • Dynactin pathway-related gene expression is altered by aging, but not by vitrification. / 09.2019 / PubMed / Full text
  • Alteration of Motor Protein Expression Involved in Bidirectional Transport in Peripheral Blood Mononuclear Cells of Patients with Amyotrophic Lateral Sclerosis. / 2016 / PubMed / Full text

DDAH1[править]

  • Dimethylarginine Dimethylaminohydrolase 1 Deficiency Induces the Epithelial to Mesenchymal Transition in Renal Proximal Tubular Epithelial Cells and Exacerbates Kidney Damage in Aged and Diabetic Mice. / 01.12.2017 / PubMed / Full text
  • Epigallocatechin-3-gallate ameliorates erectile function in aged rats via regulation of PRMT1/DDAH/ADMA/NOS metabolism pathway. / 05-06.2017 / PubMed / Full text

DDAH2[править]

  • Epigallocatechin-3-gallate ameliorates erectile function in aged rats via regulation of PRMT1/DDAH/ADMA/NOS metabolism pathway. / 05-06.2017 / PubMed / Full text
  • Regulation of endothelial progenitor cell differentiation and function by dimethylarginine dimethylaminohydrolase 2 in an asymmetric dimethylarginine-independent manner. / 09.2014 / PubMed / Full text

DDB1[править]

  • DCAF1 regulates Treg senescence via the ROS axis during immunological aging. / 02.11.2020 / PubMed / Full text
  • Deletion of DDB1- and CUL4- associated factor-17 (Dcaf17) gene causes spermatogenesis defects and male infertility in mice. / 15.06.2018 / PubMed / Full text

DDR2[править]

  • Selective Role of Discoidin Domain Receptor 2 in Murine Temporomandibular Joint Development and Aging. / 03.2018 / PubMed / Full text
  • Type I collagen aging impairs discoidin domain receptor 2-mediated tumor cell growth suppression. / 03.05.2016 / PubMed / Full text

DDX41[править]

  • Salidroside influences the cellular cross-talk of human fetal lung diploid fibroblasts: A proteomic approach. / 03.2018 / PubMed / Full text
  • Sequential acquisition of mutations in myelodysplastic syndromes. / 2017 / PubMed / Full text

DEGS1[править]

  • [Frailty: Prevalence in the Resident Population of Germany 70 - 79 Years of Age - a Population-Based Approach]. / 11.2017 / PubMed / Full text
  • Physical exercise and cognitive function across the life span: Results of a nationwide population-based study. / 05.2018 / PubMed / Full text

DHFR[править]

  • Excessive folic acid intake and relation to adverse health outcome. / 07.2016 / PubMed / Full text
  • Increase in tetrahydrobiopterin concentration with aging in the cerebral cortex of the senescence-accelerated mouse prone 10 strain caused by abnormal regulation of tetrahydrobiopterin biosynthesis. / 10.2013 / PubMed / Full text

DHX9[править]

  • The biology of DHX9 and its potential as a therapeutic target. / 05.07.2016 / PubMed / Full text
  • Suppression of the DHX9 helicase induces premature senescence in human diploid fibroblasts in a p53-dependent manner. / 15.08.2014 / PubMed / Full text

DIAPH1[править]

  • Diaphanous 1 (DIAPH1) is Highly Expressed in the Aged Human Medial Temporal Cortex and Upregulated in Myeloid Cells During Alzheimer's Disease. / 2018 / PubMed / Full text
  • The multiple faces of RAGE--opportunities for therapeutic intervention in aging and chronic disease. / 2016 / PubMed / Full text

DIRAS3[править]

  • Silencing of the small GTPase DIRAS3 induces cellular senescence in human white adipose stromal/progenitor cells. / 17.03.2017 / PubMed / Full text
  • Weight Loss Upregulates the Small GTPase DIRAS3 in Human White Adipose Progenitor Cells, Which Negatively Regulates Adipogenesis and Activates Autophagy via Akt-mTOR Inhibition. / 04.2016 / PubMed / Full text

DKK2[править]

  • Low Serum Levels of DKK2 Predict Incident Low-Impact Fracture in Older Women. / 07.2019 / PubMed / Full text
  • Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text

DLC1[править]

  • Resveratrol promotes oxidative stress to drive DLC1 mediated cellular senescence in cancer cells. / 15.09.2018 / PubMed / Full text
  • Depletion of the transcriptional coactivators megakaryoblastic leukaemia 1 and 2 abolishes hepatocellular carcinoma xenograft growth by inducing oncogene-induced senescence. / 09.2013 / PubMed / Full text

DLX5[править]

  • Inhibition of microRNA-27b-3p relieves osteoarthritis pain via regulation of KDM4B-dependent DLX5. / 09.2020 / PubMed / Full text
  • Detection and evaluation of DNA methylation markers found at SCGN and KLF14 loci to estimate human age. / 11.2017 / PubMed / Full text

DNA2[править]

  • 53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination. / 02.01.2020 / PubMed / Full text
  • Replication Stress at Telomeric and Mitochondrial DNA: Common Origins and Consequences on Ageing. / 08.10.2019 / PubMed / Full text

DNAJC5[править]

  • Gene Therapy of Adult Neuronal Ceroid Lipofuscinoses with CRISPR/Cas9 in Zebrafish. / 07.2017 / PubMed / Full text
  • Caenorhabditis elegans dnj-14, the orthologue of the DNAJC5 gene mutated in adult onset neuronal ceroid lipofuscinosis, provides a new platform for neuroprotective drug screening and identifies a SIR-2.1-independent action of resveratrol. / 15.11.2014 / PubMed / Full text

DOCK11[править]

  • [Immunosenescence: The Forefront of Infection and Trophic Control]. / 2020 / PubMed / Full text
  • Genetic correlation and genome-wide association study (GWAS) of the length of productive life, days open, and 305-days milk yield in crossbred Holstein dairy cattle. / 29.06.2017 / PubMed / Full text

DOT1L[править]

  • Metformin regulates mitochondrial biogenesis and senescence through AMPK mediated H3K79 methylation: Relevance in age-associated vascular dysfunction. / 04.2018 / PubMed / Full text
  • NF-κB activation impairs somatic cell reprogramming in ageing. / 08.2015 / PubMed / Full text

DRAM1[править]

  • Genome-wide meta-analysis of macronutrient intake of 91,114 European ancestry participants from the cohorts for heart and aging research in genomic epidemiology consortium. / 12.2019 / PubMed / Full text
  • Di-retinoid-pyridinium-ethanolamine (A2E) Accumulation and the Maintenance of the Visual Cycle Are Independent of Atg7-mediated Autophagy in the Retinal Pigmented Epithelium. / 27.11.2015 / PubMed / Full text

DRD1[править]

  • Impact of dopamine-related genetic variants on physical activity in old age - a cohort study. / 24.05.2020 / PubMed / Full text
  • Maternal deprivation enhances behavioral vulnerability to stress associated with miR-504 expression in nucleus accumbens of rats. / 2013 / PubMed / Full text

DROSHA[править]

  • Profiling of m6A RNA modifications identified an age-associated regulation of AGO2 mRNA stability. / 06.2018 / PubMed / Full text
  • Centenarians maintain miRNA biogenesis pathway while it is impaired in octogenarians. / 12.2017 / PubMed / Full text

DSCAM[править]

  • Age- and speed-dependent modulation of gaits in DSCAM mutant mice. / 01.02.2018 / PubMed / Full text
  • Developmentally dynamic colocalization patterns of DSCAM with adhesion and synaptic proteins in the mouse retina. / 2014 / PubMed / Full text

DSG2[править]

  • Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text
  • Age-dependent clinical and genetic characteristics in Japanese patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. / 2013 / PubMed / Full text

DSPP[править]

  • Effects of [i]p[/i]-Cresol on Senescence, Survival, Inflammation, and Odontoblast Differentiation in Canine Dental Pulp Stem Cells. / 21.09.2020 / PubMed / Full text
  • GREM1 inhibits osteogenic differentiation, senescence and BMP transcription of adipose-derived stem cells. / 09.03.2020 / PubMed / Full text

DUSP2[править]

  • The association between poverty and gene expression within peripheral blood mononuclear cells in a diverse Baltimore City cohort. / 2020 / PubMed / Full text
  • Aging Increases Hippocampal DUSP2 by a Membrane Cholesterol Loss-Mediated RTK/p38MAPK Activation Mechanism. / 2019 / PubMed / Full text

E2F2[править]

  • MicroRNA-31a-5p from aging BMSCs links bone formation and resorption in the aged bone marrow microenvironment. / 08.2018 / PubMed / Full text
  • In situ regeneration of retinal pigment epithelium by gene transfer of E2F2: a potential strategy for treatment of macular degenerations. / 12.2017 / PubMed / Full text

EBF1[править]

  • Genome-wide Association Study of Parental Life Span. / 01.10.2017 / PubMed / Full text
  • Non-Lethal Ionizing Radiation Promotes Aging-Like Phenotypic Changes of Human Hematopoietic Stem and Progenitor Cells in Humanized Mice. / 2015 / PubMed / Full text

ECM1[править]

  • Novel role of extracellular matrix protein 1 (ECM1) in cardiac aging and myocardial infarction. / 2019 / PubMed / Full text
  • Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text

EDNRB[править]

  • Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. / 03.03.2016 / PubMed / Full text
  • Variation in genes in the endothelin pathway and endothelium-dependent and endothelium-independent vasodilation in an elderly population. / 05.2013 / PubMed / Full text

EED[править]

  • Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text
  • Economic evaluations of eHealth technologies: A systematic review. / 2018 / PubMed / Full text

EIF2B1[править]

  • Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of CSF1R and NOTCH3. / 06.2018 / PubMed / Full text
  • Infantile onset Vanishing White Matter disease associated with a novel EIF2B5 variant, remarkably long life span, severe epilepsy, and hypopituitarism. / 04.2015 / PubMed / Full text

EIF2B5[править]

  • Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of CSF1R and NOTCH3. / 06.2018 / PubMed / Full text
  • Infantile onset Vanishing White Matter disease associated with a novel EIF2B5 variant, remarkably long life span, severe epilepsy, and hypopituitarism. / 04.2015 / PubMed / Full text

EIF5A[править]

  • The curious case of polyamines: spermidine drives reversal of B cell senescence. / 03.2020 / PubMed / Full text
  • Polyamines reverse immune senescence via the translational control of autophagy. / 01.2020 / PubMed / Full text

EN1[править]

  • Electrochemically detecting DNA methylation in the EN1 gene promoter: implications for understanding ageing and disease. / 27.11.2020 / PubMed / Full text
  • The role of DNA methylation in ageing and cancer. / 11.2018 / PubMed / Full text

ENC1[править]

  • Selective molecular biomarkers to predict biologic behavior in pituitary tumors. / 05.2017 / PubMed / Full text
  • Identification of genes associated with dissociation of cognitive performance and neuropathological burden: Multistep analysis of genetic, epigenetic, and transcriptional data. / 04.2017 / PubMed / Full text

ENTPD7[править]

  • Inhibition of lung cancer cells and Ras/Raf/MEK/ERK signal transduction by ectonucleoside triphosphate phosphohydrolase-7 (ENTPD7). / 23.08.2019 / PubMed / Full text
  • SWI/SNF regulates a transcriptional program that induces senescence to prevent liver cancer. / 01.10.2016 / PubMed / Full text

EOMES[править]

  • Association of Epigenetic Age and p16INK4a With Markers of T-Cell Composition in a Healthy Cohort. / 13.11.2020 / PubMed / Full text
  • Eomesodermin Expression in CD4 T Cells Restricts Peripheral Foxp3 Induction. / 15.11.2015 / PubMed / Full text

EPHA2[править]

EPM2A[править]

  • Inflammation in Lafora Disease: Evolution with Disease Progression in Laforin and Malin Knock-out Mouse Models. / 07.2017 / PubMed / Full text
  • Loss of GABAergic cortical neurons underlies the neuropathology of Lafora disease. / 28.01.2014 / PubMed / Full text

ERBB2[править]

  • The biological age linked to oxidative stress modifies breast cancer aggressiveness. / 20.05.2018 / PubMed / Full text
  • Identification of human age-associated gene co-expressions in functional modules using liquid association. / 02.01.2018 / PubMed / Full text

ERCC6[править]

  • Two Cockayne Syndrome patients with a novel splice site mutation - clinical and metabolic analyses. / 10.2018 / PubMed / Full text
  • The associations between single nucleotide polymorphisms of DNA repair genes, DNA damage, and age-related cataract: Jiangsu Eye Study. / 01.02.2013 / PubMed / Full text

ETS2[править]

  • FOXO3 targets are reprogrammed as Huntington's disease neural cells and striatal neurons face senescence with p16 increase. / 11.2020 / PubMed / Full text
  • The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. / 29.09.2020 / PubMed / Full text

EWSR1[править]

  • EWSR1, a multifunctional protein, regulates cellular function and aging via genetic and epigenetic pathways. / 01.07.2019 / PubMed / Full text
  • EWSR1/ELF5 induces acute myeloid leukemia by inhibiting p53/p21 pathway. / 12.2016 / PubMed / Full text

EZR[править]

  • Proteomic analysis of six- and twelve-month hippocampus and cerebellum in a murine Down syndrome model. / 03.2018 / PubMed / Full text
  • Genetic variations and polymorphisms in the ezrin gene are associated with age-related cataract. / 2013 / PubMed / Full text

F8[править]

  • The Pattern of Mu Rhythm Modulation During Emotional Destination Memory: Comparison Between Mild Cognitive Impairment Patients and Healthy Controls. / 2019 / PubMed / Full text
  • Correlations between the signal complexity of cerebral and cardiac electrical activity: a multiscale entropy analysis. / 2014 / PubMed / Full text

F9[править]

  • Hypermaintenance and hypofunction of aged spermatogonia: insight from age-related increase of Plzf expression. / 30.06.2015 / PubMed / Full text
  • eHealth literacy and Web 2.0 health information seeking behaviors among baby boomers and older adults. / 17.03.2015 / PubMed / Full text

FABP1[править]

  • The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats. / 09.2020 / PubMed / Full text
  • Expression of digestive enzyme and intestinal transporter genes during chronic heat stress in the thermally manipulated broiler chicken. / 01.09.2019 / PubMed / Full text

FADS1[править]

  • Aging and FADS1 polymorphisms decrease the biosynthetic capacity of long-chain PUFAs: A human trial using [U- C]linoleic acid. / 09.2019 / PubMed / Full text
  • Genetic determinants of macular pigments in women of the Carotenoids in Age-Related Eye Disease Study. / 28.03.2013 / PubMed / Full text

FAHD1[править]

  • Oxaloacetate decarboxylase FAHD1 - a new regulator of mitochondrial function and senescence. / 01.2019 / PubMed / Full text
  • Depletion of oxaloacetate decarboxylase FAHD1 inhibits mitochondrial electron transport and induces cellular senescence in human endothelial cells. / 06.2017 / PubMed / Full text

FANCD2[править]

FAR2[править]

  • FAR2 is associated with kidney disease in mice and humans. / 01.08.2018 / PubMed / Full text
  • Genetic analysis of mesangial matrix expansion in aging mice and identification of Far2 as a candidate gene. / 12.2013 / PubMed / Full text

FBN1[править]

  • Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text
  • Muscle and Bone Impairment in Children With Marfan Syndrome: Correlation With Age and FBN1 Genotype. / 08.2015 / PubMed / Full text

FBN2[править]

  • Assessment of Human Skin Gene Expression by Different Blends of Plant Extracts with Implications to Periorbital Skin Aging. / 26.10.2018 / PubMed / Full text
  • Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text

FBXO31[править]

  • The SCF ubiquitin ligase complex mediates degradation of the tumor suppressor FBXO31 and thereby prevents premature cellular senescence. / 19.10.2018 / PubMed / Full text
  • Solutions to Peto's paradox revealed by mathematical modelling and cross-species cancer gene analysis. / 19.07.2015 / PubMed / Full text

FGF6[править]

  • Genome-wide associations and detection of potential candidate genes for direct genetic and maternal genetic effects influencing dairy cattle body weight at different ages. / 06.02.2019 / PubMed / Full text
  • Regulation of skeletal muscle stem cells by fibroblast growth factors. / 05.2017 / PubMed / Full text

FGG[править]

  • Candidate SNP associations of optimism and resilience in older adults: exploratory study of 935 community-dwelling adults. / 10.2014 / PubMed / Full text
  • A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. / 07.2013 / PubMed / Full text

FHL1[править]

  • The forkhead-like transcription factor (Fhl1p) maintains yeast replicative lifespan by regulating ribonucleotide reductase 1 (RNR1) gene transcription. / 17.06.2017 / PubMed / Full text
  • Transcription factor genes essential for cell proliferation and replicative lifespan in budding yeast. / 31.07.2015 / PubMed / Full text

FLT1[править]

  • Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
  • Analysis of Polymorphisms in 59 Potential Candidate Genes for Association With Human Longevity. / 08.10.2018 / PubMed / Full text

FOXA2[править]

  • Induced Pluripotent Stem Cell-Derived Dopaminergic Neurons from Adult Common Marmoset Fibroblasts. / 01.09.2017 / PubMed / Full text
  • Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. / 03.2015 / PubMed / Full text

FOXC1[править]

  • Identification of key genes and transcription factors in aging mesenchymal stem cells by DNA microarray data. / 15.04.2019 / PubMed / Full text
  • FOXC1 maintains the hair follicle stem cell niche and governs stem cell quiescence to preserve long-term tissue-regenerating potential. / 15.03.2016 / PubMed / Full text

FOXF1[править]

  • Functional CRISPR screen identifies AP1-associated enhancer regulating FOXF1 to modulate oncogene-induced senescence. / 17.08.2018 / PubMed / Full text
  • Co-culturing nucleus pulposus mesenchymal stem cells with notochordal cell-rich nucleus pulposus explants attenuates tumor necrosis factor-α-induced senescence. / 26.06.2018 / PubMed / Full text

FOXP2[править]

  • Identification of the neurotransmitter profile of AmFoxP expressing neurons in the honeybee brain using double-label in situ hybridization. / 06.11.2018 / PubMed / Full text
  • Human skin keratinocytes can be reprogrammed to express neuronal genes and proteins after a single treatment with decitabine. / 06.2013 / PubMed / Full text

FSTL1[править]

FXN[править]

  • Two different pathogenic mechanisms, dying-back axonal neuropathy and pancreatic senescence, are present in the YG8R mouse model of Friedreich's ataxia. / 01.06.2016 / PubMed / Full text
  • Mitochondrial dysfunction induced by frataxin deficiency is associated with cellular senescence and abnormal calcium metabolism. / 2014 / PubMed / Full text

GABARAP[править]

  • Age-dependent loss of adipose Rubicon promotes metabolic disorders via excess autophagy. / 18.08.2020 / PubMed / Full text
  • Age-dependent autophagy induction after injury promotes axon regeneration by limiting NOTCH. / 11.2020 / PubMed / Full text

GAK[править]

  • Auxilin Underlies Progressive Locomotor Deficits and Dopaminergic Neuron Loss in a Drosophila Model of Parkinson's Disease. / 31.01.2017 / PubMed / Full text
  • Disruption of clathrin-mediated trafficking causes centrosome overduplication and senescence. / 01.2014 / PubMed / Full text

GAS6[править]

  • Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner. / 2019 / PubMed / Full text
  • Red blood cell distribution width: Genetic evidence for aging pathways in 116,666 volunteers. / 2017 / PubMed / Full text

GATA2[править]

  • GATA2 hypomorphism induces chronic myelomonocytic leukemia in mice. / 04.2019 / PubMed / Full text
  • Sequential acquisition of mutations in myelodysplastic syndromes. / 2017 / PubMed / Full text

GCAT[править]

  • Impairing L-Threonine Catabolism Promotes Healthspan through Methylglyoxal-Mediated Proteohormesis. / 03.04.2018 / PubMed / Full text
  • Epigenetic regulation of the nuclear-coded GCAT and SHMT2 genes confers human age-associated mitochondrial respiration defects. / 22.05.2015 / PubMed / Full text

GDF3[править]

  • In vivo GDF3 administration abrogates aging related muscle regeneration delay following acute sterile injury. / 10.2018 / PubMed / Full text
  • Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. / 05.10.2017 / PubMed / Full text

GIT1[править]

  • GIT2-A keystone in ageing and age-related disease. / 05.2018 / PubMed / Full text
  • GluN3A promotes dendritic spine pruning and destabilization during postnatal development. / 09.07.2014 / PubMed / Full text

GLI1[править]

  • Sonic hedgehog regulation of cavernous nerve regeneration and neurite formation in aged pelvic plexus. / 02.2019 / PubMed / Full text
  • GLI1 progenitor cells in the adrenal capsule of the adult mouse give rise to heterotopic gonadal-like tissue. / 05.02.2017 / PubMed / Full text

GLRX[править]

  • Gender- and region-dependent changes of redox biomarkers in the brain of successfully aging LOU/C rats. / 07.2015 / PubMed / Full text
  • Contribution of genetic polymorphisms on functional status at very old age: a gene-based analysis of 38 genes (311 SNPs) in the oxidative stress pathway. / 04.2014 / PubMed / Full text

GNAQ[править]

  • Active notch protects MAPK activated melanoma cell lines from MEK inhibitor cobimetinib. / 14.11.2020 / PubMed / Full text
  • GNAQ expression initiated in multipotent neural crest cells drives aggressive melanoma of the central nervous system. / 01.2020 / PubMed / Full text

GNAS[править]

  • Intratumoral heterogeneity of the tumor cells based on in situ cortisol excess in cortisol-producing adenomas; ∼An association among morphometry, genotype and cellular senescence∼. / 11.2020 / PubMed / Full text
  • Clinical characterization and molecular classification of 12 Korean patients with pseudohypoparathyroidism and pseudopseudohypoparathyroidism. / 10.2013 / PubMed / Full text

GNG3[править]

  • Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex. / 2018 / PubMed / Full text
  • Low expression of aging-related [[NRXN3]] is associated with Alzheimer disease: A systematic review and meta-analysis. / 07.2018 / PubMed / Full text

GNRH1[править]

  • Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
  • Elucidating the genetic architecture of reproductive ageing in the Japanese population. / 17.05.2018 / PubMed / Full text

GP6[править]

  • Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
  • Estimation of human age using N-glycan profiles from bloodstains. / 09.2015 / PubMed / Full text

GPER1[править]

  • 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Nongenomic effects via the mineralocorticoid receptor. / 07.2017 / PubMed / Full text
  • Diverse Synaptic Distributions of G Protein-coupled Estrogen Receptor 1 in Monkey Prefrontal Cortex with Aging and Menopause. / 01.03.2017 / PubMed / Full text

GPR158[править]

  • Identifying blood-specific age-related DNA methylation markers on the Illumina MethylationEPIC® BeadChip. / 10.2019 / PubMed / Full text
  • RbAp48 Protein Is a Critical Component of GPR158/OCN Signaling and Ameliorates Age-Related Memory Loss. / 23.10.2018 / PubMed / Full text

GPR17[править]

  • Pharmaceutical Rejuvenation of Age-Associated Decline in Spatial Memory. / 12.2016 / PubMed / Full text
  • Structural and functional rejuvenation of the aged brain by an approved anti-asthmatic drug. / 27.10.2015 / PubMed / Full text

GPR3[править]

  • Mice lacking GPR3 receptors display late-onset obese phenotype due to impaired thermogenic function in brown adipose tissue. / 12.10.2015 / PubMed / Full text
  • Effects of aging on gene expression and mitochondrial DNA in the equine oocyte and follicle cells. / 07.2015 / PubMed / Full text

GPR39[править]

  • Zinc-mediated Neurotransmission in Alzheimer's Disease: A Potential Role of the GPR39 in Dementia. / 2020 / PubMed / Full text
  • GPR39 agonist TC-G 1008 ameliorates IL-1β-induced chondrocyte senescence. / 12.2019 / PubMed / Full text

GRB10[править]

  • De-silencing [i]Grb10[/i] contributes to acute ER stress-induced steatosis in mouse liver. / 05.2018 / PubMed / Full text
  • Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. / 12.2015 / PubMed / Full text

GRB2[править]

  • Fucoidan⁻Fucoxanthin Ameliorated Cardiac Function via IRS1/GRB2/ SOS1, GSK3β/CREB Pathways and Metabolic Pathways in Senescent Mice. / 21.01.2019 / PubMed / Full text
  • The different expression profiles of microRNAs in elderly and young human dental pulp and the role of miR-433 in human dental pulp cells. / 03.2015 / PubMed / Full text

GRIA2[править]

  • The EpiTect Methyl qPCR Assay as novel age estimation method in forensic biology. / 07.2016 / PubMed / Full text
  • Evaluation of DNA methylation markers and their potential to predict human aging. / 08.2015 / PubMed / Full text

GRIK2[править]

  • Senescence of Normal Human Fibroblasts Relates to the Expression of Ionotropic Glutamate Receptor GluR6/Grik2. / 11-12.2020 / PubMed / Full text
  • Isoforms of Ionotropic Glutamate Receptor GRIK2 Induce Senescence of Carcinoma Cells. / 01-02.2019 / PubMed / Full text

GRIN2B[править]

  • Medial temporal lobe atrophy relates more strongly to sleep-wake rhythm fragmentation than to age or any other known risk. / 04.2019 / PubMed / Full text
  • Gene Expression Switching of Receptor Subunits in Human Brain Development. / 12.2015 / PubMed / Full text

GRM3[править]

  • Profiling gene expression in the human dentate gyrus granule cell layer reveals insights into schizophrenia and its genetic risk. / 04.2020 / PubMed / Full text
  • Hippocampal proteomics defines pathways associated with memory decline and resilience in normal aging and Alzheimer's disease mouse models. / 30.03.2017 / PubMed / Full text

GRSF1[править]

GSTA2[править]

  • The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats. / 09.2020 / PubMed / Full text
  • The age-related change of glutathione antioxidant system in mice liver. / 07.2013 / PubMed / Full text

GSTA4[править]

  • Impaired enzymatic reactive aldehyde-detoxifying capacity and glutathione peroxidase activity in the aged human arterial tissue. / 02.2019 / PubMed / Full text
  • Age-associated changes in GSH S-transferase gene/proteins in livers of rats. / 12.2018 / PubMed / Full text

GSTK1[править]

  • Age-associated changes in GSH S-transferase gene/proteins in livers of rats. / 12.2018 / PubMed / Full text
  • Growth hormone alters the glutathione S-transferase and mitochondrial thioredoxin systems in long-living Ames dwarf mice. / 10.2014 / PubMed / Full text

GSTM3[править]

  • Age-associated changes in GSH S-transferase gene/proteins in livers of rats. / 12.2018 / PubMed / Full text
  • Relationship Between the Altered Expression and Epigenetics of GSTM3 and Age-Related Cataract. / 01.09.2016 / PubMed / Full text

GSTZ1[править]

  • Age-associated changes in GSH S-transferase gene/proteins in livers of rats. / 12.2018 / PubMed / Full text
  • Effects of insulin-like growth factor 1 on glutathione S-transferases and thioredoxin in growth hormone receptor knockout mice. / 2014 / PubMed / Full text

HAPLN1[править]

  • Remodeling of the Collagen Matrix in Aging Skin Promotes Melanoma Metastasis and Affects Immune Cell Motility. / 01.2019 / PubMed / Full text
  • Age-Related Changes in HAPLN1 Increase Lymphatic Permeability and Affect Routes of Melanoma Metastasis. / 01.2019 / PubMed / Full text

HAS1[править]

  • A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass. / 20.06.2019 / PubMed / Full text
  • Age-related changes in cyclic phosphatidic acid-induced hyaluronic acid synthesis in human fibroblasts. / 01.2018 / PubMed / Full text

HAS3[править]

  • Microneedle fractional radiofrequency increases epidermal hyaluronan and reverses age-related epidermal dysfunction. / 02.2016 / PubMed / Full text
  • Age-associated changes in gene expression of goat oocytes. / 01.09.2013 / PubMed / Full text

HAT1[править]

  • Activation of p53 by spermine mediates induction of autophagy in HT1080 cells. / 02.2014 / PubMed / Full text
  • Age-associated changes in gene expression of goat oocytes. / 01.09.2013 / PubMed / Full text

HBD[править]

  • Impact of reproductive aging on the vaginal microbiome and soluble immune mediators in women living with and at-risk for HIV infection. / 2019 / PubMed / Full text
  • Differences in Cytokine Production during Aging and Its Relationship with Antimicrobial Peptides Production. / 01.2017 / PubMed / Full text

HCN3[править]

  • Characteristics of hyperpolarization-activated cyclic nucleotide-gated channels in dorsal root ganglion neurons at different ages and sizes. / 11.11.2015 / PubMed / Full text
  • Integromics network meta-analysis on cardiac aging offers robust multi-layer modular signatures and reveals micronome synergism. / 04.03.2015 / PubMed / Full text

HCRT[править]

  • Age-related central regulation of orexin and NPY in the short-lived African killifish Nothobranchius furzeri. / 15.05.2019 / PubMed / Full text
  • Sleep and cardiovascular phenotype in middle-aged hypocretin-deficient narcoleptic mice. / 02.2014 / PubMed / Full text

HELLS[править]

  • The Ubiquitin-like with PHD and Ring Finger Domains 1 (UHRF1)/DNA Methyltransferase 1 (DNMT1) Axis Is a Primary Regulator of Cell Senescence. / 03.03.2017 / PubMed / Full text
  • Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text

HGD[править]

  • High-glucose diets induce mitochondrial dysfunction in Caenorhabditis elegans. / 2019 / PubMed / Full text
  • A high glucose diet induces autophagy in a HLH-30/TFEB-dependent manner and impairs the normal lifespan of [i]C. elegans[/i]. / 05.10.2018 / PubMed / Full text

HIF1A[править]

  • Hypoxia-inducible transcription factors, HIF1A and HIF2A, increase in aging mucosal tissues. / 07.2018 / PubMed / Full text
  • Role of Mitochondrial Complex IV in Age-Dependent Obesity. / 13.09.2016 / PubMed / Full text

HK2[править]

  • Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury. / 11.01.2018 / PubMed / Full text
  • Differentially expressed microRNAs in bone marrow mesenchymal stem cell-derived microvesicles in young and older rats and their effect on tumor growth factor-β1-mediated epithelial-mesenchymal transition in HK2 cells. / 28.09.2015 / PubMed / Full text

HLA-A[править]

  • Reduced expression of the lncRNA NRON is a potential hallmark of the CMV-amplified CD8 T cell accumulations commonly seen in older humans. / 01.2019 / PubMed / Full text
  • Cytomegalovirus-Specific T Cells Restricted by HLA-Cw*0702 Increase Markedly with Age and Dominate the CD8 T-Cell Repertoire in Older People. / 2017 / PubMed / Full text

HLA-B[править]

  • Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. / 10.2019 / PubMed / Full text
  • Cytomegalovirus-Specific T Cells Restricted by HLA-Cw*0702 Increase Markedly with Age and Dominate the CD8 T-Cell Repertoire in Older People. / 2017 / PubMed / Full text

HLA-C[править]

  • Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. / 10.2019 / PubMed / Full text
  • Cytomegalovirus-Specific T Cells Restricted by HLA-Cw*0702 Increase Markedly with Age and Dominate the CD8 T-Cell Repertoire in Older People. / 2017 / PubMed / Full text

HLA-DPB1[править]

  • 17th IHIW component "Immunogenetics of Ageing" - New NGS data. / 09.2019 / PubMed / Full text
  • Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. / 10.2019 / PubMed / Full text

HLA-DQA1[править]

  • 17th IHIW component "Immunogenetics of Ageing" - New NGS data. / 09.2019 / PubMed / Full text
  • [Clinical and genetic characteristics of long-livers in Moscow region]. / 2013 / PubMed

HLA-DQB1[править]

  • Identification of new genetic variants of HLA-DQB1 associated with human longevity and lipid homeostasis-a cross-sectional study in a Chinese population. / 10.11.2017 / PubMed / Full text
  • [Clinical and genetic characteristics of long-livers in Moscow region]. / 2013 / PubMed

HMGCS1[править]

  • The Age-dependent Elevation of miR-335-3p Leads to Reduced Cholesterol and Impaired Memory in Brain. / 15.10.2018 / PubMed / Full text
  • Controlled sumoylation of the mevalonate pathway enzyme HMGS-1 regulates metabolism during aging. / 16.09.2014 / PubMed / Full text

HNF4A[править]

  • The Impact of Biomarker Screening and Cascade Genetic Testing on the Cost-Effectiveness of MODY Genetic Testing. / 12.2019 / PubMed / Full text
  • Hepatocyte Nuclear Factor-4α P2 Promoter Variants Are Associated With the Risk of Metabolic Syndrome and Testosterone Deficiency in Aging Taiwanese Men. / 11.2018 / PubMed / Full text

HNRNPA1[править]

  • HNRNPA1-mediated 3' UTR length changes of [i]HN1[/i] contributes to cancer- and senescence-associated phenotypes. / 30.06.2019 / PubMed / Full text
  • Changes in the expression of splicing factor transcripts and variations in alternative splicing are associated with lifespan in mice and humans. / 10.2016 / PubMed / Full text

HOPX[править]

  • Combinations of differentiation markers distinguish subpopulations of alveolar epithelial cells in adult lung. / 15.01.2016 / PubMed / Full text
  • HOPX is methylated and exerts tumour-suppressive function through Ras-induced senescence in human lung cancer. / 02.2015 / PubMed / Full text

HOXC4[править]

  • Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. / 11.2017 / PubMed / Full text
  • Differential DNA Methylation in Relation to Age and Health Risks of Obesity. / 24.07.2015 / PubMed / Full text

HPD[править]

  • Protein-Amino Acid Metabolism Disarrangements: The Hidden Enemy of Chronic Age-Related Conditions. / 22.03.2018 / PubMed / Full text
  • Post-weaning parental care increases fitness but is not heritable in North American red squirrels. / 06.2015 / PubMed / Full text

HRG[править]

  • Chronic dietary ginseng extract administration ameliorates antioxidant and cholinergic systems in the brains of aged mice. / 10.2017 / PubMed / Full text
  • Heregulin, a new regulator of telomere length in human cells. / 24.11.2015 / PubMed / Full text

HSD3B2[править]

  • 11-Oxygenated C19 Steroids Do Not Decline With Age in Women. / 01.07.2019 / PubMed / Full text
  • Testicular gene expression of steroidogenesis-related factors in prepubertal, postpubertal, and aging dogs. / 01.03.2017 / PubMed / Full text

HSF4[править]

  • Effect of HSF4b on age related cataract may through its novel downstream target Hif1α. / 24.10.2014 / PubMed / Full text
  • Copy number variations of DNA repair genes and the age-related cataract: Jiangsu Eye Study. / 01.02.2013 / PubMed / Full text

HSP90AA1[править]

  • SIRT6 histone deacetylase functions as a potential oncogene in human melanoma. / 09.2017 / PubMed / Full text
  • Integration-independent Transgenic Huntington Disease Fragment Mouse Models Reveal Distinct Phenotypes and Life Span in Vivo. / 31.07.2015 / PubMed / Full text

HSPB1[править]

  • The beneficial effects of 15 units of high-intensity circuit training in women is modified by age, baseline insulin resistance and physical capacity. / 06.2019 / PubMed / Full text
  • Chicken heat shock protein HSPB1 increases and interacts with αB-crystallin in aged skeletal muscle. / 2015 / PubMed / Full text

HSPB6[править]

  • Lifelong Football Training: Effects on Autophagy and Healthy Longevity Promotion. / 2019 / PubMed / Full text
  • Apoptosis in muscle-to-meat aging process: The omic witness. / 01.07.2015 / PubMed / Full text

HUS1[править]

  • Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes. / 19.10.2015 / PubMed / Full text
  • [Role of DNA repair genes in radiation-induced changes of lifespan of Drosophila melanogaster]. / 09-10.2014 / PubMed

IAPP[править]

  • Protein aggregates and proteostasis in aging: Amylin and β-cell function. / 01.2019 / PubMed / Full text
  • Causative factors for formation of toxic islet amyloid polypeptide oligomer in type 2 diabetes mellitus. / 2015 / PubMed / Full text

ID2[править]

  • Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. / 10.2019 / PubMed / Full text
  • Ablation of the ID2 gene results in altered circadian feeding behavior, and sex-specific enhancement of insulin sensitivity and elevated glucose uptake in skeletal muscle and brown adipose tissue. / 2013 / PubMed / Full text

ID3[править]

  • Transcription factor networks in aged naïve CD4 T cells bias lineage differentiation. / 08.2019 / PubMed / Full text
  • Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. / 02.2018 / PubMed / Full text

IDO1[править]

  • Different expression of Defensin-B gene in the endometrium of mares of different age during the breeding season. / 21.12.2019 / PubMed / Full text
  • Advanced age negatively impacts survival in an experimental brain tumor model. / 06.09.2016 / PubMed / Full text

IFIT1[править]

  • Sirtuin 1-Chromatin-Binding Dynamics Points to a Common Mechanism Regulating Inflammatory Targets in SIV Infection and in the Aging Brain. / 06.2018 / PubMed / Full text
  • Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation. / 02.08.2017 / PubMed / Full text

IFIT3[править]

  • Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation. / 02.08.2017 / PubMed / Full text
  • Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text

IFITM1[править]

  • White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy. / 02.2020 / PubMed / Full text
  • Age-Associated Changes in the Respiratory Epithelial Response to Influenza Infection. / 10.11.2018 / PubMed / Full text

IFITM3[править]

  • Blood DNA methylation sites predict death risk in a longitudinal study of 12, 300 individuals. / 22.07.2020 / PubMed / Full text
  • Small Extracellular Vesicles Are Key Regulators of Non-cell Autonomous Intercellular Communication in Senescence via the Interferon Protein IFITM3. / 25.06.2019 / PubMed / Full text

IFNAR1[править]

  • Suppression of Type I Interferon Signaling Overcomes Oncogene-Induced Senescence and Mediates Melanoma Development and Progression. / 05.04.2016 / PubMed / Full text
  • Type 1 interferons contribute to the clearance of senescent cell. / 2015 / PubMed / Full text

IGFBP4[править]

  • Quantitative iTRAQ-based proteomic analysis of differentially expressed proteins in aging in human and monkey. / 11.10.2019 / PubMed / Full text
  • Age-Related Insulin-Like Growth Factor Binding Protein-4 Overexpression Inhibits Osteogenic Differentiation of Rat Mesenchymal Stem Cells. / 2017 / PubMed / Full text

IGHD[править]

  • Growth Hormone Deficiency: Health and Longevity. / 01.04.2019 / PubMed / Full text
  • Lifetime, untreated isolated GH deficiency due to a GH-releasing hormone receptor mutation has beneficial consequences on bone status in older individuals, and does not influence their abdominal aorta calcification. / 09.2014 / PubMed / Full text

IGSF1[править]

  • Age-related gene and miRNA expression changes in airways of healthy individuals. / 06.03.2019 / PubMed / Full text
  • The IGSF1 deficiency syndrome: characteristics of male and female patients. / 12.2013 / PubMed / Full text

IHH[править]

  • Indian Hedgehog regulates senescence in bone marrow-derived mesenchymal stem cell through modulation of ROS/mTOR/4EBP1, p70S6K1/2 pathway. / 01.04.2020 / PubMed / Full text
  • Transfection of the IHH gene into rabbit BMSCs in a simulated microgravity environment promotes chondrogenic differentiation and inhibits cartilage aging. / 27.09.2016 / PubMed / Full text

IL18[править]

  • p53 and p53-related mediators PAI-1 and IGFBP-3 are downregulated in peripheral blood mononuclear cells of HIV-patients exposed to non-nucleoside reverse transcriptase inhibitors. / 06.2020 / PubMed / Full text
  • Aging and the Inflammasomes. / 2018 / PubMed / Full text

IL9[править]

  • A novel multi-marker discovery approach identifies new serum biomarkers for Parkinson's disease in older people: an EXosomes in PArkiNson Disease (EXPAND) ancillary study. / 10.2020 / PubMed / Full text
  • Transcription factor networks in aged naïve CD4 T cells bias lineage differentiation. / 08.2019 / PubMed / Full text

ILDR1[править]

  • Genome-wide association meta-analysis identifies five novel loci for age-related hearing impairment. / 23.10.2019 / PubMed / Full text
  • A Large Genome-Wide Association Study of Age-Related Hearing Impairment Using Electronic Health Records. / 10.2016 / PubMed / Full text

ING1[править]

  • Impaired DNA demethylation of C/EBP sites causes premature aging. / 01.06.2018 / PubMed / Full text
  • The tumor suppressor ING1b is a novel corepressor for the androgen receptor and induces cellular senescence in prostate cancer cells. / 06.2016 / PubMed / Full text

INPP5A[править]

  • DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. / 25.07.2018 / PubMed / Full text
  • Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text

INSR[править]

  • Proteomics of Long-Lived Mammals. / 03.2020 / PubMed / Full text
  • The Ubiquitin Ligase CHIP Integrates Proteostasis and Aging by Regulation of Insulin Receptor Turnover. / 20.04.2017 / PubMed / Full text

IRF4[править]

  • Transcription factor networks in aged naïve CD4 T cells bias lineage differentiation. / 08.2019 / PubMed / Full text
  • Age-related differences in interferon regulatory factor-4 and -5 signaling in ischemic brains of mice. / 11.2017 / PubMed / Full text

IRGM[править]

  • SIRT6 histone deacetylase functions as a potential oncogene in human melanoma. / 09.2017 / PubMed / Full text
  • Bt Cry1Ie Toxin Does Not Impact the Survival and Pollen Consumption of Chinese Honey Bees, Apis cerana cerana (Hymenoptera, Apidae). / 01.12.2016 / PubMed / Full text

ISG15[править]

  • White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy. / 02.2020 / PubMed / Full text
  • Transcriptome analysis reveals immune-related gene expression changes with age in giant panda ([i]Ailuropoda melanoleuca[/i]) blood. / 14.01.2019 / PubMed / Full text

ISL1[править]

  • Aging-relevant human basal forebrain cholinergic neurons as a cell model for Alzheimer's disease. / 21.10.2020 / PubMed / Full text
  • Deterioration of the Medial Olivocochlear Efferent System Accelerates Age-Related Hearing Loss in Pax2-Isl1 Transgenic Mice. / 05.2016 / PubMed / Full text

ITGAM[править]

  • Comparative Analysis of Gene Expression Patterns for Oral Epithelium-Related Functions with Aging. / 2019 / PubMed / Full text
  • Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. / 08.2017 / PubMed / Full text

ITGB2[править]

  • Comparative Analysis of Gene Expression Patterns for Oral Epithelium-Related Functions with Aging. / 2019 / PubMed / Full text
  • A Microglial Signature Directing Human Aging and Neurodegeneration-Related Gene Networks. / 2019 / PubMed / Full text

ITK[править]

  • Does Tetralogy of Fallot affect brain aging? A proof-of-concept study. / 2018 / PubMed / Full text
  • Phenotypic characteristics of aged CD4 CD28 T lymphocytes are determined by changes in the whole-genome DNA methylation pattern. / 04.2017 / PubMed / Full text

JAK3[править]

  • Immunologic effects of chronic administration of tofacitinib, a Janus kinase inhibitor, in cynomolgus monkeys and rats - Comparison of juvenile and adult responses. / 04.2018 / PubMed / Full text
  • IL-15 enhances the antitumor effect of human antigen-specific CD8 T cells by cellular senescence delay. / 2016 / PubMed / Full text

KDM2B[править]

  • Identification of Structural Elements of the Lysine Specific Demethylase 2B CxxC Domain Associated with Replicative Senescence Bypass in Primary Mouse Cells. / 06.2020 / PubMed / Full text
  • Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases. / 03.2016 / PubMed / Full text

KDM4B[править]

  • Inhibition of microRNA-27b-3p relieves osteoarthritis pain via regulation of KDM4B-dependent DLX5. / 09.2020 / PubMed / Full text
  • Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases. / 03.2016 / PubMed / Full text

KDM4C[править]

  • KDM3A and KDM4C Regulate Mesenchymal Stromal Cell Senescence and Bone Aging via Condensin-mediated Heterochromatin Reorganization. / 22.11.2019 / PubMed / Full text
  • Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases. / 03.2016 / PubMed / Full text

KDM6B[править]

  • Histone demethylase KDM6B regulates 1,25-dihydroxyvitamin D3-induced senescence in glioma cells. / 08.2019 / PubMed / Full text
  • Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases. / 03.2016 / PubMed / Full text

KIFC3[править]

  • Defective recruitment of motor proteins to autophagic compartments contributes to autophagic failure in aging. / 08.2018 / PubMed / Full text
  • Alteration of Motor Protein Expression Involved in Bidirectional Transport in Peripheral Blood Mononuclear Cells of Patients with Amyotrophic Lateral Sclerosis. / 2016 / PubMed / Full text

KIR2DS5[править]

  • [The relationship between the polymorphism of immunity genes and both aging and age-related diseases]. / 07.2013 / PubMed / Full text
  • 16(th) IHIW: immunogenetics of aging. / 02.2013 / PubMed / Full text

KISS1R[править]

  • Kisspeptin across the human lifespan:evidence from animal studies and beyond. / 06.2016 / PubMed / Full text
  • Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus. / 2015 / PubMed / Full text

KPNA2[править]

  • Karyopherin Alpha 2-Expressing Pancreatic Duct Glands and Intra-Islet Ducts in Aged Diabetic C414A-Mutant-CRY1 Transgenic Mice. / 2019 / PubMed / Full text
  • Upregulated Expression of Karyopherin α2 is Involved in Neuronal Apoptosis Following Intracerebral Hemorrhage in Adult Rats. / 07.2016 / PubMed / Full text

LAMA5[править]

  • The correlation of copy number variations with longevity in a genome-wide association study of Han Chinese. / 05.06.2018 / PubMed / Full text
  • Association of the Laminin, Alpha 5 (LAMA5) rs4925386 with height and longevity in an elderly population from Southern Italy. / 04.2016 / PubMed / Full text

LAMC1[править]

  • Relation of size of seminal vesicles on ultrasound to premature ejaculation. / 09-10.2017 / PubMed / Full text
  • Discovery and characterization of miRNA during cellular senescence in bone marrow-derived human mesenchymal stem cells. / 10.2014 / PubMed / Full text

LAT[править]

  • Is the combined auriculotherapy approach superior to magneto-auriculotherapy alone in aging males with lower urinary tract symptoms? A randomized controlled trial. / 16.01.2019 / PubMed / Full text
  • Intra-couple Caregiving of Older Adults Living Apart Together: Commitment and Independence. / 09.2015 / PubMed / Full text

LATS2[править]

  • [Expression relationship of Hippo signaling molecules and ovarian germline stem cell markers in the ovarian aging process of women and mice]. / 25.06.2019 / PubMed
  • YAP1-LATS2 feedback loop dictates senescent or malignant cell fate to maintain tissue homeostasis. / 03.2019 / PubMed / Full text

LDHA[править]

  • Upregulation of lactate-inducible snail protein suppresses oncogene-mediated senescence through p16 inactivation. / 26.02.2018 / PubMed / Full text
  • Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. / 05.2018 / PubMed / Full text

LDLR[править]

  • Inactivation of the E3 Ubiquitin Ligase IDOL Attenuates Diet-Induced Obesity and Metabolic Dysfunction in Mice. / 08.2018 / PubMed / Full text
  • Impact of age and sex on the development of atherosclerosis and expression of the related genes in apoE deficient mice. / 15.01.2016 / PubMed / Full text

LEPR[править]

  • Age-related changes of leptin and leptin receptor variants in healthy elderly and long-lived adults. / 03.2015 / PubMed / Full text
  • Functional polymorphisms of the leptin and leptin receptor genes are associated with longevity and with the risk of myocardial infarction and of type 2 diabetes mellitus. / 2014 / PubMed / Full text

LGI1[править]

  • Antibody-associated CNS syndromes without signs of inflammation in the elderly. / 03.10.2017 / PubMed / Full text
  • Expression of NgR1-antagonizing proteins decreases with aging and cognitive decline in rat hippocampus. / 05.2013 / PubMed / Full text

LGR5[править]

  • Thyroid hormone activates Wnt/β-catenin signaling involved in adult epithelial development during intestinal remodeling in Xenopus laevis. / 08.2016 / PubMed / Full text
  • Cancer stem cells in Helicobacter pylori infection and aging: Implications for gastric carcinogenesis. / 15.08.2014 / PubMed / Full text

LHCGR[править]

  • Comparative Study of the Steroidogenic Effects of Human Chorionic Gonadotropin and Thieno[2,3-D]pyrimidine-Based Allosteric Agonist of Luteinizing Hormone Receptor in Young Adult, Aging and Diabetic Male Rats. / 11.10.2020 / PubMed / Full text
  • Association between the luteinizing hormone/chorionic gonadotropin receptor (LHCGR) rs4073366 polymorphism and ovarian hyperstimulation syndrome during controlled ovarian hyperstimulation. / 25.07.2013 / PubMed / Full text

LIFR[править]

  • Efficacy of leukemia inhibitory factor as a therapeutic for permanent large vessel stroke differs among aged male and female rats. / 15.03.2019 / PubMed / Full text
  • Characterization of Nestin-positive stem Leydig cells as a potential source for the treatment of testicular Leydig cell dysfunction. / 12.2014 / PubMed / Full text

LIPA[править]

  • Modeling the cardiometabolic benefits of sleep in older women: exploring the 24-hour day. / 13.01.2020 / PubMed / Full text
  • Influence of Habitual Physical Behavior - Sleeping, Sedentarism, Physical Activity - On Bone Health in Community-Dwelling Older People. / 2019 / PubMed / Full text

LOXL1[править]

  • A blackberry-dill extract combination synergistically increases skin elasticity. / 10.2020 / PubMed / Full text
  • Methylation of LOXL1 Promoter by DNMT3A in Aged Human Skin Fibroblasts. / 04.2017 / PubMed / Full text

LRP4[править]

  • Multiple MuSK signaling pathways and the aging neuromuscular junction. / 13.07.2020 / PubMed / Full text
  • Sarcoglycan Alpha Mitigates Neuromuscular Junction Decline in Aged Mice by Stabilizing LRP4. / 10.10.2018 / PubMed / Full text

LRPPRC[править]

  • The loss of LRPPRC function induces the mitochondrial unfolded protein response. / 09.2015 / PubMed / Full text
  • Drosophila melanogaster LRPPRC2 is involved in coordination of mitochondrial translation. / 16.12.2014 / PubMed / Full text

LRRN3[править]

  • Accelerated aging in HIV/AIDS: novel biomarkers of senescent human CD8 T cells. / 2013 / PubMed / Full text
  • Transcriptomics of cortical gray matter thickness decline during normal aging. / 15.11.2013 / PubMed / Full text

LTB[править]

  • Aging and Hyperglycemia Intensify Dyslipidemia-Induced Oxidative Stress and Inflammation in Rats: Assessment of Restorative Potentials of ALA and EPA DHA. / 06.2019 / PubMed / Full text
  • Advanced age in mares affects endometrial secretion of arachidonic acid metabolites during equine subclinical endometritis. / 11.2017 / PubMed / Full text

LTF[править]

  • Uncovering genetic mechanisms of kidney aging through transcriptomics, genomics, and epigenomics. / 03.2019 / PubMed / Full text
  • Effect of age on long-term facilitation and chemosensitivity during NREM sleep. / 15.11.2015 / PubMed / Full text

MALT1[править]

  • MALT-1 mediates IL-17 neural signaling to regulate C. elegans behavior, immunity and longevity. / 29.04.2020 / PubMed / Full text
  • MALT1-Deficient Mice Develop Atopic-Like Dermatitis Upon Aging. / 2019 / PubMed / Full text

MAP1A[править]

  • SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text
  • Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging. / 21.05.2014 / PubMed / Full text

MAP1LC3B[править]

  • The effect of aging on the autophagic and heat shock response in human peripheral blood mononuclear cells. / 01.09.2018 / PubMed / Full text
  • Inhibition of glioma growth by flavokawain B is mediated through endoplasmic reticulum stress induced autophagy. / 2018 / PubMed / Full text

MAVS[править]

  • Spontaneous activation of a MAVS-dependent antiviral signaling pathway determines high basal interferon-β expression in cardiac myocytes. / 10.2017 / PubMed / Full text
  • Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation. / 02.08.2017 / PubMed / Full text

MBNL1[править]

  • Compound loss of muscleblind-like function in myotonic dystrophy. / 12.2013 / PubMed / Full text
  • Dysfunction of protein homeostasis in myotonic dystrophies. / 09.2013 / PubMed / Full text

MC4R[править]

  • Melanocortin-4 receptor rs17782313 polymorphisms are associated with serum triglycerides in older Chinese women. / 2016 / PubMed / Full text
  • Polymorphic variants of neurotransmitter receptor genes may affect sexual function in aging males: data from the HALS study. / 2013 / PubMed / Full text

MCM3[править]

  • Changes in MCM2-7 proteins at senescence. / 27.07.2019 / PubMed / Full text
  • Up-regulation of MCM3 Relates to Neuronal Apoptosis After Traumatic Brain Injury in Adult Rats. / 05.2017 / PubMed / Full text

MCM4[править]

  • Hepatoprotective effects of hydroxysafflor yellow A in D-galactose-treated aging mice. / 15.08.2020 / PubMed / Full text
  • Changes in MCM2-7 proteins at senescence. / 27.07.2019 / PubMed / Full text

MCM8[править]

  • Genetic variations, reproductive aging, and breast cancer risk in African American and European American women: The Women's Circle of Health Study. / 2017 / PubMed / Full text
  • MCM8 and MCM9 Nucleotide Variants in Women With Primary Ovarian Insufficiency. / 01.02.2017 / PubMed / Full text

MCM9[править]

  • MCM8- and MCM9 Deficiencies Cause Lifelong Increased Hematopoietic DNA Damage Driving p53-Dependent Myeloid Tumors. / 10.09.2019 / PubMed / Full text
  • MCM8 and MCM9 Nucleotide Variants in Women With Primary Ovarian Insufficiency. / 01.02.2017 / PubMed / Full text

MDH1[править]

  • Oxidative Damage to the TCA Cycle Enzyme MDH1 Dysregulates Bioenergetic Enzymatic Activity in the Aged Murine Brain. / 03.04.2020 / PubMed / Full text
  • Low-Dose Pesticide Mixture Induces Accelerated Mesenchymal Stem Cell Aging In Vitro. / 08.2019 / PubMed / Full text

MDM4[править]

  • In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. / 12.2019 / PubMed / Full text
  • Germline genetics of the p53 pathway affect longevity in a gender specific manner. / 2014 / PubMed / Full text

ME1[править]

  • NADP-MALIC ENZYME 1 Affects Germination after Seed Storage in Arabidopsis thaliana. / 01.02.2019 / PubMed / Full text
  • Down-regulation of malic enzyme 1 and 2: Sensitizing head and neck squamous cell carcinoma cells to therapy-induced senescence. / 04.2016 / PubMed / Full text

ME2[править]

  • A small-molecule inhibitor suppresses the tumor-associated mitochondrial NAD(P) -dependent malic enzyme (ME2) and induces cellular senescence. / 21.08.2015 / PubMed / Full text
  • Down-regulation of malic enzyme 1 and 2: Sensitizing head and neck squamous cell carcinoma cells to therapy-induced senescence. / 04.2016 / PubMed / Full text

MEF2D[править]

  • Molecular Pathway to Protection From Age-Dependent Photoreceptor Degeneration in Mef2 Deficiency. / 01.07.2017 / PubMed / Full text
  • Epigenome-wide DNA methylation in hearing ability: new mechanisms for an old problem. / 2014 / PubMed / Full text

MEFV[править]

MEIS1[править]

  • Down-regulation of MEIS1 promotes the maturation of oxidative phosphorylation in perinatal cardiomyocytes. / 06.2019 / PubMed / Full text
  • Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. / 11.2017 / PubMed / Full text

MELK[править]

  • MELK-T1, a small-molecule inhibitor of protein kinase MELK, decreases DNA-damage tolerance in proliferating cancer cells. / 02.10.2015 / PubMed / Full text
  • Maternal embryonic leucine zipper kinase (MELK) reduces replication stress in glioblastoma cells. / 16.08.2013 / PubMed / Full text

MEOX2[править]

  • Reduced expression of microRNA-130a promotes endothelial cell senescence and age-dependent impairment of neovascularization. / 26.05.2020 / PubMed / Full text
  • Meox2 haploinsufficiency increases neuronal cell loss in a mouse model of Alzheimer's disease. / 06.2016 / PubMed / Full text

MGAT1[править]

  • Pathways of aging: comparative analysis of gene signatures in replicative senescence and stress induced premature senescence. / 28.12.2016 / PubMed / Full text
  • Transcriptional and biochemical responses of monoacylglycerol acyltransferase-mediated oil synthesis and associated senescence-like responses in Nicotiana benthamiana. / 2014 / PubMed / Full text

MIB1[править]

  • MIB1-mediated degradation of WRN promotes cellular senescence in response to camptothecin treatment. / 09.2020 / PubMed / Full text
  • Immunohistochemical detection of senescence markers in human sarcomas. / 02.2020 / PubMed / Full text

MICA[править]

  • Derivation and Validation of a Geriatric-Sensitive Perioperative Cardiac Risk Index. / 16.11.2017 / PubMed / Full text
  • NKG2D ligands mediate immunosurveillance of senescent cells. / 02.2016 / PubMed / Full text

MLH1[править]

  • The somatic mutation landscape of the human body. / 24.12.2019 / PubMed / Full text
  • RNA-Seq analysis of differentially expressed genes relevant to mismatch repair in aging hematopoietic stem-progenitor cells. / 25.02.2019 / PubMed / Full text

MMP10[править]

  • Astrocyte senescence may drive alterations in GFAPα, [[CDKN2A]] p14 , and TAU3 transcript expression and contribute to cognitive decline. / 10.2019 / PubMed / Full text
  • Bone biology-related gingival transcriptome in ageing and periodontitis in non-human primates. / 05.2016 / PubMed / Full text

MMP14[править]

  • Overexpression of microRNA-1470 promotes proliferation and migration, and inhibits senescence of esophageal squamous carcinoma cells. / 12.2017 / PubMed / Full text
  • Enhanced tissue regeneration potential of juvenile articular cartilage. / 11.2013 / PubMed / Full text

MMP8[править]

  • [Investigation of signal molecules in saliva: prospects of application for diagnostics of myocardial infarction and the aging rate of different age people.] / 2019 / PubMed
  • Bone biology-related gingival transcriptome in ageing and periodontitis in non-human primates. / 05.2016 / PubMed / Full text

MS4A6E[править]

  • Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text
  • Gene-based aggregate SNP associations between candidate AD genes and cognitive decline. / 04.2016 / PubMed / Full text

MSH6[править]

  • RNA-Seq analysis of differentially expressed genes relevant to mismatch repair in aging hematopoietic stem-progenitor cells. / 25.02.2019 / PubMed / Full text
  • DNA mismatch repair system: repercussions in cellular homeostasis and relationship with aging. / 2012 / PubMed / Full text

MT2A[править]

  • Metallothionein Prevents Age-Associated Cardiomyopathy via Inhibiting NF-κB Pathway Activation and Associated Nitrative Damage to 2-OGD. / 10.12.2016 / PubMed / Full text
  • Metallothioneins and renal ageing. / 09.2016 / PubMed / Full text

MTM1[править]

  • Amphiphysin 2 modulation rescues myotubular myopathy and prevents focal adhesion defects in mice. / 20.03.2019 / PubMed / Full text
  • Tamoxifen prolongs survival and alleviates symptoms in mice with fatal X-linked myotubular myopathy. / 19.11.2018 / PubMed / Full text

MTRR[править]

  • One-carbon metabolism gene polymorphisms are associated with cognitive trajectory among African-American adults. / 12.2019 / PubMed / Full text
  • [Clinical and genetic characteristics of long-livers in Moscow region]. / 2013 / PubMed

MUC1[править]

  • Sensitivity of neoplastic cells to senescence unveiled under standard cell culture conditions. / 05.2015 / PubMed
  • Serum KL-6 concentrations are associated with molecular sizes and efflux behavior of KL-6/MUC1 in healthy subjects. / 23.09.2013 / PubMed / Full text

MUC2[править]

  • KLF4 deletion alters gastric cell lineage and induces MUC2 expression. / 09.06.2016 / PubMed / Full text
  • Early intestinal development and mucin transcription in the young poult with probiotic and mannan oligosaccharide prebiotic supplementation. / 05.2016 / PubMed / Full text

MX1[править]

  • White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy. / 02.2020 / PubMed / Full text
  • Age-Associated Changes in the Respiratory Epithelial Response to Influenza Infection. / 10.11.2018 / PubMed / Full text

MYBL2[править]

  • A multidimensional systems biology analysis of cellular senescence in aging and disease. / 07.04.2020 / PubMed / Full text
  • Molecular mechanism of G arrest and cellular senescence induced by LEE011, a novel CDK4/CDK6 inhibitor, in leukemia cells. / 2017 / PubMed / Full text

MYBPC3[править]

  • Compound heterozygosity deteriorates phenotypes of hypertrophic cardiomyopathy with founder MYBPC3 mutation: evidence from patients and zebrafish models. / 01.12.2014 / PubMed / Full text
  • Association of levels of fasting glucose and insulin with rare variants at the chromosome 11p11.2-MADD locus: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text

MYOCD[править]

  • Aging-associated changes in microRNA expression profile of internal anal sphincter smooth muscle: Role of microRNA-133a. / 01.11.2016 / PubMed / Full text
  • Transplantation of mesenchymal cells rejuvenated by the overexpression of telomerase and myocardin promotes revascularization and tissue repair in a murine model of hindlimb ischemia. / 13.09.2013 / PubMed / Full text

MYOD1[править]

  • Low Six4 and Six5 gene dosage improves dystrophic phenotype and prolongs life span of mdx mice. / 08.2016 / PubMed / Full text
  • Age-associated changes in DNA methylation across multiple tissues in an inbred mouse model. / 03.2016 / PubMed / Full text

NAT2[править]

  • Lifestyle and clinical determinants of skin autofluorescence in a population-based cohort study. / 05.2016 / PubMed / Full text
  • The ultra-slow NAT2*6A haplotype is associated with reduced higher cognitive functions in an elderly study group. / 12.2015 / PubMed / Full text

NAV2[править]

  • Genetic associations with age of menopause in familial longevity. / 10.2019 / PubMed / Full text
  • Low expression of aging-related [[NRXN3]] is associated with Alzheimer disease: A systematic review and meta-analysis. / 07.2018 / PubMed / Full text

NCAM1[править]

  • Resistance Training Enhances Skeletal Muscle Innervation Without Modifying the Number of Satellite Cells or their Myofiber Association in Obese Older Adults. / 10.2016 / PubMed / Full text
  • Human skin keratinocytes can be reprogrammed to express neuronal genes and proteins after a single treatment with decitabine. / 06.2013 / PubMed / Full text

NDNF[править]

  • Effect of neuron-derived neurotrophic factor on rejuvenation of human adipose-derived stem cells for cardiac repair after myocardial infarction. / 09.2019 / PubMed / Full text
  • Aged Human Multipotent Mesenchymal Stromal Cells Can Be Rejuvenated by Neuron-Derived Neurotrophic Factor and Improve Heart Function After Injury. / 12.2017 / PubMed / Full text

NDUFS1[править]

  • Mapping the protein phosphorylation sites in human mitochondrial complex I (NADH: Ubiquinone oxidoreductase): A bioinformatics study with implications for brain aging and neurodegeneration. / 01.2019 / PubMed / Full text
  • Contribution of genetic polymorphisms on functional status at very old age: a gene-based analysis of 38 genes (311 SNPs) in the oxidative stress pathway. / 04.2014 / PubMed / Full text

NECTIN2[править]

  • Genetics of Human Longevity From Incomplete Data: New Findings From the Long Life Family Study. / 08.10.2018 / PubMed / Full text
  • Apolipoprotein E region molecular signatures of Alzheimer's disease. / 08.2018 / PubMed / Full text

NEDD4[править]

  • Mechanism of PRL2 phosphatase-mediated PTEN degradation and tumorigenesis. / 25.08.2020 / PubMed / Full text
  • Estrogen receptor β, a regulator of androgen receptor signaling in the mouse ventral prostate. / 09.05.2017 / PubMed / Full text

NEFM[править]

  • Changes in mechanoreceptors in rabbits' anterior cruciate ligaments with age. / 06.2019 / PubMed / Full text
  • The Alzheimer's disease transcriptome mimics the neuroprotective signature of IGF-1 receptor-deficient neurons. / 01.07.2017 / PubMed / Full text

NEIL1[править]

  • NEIL1 stimulates neurogenesis and suppresses neuroinflammation after stress. / 09.2019 / PubMed / Full text
  • Neil2-null Mice Accumulate Oxidized DNA Bases in the Transcriptionally Active Sequences of the Genome and Are Susceptible to Innate Inflammation. / 09.10.2015 / PubMed / Full text

NEIL2[править]

  • Mitochondrial base excision repair positively correlates with longevity in the liver and heart of mammals. / 04.2020 / PubMed / Full text
  • Neil2-null Mice Accumulate Oxidized DNA Bases in the Transcriptionally Active Sequences of the Genome and Are Susceptible to Innate Inflammation. / 09.10.2015 / PubMed / Full text

NEK2[править]

  • A multidimensional systems biology analysis of cellular senescence in aging and disease. / 07.04.2020 / PubMed / Full text
  • Upregulation of FOXM1 leads to diminished drug sensitivity in myeloma. / 21.11.2018 / PubMed / Full text

NEO1[править]

  • Neogenin-1 distinguishes between myeloid-biased and balanced [i]Hoxb5[/i] mouse long-term hematopoietic stem cells. / 10.12.2019 / PubMed / Full text
  • Ionizing radiation reduces ADAM10 expression in brain microvascular endothelial cells undergoing stress-induced senescence. / 04.2017 / PubMed / Full text

NFATC1[править]

  • Age-dependent human β cell proliferation induced by glucagon-like peptide 1 and calcineurin signaling. / 02.10.2017 / PubMed / Full text
  • Genome-wide methylation analysis reveals differentially methylated loci that are associated with an age-dependent increase in bovine fibroblast response to LPS. / 25.05.2017 / PubMed / Full text

NFIB[править]

  • Cell-type-specific expression of NFIX in the developing and adult cerebellum. / 07.2017 / PubMed / Full text
  • Multipotency of Adult Hippocampal NSCs In Vivo Is Restricted by Drosha/NFIB. / 03.11.2016 / PubMed / Full text

NHLRC1[править]

  • DNA methylation-based forensic age prediction using artificial neural networks and next generation sequencing. / 05.2017 / PubMed / Full text
  • Loss of GABAergic cortical neurons underlies the neuropathology of Lafora disease. / 28.01.2014 / PubMed / Full text

NLRP1[править]

  • NADPH oxidase 2-mediated NLRP1 inflammasome activation involves in neuronal senescence in hippocampal neurons in vitro. / 04.2019 / PubMed / Full text
  • Genetic analysis of long-lived families reveals novel variants influencing high density-lipoprotein cholesterol. / 2014 / PubMed / Full text

NLRP12[править]

  • Persistent DNA damage-induced NLRP12 improves hematopoietic stem cell function. / 21.05.2020 / PubMed / Full text
  • Effects of aging in the expression of NOD-like receptors and inflammasome-related genes in oral mucosa. / 02.2016 / PubMed / Full text

NLRX1[править]

  • NOD-like receptor X1 functions as a tumor suppressor by inhibiting epithelial-mesenchymal transition and inducing aging in hepatocellular carcinoma cells. / 26.02.2018 / PubMed / Full text
  • The expression of NLRX1 in C57BL/6 mice cochlear hair cells: Possible relation to aging- and neomycin-induced deafness. / 11.03.2016 / PubMed / Full text

NMB[править]

  • Deceased donor kidney allocation: an economic evaluation of contemporary longevity matching practices. / 09.10.2020 / PubMed / Full text
  • Asleep versus awake: does it matter?: Pediatric regional block complications by patient state: a report from the Pediatric Regional Anesthesia Network. / 07-08.2014 / PubMed / Full text

NME8[править]

  • Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text
  • Gene-based aggregate SNP associations between candidate AD genes and cognitive decline. / 04.2016 / PubMed / Full text

NMNAT1[править]

  • ADNP differentially interact with genes/proteins in correlation with aging: a novel marker for muscle aging. / 06.2019 / PubMed / Full text
  • Genome-wide association study and annotating candidate gene networks affecting age at first calving in Nellore cattle. / 12.2017 / PubMed / Full text

NMNAT2[править]

  • NMNAT2-mediated NAD generation is essential for quality control of aged oocytes. / 06.2019 / PubMed / Full text
  • Sarm1 Deletion, but Not Wld , Confers Lifelong Rescue in a Mouse Model of Severe Axonopathy. / 03.10.2017 / PubMed / Full text

NMS[править]

  • Uncontrolled Diabetes as an Associated Factor with Dynapenia in Adults Aged 50 Years or Older: Sex Differences. / 22.05.2020 / PubMed / Full text
  • Neonatal stress affects the aging trajectory of female rats on the endocrine, temperature, and ventilatory responses to hypoxia. / 01.04.2015 / PubMed / Full text

NNMT[править]

  • Small molecule nicotinamide N-methyltransferase inhibitor activates senescent muscle stem cells and improves regenerative capacity of aged skeletal muscle. / 05.2019 / PubMed / Full text
  • Nicotinamide-N-methyltransferase controls behavior, neurodegeneration and lifespan by regulating neuronal autophagy. / 09.2018 / PubMed / Full text

NONO[править]

  • Physiological levels of thrombospondin-1 decrease NO-dependent vasodilation in coronary microvessels from aged rats. / 01.06.2016 / PubMed / Full text
  • The effects of aging on the functional and structural properties of the rat basilar artery. / 01.06.2014 / PubMed / Full text

NOP10[править]

  • Pseudouridylation defect due to [i]DKC1[/i] and [i]NOP10[/i] mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis. / 30.06.2020 / PubMed / Full text
  • Acute telomerase components depletion triggers oxidative stress as an early event previous to telomeric shortening. / 04.2018 / PubMed / Full text

NPTX2[править]

  • Evaluation of DNA methylation markers and their potential to predict human aging. / 08.2015 / PubMed / Full text
  • Developing a DNA methylation assay for human age prediction in blood and bloodstain. / 07.2015 / PubMed / Full text

NPW[править]

  • Novel information processing at work across time is associated with cognitive change in later life: A 14-year longitudinal study. / 09.2020 / PubMed / Full text
  • Neuropeptide W modulation of gastric vagal afferent mechanosensitivity: Impact of age and sex. / 09.2015 / PubMed / Full text

NPY1R[править]

  • NPY/neuropeptide Y enhances autophagy in the hypothalamus: a mechanism to delay aging? / 2015 / PubMed / Full text
  • Vulnerability imposed by diet and brain trauma for anxiety-like phenotype: implications for post-traumatic stress disorders. / 2013 / PubMed / Full text

NPY5R[править]

  • Effects of age on feeding response: Focus on the rostral C1 neuron and its glucoregulatory proteins. / 01.2020 / PubMed / Full text
  • NPY/neuropeptide Y enhances autophagy in the hypothalamus: a mechanism to delay aging? / 2015 / PubMed / Full text

NR3C1[править]

  • Glucocorticoid receptor (NR3C1) gene polymorphisms are associated with age and blood parameters in Polish Caucasian nonagenarians and centenarians. / 02.2019 / PubMed / Full text
  • Inter-Regional Variations in Gene Expression and Age-Related Cortical Thinning in the Adolescent Brain. / 01.04.2018 / PubMed / Full text

NRL[править]

  • Development of a cyclophosphamide stress test to predict resilience to aging in mice. / 12.2020 / PubMed / Full text
  • A Spontaneous Aggressive ERα Mammary Tumor Model Is Driven by Kras Activation. / 06.08.2019 / PubMed / Full text

NRM[править]

  • Association between Clonal Hematopoiesis and Late Nonrelapse Mortality after Autologous Hematopoietic Cell Transplantation. / 12.2019 / PubMed / Full text
  • Who is the better donor for older hematopoietic transplant recipients: an older-aged sibling or a young, matched unrelated volunteer? / 28.03.2013 / PubMed / Full text

NRP1[править]

  • APOE ε4-specific associations of VEGF gene family expression with cognitive aging and Alzheimer's disease. / 03.2020 / PubMed / Full text
  • Neuropilin 1 is essential for gastrointestinal smooth muscle contractility and motility in aged mice. / 2015 / PubMed / Full text

NRXN1[править]

  • Neurexins 1-3 Each Have a Distinct Pattern of Expression in the Early Developing Human Cerebral Cortex. / 01.01.2017 / PubMed / Full text
  • Neurexin 1 ([[NRXN1]]) splice isoform expression during human neocortical development and aging. / 05.2016 / PubMed / Full text

NRXN3[править]

  • Low expression of aging-related [[NRXN3]] is associated with Alzheimer disease: A systematic review and meta-analysis. / 07.2018 / PubMed / Full text
  • Neurexins 1-3 Each Have a Distinct Pattern of Expression in the Early Developing Human Cerebral Cortex. / 01.01.2017 / PubMed / Full text

NTF4[править]

  • Subcutaneous Neurotrophin 4 Infusion Using Osmotic Pumps or Direct Muscular Injection Enhances Aging Rat Laryngeal Muscles. / 13.06.2017 / PubMed / Full text
  • Enhancement of aging rat laryngeal muscles with endogenous growth factor treatment. / 05.2016 / PubMed / Full text

NTRK2[править]

  • The Role of BDNF in Age-Dependent Changes of Excitatory and Inhibitory Synaptic Markers in the Human Prefrontal Cortex. / 12.2016 / PubMed / Full text
  • Nodes and biological processes identified on the basis of network analysis in the brain of the senescence accelerated mice as an Alzheimer's disease animal model. / 2013 / PubMed / Full text

OAT[править]

  • Opioid agonist treatment reduces losses in quality of life and quality-adjusted life expectancy in heroin users: Evidence from real world data. / 01.08.2019 / PubMed / Full text
  • Strength training and aerobic exercise alter mitochondrial parameters in brown adipose tissue and equally reduce body adiposity in aged rats. / 02.2019 / PubMed / Full text

OMD[править]

  • Genome-wide associations and detection of potential candidate genes for direct genetic and maternal genetic effects influencing dairy cattle body weight at different ages. / 06.02.2019 / PubMed / Full text
  • Digestive capacity in weanling and mature horses. / 05.2013 / PubMed / Full text

OPTN[править]

  • Autophagy receptor OPTN (optineurin) regulates mesenchymal stem cell fate and bone-fat balance during aging by clearing FABP3. / 04.11.2020 / PubMed / Full text
  • Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis. / 24.02.2016 / PubMed / Full text

ORAI1[править]

  • Progerin in muscle leads to thermogenic and metabolic defects via impaired calcium homeostasis. / 02.2020 / PubMed / Full text
  • Calcium Dynamics of Ex Vivo Long-Term Cultured CD8 T Cells Are Regulated by Changes in Redox Metabolism. / 2016 / PubMed / Full text

P2RX7[править]

  • The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. / 29.07.2020 / PubMed / Full text
  • A rare functional haplotype of the P2RX4 and P2RX7 genes leads to loss of innate phagocytosis and confers increased risk of age-related macular degeneration. / 04.2013 / PubMed / Full text

PALB2[править]

  • 53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination. / 02.01.2020 / PubMed / Full text
  • A Multigene Test Could Cost-Effectively Help Extend Life Expectancy for Women at Risk of Hereditary Breast Cancer. / 04.2017 / PubMed / Full text

PAX5[править]

  • Diminished antibody response to influenza vaccination is characterized by expansion of an age-associated B-cell population with low PAX5. / 08.2018 / PubMed / Full text
  • Developmental expression of B cell molecules in equine lymphoid tissues. / 01.2017 / PubMed / Full text

PAX6[править]

  • Pbx1 is required for adult subventricular zone neurogenesis. / 01.07.2016 / PubMed / Full text
  • Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. / 03.2015 / PubMed / Full text

PBX1[править]

  • Internalization of the TAT-PBX1 fusion protein significantly enhances the proliferation of human hair follicle-derived mesenchymal stem cells and delays their senescence. / 10.2020 / PubMed / Full text
  • Pbx1 is required for adult subventricular zone neurogenesis. / 01.07.2016 / PubMed / Full text

PCDH10[править]

  • Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. / 12.2017 / PubMed / Full text
  • PCDH10, a novel p53 transcriptional target in regulating cell migration. / 2015 / PubMed / Full text

PDCD4[править]

  • Petal abscission in roses is associated with the activation of a truncated version of the animal PDCD4 homologue, RbPCD1. / 11.2019 / PubMed / Full text
  • PDCD4 Knockdown Induces Senescence in Hepatoma Cells by Up-Regulating the p21 Expression. / 2018 / PubMed / Full text

PDE2A[править]

  • TAK-915, a phosphodiesterase 2A inhibitor, ameliorates the cognitive impairment associated with aging in rodent models. / 30.12.2019 / PubMed / Full text
  • Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text

PDE3A[править]

  • Effects of aging on gene expression and mitochondrial DNA in the equine oocyte and follicle cells. / 07.2015 / PubMed / Full text
  • Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text

PDE5A[править]

  • Repurposing erectile dysfunction drugs tadalafil and vardenafil to increase bone mass. / 23.06.2020 / PubMed / Full text
  • Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text

PDE9A[править]

  • Identification of new PDE9A isoforms and how their expression and subcellular compartmentalization in the brain change across the life span. / 05.2018 / PubMed / Full text
  • Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text

PDGFB[править]

  • Skin-resident stem cells and wound healing. / 2017 / PubMed / Full text
  • The choroid plexus transcriptome reveals changes in type I and II interferon responses in a mouse model of Alzheimer's disease. / 10.2015 / PubMed / Full text

PDHB[править]

  • Oxidative Damage to the TCA Cycle Enzyme MDH1 Dysregulates Bioenergetic Enzymatic Activity in the Aged Murine Brain. / 03.04.2020 / PubMed / Full text
  • Neuron-specific knockdown of Drosophila PDHB induces reduction of lifespan, deficient locomotive ability, abnormal morphology of motor neuron terminals and photoreceptor axon targeting. / 15.05.2018 / PubMed / Full text

PDK2[править]

  • Age-related impairments in skeletal muscle PDH phosphorylation and plasma lactate are indicative of metabolic inflexibility and the effects of exercise training. / 01.07.2016 / PubMed / Full text
  • Effects of Exercise Training on Regulation of Skeletal Muscle Glucose Metabolism in Elderly Men. / 07.2015 / PubMed / Full text

PDK4[править]

  • Putrescine delays postovulatory aging of mouse oocytes by upregulating PDK4 expression and improving mitochondrial activity. / 16.12.2018 / PubMed / Full text
  • Age-related impairments in skeletal muscle PDH phosphorylation and plasma lactate are indicative of metabolic inflexibility and the effects of exercise training. / 01.07.2016 / PubMed / Full text

PENK[править]

  • Aging-associated DNA methylation changes in middle-aged individuals: the Young Finns study. / 09.02.2016 / PubMed / Full text
  • Genome-wide age-related changes in DNA methylation and gene expression in human PBMCs. / 06.2014 / PubMed / Full text

PES1[править]

  • Transcription factor RD26 is a key regulator of metabolic reprogramming during dark-induced senescence. / 06.2018 / PubMed / Full text
  • The Plastoglobule-Localized Metallopeptidase PGM48 Is a Positive Regulator of Senescence in Arabidopsis thaliana. / 12.2016 / PubMed / Full text

PFKFB3[править]

  • DNA damage, metabolism and aging in pro-inflammatory T cells: Rheumatoid arthritis as a model system. / 05.2018 / PubMed / Full text
  • Bioenergetic mechanisms in astrocytes may contribute to amyloid plaque deposition and toxicity. / 15.05.2015 / PubMed / Full text

PGAM1[править]

  • Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. / 2019 / PubMed / Full text
  • The aged testis. A good model to find proteins involved in age-related changes of testis by proteomic analysis. / 01-02.2014 / PubMed

PGR[править]

  • Inter-Regional Variations in Gene Expression and Age-Related Cortical Thinning in the Adolescent Brain. / 01.04.2018 / PubMed / Full text
  • Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus. / 2015 / PubMed / Full text

PHB2[править]

  • Prohibitin-2 is a novel regulator of p21 induced by depletion of γ-glutamylcyclotransferase. / 29.01.2018 / PubMed / Full text
  • Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor. / 12.01.2017 / PubMed / Full text

PI4KB[править]

  • Differential DNA Methylation in Relation to Age and Health Risks of Obesity. / 24.07.2015 / PubMed / Full text
  • Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text

PIEZO1[править]

  • Niche stiffness underlies the ageing of central nervous system progenitor cells. / 09.2019 / PubMed / Full text
  • On the Mechanism of Human Red Blood Cell Longevity: Roles of Calcium, the Sodium Pump, PIEZO1, and Gardos Channels. / 2017 / PubMed / Full text

PIK3R2[править]

  • The senescent status of endothelial cells affects proliferation, inflammatory profile and SOX2 expression in bone marrow-derived mesenchymal stem cells. / 06.2019 / PubMed / Full text
  • Gene transcripts associated with muscle strength: a CHARGE meta-analysis of 7,781 persons. / 01.2016 / PubMed / Full text

PKP2[править]

  • Molecular disturbance underlies to arrhythmogenic cardiomyopathy induced by transgene content, age and exercise in a truncated PKP2 mouse model. / 01.09.2016 / PubMed / Full text
  • Age-dependent clinical and genetic characteristics in Japanese patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. / 2013 / PubMed / Full text

PLA2G6[править]

  • Mutations in the Drosophila homolog of human PLA2G6 give rise to age-dependent loss of psychomotor activity and neurodegeneration. / 13.02.2018 / PubMed / Full text
  • iPLA2β knockout mouse, a genetic model for progressive human motor disorders, develops age-related neuropathology. / 08.2014 / PubMed / Full text

PLD3[править]

  • Whole-Exome Sequencing of an Exceptional Longevity Cohort. / 16.08.2019 / PubMed / Full text
  • Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text

PLK1[править]

  • Dynactin pathway-related gene expression is altered by aging, but not by vitrification. / 09.2019 / PubMed / Full text
  • Downregulation of Polo-like kinase 1 induces cellular senescence in human primary cells through a p53-dependent pathway. / 10.2013 / PubMed / Full text

PLK4[править]

  • A novel lncRNA PLK4 up-regulated by talazoparib represses hepatocellular carcinoma progression by promoting YAP-mediated cell senescence. / 05.2020 / PubMed / Full text
  • Differential expression of AURKA/PLK4 in quiescence and senescence of osteosarcoma U2OS cells. / 04.2020 / PubMed / Full text

PMP22[править]

  • Role of microRNAs in senescence and its contribution to peripheral neuropathy in the arsenic exposed population of West Bengal, India. / 02.2018 / PubMed / Full text
  • A molecular signature predictive of indolent prostate cancer. / 11.09.2013 / PubMed / Full text

POLD3[править]

  • POLD3 Is Haploinsufficient for DNA Replication in Mice. / 01.09.2016 / PubMed / Full text
  • POLD1: Central mediator of DNA replication and repair, and implication in cancer and other pathologies. / 15.09.2016 / PubMed / Full text

POLG2[править]

  • An N-Ethyl-N-Nitrosourea (ENU)-Induced Tyr265Stop Mutation of the DNA Polymerase Accessory Subunit Gamma 2 (Polg2) Is Associated With Renal Calcification in Mice. / 03.2019 / PubMed / Full text
  • Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text

PPARD[править]

  • PPARD 294C overrepresentation in general and long-lived population in China Bama longevity area and unique relationships between PPARD 294T/C polymorphism and serum lipid profiles. / 07.03.2015 / PubMed / Full text
  • [Genotype and allele frequencies of UCP and PPAR gene families in residents of besieged Leningrad and in the control group]. / 2014 / PubMed

PPM1D[править]

  • Detectible mosaic truncating PPM1D mutations, age and breast cancer risk. / 06.2019 / PubMed / Full text
  • Age-related remodelling of oesophageal epithelia by mutated cancer drivers. / 01.2019 / PubMed / Full text

PPP3CB[править]

  • The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. / 29.07.2020 / PubMed / Full text
  • Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex. / 2018 / PubMed / Full text

PPY[править]

  • Delta Cell Hyperplasia in Adult Goto-Kakizaki (GK/MolTac) Diabetic Rats. / 2015 / PubMed / Full text
  • Blood Protein Markers of Neocortical Amyloid-β Burden: A Candidate Study Using SOMAscan Technology. / 2015 / PubMed / Full text

PRF1[править]

  • Gene transcripts associated with muscle strength: a CHARGE meta-analysis of 7,781 persons. / 01.2016 / PubMed / Full text
  • Gene expression markers of age-related inflammation in two human cohorts. / 10.2015 / PubMed / Full text

PRG4[править]

  • Inhibition of Wnt/β-catenin signaling ameliorates osteoarthritis in a murine model of experimental osteoarthritis. / 08.02.2018 / PubMed / Full text
  • Age-related changes in structure and extracellular matrix protein expression levels in rat tendons. / 12.2013 / PubMed / Full text

PRKAA2[править]

  • Study on the effect of CaMKKβ-mediated AMPK activation on the glycolysis and the quality of different altitude postmortem bovines longissimus muscle. / 11.2019 / PubMed / Full text
  • Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone. / 07.2014 / PubMed / Full text

PRMT7[править]

PRMT8[править]

  • Arginine Methyltransferase PRMT8 Provides Cellular Stress Tolerance in Aging Motoneurons. / 29.08.2018 / PubMed / Full text
  • Novel Protein Arginine Methyltransferase 8 Isoform Is Essential for Cell Proliferation. / 09.2016 / PubMed / Full text

PROX1[править]

  • Molecular control of two novel migratory paths for CGE-derived interneurons in the developing mouse brain. / 15.05.2016 / PubMed / Full text
  • PROX1: a lineage tracer for cortical interneurons originating in the lateral/caudal ganglionic eminence and preoptic area. / 2013 / PubMed / Full text

PSMB8[править]

  • [Target protein candidates of hypothalamus in aging rats with intervention by Qiongyugao]. / 04.2016 / PubMed / Full text
  • Assessment of the risk of blastomere biopsy during preimplantation genetic diagnosis in a mouse model: reducing female ovary function with an increase in age by proteomics method. / 06.12.2013 / PubMed / Full text

PTH1R[править]

  • Bone-remodeling transcript levels are independent of perching in end-of-lay white leghorn chickens. / 23.01.2015 / PubMed / Full text
  • Variation in the [[PTH2R]] gene is associated with age-related degenerative changes in the lumbar spine. / 01.2015 / PubMed / Full text

PTK7[править]

  • Innate and adaptive immune dysregulation in critically ill ICU patients. / 05.07.2018 / PubMed / Full text
  • Heterogeneity in thymic emigrants: implications for thymectomy and immunosenescence. / 2013 / PubMed / Full text

PTPN1[править]

  • The genetic component of human longevity: New insights from the analysis of pathway-based SNP-SNP interactions. / 06.2018 / PubMed / Full text
  • Leptin and leptin-related gene polymorphisms, obesity, and influenza A/H1N1 vaccine-induced immune responses in older individuals. / 07.02.2014 / PubMed / Full text

PTTG1[править]

  • [Down-regulated PTTG1 expression promotes the senescence of human prostate cancer LNCaP-AI]. / 03.2019 / PubMed
  • Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text

PUM2[править]

  • PUMILIO hyperactivity drives premature aging of [i]Norad[/i]-deficient mice. / 08.02.2019 / PubMed / Full text
  • The RNA-Binding Protein PUM2 Impairs Mitochondrial Dynamics and Mitophagy During Aging. / 21.02.2019 / PubMed / Full text

PYCR1[править]

  • A Transcriptome Study of Progeroid Neurocutaneous Syndrome Reveals POSTN As a New Element in Proline Metabolic Disorder. / 12.2018 / PubMed / Full text
  • Sublethal endoplasmic reticulum stress caused by the mutation of immunoglobulin heavy chain-binding protein induces the synthesis of a mitochondrial protein, pyrroline-5-carboxylate reductase 1. / 01.2017 / PubMed / Full text

RAD51B[править]

  • Increased age-adjusted hazard of death associated with a common single nucleotide polymorphism of the human RAD52 gene in a cardiovascular cohort. / 10.2017 / PubMed / Full text
  • [What's new in dermatological research?]. / 12.2012 / PubMed / Full text

RAG1[править]

  • T cell senescence accelerates Angiotensin II-induced target organ damage. / 12.02.2020 / PubMed / Full text
  • Aged murine hematopoietic stem cells drive aging-associated immune remodeling. / 09.08.2018 / PubMed / Full text

RAG2[править]

  • Phosphate Transporter Profiles in Murine and Human Thymi Identify Thymocytes at Distinct Stages of Differentiation. / 2020 / PubMed / Full text
  • Both retention and recirculation contribute to long-lived regulatory T-cell accumulation in the thymus. / 09.2014 / PubMed / Full text

RASGRP1[править]

  • Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. / 12.2017 / PubMed / Full text
  • PPARβ/δ promotes HRAS-induced senescence and tumor suppression by potentiating p-ERK and repressing p-AKT signaling. / 13.11.2014 / PubMed / Full text

RECQL5[править]

  • RECQL5 has unique strand annealing properties relative to the other human RecQ helicase proteins. / 01.2016 / PubMed / Full text
  • Senescence induced by RECQL4 dysfunction contributes to Rothmund-Thomson syndrome features in mice. / 15.05.2014 / PubMed / Full text

RNF168[править]

  • 53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination. / 02.01.2020 / PubMed / Full text
  • PML nuclear bodies are recruited to persistent DNA damage lesions in an RNF168-53BP1 dependent manner and contribute to DNA repair. / 06.2019 / PubMed / Full text

RPIA[править]

  • Suppression of p16 Induces mTORC1-Mediated Nucleotide Metabolic Reprogramming. / 20.08.2019 / PubMed / Full text
  • Ribose-5-phosphate isomerase A regulates hepatocarcinogenesis via PP2A and ERK signaling. / 01.07.2015 / PubMed / Full text

RRM1[править]

  • α-Synuclein toxicity in yeast and human cells is caused by cell cycle re-entry and autophagy degradation of ribonucleotide reductase 1. / 08.2019 / PubMed / Full text
  • GBM-associated mutations and altered protein expression are more common in young patients. / 25.10.2016 / PubMed / Full text

RXRG[править]

  • Genetic variations, reproductive aging, and breast cancer risk in African American and European American women: The Women's Circle of Health Study. / 2017 / PubMed / Full text
  • Genome wide association study of age at menarche in the Japanese population. / 2013 / PubMed / Full text

S100A12[править]

  • Fetal articular cartilage regeneration versus adult fibrocartilaginous repair: secretome proteomics unravels molecular mechanisms in an ovine model. / 06.07.2018 / PubMed / Full text
  • Evaluation of serum biochemical marker concentrations and survival time in dogs with protein-losing enteropathy. / 01.01.2015 / PubMed / Full text

S100A6[править]

  • Sex differences in distribution of cannabinoid receptors (CB1 and CB2), S100A6 and CacyBP/SIP in human ageing hearts. / 27.11.2018 / PubMed / Full text
  • S100A6 (calcyclin) is a novel marker of neural stem cells and astrocyte precursors in the subgranular zone of the adult mouse hippocampus. / 01.2014 / PubMed / Full text

S1PR3[править]

  • Sexual dimorphism of metabolic and vascular dysfunction in aged mice and those lacking the sphingosine 1-phosphate receptor 3. / 01.12.2017 / PubMed / Full text
  • Impact of Age and Polytherapy on Fingolimod Induced Bradycardia: a Preclinical Study. / 03.2017 / PubMed / Full text

SAA1[править]

  • Naturally occurring antibodies against serum amyloid A reduce IL-6 release from peripheral blood mononuclear cells. / 2018 / PubMed / Full text
  • Association between local inflammation and breast tissue age-related lobular involution among premenopausal and postmenopausal breast cancer patients. / 2017 / PubMed / Full text

SALL1[править]

  • SALL1 functions as a tumor suppressor in breast cancer by regulating cancer cell senescence and metastasis through the NuRD complex. / 06.04.2018 / PubMed / Full text
  • Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. / 12.2017 / PubMed / Full text

SCGN[править]

  • Detection and evaluation of DNA methylation markers found at SCGN and KLF14 loci to estimate human age. / 11.2017 / PubMed / Full text
  • DNA methylation-based forensic age prediction using artificial neural networks and next generation sequencing. / 05.2017 / PubMed / Full text

SCN2B[править]

  • MicroRNA‑449a regulates the progression of brain aging by targeting SCN2B in SAMP8 mice. / 04.2020 / PubMed / Full text
  • Sodium Channel Voltage-Gated Beta 2 Plays a Vital Role in Brain Aging Associated with Synaptic Plasticity and Expression of COX5A and FGF-2. / 03.2016 / PubMed / Full text

SCN5A[править]

  • [Use of Pharmacogenetic Information for Therapeutic Drug Monitoring of an Antiarrhythmic Drug]. / 2018 / PubMed / Full text
  • Sequencing of SCN5A identifies rare and common variants associated with cardiac conduction: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. / 06.2014 / PubMed / Full text

SCO2[править]

  • Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients. / 03.09.2019 / PubMed / Full text
  • Role of SCOX in determination of Drosophila melanogaster lifespan. / 2014 / PubMed / Full text

SDC4[править]

  • Alterations in Corneal Sensory Nerves During Homeostasis, Aging, and After Injury in Mice Lacking the Heparan Sulfate Proteoglycan Syndecan-1. / 01.10.2017 / PubMed / Full text
  • Metabolism and successful aging: Polymorphic variation of syndecan-4 (SDC4) gene associate with longevity and lipid profile in healthy elderly Italian subjects. / 09.2015 / PubMed / Full text

SDHC[править]

  • Endogenous reactive oxygen species cause astrocyte defects and neuronal dysfunctions in the hippocampus: a new model for aging brain. / 02.2017 / PubMed / Full text
  • Long-term prognosis of patients with pediatric pheochromocytoma. / 02.2014 / PubMed / Full text

SERPINB2[править]

  • Elevated circulating HtrA4 in preeclampsia may alter endothelial expression of senescence genes. / 15.01.2020 / PubMed / Full text
  • An Endogenous Anti-aging Factor, Sonic Hedgehog, Suppresses Endometrial Stem Cell Aging through SERPINB2. / 03.07.2019 / PubMed / Full text

SESN2[править]

  • Copy Number Alterations in Papillary Thyroid Carcinomas: Does Loss of [i]SESN2[/i] Have a Role in Age-related Different Prognoses? / 09-10.2020 / PubMed / Full text
  • Loss of sestrin 2 potentiates the early onset of age-related sensory cell degeneration in the cochlea. / 11.10.2017 / PubMed / Full text

SESN3[править]

  • Autophagy mediators (FOXO1, SESN3 and TSC2) in Lewy body disease and aging. / 25.09.2018 / PubMed / Full text
  • Age-related reduction in the expression of FOXO transcription factors and correlations with intervertebral disc degeneration. / 12.2017 / PubMed / Full text

SFRP2[править]

  • [Role and alterations of DNA methylation during the aging and cancer]. / 01.2018 / PubMed / Full text
  • Thyroid hormone activates Wnt/β-catenin signaling involved in adult epithelial development during intestinal remodeling in Xenopus laevis. / 08.2016 / PubMed / Full text

SGK1[править]

  • Epigenetic Regulation of KL (Klotho) via H3K27me3 (Histone 3 Lysine [K] 27 Trimethylation) in Renal Tubule Cells. / 05.2020 / PubMed / Full text
  • The cell survival kinase SGK1 and its targets FOXO3a and NDRG1 in aged human brain. / 10.2013 / PubMed / Full text

SIX3[править]

  • CellBIC: bimodality-based top-down clustering of single-cell RNA sequencing data reveals hierarchical structure of the cell type. / 30.11.2018 / PubMed / Full text
  • Age-Dependent Pancreatic Gene Regulation Reveals Mechanisms Governing Human β Cell Function. / 10.05.2016 / PubMed / Full text

SLC13A5[править]

  • INDY-A New Link to Metabolic Regulation in Animals and Humans. / 2017 / PubMed / Full text
  • The role of INDY in metabolism, health and longevity. / 2015 / PubMed / Full text

SLC16A7[править]

  • Genetics of facial telangiectasia in the Rotterdam Study: a genome-wide association study and candidate gene approach. / 23.10.2020 / PubMed / Full text
  • The SLC16 gene family - structure, role and regulation in health and disease. / 04-06.2013 / PubMed / Full text

SLC19A1[править]

  • Novel drug-resistance mechanisms of pemetrexed-treated non-small cell lung cancer. / 30.03.2018 / PubMed / Full text
  • Association of MTHFR, SLC19A1 Genetic Polymorphism, Serum Folate, Vitamin B and Hcy Status with Cognitive Functions in Chinese Adults. / 24.10.2016 / PubMed / Full text

SLC24A4[править]

  • Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text
  • Gene-based aggregate SNP associations between candidate AD genes and cognitive decline. / 04.2016 / PubMed / Full text

SLC25A24[править]

  • De Novo Mutations in SLC25A24 Cause a Disorder Characterized by Early Aging, Bone Dysplasia, Characteristic Face, and Early Demise. / 02.11.2017 / PubMed / Full text
  • De Novo Mutations in SLC25A24 Cause a Craniosynostosis Syndrome with Hypertrichosis, Progeroid Appearance, and Mitochondrial Dysfunction. / 02.11.2017 / PubMed / Full text

SLC26A2[править]

  • Phenotypic characterization of Slc26a2 mutant mice reveals a multifactorial etiology of spondylolysis. / 01.2020 / PubMed / Full text
  • Alteration of proteoglycan sulfation affects bone growth and remodeling. / 05.2013 / PubMed / Full text

SLC2A4[править]

  • Permanent cystathionine-β-Synthase gene knockdown promotes inflammation and oxidative stress in immortalized human adipose-derived mesenchymal stem cells, enhancing their adipogenic capacity. / 02.08.2020 / PubMed / Full text
  • Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats. / 02.2019 / PubMed / Full text

SLC2A9[править]

  • ABCG2 rs2231142 variant in hyperuricemia is modified by SLC2A9 and SLC22A12 polymorphisms and cardiovascular risk factors in an elderly community-dwelling population. / 17.03.2020 / PubMed / Full text
  • MicroRNA-Based Linkage between Aging and Cancer: from Epigenetics View Point. / 07-09.2016 / PubMed / Full text

SLC6A3[править]

  • A variable number of tandem repeats in the 3'-untranslated region of the dopamine transporter modulates striatal function during working memory updating across the adult age span. / 08.2015 / PubMed / Full text
  • Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus. / 2015 / PubMed / Full text

SLC7A11[править]

  • SOCS1 regulates senescence and ferroptosis by modulating the expression of p53 target genes. / 28.10.2017 / PubMed / Full text
  • Comprehensive Analysis of Interaction Networks of Telomerase Reverse Transcriptase with Multiple Bioinformatic Approaches: Deep Mining the Potential Functions of Telomere and Telomerase. / 08.2017 / PubMed / Full text

SLN[править]

  • Completion Lymph Node Dissection or Observation for Melanoma Sentinel Lymph Node Metastases: A Decision Analysis. / 09.2016 / PubMed / Full text
  • Age differences in brain activity related to unsuccessful declarative memory retrieval. / 01.07.2015 / PubMed / Full text

SMAD1[править]

  • TGFB1-Mediated Gliosis in Multiple Sclerosis Spinal Cords Is Favored by the Regionalized Expression of HOXA5 and the Age-Dependent Decline in Androgen Receptor Ligands. / 26.11.2019 / PubMed / Full text
  • BMP-SMAD-ID promotes reprogramming to pluripotency by inhibiting p16/INK4A-dependent senescence. / 15.11.2016 / PubMed / Full text

SMAD7[править]

  • Forkhead Box Protein 1 (FoxO1) Inhibits Accelerated β Cell Aging in Pancreas-specific SMAD7 Mutant Mice. / 24.02.2017 / PubMed / Full text
  • Granulosa cell function and oocyte competence: Super-follicles, super-moms and super-stimulation in cattle. / 09.2014 / PubMed / Full text

SMARCA4[править]

  • Attenuation of epigenetic regulator SMARCA4 and ERK-ETS signaling suppresses aging-related dopaminergic degeneration. / 09.2020 / PubMed / Full text
  • GBM-associated mutations and altered protein expression are more common in young patients. / 25.10.2016 / PubMed / Full text

SMO[править]

  • Sonic hedgehog regulation of cavernous nerve regeneration and neurite formation in aged pelvic plexus. / 02.2019 / PubMed / Full text
  • Silybum marianum oil attenuates oxidative stress and ameliorates mitochondrial dysfunction in mice treated with D-galactose. / 01.2014 / PubMed / Full text

SMOX[править]

  • Skeletal Muscle Pathophysiology: The Emerging Role of Spermine Oxidase and Spermidine. / 14.02.2018 / PubMed / Full text
  • Haemocytes control stem cell activity in the Drosophila intestine. / 06.2015 / PubMed / Full text

SMPD1[править]

  • Alterations in Lipid Profile of the Aging Kidney Identified by MALDI Imaging Mass Spectrometry. / 05.07.2019 / PubMed / Full text
  • Rare lysosomal enzyme gene SMPD1 variant (p.R591C) associates with Parkinson's disease. / 12.2013 / PubMed / Full text

SNCB[править]

  • Age-related distribution and potential role of SNCB in topographically different retinal areas of the common marmoset Callithrix jacchus, including the macula. / 08.2019 / PubMed / Full text
  • Age-related Beta-synuclein Alters the p53/Mdm2 Pathway and Induces the Apoptosis of Brain Microvascular Endothelial Cells In Vitro. / 05.2018 / PubMed / Full text

SOCS2[править]

  • Suppressor of Cytokine Signalling 2 (SOCS2) Regulates Numbers of Mature Newborn Adult Hippocampal Neurons and Their Dendritic Spine Maturation. / 07.2017 / PubMed / Full text
  • Age-independent effects of hyaluronan amide derivative and growth hormone on human osteoarthritic chondrocytes. / 11.2015 / PubMed / Full text

SPARCL1[править]

  • Specific factors in blood from young but not old mice directly promote synapse formation and NMDA-receptor recruitment. / 18.06.2019 / PubMed / Full text
  • SPARCL1 Accelerates Symptom Onset in Alzheimer's Disease and Influences Brain Structure and Function During Aging. / 2018 / PubMed / Full text

SPN[править]

  • Parkinson's disease-related Leucine-rich repeat kinase 2 modulates nuclear morphology and genomic stability in striatal projection neurons during aging. / 19.02.2020 / PubMed / Full text
  • [Identification of single nucleotide polymorphisms in centenarians]. / 05-06.2016 / PubMed / Full text

SPON1[править]

  • APOE influences working memory in non-demented elderly through an interaction with SPON1 rs2618516. / 07.2018 / PubMed / Full text
  • HYDRA: Revealing heterogeneity of imaging and genetic patterns through a multiple max-margin discriminative analysis framework. / 15.01.2017 / PubMed / Full text

SREBF2[править]

  • The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. / 29.09.2020 / PubMed / Full text
  • White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy. / 02.2020 / PubMed / Full text

SRR[править]

  • Mediterranean diet and its components in relation to all-cause mortality: meta-analysis. / 11.2018 / PubMed / Full text
  • Genetic Biomarkers on Age-Related Cognitive Decline. / 2017 / PubMed / Full text

SSTR1[править]

  • Expression and localization of somatostatin receptor types 3, 4 and 5 in the wild-type, SSTR1 and SSTR1/SSTR2 knockout mouse cochlea. / 12.2014 / PubMed / Full text
  • Upregulated expression of SSTR1 is involved in neuronal apoptosis and is coupled to the reduction of bcl-2 following intracerebral hemorrhage in adult rats. / 10.2014 / PubMed / Full text

ST6GAL1[править]

  • Glycobiology of Aging. / 2018 / PubMed / Full text
  • Identification of novel plasma glycosylation-associated markers of aging. / 16.02.2016 / PubMed / Full text

STAR[править]

  • Testicular gene expression of steroidogenesis-related factors in prepubertal, postpubertal, and aging dogs. / 01.03.2017 / PubMed / Full text
  • Role of the steroidogenic acute regulatory protein in health and disease. / 01.2016 / PubMed / Full text

STAT4[править]

  • Neonatal T Follicular Helper Cells Are Lodged in a Pre-T Follicular Helper Stage Favoring Innate Over Adaptive Germinal Center Responses. / 2019 / PubMed / Full text
  • RNA-Seq analysis reveals new evidence for inflammation-related changes in aged kidney. / 24.05.2016 / PubMed / Full text

STAT5A[править]

  • Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
  • SOCS1 regulates senescence and ferroptosis by modulating the expression of p53 target genes. / 28.10.2017 / PubMed / Full text

STK3[править]

  • Dual functions for OVAAL in initiation of RAF/MEK/ERK prosurvival signals and evasion of p27-mediated cellular senescence. / 11.12.2018 / PubMed / Full text
  • Organ-specific alteration in caspase expression and STK3 proteolysis during the aging process. / 11.2016 / PubMed / Full text

SURF1[править]

  • Lifelong reduction in complex IV induces tissue-specific metabolic effects but does not reduce lifespan or healthspan in mice. / 08.2018 / PubMed / Full text
  • Complex IV-deficient Surf1(-/-) mice initiate mitochondrial stress responses. / 01.09.2014 / PubMed / Full text

SV2A[править]

  • Assessing Synaptic Density in Alzheimer Disease With Synaptic Vesicle Glycoprotein 2A Positron Emission Tomographic Imaging. / 01.10.2018 / PubMed / Full text
  • Mutant Huntingtin Causes a Selective Decrease in the Expression of Synaptic Vesicle Protein 2C. / 10.2018 / PubMed / Full text

SYNC[править]

  • Alpha-synuclein expression patterns in the colonic submucosal plexus of the aging Fischer 344 rat: implications for biopsies in aging and neurodegenerative disorders? / 09.2013 / PubMed / Full text
  • Macrophages are unsuccessful in clearing aggregated alpha-synuclein from the gastrointestinal tract of healthy aged Fischer 344 rats. / 04.2013 / PubMed / Full text

SYNJ1[править]

  • Excess Synaptojanin 1 Contributes to Place Cell Dysfunction and Memory Deficits in the Aging Hippocampus in Three Types of Alzheimer's Disease. / 05.06.2018 / PubMed / Full text
  • Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text

TACR3[править]

  • Association of a neurokinin 3 receptor polymorphism with the anterior basal forebrain. / 06.2015 / PubMed / Full text
  • Neurokinin3 receptor as a target to predict and improve learning and memory in the aged organism. / 10.09.2013 / PubMed / Full text

TAS2R16[править]

  • Taste receptor polymorphisms and longevity: a systematic review and meta-analysis. / 10.11.2020 / PubMed / Full text
  • Taste receptors, innate immunity and longevity: the case of TAS2R16 gene. / 2019 / PubMed / Full text

TBC1D4[править]

  • Effects of Exercise Training on Regulation of Skeletal Muscle Glucose Metabolism in Elderly Men. / 07.2015 / PubMed / Full text
  • AMPK and insulin action--responses to ageing and high fat diet. / 2013 / PubMed / Full text

TBC1D5[править]

  • TBC1D5-Catalyzed Cycling of Rab7 Is Required for Retromer-Mediated Human Papillomavirus Trafficking during Virus Entry. / 09.06.2020 / PubMed / Full text
  • Retromer and TBC1D5 maintain late endosomal RAB7 domains to enable amino acid-induced mTORC1 signaling. / 02.09.2019 / PubMed / Full text

TBX21[править]

  • Association of Epigenetic Age and p16INK4a With Markers of T-Cell Composition in a Healthy Cohort. / 13.11.2020 / PubMed / Full text
  • [Study of gene expression of transcription factors T cells during aging]. / 2015 / PubMed

TCF7[править]

  • Osteoprotection Through the Deletion of the Transcription Factor Rorβ in Mice. / 04.2018 / PubMed / Full text
  • Age-related profiling of DNA methylation in CD8 T cells reveals changes in immune response and transcriptional regulator genes. / 19.08.2015 / PubMed / Full text

TDP1[править]

  • UCHL3 Regulates Topoisomerase-Induced Chromosomal Break Repair by Controlling TDP1 Proteostasis. / 12.06.2018 / PubMed / Full text
  • Neuroprotection and repair of 3'-blocking DNA ends by glaikit (gkt) encoding Drosophila tyrosyl-DNA phosphodiesterase 1 (TDP1). / 04.11.2014 / PubMed / Full text

TDRD7[править]

  • Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice. / 01.2020 / PubMed / Full text
  • RNA granule component TDRD7 gene polymorphisms in a Han Chinese population with age-related cataract. / 02.2014 / PubMed / Full text

TEAD1[править]

TEF[править]

  • Expression of human HSP27 in yeast extends replicative lifespan and uncovers a hormetic response. / 10.2020 / PubMed / Full text
  • Relationship Between the Dose Administered, Target Tissue Dose, and Toxicity Level After Acute Oral Exposure to Bifenthrin and Tefluthrin in Young Adult Rats. / 01.12.2019 / PubMed / Full text

TEN1[править]

  • Stimulation of cell proliferation by glutathione monoethyl ester in aged bone marrow stromal cells is associated with the assistance of TERT gene expression and telomerase activity. / 08.2016 / PubMed / Full text
  • Functional characterization of human CTC1 mutations reveals novel mechanisms responsible for the pathogenesis of the telomere disease Coats plus. / 12.2013 / PubMed / Full text

TERF1[править]

  • Telomere protein RAP1 levels are affected by cellular aging and oxidative stress. / 08.2016 / PubMed / Full text
  • Population-specific association of genes for telomere-associated proteins with longevity in an Italian population. / 06.2015 / PubMed / Full text

TERF2[править]

  • Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. / 05.03.2020 / PubMed / Full text
  • Endothelial senescence-associated secretory phenotype (SASP) is regulated by Makorin-1 ubiquitin E3 ligase. / 11.2019 / PubMed / Full text

TES[править]

  • The Effects of Electrical Stimulation Pulse Duration on Lingual Palatal Pressure Measures During Swallowing in Healthy Older Adults. / 08.2019 / PubMed / Full text
  • Comparison of different extenders on the recovery and longevity of epididymal sperm from Spix's yellow-toothed cavies (Galea spixii Wagler, 1831). / 04.2017 / PubMed / Full text

TFRC[править]

  • Identification of reference genes for RT-qPCR data normalisation in aging studies. / 27.09.2019 / PubMed / Full text
  • SQSTM1/p62 and PPARGC1A/PGC-1alpha at the interface of autophagy and vascular senescence. / 06.2020 / PubMed / Full text

TGFBR2[править]

  • TGF-β type 2 receptor-mediated modulation of the IL-36 family can be therapeutically targeted in osteoarthritis. / 08.05.2019 / PubMed / Full text
  • Serum levels of matrix metalloproteinases 2 and 9 and TGFBR2 gene screening in patients with ascending aortic dilatation. / 2013 / PubMed

TMEM119[править]

  • Dexamethasone Induces a Specific Form of Ramified Dysfunctional Microglia. / 02.2019 / PubMed / Full text
  • Loss of 'homeostatic' microglia and patterns of their activation in active multiple sclerosis. / 01.07.2017 / PubMed / Full text

TMEM18[править]

  • Sequence variation in TMEM18 in association with body mass index: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text
  • The influence of obesity-related single nucleotide polymorphisms on BMI across the life course: the PAGE study. / 05.2013 / PubMed / Full text

TNFSF10[править]

  • Role of mitochondrial function in cell death and body metabolism. / 01.06.2016 / PubMed / Full text
  • Sporadic colorectal cancer development shows rejuvenescence regarding epithelial proliferation and apoptosis. / 2013 / PubMed / Full text

TNNT1[править]

  • Improved knee extensor strength with resistance training associates with muscle specific miRNAs in older adults. / 02.2015 / PubMed / Full text
  • Human slow troponin T (TNNT1) pre-mRNA alternative splicing is an indicator of skeletal muscle response to resistance exercise in older adults. / 12.2014 / PubMed / Full text

TNR[править]

  • Estimation of effectiveness of three methods of feral cat population control by use of a simulation model. / 15.08.2013 / PubMed / Full text
  • The extracellular matrix glycoprotein tenascin-R affects adult but not developmental neurogenesis in the olfactory bulb. / 19.06.2013 / PubMed / Full text

TOMM20[править]

  • Effect of aging on mitochondria and metabolism of bovine granulosa cells. / 13.09.2020 / PubMed / Full text
  • PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis. / 2015 / PubMed / Full text

TOP1[править]

  • UCHL3 Regulates Topoisomerase-Induced Chromosomal Break Repair by Controlling TDP1 Proteostasis. / 12.06.2018 / PubMed / Full text
  • mir-24 activity propagates stress-induced senescence by down regulating DNA topoisomerase 1. / 03.2016 / PubMed / Full text

TOP2A[править]

  • Proteomics of Long-Lived Mammals. / 03.2020 / PubMed / Full text
  • Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text

TOX[править]

  • Temporal Cognitive Decline Associated With Exposure to Infectious Agents in a Population-based, Aging Cohort. / 07-09.2016 / PubMed / Full text
  • Incidence rate of modifying or discontinuing first combined antiretroviral therapy regimen due to toxicity during the first year of treatment stratified by age. / 01-02.2014 / PubMed / Full text

TPX2[править]

  • Targeting DTL induces cell cycle arrest and senescence and suppresses cell growth and colony formation through TPX2 inhibition in human hepatocellular carcinoma cells. / 2018 / PubMed / Full text
  • Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text

TREX1[править]

  • Mechanistic link between DNA damage sensing, repairing and signaling factors and immune signaling. / 2019 / PubMed / Full text
  • Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of CSF1R and NOTCH3. / 06.2018 / PubMed / Full text

TRIM21[править]

  • TRIM21 overexpression promotes tumor progression by regulating cell proliferation, cell migration and cell senescence in human glioma. / 2020 / PubMed / Full text
  • PRMT5-TRIM21 interaction regulates the senescence of osteosarcoma cells by targeting the TXNIP/p21 axis. / 05.02.2020 / PubMed / Full text

TRIM28[править]

  • Depleting Trim28 in adult mice is well tolerated and reduces levels of α-synuclein and tau. / 04.06.2018 / PubMed / Full text
  • Polyphenic trait promotes liver cancer in a model of epigenetic instability in mice. / 07.2017 / PubMed / Full text

TRIP13[править]

  • BubR1 allelic effects drive phenotypic heterogeneity in mosaic-variegated aneuploidy progeria syndrome. / 02.01.2020 / PubMed / Full text
  • PCH-2 regulates Caenorhabditis elegans lifespan. / 01.2015 / PubMed / Full text

TRPC3[править]

  • Age-dependent alpha-synuclein accumulation is correlated with elevation of mitochondrial TRPC3 in the brains of monkeys and mice. / 04.2017 / PubMed / Full text
  • TRPC3 channels critically regulate hippocampal excitability and contextual fear memory. / 15.03.2015 / PubMed / Full text

TRPC5[править]

  • TRPC5 channel modulates endothelial cells senescence. / 05.05.2017 / PubMed / Full text
  • Benzimidazole derivative M084 extends the lifespan of Caenorhabditis elegans in a DAF-16/FOXO-dependent way. / 02.2017 / PubMed / Full text

TRPC6[править]

  • Redox and mTOR-dependent regulation of plasma lamellar calcium influx controls the senescence-associated secretory phenotype. / 11.2020 / PubMed / Full text
  • TRPC6 in simulated microgravity of intervertebral disc cells. / 10.2018 / PubMed / Full text

TRPM6[править]

  • Role of kinase-coupled TRP channels in mineral homeostasis. / 04.2018 / PubMed / Full text
  • Epithelial magnesium transport by TRPM6 is essential for prenatal development and adult survival. / 19.12.2016 / PubMed / Full text

TRPM7[править]

  • mRNA expression of transient receptor potential melastatin (TRPM) channels 2 and 7 in perinatal brain development. / 10.2018 / PubMed / Full text
  • Role of kinase-coupled TRP channels in mineral homeostasis. / 04.2018 / PubMed / Full text

TRPV6[править]

  • Changes in expression of klotho affect physiological processes, diseases, and cancer. / 01.2018 / PubMed / Full text
  • Molecular aspects of intestinal calcium absorption. / 21.06.2015 / PubMed / Full text

TSHB[править]

  • Adipose TSHB in Humans and Serum TSH in Hypothyroid Rats Inform About Cellular Senescence. / 2018 / PubMed / Full text
  • Loss of basal and TRH-stimulated Tshb expression in dispersed pituitary cells. / 01.2015 / PubMed / Full text

TSLP[править]

  • Cloning and expression of recombinant equine interleukin-3 and its effect on sulfidoleukotriene and cytokine production by equine peripheral blood leukocytes. / 15.02.2015 / PubMed / Full text
  • Accumulation of prelamin A compromises NF-κB-regulated B-lymphopoiesis in a progeria mouse model. / 2013 / PubMed / Full text

TTN[править]

  • LncRNA TTN-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/MBTD1 axis. / 10.10.2019 / PubMed / Full text
  • Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text

UBB[править]

  • Different Expression Levels of Human Mutant Ubiquitin B (UBB ) Can Modify Chronological Lifespan or Stress Resistance of [i]Saccharomyces cerevisiae[/i]. / 2018 / PubMed / Full text
  • Modeling non-hereditary mechanisms of Alzheimer disease during apoptosis in yeast. / 20.03.2015 / PubMed / Full text

UGT1A1[править]

  • Expression of UDP-Glucuronosyltransferase 1 (UGT1) and Glucuronidation Activity toward Endogenous Substances in Humanized UGT1 Mouse Brain. / 07.2015 / PubMed / Full text
  • Age-related changes in mRNA levels of hepatic transporters, cytochrome P450 and UDP-glucuronosyltransferase in female rats. / 06.2015 / PubMed / Full text

ULBP2[править]

  • NKG2D ligands mediate immunosurveillance of senescent cells. / 02.2016 / PubMed / Full text
  • Type 1 interferons contribute to the clearance of senescent cell. / 2015 / PubMed / Full text

UMOD[править]

  • The relationships between markers of tubular injury and intrarenal haemodynamic function in adults with and without type 1 diabetes: Results from the Canadian Study of Longevity in Type 1 Diabetes. / 03.2019 / PubMed / Full text
  • A roadmap for the genetic analysis of renal aging. / 10.2015 / PubMed / Full text

UNG[править]

  • UNG-1 and APN-1 are the major enzymes to efficiently repair 5-hydroxymethyluracil DNA lesions in C. elegans. / 01.05.2018 / PubMed / Full text
  • Caenorhabditis elegans EXO-3 contributes to longevity and reproduction: differential roles in somatic cells and germ cells. / 02.2015 / PubMed / Full text

USP10[править]

  • The GID ubiquitin ligase complex is a regulator of AMPK activity and organismal lifespan. / 09.2020 / PubMed / Full text
  • Long noncoding RNA H19 mediates melatonin inhibition of premature senescence of c-kit( ) cardiac progenitor cells by promoting miR-675. / 08.2016 / PubMed / Full text

USP14[править]

  • Low expression of aging-related [[NRXN3]] is associated with Alzheimer disease: A systematic review and meta-analysis. / 07.2018 / PubMed / Full text
  • Compensatory increase in USP14 activity accompanies impaired proteasomal proteolysis during aging. / 01-02.2013 / PubMed / Full text

VASH1[править]

  • Double-Face of Vasohibin-1 for the Maintenance of Vascular Homeostasis and Healthy Longevity. / 01.06.2018 / PubMed / Full text
  • Age-associated downregulation of vasohibin-1 in vascular endothelial cells. / 10.2016 / PubMed / Full text

VASP[править]

  • Reversal of Aging-Induced Increases in Aortic Stiffness by Targeting Cytoskeletal Protein-Protein Interfaces. / 18.07.2018 / PubMed / Full text
  • In vitro anti-platelet potency of ticagrelor in blood samples from infants and children. / 09.2015 / PubMed / Full text

VCAN[править]

  • Deletion of miR-126a Promotes Hepatic Aging and Inflammation in a Mouse Model of Cholestasis. / 07.06.2019 / PubMed / Full text
  • Exosomes from hyperglycemia-stimulated vascular endothelial cells contain versican that regulate calcification/senescence in vascular smooth muscle cells. / 2019 / PubMed / Full text

VGF[править]

  • Voluntary Running Triggers VGF-Mediated Oligodendrogenesis to Prolong the Lifespan of Snf2h-Null Ataxic Mice. / 11.10.2016 / PubMed / Full text
  • Age-related obesity and type 2 diabetes dysregulate neuronal associated genes and proteins in humans. / 06.10.2015 / PubMed / Full text

VGLL3[править]

  • The vgll3 Locus Controls Age at Maturity in Wild and Domesticated Atlantic Salmon (Salmo salar L.) Males. / 11.2015 / PubMed / Full text
  • Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon. / 17.12.2015 / PubMed / Full text

VGLL4[править]

  • The lncRNA MEG3/miR-16-5p/VGLL4 regulatory axis is involved in etoposide-induced senescence of tumor cells. / 03.11.2020 / PubMed / Full text
  • Acetylation of VGLL4 Regulates Hippo-YAP Signaling and Postnatal Cardiac Growth. / 21.11.2016 / PubMed / Full text

VIPR2[править]

  • Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
  • Chromatin remodeling of human subtelomeres and TERRA promoters upon cellular senescence: commonalities and differences between chromosomes. / 05.2013 / PubMed / Full text

VPS29[править]

  • Combined Proteomic and Metabolomic Profiling of the [i]Arabidopsis thaliana vps29[/i] Mutant Reveals Pleiotropic Functions of the Retromer in Seed Development. / 16.01.2019 / PubMed / Full text
  • The retromer complex system in a transgenic mouse model of AD: influence of age. / 04.2017 / PubMed / Full text

VPS35[править]

  • Combined Proteomic and Metabolomic Profiling of the [i]Arabidopsis thaliana vps29[/i] Mutant Reveals Pleiotropic Functions of the Retromer in Seed Development. / 16.01.2019 / PubMed / Full text
  • Vps35 haploinsufficiency results in degenerative-like deficit in mouse retinal ganglion neurons and impairment of optic nerve injury-induced gliosis. / 11.02.2014 / PubMed / Full text

WFIKKN1[править]

  • Relationship of Circulating Growth and Differentiation Factors 8 and 11 and Their Antagonists as Measured Using Liquid Chromatography-Tandem Mass Spectrometry With Age and Skeletal Muscle Strength in Healthy Adults. / 01.01.2019 / PubMed / Full text
  • A targeted proteomic assay for the measurement of plasma proteoforms related to human aging phenotypes. / 08.2017 / PubMed / Full text

WFIKKN2[править]

  • Relationship of Circulating Growth and Differentiation Factors 8 and 11 and Their Antagonists as Measured Using Liquid Chromatography-Tandem Mass Spectrometry With Age and Skeletal Muscle Strength in Healthy Adults. / 01.01.2019 / PubMed / Full text
  • A targeted proteomic assay for the measurement of plasma proteoforms related to human aging phenotypes. / 08.2017 / PubMed / Full text

WFS1[править]

  • Knockdown of wfs1, a fly homolog of Wolfram syndrome 1, in the nervous system increases susceptibility to age- and stress-induced neuronal dysfunction and degeneration in Drosophila. / 01.2018 / PubMed / Full text
  • A nonsynonymous mutation in the WFS1 gene in a Finnish family with age-related hearing impairment. / 11.2017 / PubMed / Full text

WIPI2[править]

  • Neuronal autophagy declines substantially with age and is rescued by overexpression of WIPI2. / 02.2020 / PubMed / Full text
  • The ATG5-binding and coiled coil domains of ATG16L1 maintain autophagy and tissue homeostasis in mice independently of the WD domain required for LC3-associated phagocytosis. / 04.2019 / PubMed / Full text

WWP1[править]

  • The ubiquitin ligase WWP1 contributes to shifts in matrix proteolytic profiles and a myocardial aging phenotype with diastolic heart. / 01.10.2020 / PubMed / Full text
  • Overexpression of miR-584-5p inhibits proliferation and induces apoptosis by targeting WW domain-containing E3 ubiquitin protein ligase 1 in gastric cancer. / 21.04.2017 / PubMed / Full text

YY1[править]

  • Distinct Age-Related Epigenetic Signatures in CD4 and CD8 T Cells. / 2020 / PubMed / Full text
  • Low mitochondrial DNA content associates with familial longevity: the Leiden Longevity Study. / 06.2014 / PubMed / Full text

ZC3H12A[править]

  • Keratinocyte-specific ablation of Mcpip1 impairs skin integrity and promotes local and systemic inflammation. / 12.2019 / PubMed / Full text
  • Prediction and characterization of human ageing-related proteins by using machine learning. / 06.03.2018 / PubMed / Full text

ZEB2[править]

  • miR-200b regulates cellular senescence and inflammatory responses by targeting ZEB2 in pulmonary emphysema. / 12.2020 / PubMed / Full text
  • MicroRNA-145 induces the senescence of activated hepatic stellate cells through the activation of p53 pathway by ZEB2. / 05.2019 / PubMed / Full text

ZFX[править]

  • ZFX knockdown inhibits growth and migration of non-small cell lung carcinoma cell line H1299. / 2013 / PubMed / Full text
  • ZFX regulates glioma cell proliferation and survival in vitro and in vivo. / 03.2013 / PubMed / Full text

ZNF521[править]

  • Reduced subcutaneous adipogenesis in human hypertrophic obesity is linked to senescent precursor cells. / 21.06.2019 / PubMed / Full text
  • Zinc finger factor 521 enhances adipogenic differentiation of mouse multipotent cells and human bone marrow mesenchymal stem cells. / 20.06.2015 / PubMed / Full text

ZP2[править]

  • Coenzyme Q10 ameliorates the quality of postovulatory aged oocytes by suppressing DNA damage and apoptosis. / 01.11.2019 / PubMed / Full text
  • Melatonin improves the fertilization ability of post-ovulatory aged mouse oocytes by stabilizing ovastacin and Juno to promote sperm binding and fusion. / 01.03.2017 / PubMed / Full text

ZSCAN10[править]

  • RNA Exosome Complex-Mediated Control of Redox Status in Pluripotent Stem Cells. / 10.10.2017 / PubMed / Full text
  • ZSCAN10 expression corrects the genomic instability of iPSCs from aged donors. / 09.2017 / PubMed / Full text

ABCC1[править]

  • Dual pathways mediate β-amyloid stimulated glutathione release from astrocytes. / 12.2015 / PubMed / Full text

ABCC3[править]

  • Proteomic Analysis of the Developmental Trajectory of Human Hepatic Membrane Transporter Proteins in the First Three Months of Life. / 07.2016 / PubMed / Full text

ABCC8[править]

  • A mouse model of human hyperinsulinism produced by the E1506K mutation in the sulphonylurea receptor SUR1. / 11.2013 / PubMed / Full text

ABCE1[править]

  • Widespread Accumulation of Ribosome-Associated Isolated 3' UTRs in Neuronal Cell Populations of the Aging Brain. / 27.11.2018 / PubMed / Full text

ABHD12[править]

  • Elevated Levels of Arachidonic Acid-Derived Lipids Including Prostaglandins and Endocannabinoids Are Present Throughout ABHD12 Knockout Brains: Novel Insights Into the Neurodegenerative Phenotype. / 2019 / PubMed / Full text

ABI3BP[править]

  • Long noncoding RNA MALAT1 potentiates growth and inhibits senescence by antagonizing ABI3BP in gallbladder cancer cells. / 07.06.2019 / PubMed / Full text

ABL1[править]

  • European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. / 04.2020 / PubMed / Full text

ABLIM3[править]

  • Dentate granule cell recruitment of feedforward inhibition governs engram maintenance and remote memory generalization. / 05.2018 / PubMed / Full text

ABRA[править]

  • LMX1B is essential for the maintenance of differentiated podocytes in adult kidneys. / 11.2013 / PubMed / Full text

ACAA2[править]

  • p46Shc Inhibits Thiolase and Lipid Oxidation in Mitochondria. / 10.06.2016 / PubMed / Full text

ACAD9[править]

  • Identification of a novel mitochondrial complex I assembly factor ACDH-12 in Caenorhabditis elegans. / 05.2019 / PubMed / Full text

ACADM[править]

  • High fat diet aggravates atrial and ventricular remodeling of hypertensive heart disease in aging rats. / 07.2018 / PubMed / Full text

ACER2[править]

  • Alkaline ceramidase family: The first two decades. / 01.12.2020 / PubMed / Full text

ACKR2[править]

  • Atypical chemokine receptor ACKR2 mediates chemokine scavenging by primary human trophoblasts and can regulate fetal growth, placental structure, and neonatal mortality in mice. / 15.11.2014 / PubMed / Full text

ACMSD[править]

  • De novo NAD synthesis enhances mitochondrial function and improves health. / 11.2018 / PubMed / Full text

ACO2[править]

  • Thioredoxin protects mitochondrial structure, function and biogenesis in myocardial ischemia-reperfusion via redox-dependent activation of AKT-CREB- PGC1α pathway in aged mice. / 13.10.2020 / PubMed / Full text

ACP2[править]

  • Association of levels of fasting glucose and insulin with rare variants at the chromosome 11p11.2-MADD locus: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text

ACSL1[править]

  • The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats. / 09.2020 / PubMed / Full text

ACSL5[править]

  • Ageing sensitized by iPLA β deficiency induces liver fibrosis and intestinal atrophy involving suppression of homeostatic genes and alteration of intestinal lipids and bile acids. / 12.2017 / PubMed / Full text

ACTA2[править]

  • Tissue Taurine Depletion Induces Profibrotic Pattern of Gene Expression and Causes Aging-Related Cardiac Fibrosis in Heart in Mice. / 2018 / PubMed / Full text

ACTL7B[править]

  • Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. / 12.2017 / PubMed / Full text

ACTR3B[править]

  • Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex. / 2018 / PubMed / Full text

ADA2[править]

  • Manganese(II) Chloride Alters Nucleotide and Nucleoside Catabolism in Zebrafish (Danio rerio) Adult Brain. / 05.2018 / PubMed / Full text

ADAM19[править]

  • ADAM19 and HTR4 variants and pulmonary function: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text

ADAM22[править]

  • Expression of NgR1-antagonizing proteins decreases with aging and cognitive decline in rat hippocampus. / 05.2013 / PubMed / Full text

ADAM9[править]

  • [The effect of PNS on the content and activity of alpha-secretase in the brains of SAMP8 mice with alzheimer's disease]. / 11.2012 / PubMed

ADAMTS1[править]

ADAMTS10[править]

  • Influence of Age on Ocular Biomechanical Properties in a Canine Glaucoma Model with ADAMTS10 Mutation. / 2016 / PubMed / Full text

ADAMTS3[править]

  • Explorative results from multistep screening for potential genetic risk loci of Alzheimer's disease in the longitudinal VITA study cohort. / 01.2018 / PubMed / Full text

ADAMTS5[править]

  • Endoplasmic reticulum stress participates in the progress of senescence and apoptosis of osteoarthritis chondrocytes. / 16.09.2017 / PubMed / Full text

ADAMTS7[править]

  • Identification of cardiovascular health gene variants related to longevity in a Chinese population. / 07.09.2020 / PubMed / Full text

ADAR[править]

  • Enoxacin extends lifespan of C. elegans by inhibiting miR-34-5p and promoting mitohormesis. / 09.2018 / PubMed / Full text

ADCK1[править]

  • Functional analysis of Aarf domain-containing kinase 1 in Drosophila melanogaster. / 09.2019 / PubMed / Full text

ADD2[править]

  • SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text

ADK[править]

  • Deletion of pancreatic β-cell adenosine kinase improves glucose homeostasis in young mice and ameliorates streptozotocin-induced hyperglycaemia. / 07.2019 / PubMed / Full text

ADNP2[править]

  • ADNP differentially interact with genes/proteins in correlation with aging: a novel marker for muscle aging. / 06.2019 / PubMed / Full text

ADORA2B[править]

  • Adenosine A2B receptor: A pathogenic factor and a therapeutic target for sensorineural hearing loss. / 12.2020 / PubMed / Full text

ADRA2A[править]

  • α2A-Adrenergic Receptor Inhibits the Progression of Cervical Cancer Through Blocking PI3K/AKT/mTOR Pathway. / 2020 / PubMed / Full text

ADRM1[править]

  • Androgen receptor polyglutamine expansion drives age-dependent quality control defects and muscle dysfunction. / 01.08.2018 / PubMed / Full text

AGAP2[править]

  • Exosomes derived from microRNA-199a-overexpressing mesenchymal stem cells inhibit glioma progression by down-regulating AGAP2. / 05.08.2019 / PubMed / Full text

AGO1[править]

  • A transcriptome-wide study on the microRNA- and the Argonaute 1-enriched small RNA-mediated regulatory networks involved in plant leaf senescence. / 03.2016 / PubMed / Full text

AGRP[править]

  • Influence of Aging and Gender Differences on Feeding Behavior and Ghrelin-Related Factors during Social Isolation in Mice. / 2015 / PubMed / Full text

AHNAK[править]

  • A novel atlas of gene expression in human skeletal muscle reveals molecular changes associated with aging. / 2015 / PubMed / Full text

AHSP[править]

  • Relationship between Sensory Perception and Frailty in a Community-Dwelling Elderly Population. / 2017 / PubMed / Full text

AIF1[править]

  • Sirtuin 1-Chromatin-Binding Dynamics Points to a Common Mechanism Regulating Inflammatory Targets in SIV Infection and in the Aging Brain. / 06.2018 / PubMed / Full text

AK1[править]

  • Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. / 2019 / PubMed / Full text

AKAP11[править]

  • Genetic Burden Analyses of Phenotypes Relevant to Aging in the Berlin Aging Study II (BASE-II). / 2016 / PubMed / Full text

AKAP12[править]

  • A-Kinase Anchor Protein 12 Is Required for Oligodendrocyte Differentiation in Adult White Matter. / 05.2018 / PubMed / Full text

AKAP17A[править]

  • The transcript expression levels of HNRNPM, HNRNPA0 and AKAP17A splicing factors may be predictively associated with ageing phenotypes in human peripheral blood. / 10.2019 / PubMed / Full text

AKIP1[править]

  • Expression of potato RNA-binding proteins StUBA2a/b and StUBA2c induces hypersensitive-like cell death and early leaf senescence in Arabidopsis. / 07.2015 / PubMed / Full text

AKR1B1[править]

  • Bioinformatics analysis of proteomics profiles in senescent human primary proximal tubule epithelial cells. / 01.04.2016 / PubMed / Full text

AKR1C2[править]

  • Identification of a gene signature of a pre-transformation process by senescence evasion in normal human epidermal keratinocytes. / 14.06.2014 / PubMed / Full text

AKR1C3[править]

  • Identification of a gene signature of a pre-transformation process by senescence evasion in normal human epidermal keratinocytes. / 14.06.2014 / PubMed / Full text

AKR7A3[править]

  • The aged testis. A good model to find proteins involved in age-related changes of testis by proteomic analysis. / 01-02.2014 / PubMed

ALAD[править]

  • Lead-Related Genetic Loci, Cumulative Lead Exposure and Incident Coronary Heart Disease: The Normative Aging Study. / 2016 / PubMed / Full text

ALAS1[править]

  • Heterozygous disruption of ALAS1 in mice causes an accelerated age-dependent reduction in free heme, but not total heme, in skeletal muscle and liver. / 08.12.2020 / PubMed / Full text

ALAS2[править]

  • Gene transcripts associated with muscle strength: a CHARGE meta-analysis of 7,781 persons. / 01.2016 / PubMed / Full text

ALCAM[править]

  • Zebrafish brain RNA sequencing reveals that cell adhesion molecules are critical in brain aging. / 10.2020 / PubMed / Full text

ALDH1L1[править]

  • Review: Astrocytes in Alzheimer's disease and other age-associated dementias: a supporting player with a central role. / 06.2017 / PubMed / Full text

ALDH3A1[править]

  • Hallmarks of the cancer cell of origin: Comparisons with "energetic" cancer stem cells (e-CSCs). / 13.02.2019 / PubMed / Full text

ALDH4A1[править]

  • An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. / 12.2019 / PubMed / Full text

ALKBH1[править]

  • ALKB-8, a 2-Oxoglutarate-Dependent Dioxygenase and S-Adenosine Methionine-Dependent Methyltransferase Modulates Metabolic Events Linked to Lysosome-Related Organelles and Aging in C. elegans. / 2018 / PubMed

ALKBH2[править]

  • ALKB-8, a 2-Oxoglutarate-Dependent Dioxygenase and S-Adenosine Methionine-Dependent Methyltransferase Modulates Metabolic Events Linked to Lysosome-Related Organelles and Aging in C. elegans. / 2018 / PubMed

ALOX12[править]

  • Arachidonate 12-lipoxygenase and 12-hydroxyeicosatetraenoic acid contribute to stromal aging-induced progression of pancreatic cancer. / 15.05.2020 / PubMed / Full text

ALOX15B[править]

  • Monocytes present age-related changes in phospholipid concentration and decreased energy metabolism. / 04.2020 / PubMed / Full text

ALPL[править]

  • Physiological blood-brain transport is impaired with age by a shift in transcytosis. / 07.2020 / PubMed / Full text

ALS2[править]

  • Age-dependent deterioration of locomotion in Drosophila melanogaster deficient in the homologue of amyotrophic lateral sclerosis 2. / 06.2014 / PubMed / Full text

ALX4[править]

  • Age-associated genes in human mammary gland drive human breast cancer progression. / 15.06.2020 / PubMed / Full text

AMBRA1[править]

  • MiR-23a-depressed autophagy is a participant in PUVA- and UVB-induced premature senescence. / 21.06.2016 / PubMed / Full text

AMFR[править]

  • Mice heterozygous for the Cdh23/Ahl1 mutation show age-related deficits in auditory temporal processing. / 09.2019 / PubMed / Full text

ANGPT1[править]

  • Altered microRNA expression in bovine skeletal muscle with age. / 06.2015 / PubMed / Full text

ANGPT2[править]

  • Systemic analysis of gene expression profiles in porcine granulosa cells during aging. / 14.11.2017 / PubMed / Full text

ANGPTL4[править]

  • Involvement of ERK1/2 activation in the gene expression of senescence-associated secretory factors in human hepatic stellate cells. / 05.2019 / PubMed / Full text

ANGPTL8[править]

  • Angiopoietin-like protein 8 (ANGPTL8)/betatrophin overexpression does not increase beta cell proliferation in mice. / 07.2015 / PubMed / Full text

ANK2[править]

  • SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text

ANKS1B[править]

  • Explorative results from multistep screening for potential genetic risk loci of Alzheimer's disease in the longitudinal VITA study cohort. / 01.2018 / PubMed / Full text

ANPEP[править]

  • Aminopeptidase N expression in the endometrium could affect endometrial receptivity. / 25.06.2019 / PubMed / Full text

ANXA1[править]

  • Assessment of Human Skin Gene Expression by Different Blends of Plant Extracts with Implications to Periorbital Skin Aging. / 26.10.2018 / PubMed / Full text

ANXA2[править]

  • Quantitative proteomic profiling of tumor cell response to telomere dysfunction using isotope-coded protein labeling (ICPL) reveals interaction network of candidate senescence markers. / 08.10.2013 / PubMed / Full text

AOC1[править]

  • Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence. / 12.09.2013 / PubMed / Full text

AOX1[править]

  • N1-Methylnicotinamide: An Anti-Ovarian Aging Hormetin? / 09.2020 / PubMed / Full text

APAF1[править]

  • Sperm-associated antigen 9 (SPAG9) promotes the survival and tumor growth of triple-negative breast cancer cells. / 10.2016 / PubMed / Full text

APBB2[править]

  • GSK3β Interactions with Amyloid Genes: An Autopsy Verification and Extension. / 10.2015 / PubMed / Full text

APLN[править]

  • Relationship of age and body mass index to the expression of obesity and osteoarthritis-related genes in human meniscus. / 09.2013 / PubMed / Full text

APLNR[править]

  • Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin's glucose-lowering effects. / 13.09.2017 / PubMed / Full text

APOA4[править]

  • No Association between Variation in Longevity Candidate Genes and Aging-related Phenotypes in Oldest-old Danes. / 06.2016 / PubMed / Full text

APOBEC1[править]

  • Loss of APOBEC1 RNA-editing function in microglia exacerbates age-related CNS pathophysiology. / 12.12.2017 / PubMed / Full text

APOC1[править]

  • Genetics of Human Longevity From Incomplete Data: New Findings From the Long Life Family Study. / 08.10.2018 / PubMed / Full text

APOC2[править]

  • Apoc2 loss-of-function zebrafish mutant as a genetic model of hyperlipidemia. / 01.08.2015 / PubMed / Full text

APOH[править]

  • Genome-wide significant results identified for plasma apolipoprotein H levels in middle-aged and older adults. / 31.03.2016 / PubMed / Full text

APPL1[править]

  • Insulin and adipokine signaling and their cross-regulation in postmortem human brain. / 12.2019 / PubMed / Full text

AQP9[править]

  • Seasonal and Ageing-Depending Changes of Aquaporins 1 and 9 Expression in the Genital Tract of Buffalo Bulls (Bubalus bubalis). / 08.2016 / PubMed / Full text

AQR[править]

  • Synergism between soluble guanylate cyclase signaling and neuropeptides extends lifespan in the nematode Caenorhabditis elegans. / 04.2017 / PubMed / Full text

ARG1[править]

  • Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text

ARG2[править]

  • Arginase-2, a miR-1299 target, enhances pigmentation in melasma by reducing melanosome degradation via senescence-induced autophagy inhibition. / 01.2017 / PubMed / Full text

ARHGAP1[править]

  • Targeted sequencing of genome wide significant loci associated with bone mineral density (BMD) reveals significant novel and rare variants: the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) targeted sequencing study. / 01.12.2016 / PubMed / Full text

ARID5A[править]

  • Differentially regulated gene expression in quiescence versus senescence and identification of ARID5A as a quiescence associated marker. / 05.2018 / PubMed / Full text

ARID5B[править]

  • Monocytes present age-related changes in phospholipid concentration and decreased energy metabolism. / 04.2020 / PubMed / Full text

ARIH2[править]

  • A novel feed-forward loop between ARIH2 E3-ligase and PABPN1 regulates aging-associated muscle degeneration. / 04.2014 / PubMed / Full text

ARL13B[править]

  • ARL13B, a Joubert Syndrome-Associated Protein, Is Critical for Retinogenesis and Elaboration of Mouse Photoreceptor Outer Segments. / 20.02.2019 / PubMed / Full text

ARL4C[править]

  • LMX1B is essential for the maintenance of differentiated podocytes in adult kidneys. / 11.2013 / PubMed / Full text

ARNTL2[править]

  • Is the aging human ovary still ticking?: Expression of clock-genes in luteinized granulosa cells of young and older women. / 21.11.2018 / PubMed / Full text

ARRB2[править]

  • Age-dependent effects of dopamine receptor inactivation on cocaine-induced behaviors in male rats: Evidence of dorsal striatal D2 receptor supersensitivity. / 12.2019 / PubMed / Full text

ARSA[править]

  • Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of CSF1R and NOTCH3. / 06.2018 / PubMed / Full text

ASB3[править]

  • Longitudinal analysis of bronchodilator response in asthmatics and effect modification of age-related trends by genotype. / 02.2019 / PubMed / Full text

ASB7[править]

  • ASB7 Is a Novel Regulator of Cytoskeletal Organization During Oocyte Maturation. / 2020 / PubMed / Full text

ASF1A[править]

  • Meta-analysis on blood transcriptomic studies identifies consistently coexpressed protein-protein interaction modules as robust markers of human aging. / 04.2014 / PubMed / Full text

ASIC2[править]

  • Acidotoxicity and acid-sensing ion channels contribute to motoneuron degeneration. / 04.2013 / PubMed / Full text

ASIP[править]

  • Efficacy of an agonist of α-MSH, the palmitoyl tetrapeptide-20, in hair pigmentation. / 10.2018 / PubMed / Full text

ASMT[править]

  • The influence of ageing on the extrapineal melatonin synthetic pathway. / 09.2018 / PubMed / Full text

ASPN[править]

  • The association between higher social support and lower depressive symptoms among aging services clients is attenuated at higher levels of functional impairment. / 10.2015 / PubMed / Full text

ATG10[править]

  • Genetic associations with age of menopause in familial longevity. / 10.2019 / PubMed / Full text

ATG13[править]

  • Rapamycin reverses age-related increases in mitochondrial ROS production at complex I, oxidative stress, accumulation of mtDNA fragments inside nuclear DNA, and lipofuscin level, and increases autophagy, in the liver of middle-aged mice. / 10.2016 / PubMed / Full text

ATG16L1[править]

  • The ATG5-binding and coiled coil domains of ATG16L1 maintain autophagy and tissue homeostasis in mice independently of the WD domain required for LC3-associated phagocytosis. / 04.2019 / PubMed / Full text

ATG16L2[править]

  • Epigallocatechin-3-gallate increases autophagy signaling in resting and unloaded plantaris muscles but selectively suppresses autophagy protein abundance in reloaded muscles of aged rats. / 06.2017 / PubMed / Full text

ATG4B[править]

  • Impaired autophagic activity and ATG4B deficiency are associated with increased endoplasmic reticulum stress-induced lung injury. / 27.08.2018 / PubMed / Full text

ATG4D[править]

  • Reduction of Aging-Induced Oxidative Stress and Activation of Autophagy by Bilberry Anthocyanin Supplementation via the AMPK-mTOR Signaling Pathway in Aged Female Rats. / 17.07.2019 / PubMed / Full text

ATMIN[править]

ATP13A2[править]

  • Atp13a2-deficient mice exhibit neuronal ceroid lipofuscinosis, limited α-synuclein accumulation and age-dependent sensorimotor deficits. / 15.05.2013 / PubMed / Full text

ATP1A3[править]

  • The Influence of Na( ), K( )-ATPase on Glutamate Signaling in Neurodegenerative Diseases and Senescence. / 2016 / PubMed / Full text

ATP2B1[править]

  • Reduced expression of PMCA1 is associated with increased blood pressure with age which is preceded by remodelling of resistance arteries. / 10.2017 / PubMed / Full text

ATP6V0C[править]

  • A pH probe inhibits senescence in mesenchymal stem cells. / 07.12.2018 / PubMed / Full text

ATP6V1G1[править]

  • Chemical screening identifies ATM as a target for alleviating senescence. / 06.2017 / PubMed / Full text

ATP7B[править]

  • [Copper intoxication decreases lifespan and induces neurologic alterations in Drosophila melanogaster]. / 03.2013 / PubMed

ATXN1[править]

  • Integrative Analysis of Hippocampus Gene Expression Profiles Identifies Network Alterations in Aging and Alzheimer's Disease. / 2018 / PubMed / Full text

AURKB[править]

  • Aurora kinase mRNA expression is reduced with increasing gestational age and in severe early onset fetal growth restriction. / 06.2020 / PubMed / Full text

AURKC[править]

  • Aurora kinase mRNA expression is reduced with increasing gestational age and in severe early onset fetal growth restriction. / 06.2020 / PubMed / Full text

AVPR1A[править]

  • Introduction of the human AVPR1A gene substantially alters brain receptor expression patterns and enhances aspects of social behavior in transgenic mice. / 08.2014 / PubMed / Full text

BAALC[править]

  • Relation of BAALC and ERG Gene Expression with Overall Survival in Acute Myeloid Leukemia Cases. / 2015 / PubMed / Full text

BAAT[править]

  • Prevalence and associated metabolic factors of fatty liver disease in the elderly. / 08.2013 / PubMed / Full text

BACE2[править]

BAG2[править]

BAG5[править]

BAP1[править]

  • The BAP1/ASXL2 Histone H2A Deubiquitinase Complex Regulates Cell Proliferation and Is Disrupted in Cancer. / 27.11.2015 / PubMed / Full text

BAZ1A[править]

  • Chromatin remodeling factor BAZ1A regulates cellular senescence in both cancer and normal cells. / 15.07.2019 / PubMed / Full text

BAZ2B[править]

  • Two conserved epigenetic regulators prevent healthy ageing. / 03.2020 / PubMed / Full text

BBC3[править]

  • The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. / 29.09.2020 / PubMed / Full text

BBS5[править]

  • Progressive Characterization of Visual Phenotype in Bardet-Biedl Syndrome Mutant Mice. / 01.03.2019 / PubMed / Full text

BCAS1[править]

  • Hallmarks of the cancer cell of origin: Comparisons with "energetic" cancer stem cells (e-CSCs). / 13.02.2019 / PubMed / Full text

BCL2L11[править]

  • miRNA expression profiling uncovers a role of miR-302b-3p in regulating skin fibroblasts senescence. / 01.2020 / PubMed / Full text

BCORL1[править]

  • Age-related mutations associated with clonal hematopoietic expansion and malignancies. / 12.2014 / PubMed / Full text

BFSP1[править]

  • The oxidized thiol proteome in aging and cataractous mouse and human lens revealed by ICAT labeling. / 04.2017 / PubMed / Full text

BHLHE40[править]

  • Thyroid hormone induces cellular senescence in prostate cancer cells through induction of DEC1. / 07.2020 / PubMed / Full text

BICD1[править]

  • Kidney Allograft Telomere Length Is Not Associated with Sex, Recipient Comorbid Conditions, Post-Transplant Infections, or CMV Reactivation. / 28.06.2016 / PubMed / Full text

BIRC5[править]

  • Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text

BLVRA[править]

  • Attenuation of epigenetic regulator SMARCA4 and ERK-ETS signaling suppresses aging-related dopaminergic degeneration. / 09.2020 / PubMed / Full text

BMP5[править]

BNC1[править]

  • Basonuclin 1 deficiency causes testicular premature aging: BNC1 cooperates with TAF7L to regulate spermatogenesis. / 22.01.2020 / PubMed / Full text

BNC2[править]

  • Genetic variants associated with skin aging in the Chinese Han population. / 04.2017 / PubMed / Full text

BOC[править]

  • Protein Requirements of Elderly Chinese Adults Are Higher than Current Recommendations. / 01.05.2020 / PubMed / Full text

BOK[править]

  • Comparative proteomic analysis of primordial follicles from ovaries of immature and aged rats. / 2015 / PubMed / Full text

BRD3[править]

  • Neuroprotective effects of targeting BET proteins for degradation with dBET1 in aged mice subjected to ischemic stroke. / 07.2019 / PubMed / Full text

BRD7[править]

  • XIAP-associating factor 1, a transcriptional target of BRD7, contributes to endothelial cell senescence. / 02.02.2016 / PubMed / Full text

BRINP1[править]

  • Absence of BRINP1 in mice causes increase of hippocampal neurogenesis and behavioral alterations relevant to human psychiatric disorders. / 14.02.2014 / PubMed / Full text

BSG[править]

  • Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients. / 03.09.2019 / PubMed / Full text

BTG3[править]

  • Investigating the specific core genetic-and-epigenetic networks of cellular mechanisms involved in human aging in peripheral blood mononuclear cells. / 23.02.2016 / PubMed / Full text

BTG4[править]

  • Age-related decrease of IF5/BTG4 in oral and respiratory cavities in mice. / 2015 / PubMed / Full text

BUB1[править]

  • Links between nucleolar activity, rDNA stability, aneuploidy and chronological aging in the yeast Saccharomyces cerevisiae. / 06.2014 / PubMed / Full text

C1QA[править]

  • APOE Stabilization by Exercise Prevents Aging Neurovascular Dysfunction and Complement Induction. / 10.2015 / PubMed / Full text

C2CD2[править]

  • Genetic variants associated with physical performance and anthropometry in old age: a genome-wide association study in the ilSIRENTE cohort. / 20.11.2017 / PubMed / Full text

C4A[править]

  • Investigation of complement component C4 copy number variation in human longevity. / 2014 / PubMed / Full text

C4B[править]

  • Investigation of complement component C4 copy number variation in human longevity. / 2014 / PubMed / Full text

C8orf48[править]

  • Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. / 07.2014 / PubMed / Full text

CA10[править]

  • Genome wide association study of age at menarche in the Japanese population. / 2013 / PubMed / Full text

CABLES1[править]

  • CABLES1 Deficiency Impairs Quiescence and Stress Responses of Hematopoietic Stem Cells in Intrinsic and Extrinsic Manners. / 13.08.2019 / PubMed / Full text

CACNA1B[править]

  • Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. / 10.2019 / PubMed / Full text

CACNA1F[править]

  • Amyloid Precursor-Like Protein 2 deletion-induced retinal synaptopathy related to congenital stationary night blindness: structural, functional and molecular characteristics. / 08.06.2016 / PubMed / Full text

CACNA1S[править]

  • Increased calcium channel in the lamina propria of aging rat. / 31.10.2019 / PubMed / Full text

CACNA2D1[править]

  • Pregabalin can prevent, but not treat, cognitive dysfunction following abdominal surgery in aged rats. / 01.03.2016 / PubMed / Full text

CADM2[править]

  • GWAS of longevity in CHARGE consortium confirms APOE and FOXO3 candidacy. / 01.2015 / PubMed / Full text

CALHM1[править]

  • CALHM1 Deletion in Mice Affects Glossopharyngeal Taste Responses, Food Intake, Body Weight, and Life Span. / 07.2015 / PubMed / Full text

CAMK2A[править]

  • Nodes and biological processes identified on the basis of network analysis in the brain of the senescence accelerated mice as an Alzheimer's disease animal model. / 2013 / PubMed / Full text

CAMKK2[править]

  • The GID ubiquitin ligase complex is a regulator of AMPK activity and organismal lifespan. / 09.2020 / PubMed / Full text

CAMP[править]

  • [Study on effect of astragali radix polysaccharides in improving learning and memory functions in aged rats and its mechanism]. / 06.2014 / PubMed

CAMSAP1[править]

  • Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex. / 2018 / PubMed / Full text

CAP1[править]

  • Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. / 2019 / PubMed / Full text

CAP2[править]

  • Targeting MRTF/SRF in CAP2-dependent dilated cardiomyopathy delays disease onset. / 21.03.2019 / PubMed / Full text

CAPN1[править]

  • Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans. / 28.06.2016 / PubMed / Full text

CAPRIN1[править]

  • Reduced Levels of the Synaptic Functional Regulator FMRP in Dentate Gyrus of the Aging Sprague-Dawley Rat. / 2017 / PubMed / Full text

CARD14[править]

  • Elderly-Onset Generalized Pustular Psoriasis without a Previous History of Psoriasis Vulgaris. / 05-08.2015 / PubMed / Full text

CARMIL1[править]

  • Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. / 05.03.2020 / PubMed / Full text

CASP2[править]

  • Dual role of the caspase enzymes in satellite cells from aged and young subjects. / 12.12.2013 / PubMed / Full text

CASP5[править]

  • Gene expression of inflammasome components in peripheral blood mononuclear cells (PBMC) of vascular patients increases with age. / 2015 / PubMed / Full text

CASP6[править]

  • Dual role of the caspase enzymes in satellite cells from aged and young subjects. / 12.12.2013 / PubMed / Full text

CASP9[править]

  • Dual role of the caspase enzymes in satellite cells from aged and young subjects. / 12.12.2013 / PubMed / Full text

CBR1[править]

  • Age-related changes in hepatic activity and expression of detoxification enzymes in male rats. / 2013 / PubMed / Full text

CBSL[править]

  • Effect of a Community-Based Service Learning Experience in Geriatrics on Internal Medicine Residents and Community Participants. / 09.2017 / PubMed / Full text

CBX1[править]

  • Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text

CBX2[править]

  • Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text

CBX3[править]

  • Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text

CBX5[править]

  • The Ubiquitin-like with PHD and Ring Finger Domains 1 (UHRF1)/DNA Methyltransferase 1 (DNMT1) Axis Is a Primary Regulator of Cell Senescence. / 03.03.2017 / PubMed / Full text

CBX6[править]

  • Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text

CCAR2[править]

  • CCAR-1 is a negative regulator of the heat-shock response in Caenorhabditis elegans. / 10.2018 / PubMed / Full text

CCDC102B[править]

  • Development of a methylation marker set for forensic age estimation using analysis of public methylation data and the Agena Bioscience EpiTYPER system. / 09.2016 / PubMed / Full text

CCDC17[править]

CCDC71L[править]

  • Sequencing of 2 subclinical atherosclerosis candidate regions in 3669 individuals: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text

CCDC85A[править]

  • Genome wide association study of age at menarche in the Japanese population. / 2013 / PubMed / Full text

CCDC88A[править]

  • Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. / 02.2018 / PubMed / Full text

CCL18[править]

  • Age-specific changes in the molecular phenotype of patients with moderate-to-severe atopic dermatitis. / 07.2019 / PubMed / Full text

CCL23[править]

  • Systemic Inflammation and the Increased Risk of Inflamm-Aging and Age-Associated Diseases in People Living With HIV on Long Term Suppressive Antiretroviral Therapy. / 2019 / PubMed / Full text

CCL25[править]

  • Age-related chemokine alterations affect IgA secretion and gut immunity in female mice. / 10.2020 / PubMed / Full text

CCL26[править]

  • Dendritic cells from aged subjects contribute to chronic airway inflammation by activating bronchial epithelial cells under steady state. / 11.2014 / PubMed / Full text

CCL28[править]

  • Age-related chemokine alterations affect IgA secretion and gut immunity in female mice. / 10.2020 / PubMed / Full text

CCL8[править]

  • Human Monocyte Subsets Are Transcriptionally and Functionally Altered in Aging in Response to Pattern Recognition Receptor Agonists. / 15.08.2017 / PubMed / Full text

CCM2[править]

  • Vascular permeability in cerebral cavernous malformations. / 10.2015 / PubMed / Full text

CCN4[править]

  • CCN proteins as potential actionable targets in scleroderma. / 01.2019 / PubMed / Full text

CCNA1[править]

  • Age-dependent human β cell proliferation induced by glucagon-like peptide 1 and calcineurin signaling. / 02.10.2017 / PubMed / Full text

CCNB2[править]

  • Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text

CCND2[править]

  • Oxidative stress-induced miRNAs modulate AKT signaling and promote cellular senescence in uterine leiomyoma. / 10.2018 / PubMed / Full text

CCND3[править]

  • The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. / 29.07.2020 / PubMed / Full text

CCNE1[править]

  • Hepatoprotective effects of hydroxysafflor yellow A in D-galactose-treated aging mice. / 15.08.2020 / PubMed / Full text

CCNE2[править]

  • Circular RNA CircCCNB1 sponges micro RNA-449a to inhibit cellular senescence by targeting CCNE2. / 25.11.2019 / PubMed / Full text

CCNI[править]

  • Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. / 15.08.2013 / PubMed / Full text

CCNI2[править]

  • Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. / 15.08.2013 / PubMed / Full text

CCR1[править]

  • Myocardial Infarction Superimposed on Aging: MMP-9 Deletion Promotes M2 Macrophage Polarization. / 04.2016 / PubMed / Full text

CCR10[править]

  • Cardiac aging is initiated by matrix metalloproteinase-9-mediated endothelial dysfunction. / 15.05.2014 / PubMed / Full text

CCR9[править]

  • Attenuation of migration properties of CD4 T cells from aged mice correlates with decrease in chemokine receptor expression, response to retinoic acid, and RALDH expression compared to young mice. / 2014 / PubMed / Full text

CCT8[править]

  • Somatic increase of CCT8 mimics proteostasis of human pluripotent stem cells and extends C. elegans lifespan. / 28.11.2016 / PubMed / Full text

CD207[править]

  • Neurogenic factor-induced Langerhans cell activation in diabetic mice with mechanical allodynia. / 14.05.2013 / PubMed / Full text

CD226[править]

  • T-cell Immunoglobulin and ITIM Domain Contributes to CD8 T-cell Immunosenescence. / 04.2018 / PubMed / Full text

CD244[править]

  • Association of Epigenetic Age and p16INK4a With Markers of T-Cell Composition in a Healthy Cohort. / 13.11.2020 / PubMed / Full text

CD3G[править]

  • Phenotypic characteristics of aged CD4 CD28 T lymphocytes are determined by changes in the whole-genome DNA methylation pattern. / 04.2017 / PubMed / Full text

CD48[править]

  • Genetic overexpression of COMP-Ang1 impairs BM microenvironment and induces senescence of BM HSCs. / 15.05.2018 / PubMed / Full text

CD55[править]

  • Loss of complement regulatory proteins on uninfected erythrocytes in vivax and falciparum malaria anemia. / 15.11.2018 / PubMed / Full text

CD59[править]

  • Red Blood Cell Homeostasis and Altered Vesicle Formation in Patients With Paroxysmal Nocturnal Hemoglobinuria. / 2019 / PubMed / Full text

CD6[править]

  • Epigenetic age predictions based on buccal swabs are more precise in combination with cell type-specific DNA methylation signatures. / 05.2016 / PubMed / Full text

CD72[править]

  • Crucial Role of Increased Arid3a at the Pre-B and Immature B Cell Stages for B1a Cell Generation. / 2019 / PubMed / Full text

CD82[править]

  • Cell-surface phenotyping identifies CD36 and CD97 as novel markers of fibroblast quiescence in lung fibrosis. / 01.11.2018 / PubMed / Full text

CD83[править]

  • Human mesothelioma induces defects in dendritic cell numbers and antigen-processing function which predict survival outcomes. / 02.2016 / PubMed / Full text

CD8A[править]

  • Systemic Inflammation and the Increased Risk of Inflamm-Aging and Age-Associated Diseases in People Living With HIV on Long Term Suppressive Antiretroviral Therapy. / 2019 / PubMed / Full text

CD8B[править]

  • Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text

CDC20[править]

  • Premature aging syndrome showing random chromosome number instabilities with CDC20 mutation. / 11.2020 / PubMed / Full text

CDC5L[править]

  • Comparative transcriptome analysis of Parkinson's disease and Hutchinson-Gilford progeria syndrome reveals shared susceptible cellular network processes. / 18.08.2020 / PubMed / Full text

CDC6[править]

  • A prototypical non-malignant epithelial model to study genome dynamics and concurrently monitor micro-RNAs and proteins in situ during oncogene-induced senescence. / 10.01.2018 / PubMed / Full text

CDC7[править]

  • CHO cell culture longevity and recombinant protein yield are enhanced by depletion of miR-7 activity via sponge decoy vectors. / 03.2014 / PubMed / Full text

CDC73[править]

  • Down-regulation of cancer-associated gene CDC73 contributes to cellular senescence. / 23.05.2018 / PubMed / Full text

CDCA3[править]

  • Expression of CDCA3 Is a Prognostic Biomarker and Potential Therapeutic Target in Non-Small Cell Lung Cancer. / 07.2017 / PubMed / Full text

CDCA4[править]

  • A multidimensional systems biology analysis of cellular senescence in aging and disease. / 07.04.2020 / PubMed / Full text

CDH2[править]

  • CellBIC: bimodality-based top-down clustering of single-cell RNA sequencing data reveals hierarchical structure of the cell type. / 30.11.2018 / PubMed / Full text

CDH23[править]

  • Compound heterozygosity of the functionally null Cdh23(v-ngt) and hypomorphic Cdh23(ahl) alleles leads to early-onset progressive hearing loss in mice. / 2013 / PubMed / Full text

CDK16[править]

  • Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. / 15.08.2013 / PubMed / Full text

CDK18[править]

  • Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. / 15.08.2013 / PubMed / Full text

CDK3[править]

  • Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. / 15.08.2013 / PubMed / Full text

CDK8[править]

  • Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. / 15.08.2013 / PubMed / Full text

CDK9[править]

  • Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. / 15.08.2013 / PubMed / Full text

CDKN2C[править]

  • Elevated circulating HtrA4 in preeclampsia may alter endothelial expression of senescence genes. / 15.01.2020 / PubMed / Full text

CDO1[править]

  • The intervention effect of licorice in d-galactose induced aging rats by regulating the taurine metabolic pathway. / 19.09.2018 / PubMed / Full text

CDR2[править]

  • Neuro-degeneration profile of Alzheimer's patients: A brain morphometry study. / 2017 / PubMed / Full text

CEACAM1[править]

  • Aging-related carcinoembryonic antigen-related cell adhesion molecule 1 signaling promotes vascular dysfunction. / 12.2019 / PubMed / Full text

CEBPA[править]

  • Permanent cystathionine-β-Synthase gene knockdown promotes inflammation and oxidative stress in immortalized human adipose-derived mesenchymal stem cells, enhancing their adipogenic capacity. / 02.08.2020 / PubMed / Full text

CEBPD[править]

  • Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. / 10.2019 / PubMed / Full text

CEBPE[править]

  • Identification and genomic analysis of pedigrees with exceptional longevity identifies candidate rare variants. / 09.2020 / PubMed / Full text

CELSR2[править]

  • Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. / 10.2016 / PubMed / Full text

CEP55[править]

  • Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text

CEP57[править]

  • BubR1 allelic effects drive phenotypic heterogeneity in mosaic-variegated aneuploidy progeria syndrome. / 02.01.2020 / PubMed / Full text

CEP95[править]

  • Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text

CERK[править]

  • MicroRNA-34a causes ceramide accumulation and effects insulin signaling pathway by targeting ceramide kinase (CERK) in aging skeletal muscle. / 06.2020 / PubMed / Full text

CFL2[править]

  • Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. / 2019 / PubMed / Full text

CFLAR[править]

  • Senescence-secreted factors activate Myc and sensitize pretransformed cells to TRAIL-induced apoptosis. / 06.2014 / PubMed / Full text

CH25H[править]

  • Atherosclerosis and Alzheimer--diseases with a common cause? Inflammation, oxysterols, vasculature. / 21.03.2014 / PubMed / Full text

CHMP1B[править]

  • Overexpression of CHMP7 from rapeseed and Arabidopsis causes dwarfism and premature senescence in Arabidopsis. / 01.10.2016 / PubMed / Full text

CHMP2B[править]

  • Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis. / 24.02.2016 / PubMed / Full text

CHMP4C[править]

  • Silencing of human papillomavirus (HPV) E6/E7 oncogene expression affects both the contents and the amounts of extracellular microvesicles released from HPV-positive cancer cells. / 01.10.2013 / PubMed / Full text

CHMP7[править]

  • Overexpression of CHMP7 from rapeseed and Arabidopsis causes dwarfism and premature senescence in Arabidopsis. / 01.10.2016 / PubMed / Full text

CHRDL1[править]

  • Identification of Human Juvenile Chondrocyte-Specific Factors that Stimulate Stem Cell Growth. / 04.2016 / PubMed / Full text

CHRFAM7A[править]

  • Acetylcholinesterase inhibitors targeting the cholinergic anti-inflammatory pathway: a new therapeutic perspective in aging-related disorders. / 03.10.2019 / PubMed / Full text

CHRM2[править]

  • Aging-related changes in the gene expression profile of human lungs. / 09.11.2020 / PubMed / Full text

CHRM4[править]

  • Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text

CHRNA7[править]

  • Associations between genetic variations and global motion perception. / 10.2019 / PubMed / Full text

CHRNE[править]

  • Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text

CHSY1[править]

  • Loss of Chondroitin Sulfate Modification Causes Inflammation and Neurodegeneration in [i]skt[/i] Mice. / 01.2020 / PubMed / Full text

CIC[править]

  • Cell-in-cell structures are more potent predictors of outcome than senescence or apoptosis in head and neck squamous cell carcinomas. / 18.01.2017 / PubMed / Full text

CILP[править]

  • Fibrotic-like changes in degenerate human intervertebral discs revealed by quantitative proteomic analysis. / 03.2016 / PubMed / Full text

CILP2[править]

  • Fibrotic-like changes in degenerate human intervertebral discs revealed by quantitative proteomic analysis. / 03.2016 / PubMed / Full text

CINP[править]

  • Neuropathology-driven Whole-genome Sequencing Study Points to Novel Candidate Genes for Healthy Brain Aging. / 01-03.2019 / PubMed / Full text

CITED2[править]

  • Downregulation of CITED2 contributes to TGFβ-mediated senescence of tendon-derived stem cells. / 04.2017 / PubMed / Full text

CIZ1[править]

  • DNA damage and neurodegenerative phenotypes in aged Ciz1 null mice. / 02.2018 / PubMed / Full text

CKAP2[править]

  • A multidimensional systems biology analysis of cellular senescence in aging and disease. / 07.04.2020 / PubMed / Full text

CLCN6[править]

  • DNA methylation levels at individual age-associated CpG sites can be indicative for life expectancy. / 02.2016 / PubMed / Full text

CLEC4E[править]

  • Comparative analysis of microbial sensing molecules in mucosal tissues with aging. / 03.2018 / PubMed / Full text

CLPTM1[править]

  • Two-stage Bayesian GWAS of 9576 individuals identifies SNP regions that are targeted by miRNAs inversely expressed in Alzheimer's and cancer. / 01.2020 / PubMed / Full text

CMA1[править]

  • Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text

CMKLR1[править]

  • Chemerin facilitates intervertebral disc degeneration via TLR4 and CMKLR1 and activation of NF-kB signaling pathway. / 11.06.2020 / PubMed / Full text

CNGA3[править]

  • DNA methylation-based age prediction from saliva: High age predictability by combination of 7 CpG markers. / 07.2017 / PubMed / Full text

CNKSR3[править]

  • Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. / 12.2019 / PubMed / Full text

CNOT6[править]

  • miR-29c-3p promotes senescence of human mesenchymal stem cells by targeting CNOT6 through p53-p21 and p16-pRB pathways. / 04.2016 / PubMed / Full text

CNTNAP4[править]

  • A common copy number variation (CNV) polymorphism in the CNTNAP4 gene: association with aging in females. / 2013 / PubMed / Full text

CNTRL[править]

  • Antioxidant status, lipid and color stability of aged beef from grazing steers supplemented with corn grain and increasing levels of flaxseed. / 01.2016 / PubMed / Full text

COG1[править]

  • PRX2 and PRX25, peroxidases regulated by COG1, are involved in seed longevity in Arabidopsis. / 02.2020 / PubMed / Full text

COL12A1[править]

  • Genetic associations with age of menopause in familial longevity. / 10.2019 / PubMed / Full text

COL13A1[править]

  • [Alu insertion-deletion polymorphism of COL13A1 and LAMA2 genes: The analysis of association with longevity]. / 10.2016 / PubMed

COL15A1[править]

  • Smooth muscle cell-specific deletion of [i]Col15a1[/i] unexpectedly leads to impaired development of advanced atherosclerotic lesions. / 01.05.2017 / PubMed / Full text

COL17A1[править]

  • Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. / 05.02.2016 / PubMed / Full text

COL4A3[править]

  • Frequency of COL4A3/COL4A4 mutations amongst families segregating glomerular microscopic hematuria and evidence for activation of the unfolded protein response. Focal and segmental glomerulosclerosis is a frequent development during ageing. / 2014 / PubMed / Full text

COL7A1[править]

  • Biological Effects Induced by Specific Advanced Glycation End Products in the Reconstructed Skin Model of Aging. / 2015 / PubMed / Full text

COL9A1[править]

  • Enhanced tissue regeneration potential of juvenile articular cartilage. / 11.2013 / PubMed / Full text

COQ5[править]

  • Reduction in the levels of CoQ biosynthetic proteins is related to an increase in lifespan without evidence of hepatic mitohormesis. / 18.09.2018 / PubMed / Full text

COQ6[править]

  • Reduction in the levels of CoQ biosynthetic proteins is related to an increase in lifespan without evidence of hepatic mitohormesis. / 18.09.2018 / PubMed / Full text

COQ9[править]

  • Reduction in the levels of CoQ biosynthetic proteins is related to an increase in lifespan without evidence of hepatic mitohormesis. / 18.09.2018 / PubMed / Full text

COX5A[править]

  • COX5A Plays a Vital Role in Memory Impairment Associated With Brain Aging [i]via[/i] the BDNF/ERK1/2 Signaling Pathway. / 2020 / PubMed / Full text

COX7A2[править]

  • Proteomics Analysis to Identify and Characterize the Biomarkers and Physical Activities of Non-Frail and Frail Older Adults. / 2017 / PubMed / Full text

CPA3[править]

  • Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text

CPB2[править]

  • Characterization of Clostridium perfringens in the feces of adult horses and foals with acute enterocolitis. / 01.2014 / PubMed / Full text

CPSF1[править]

  • Genome-wide association study for lactation persistency, female fertility, longevity, and lifetime profit index traits in Holstein dairy cattle. / 02.2017 / PubMed / Full text

CPT1A[править]

  • Alteration of fatty acid oxidation by increased CPT1A on replicative senescence of placenta-derived mesenchymal stem cells. / 03.01.2020 / PubMed / Full text

CR2[править]

  • Age-related but not longevity-related genes are found by weighted gene co-expression network analysis in the peripheral blood cells of humans. / 19.01.2019 / PubMed / Full text

CRB1[править]

  • MPP3 regulates levels of PALS1 and adhesion between photoreceptors and Müller cells. / 10.2013 / PubMed / Full text

CRBN[править]

  • Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity. / 24.04.2020 / PubMed / Full text

CREB1[править]

  • Arginine Methyltransferase PRMT8 Provides Cellular Stress Tolerance in Aging Motoneurons. / 29.08.2018 / PubMed / Full text

CREBL2[править]

  • Global Characteristics of CSIG-Associated Gene Expression Changes in Human HEK293 Cells and the Implications for CSIG Regulating Cell Proliferation and Senescence. / 2015 / PubMed / Full text

CREG1[править]

  • CREG1 ameliorates myocardial fibrosis associated with autophagy activation and Rab7 expression. / 02.2015 / PubMed / Full text

CRIP2[править]

  • Transcriptomics of cortical gray matter thickness decline during normal aging. / 15.11.2013 / PubMed / Full text

CRISPLD2[править]

  • A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass. / 20.06.2019 / PubMed / Full text

CRK[править]

  • Crack-cocaine dependence and aging: effects on working memory. / 03.2016 / PubMed / Full text

CRTC1[править]

  • TRPV1 pain receptors regulate longevity and metabolism by neuropeptide signaling. / 22.05.2014 / PubMed / Full text

CRTC3[править]

  • A nutrigenomics approach for the study of anti-aging interventions: olive oil phenols and the modulation of gene and microRNA expression profiles in mouse brain. / 03.2017 / PubMed / Full text

CRX[править]

  • Transcription coactivators p300 and CBP are necessary for photoreceptor-specific chromatin organization and gene expression. / 2013 / PubMed / Full text

CRYAA[править]

  • Polymorphism rs7278468 is associated with Age-related cataract through decreasing transcriptional activity of the CRYAA promoter. / 17.03.2016 / PubMed / Full text

CRYL1[править]

  • Lipid and Alzheimer's disease genes associated with healthy aging and longevity in healthy oldest-old. / 28.03.2017 / PubMed / Full text

CSAD[править]

  • The intervention effect of licorice in d-galactose induced aging rats by regulating the taurine metabolic pathway. / 19.09.2018 / PubMed / Full text

CSF1[править]

  • Pleiotropic effects of extended blockade of CSF1R signaling in adult mice. / 08.2014 / PubMed / Full text

CSF3R[править]

  • Both Granulocytic and Non-Granulocytic Blood Cells Are Affected in Patients with Severe Congenital Neutropenia and Their Non-Neutropenic Family Members: An Evaluation of Morphology, Function, and Cell Death / 13.11.2018 / PubMed / Full text

CSGALNACT1[править]

  • Alterations in the chondroitin sulfate chain in human osteoarthritic cartilage of the knee. / 02.2014 / PubMed / Full text

CSN2[править]

  • Autophagic homeostasis is required for the pluripotency of cancer stem cells. / 02.2017 / PubMed / Full text

CSNK1D[править]

  • DNA methylation-based forensic age prediction using artificial neural networks and next generation sequencing. / 05.2017 / PubMed / Full text

CSNK1G2[править]

  • Casein kinase 1G2 suppresses necroptosis-promoted testis aging by inhibiting receptor-interacting kinase 3. / 18.11.2020 / PubMed / Full text

CST3[править]

  • Improved lipids, diastolic pressure and kidney function are potential contributors to familial longevity: a study on 60 Chinese centenarian families. / 25.02.2016 / PubMed / Full text

CST5[править]

  • Systemic Inflammation and the Increased Risk of Inflamm-Aging and Age-Associated Diseases in People Living With HIV on Long Term Suppressive Antiretroviral Therapy. / 2019 / PubMed / Full text

CSTF2T[править]

  • Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text

CTNS[править]

  • Reducing INS-IGF1 signaling protects against non-cell autonomous vesicle rupture caused by SNCA spreading. / 05.2020 / PubMed / Full text

CTSA[править]

  • A CTSA-based consultation service to advance research on special and underserved populations. / 16.01.2020 / PubMed / Full text

CTSC[править]

  • Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis. / 24.02.2016 / PubMed / Full text

CTSK[править]

  • Transcriptome Analysis of B Cell Immune Functions in Periodontitis: Mucosal Tissue Responses to the Oral Microbiome in Aging. / 2016 / PubMed / Full text

CTSS[править]

  • SIRT6 histone deacetylase functions as a potential oncogene in human melanoma. / 09.2017 / PubMed / Full text

CTU2[править]

  • Chromosomal alterations among age-related haematopoietic clones in Japan. / 08.2020 / PubMed / Full text

CTXND1[править]

  • Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. / 03.2020 / PubMed / Full text

CUBN[править]

  • A roadmap for the genetic analysis of renal aging. / 10.2015 / PubMed / Full text

CUL3[править]

  • KLHL22 activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing. / 05.2018 / PubMed / Full text

CUL4B[править]

  • CUL4B impedes stress-induced cellular senescence by dampening a p53-reactive oxygen species positive feedback loop. / 02.2015 / PubMed / Full text

CUX1[править]

  • Identification of key genes and transcription factors in aging mesenchymal stem cells by DNA microarray data. / 15.04.2019 / PubMed / Full text

CXCL14[править]

  • Identification of genes associated with endometrial cell aging. / 01.12.2020 / PubMed / Full text

CXCL17[править]

  • [Age-related aspects of the involvement of heat shock proteins in the pathogenesis of osteoarthritis]. / 2017 / PubMed

CXCR6[править]

  • CXCR6 Inhibits Hepatocarcinogenesis by Promoting Natural Killer T- and CD4 T-Cell-Dependent Control of Senescence. / 05.2019 / PubMed / Full text

CXXC1[править]

  • The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. / 29.09.2020 / PubMed / Full text

CXXC5[править]

  • Length of paternal lifespan is manifested in the DNA methylome of their nonagenarian progeny. / 13.10.2015 / PubMed / Full text

CYB5R3[править]

  • Overexpression of CYB5R3 and NQO1, two NAD -producing enzymes, mimics aspects of caloric restriction. / 08.2018 / PubMed / Full text

CYBA[править]

  • [Association between 242C > T polymorphism of NADPH oxidase p22phox gene (CYBA) and longevity in Russian population]. / 03.2013 / PubMed / Full text

CYCS[править]

  • The Impact of Age and Sex in DLBCL: Systems Biology Analyses Identify Distinct Molecular Changes and Signaling Networks. / 2015 / PubMed / Full text

CYP11B1[править]

  • Intratumoral heterogeneity of the tumor cells based on in situ cortisol excess in cortisol-producing adenomas; ∼An association among morphometry, genotype and cellular senescence∼. / 11.2020 / PubMed / Full text

CYP26A1[править]

  • Genetics of Human Longevity From Incomplete Data: New Findings From the Long Life Family Study. / 08.10.2018 / PubMed / Full text

CYP26B1[править]

  • Increased Retinoic Acid Catabolism in Olfactory Sensory Neurons Activates Dormant Tissue-Specific Stem Cells and Accelerates Age-Related Metaplasia. / 20.05.2020 / PubMed / Full text

CYP2B6[править]

  • Developmental Expression of CYP2B6: A Comprehensive Analysis of mRNA Expression, Protein Content and Bupropion Hydroxylase Activity and the Impact of Genetic Variation. / 07.2016 / PubMed / Full text

CYP2U1[править]

  • Genetic variants associated with lung function: the long life family study. / 01.11.2014 / PubMed / Full text

CYP4X1[править]

  • Sex- and age-dependent gene expression in human liver: An implication for drug-metabolizing enzymes. / 02.2017 / PubMed / Full text

CYP8B1[править]

  • Synergic hypocholesterolaemic effect of n-3 PUFA and oestrogen by modulation of hepatic cholesterol metabolism in female rats. / 14.12.2015 / PubMed / Full text

CYSLTR2[править]

  • Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. / 03.2020 / PubMed / Full text

DAPK2[править]

  • SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text

DCAF17[править]

  • Deletion of DDB1- and CUL4- associated factor-17 (Dcaf17) gene causes spermatogenesis defects and male infertility in mice. / 15.06.2018 / PubMed / Full text

DCAF7[править]

  • Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text

DCHS1[править]

  • The atypical cadherin Dachsous1 localizes to the base of the ciliary apparatus in airway epithelia. / 13.05.2016 / PubMed / Full text

DCLRE1C[править]

  • Polymorphisms of the DNA repair gene EXO1 modulate cognitive aging in old adults in a Taiwanese population. / 06.2019 / PubMed / Full text

DCTN1[править]

  • Alteration of Motor Protein Expression Involved in Bidirectional Transport in Peripheral Blood Mononuclear Cells of Patients with Amyotrophic Lateral Sclerosis. / 2016 / PubMed / Full text

DCTN2[править]

  • Dynactin pathway-related gene expression is altered by aging, but not by vitrification. / 09.2019 / PubMed / Full text

DCTN6[править]

  • Dynactin pathway-related gene expression is altered by aging, but not by vitrification. / 09.2019 / PubMed / Full text

DCXR[править]

  • Dicarbonyl/l-xylulose reductase (DCXR): The multifunctional pentosuria enzyme. / 11.2013 / PubMed / Full text

DDI2[править]

  • Androgen receptor polyglutamine expansion drives age-dependent quality control defects and muscle dysfunction. / 01.08.2018 / PubMed / Full text

DDIT3[править]

  • Inhibition of glioma growth by flavokawain B is mediated through endoplasmic reticulum stress induced autophagy. / 2018 / PubMed / Full text

DDR1[править]

  • Age-related modifications of type I collagen impair DDR1-induced apoptosis in non-invasive breast carcinoma cells. / 2018 / PubMed / Full text

DDX25[править]

  • Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice. / 01.2020 / PubMed / Full text

DEFB1[править]

  • Association of Polymorphisms in Innate Immunity Genes TLR9 and DEFB1 with Human Longevity. / 05.2015 / PubMed / Full text

DEFB4B[править]

  • Different expression of Defensin-B gene in the endometrium of mares of different age during the breeding season. / 21.12.2019 / PubMed / Full text

DEK[править]

  • Altered miRNA and mRNA Expression in Sika Deer Skeletal Muscle with Age. / 06.02.2020 / PubMed / Full text

DEPDC1[править]

  • Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text

DEPDC5[править]

  • KLHL22 activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing. / 05.2018 / PubMed / Full text

DEPTOR[править]

DGAT2[править]

  • Expression of lipogenic markers is decreased in subcutaneous adipose tissue and adipocytes of older women and is negatively linked to GDF15 expression. / 08.2019 / PubMed / Full text

DHCR7[править]

  • Environmental and genetic determinants of vitamin D status among older adults in London, UK. / 11.2016 / PubMed / Full text

DHRS2[править]

  • Acute HSF1 depletion induces cellular senescence through the MDM2-p53-p21 pathway in human diploid fibroblasts. / 08.05.2018 / PubMed / Full text

DHX57[править]

DIP2A[править]

DKK3[править]

  • Phosphatase WIP1 regulates adult neurogenesis and WNT signaling during aging. / 07.2014 / PubMed / Full text

DLAT[править]

  • Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. / 02.2018 / PubMed / Full text

DLG1[править]

  • Altered expression of genes for Kir ion channels in dilated cardiomyopathy. / 08.2013 / PubMed / Full text

DLGAP2[править]

  • Cross-Species Analyses Identify Dlgap2 as a Regulator of Age-Related Cognitive Decline and Alzheimer's Dementia. / 01.09.2020 / PubMed / Full text

DLK1[править]

  • Dual role of delta-like 1 homolog (DLK1) in skeletal muscle development and adult muscle regeneration. / 09.2013 / PubMed / Full text

DLL1[править]

  • MiR-34a Enhances Chondrocyte Apoptosis, Senescence and Facilitates Development of Osteoarthritis by Targeting DLL1 and Regulating PI3K/AKT Pathway. / 2018 / PubMed / Full text

DLL4[править]

  • Dynamic regulation of NOTCH1 activation and Notch ligand expression in human thymus development. / 13.08.2018 / PubMed / Full text

DLX2[править]

  • A gain-of-function senescence bypass screen identifies the homeobox transcription factor DLX2 as a regulator of ATM-p53 signaling. / 01.02.2016 / PubMed / Full text

DMPK[править]

  • Expanded CUG Repeats Trigger Disease Phenotype and Expression Changes through the RNAi Machinery in C. elegans. / 19.04.2019 / PubMed / Full text

DMRT1[править]

  • The Jak-STAT target Chinmo prevents sex transformation of adult stem cells in the Drosophila testis niche. / 24.11.2014 / PubMed / Full text

DNAJB9[править]

  • DNAJB9 Inhibits p53-Dependent Oncogene-Induced Senescence and Induces Cell Transformation. / 30.04.2020 / PubMed / Full text

DNAJC2[править]

  • ZRF1 is a novel S6 kinase substrate that drives the senescence programme. / 15.03.2017 / PubMed / Full text

DNM1[править]

  • Increased Degradation Rates in the Components of the Mitochondrial Oxidative Phosphorylation Chain in the Cerebellum of Old Mice. / 2018 / PubMed / Full text

DNM1L[править]

  • Aberrant mitochondrial morphology and function associated with impaired mitophagy and DNM1L-MAPK/ERK signaling are found in aged mutant Parkinsonian LRRK2 mice. / 10.12.2020 / PubMed / Full text

DNM2[править]

  • Tamoxifen prolongs survival and alleviates symptoms in mice with fatal X-linked myotubular myopathy. / 19.11.2018 / PubMed / Full text

DNMT3L[править]

  • Transient DNMT3L Expression Reinforces Chromatin Surveillance to Halt Senescence Progression in Mouse Embryonic Fibroblast. / 2020 / PubMed / Full text

DOCK7[править]

  • Altered thermogenesis and impaired bone remodeling in Misty mice. / 09.2013 / PubMed / Full text

DPP6[править]

  • A novel structure associated with aging is augmented in the DPP6-KO mouse brain. / 23.11.2020 / PubMed / Full text

DPYSL2[править]

  • Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. / 2019 / PubMed / Full text

DRAM2[править]

  • SIRT6 histone deacetylase functions as a potential oncogene in human melanoma. / 09.2017 / PubMed / Full text

DSC1[править]

  • HDLs and the pathogenesis of atherosclerosis. / 05.2018 / PubMed / Full text

DSC2[править]

  • Age-dependent clinical and genetic characteristics in Japanese patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. / 2013 / PubMed / Full text

DSG1[править]

  • Genetic effects on information processing speed are moderated by age--converging results from three samples. / 06.2014 / PubMed / Full text

DTL[править]

  • Targeting DTL induces cell cycle arrest and senescence and suppresses cell growth and colony formation through TPX2 inhibition in human hepatocellular carcinoma cells. / 2018 / PubMed / Full text

DTNBP1[править]

  • Genetic Biomarkers on Age-Related Cognitive Decline. / 2017 / PubMed / Full text

DTX1[править]

  • Analysis of diarrhetic shellfish poisoning toxins and pectenotoxin-2 in the bottlenose dolphin (Tursiops truncatus) by liquid chromatography-tandem mass spectrometry. / 16.10.2015 / PubMed / Full text

DTX2[править]

  • Analysis of diarrhetic shellfish poisoning toxins and pectenotoxin-2 in the bottlenose dolphin (Tursiops truncatus) by liquid chromatography-tandem mass spectrometry. / 16.10.2015 / PubMed / Full text

DUOX1[править]

  • Lifespan extension by peroxidase and dual oxidase-mediated ROS signaling through pyrroloquinoline quinone in [i]C. elegans[/i]. / 01.08.2017 / PubMed / Full text

DUOX2[править]

  • Lifespan extension by peroxidase and dual oxidase-mediated ROS signaling through pyrroloquinoline quinone in [i]C. elegans[/i]. / 01.08.2017 / PubMed / Full text

DUSP1[править]

  • miR-1468-3p Promotes Aging-Related Cardiac Fibrosis. / 05.06.2020 / PubMed / Full text

DUSP6[править]

  • Protection of CD4 T cells from hepatitis C virus infection-associated senescence via ΔNp63-miR-181a-Sirt1 pathway. / 11.2016 / PubMed / Full text

DUSP8[править]

  • MiR-21-5p/dual-specificity phosphatase 8 signalling mediates the anti-inflammatory effect of haem oxygenase-1 in aged intracerebral haemorrhage rats. / 12.2019 / PubMed / Full text

DUT[править]

  • Simultaneous liquefaction, saccharification, and fermentation of L-lactic acid using aging paddy rice with hull by an isolated thermotolerant Enterococcus faecalis DUT1805. / 09.2020 / PubMed / Full text

DVL1[править]

  • DNA methylation patterns associated with oxidative stress in an ageing population. / 25.11.2016 / PubMed / Full text

DYNC1H1[править]

  • Dynein mutations associated with hereditary motor neuropathies impair mitochondrial morphology and function with age. / 10.2013 / PubMed / Full text

DYNC2H1[править]

  • Role for intraflagellar transport in building a functional transition zone. / 12.2018 / PubMed / Full text

DYNLT3[править]

  • Age-associated genes in human mammary gland drive human breast cancer progression. / 15.06.2020 / PubMed / Full text

ECE1[править]

  • Ferulic Acid Suppresses Amyloid [i]β[/i] Production in the Human Lens Epithelial Cell Stimulated with Hydrogen Peroxide. / 2017 / PubMed / Full text

ECRG4[править]

ECSIT[править]

  • Longevity-related molecular pathways are subject to midlife "switch" in humans. / 08.2019 / PubMed / Full text

EDAR[править]

  • Pharmacological stimulation of Edar signaling in the adult enhances sebaceous gland size and function. / 02.2015 / PubMed / Full text

EDEM1[править]

  • Expression of lipogenic markers is decreased in subcutaneous adipose tissue and adipocytes of older women and is negatively linked to GDF15 expression. / 08.2019 / PubMed / Full text

EDF1[править]

  • Silencing of FOREVER YOUNG FLOWER Like Genes from Phalaenopsis Orchids Promotes Flower Senescence and Abscission. / 25.11.2020 / PubMed / Full text

EDNRA[править]

  • Variation in genes in the endothelin pathway and endothelium-dependent and endothelium-independent vasodilation in an elderly population. / 05.2013 / PubMed / Full text

EEA1[править]

  • Quantitative Immunoblotting Analyses Reveal that the Abundance of Actin, Tubulin, Synaptophysin and EEA1 Proteins is Altered in the Brains of Aged Mice. / 21.08.2020 / PubMed / Full text

EEF1A1[править]

  • Bioinformatics analysis of proteomics profiles in senescent human primary proximal tubule epithelial cells. / 01.04.2016 / PubMed / Full text

EEF2[править]

  • Bioinformatics analysis of proteomics profiles in senescent human primary proximal tubule epithelial cells. / 01.04.2016 / PubMed / Full text

EFCAB5[править]

  • Genetic architecture of epigenetic and neuronal ageing rates in human brain regions. / 18.05.2017 / PubMed / Full text

EFNB1[править]

  • Activation of EphA4 and EphB2 Reverse Signaling Restores the Age-Associated Reduction of Self-Renewal, Migration, and Actin Turnover in Human Tendon Stem/Progenitor Cells. / 2015 / PubMed / Full text

EFNB2[править]

  • Cartilage-specific deletion of ephrin-B2 in mice results in early developmental defects and an osteoarthritis-like phenotype during aging in vivo. / 15.03.2016 / PubMed / Full text

EGFEM1P[править]

  • Identifying blood-specific age-related DNA methylation markers on the Illumina MethylationEPIC® BeadChip. / 10.2019 / PubMed / Full text

EGR2[править]

  • Age-related impairment of bones' adaptive response to loading in mice is associated with sex-related deficiencies in osteoblasts but no change in osteocytes. / 08.2014 / PubMed / Full text

EHMT1[править]

  • Two conserved epigenetic regulators prevent healthy ageing. / 03.2020 / PubMed / Full text

EID3[править]

  • Upregulation of EID3 sensitizes breast cancer cells to ionizing radiation-induced cellular senescence. / 11.2018 / PubMed / Full text

EIF2AK3[править]

  • The unfolded protein response is activated in disease-affected brain regions in progressive supranuclear palsy and Alzheimer's disease. / 06.07.2013 / PubMed / Full text

EIF2B2[править]

  • Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of CSF1R and NOTCH3. / 06.2018 / PubMed / Full text

EIF2B3[править]

  • Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of CSF1R and NOTCH3. / 06.2018 / PubMed / Full text

EIF2B4[править]

  • Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of CSF1R and NOTCH3. / 06.2018 / PubMed / Full text

EIF4E[править]

  • Transcriptomic evidence that insulin signalling pathway regulates the ageing of subterranean termite castes. / 18.05.2020 / PubMed / Full text

EIF4EBP1[править]

  • Peripheral Circulating Exosomal miRNAs Potentially Contribute to the Regulation of Molecular Signaling Networks in Aging. / 11.03.2020 / PubMed / Full text

ELANE[править]

  • Both Granulocytic and Non-Granulocytic Blood Cells Are Affected in Patients with Severe Congenital Neutropenia and Their Non-Neutropenic Family Members: An Evaluation of Morphology, Function, and Cell Death / 13.11.2018 / PubMed / Full text

ELK1[править]

  • Tocotrienol-rich fraction prevents cellular aging by modulating cell proliferation signaling pathways. / 2015 / PubMed / Full text

ELL[править]

  • Exceptional Longevity and Polygenic Risk for Cardiovascular Health. / 18.03.2019 / PubMed / Full text

ELN[править]

  • Curcumin enhances the production of major structural components of elastic fibers, elastin, and fibrillin-1, in normal human fibroblast cells. / 2015 / PubMed / Full text

ELOVL6[править]

  • An Adult Drosophila Glioma Model for Studying Pathometabolic Pathways of Gliomagenesis. / 06.2019 / PubMed / Full text

EMILIN2[править]

  • Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text

EML6[править]

  • Cell fate regulation by reticulon-4 in human prostate cancers. / 07.2019 / PubMed / Full text

ENPEP[править]

  • Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text

ENTPD1[править]

  • Ecto-NTPDase CD39 is a negative checkpoint that inhibits follicular helper cell generation. / 01.07.2020 / PubMed / Full text

EPG5[править]

  • Genome-wide scan of depressive symptomatology in two representative cohorts in the United States and the United Kingdom. / 05.2018 / PubMed / Full text

EPHA3[править]

  • A high-content cellular senescence screen identifies candidate tumor suppressors, including EPHA3. / 15.02.2013 / PubMed / Full text

EPHA7[править]

  • Impact of host ageing on the metastatic phenotype. / 03.2013 / PubMed / Full text

ERAP1[править]

  • Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. / 10.2019 / PubMed / Full text

ERBB3[править]

  • [The expression of differential and matrix remodelling factors in human buccal epithelium in aging]. / 2013 / PubMed

ERBB4[править]

  • Overexpression of ERBB4 rejuvenates aged mesenchymal stem cells and enhances angiogenesis via PI3K/AKT and MAPK/ERK pathways. / 03.2019 / PubMed / Full text

ERCC2[править]

  • The genetic component of human longevity: New insights from the analysis of pathway-based SNP-SNP interactions. / 06.2018 / PubMed / Full text

ERCC5[править]

  • Identification of a ERCC5 c.2333T>C (L778P) Variant in Two Tunisian Siblings With Mild Xeroderma Pigmentosum Phenotype. / 2019 / PubMed / Full text

ERCC8[править]

  • Analysis of somatic mutations identifies signs of selection during in vitro aging of primary dermal fibroblasts. / 12.2019 / PubMed / Full text

EREG[править]

  • Effects of aging on gene expression and mitochondrial DNA in the equine oocyte and follicle cells. / 07.2015 / PubMed / Full text

ERVK-7[править]

  • Effect of aging on the transcriptomic changes associated with the expression of the HERV-K (HML-2) provirus at 1q22. / 2020 / PubMed / Full text

ESCO1[править]

  • Global Characteristics of CSIG-Associated Gene Expression Changes in Human HEK293 Cells and the Implications for CSIG Regulating Cell Proliferation and Senescence. / 2015 / PubMed / Full text

ESPL1[править]

  • Identification and genomic analysis of pedigrees with exceptional longevity identifies candidate rare variants. / 09.2020 / PubMed / Full text

ESRG[править]

  • MYC Releases Early Reprogrammed Human Cells from Proliferation Pause via Retinoblastoma Protein Inhibition. / 10.04.2018 / PubMed / Full text

ETFA[править]

  • Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone. / 07.2014 / PubMed / Full text

ETNK2[править]

  • In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. / 12.2019 / PubMed / Full text

ETV1[править]

  • Survival analyses in Holstein cows considering direct disease diagnoses and specific SNP marker effects. / 09.2020 / PubMed / Full text

ETV5[править]

  • miR-19b-3p induces cell proliferation and reduces heterochromatin-mediated senescence through PLZF in goat male germline stem cells. / 06.2018 / PubMed / Full text

ETV6[править]

  • FOXO1 and ETV6 genes may represent novel regulators of splicing factor expression in cellular senescence. / 01.2019 / PubMed / Full text

EVC[править]

  • Decreased centrality of subcortical regions during the transition to adolescence: a functional connectivity study. / 01.01.2015 / PubMed / Full text

EVL[править]

  • Health Years in Total: A New Health Objective Function for Cost-Effectiveness Analysis. / 01.2020 / PubMed / Full text

EXD2[править]

  • EXD2 governs germ stem cell homeostasis and lifespan by promoting mitoribosome integrity and translation. / 02.2018 / PubMed / Full text

EXOC3L2[править]

  • Gene-based aggregate SNP associations between candidate AD genes and cognitive decline. / 04.2016 / PubMed / Full text

EXOC7[править]

  • PTBP1-Mediated Alternative Splicing Regulates the Inflammatory Secretome and the Pro-tumorigenic Effects of Senescent Cells. / 09.07.2018 / PubMed / Full text

EYA4[править]

  • A Large Genome-Wide Association Study of Age-Related Hearing Impairment Using Electronic Health Records. / 10.2016 / PubMed / Full text

EYS[править]

  • Ablation of EYS in zebrafish causes mislocalisation of outer segment proteins, F-actin disruption and cone-rod dystrophy. / 05.04.2017 / PubMed / Full text

EZH1[править]

  • Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text

F10[править]

  • Hydroalcoholic extract of Spartium junceum L. flowers inhibits growth and melanogenesis in B16-F10 cells by inducing senescence. / 15.07.2018 / PubMed / Full text

F11[править]

  • A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. / 07.2013 / PubMed / Full text

F11R[править]

  • [Adhesion molecule JAM-A, its function and mechanism of epigenetic regulation]. / 2015 / PubMed

F12[править]

  • Multigenerational effects of carbendazim in Daphnia magna: From a subcellular to a population level. / 02.2019 / PubMed / Full text

FA2H[править]

  • C. Elegans Fatty Acid Two-Hydroxylase Regulates Intestinal Homeostasis by Affecting Heptadecenoic Acid Production. / 2018 / PubMed / Full text

FADS2[править]

  • Genetic determinants of P wave duration and PR segment. / 08.2014 / PubMed / Full text

FAM13A[править]

  • Trade-offs in aging lung diseases: a review on shared but opposite genetic risk variants in idiopathic pulmonary fibrosis, lung cancer and chronic obstructive pulmonary disease. / 05.2018 / PubMed / Full text

FANCC[править]

  • Fanconi Anemia complementation group C protein in metabolic disorders. / 21.06.2018 / PubMed / Full text

FAT4[править]

  • Neuron-specific knockdown of the Drosophila fat induces reduction of life span, deficient locomotive ability, shortening of motoneuron terminal branches and defects in axonal targeting. / 07.2017 / PubMed / Full text

FBXO28[править]

FBXO32[править]

  • Endophilin-A Deficiency Induces the Foxo3a-Fbxo32 Network in the Brain and Causes Dysregulation of Autophagy and the Ubiquitin-Proteasome System. / 18.10.2016 / PubMed / Full text

FBXO33[править]

  • Quantitative and Qualitative Role of Antagonistic Heterogeneity in Genetics of Blood Lipids. / 25.09.2020 / PubMed / Full text

FBXO46[править]

  • The SCF ubiquitin ligase complex mediates degradation of the tumor suppressor FBXO31 and thereby prevents premature cellular senescence. / 19.10.2018 / PubMed / Full text

FBXO7[править]

  • The FBXO7 homologue nutcracker and binding partner PI31 in Drosophila melanogaster models of Parkinson's disease. / 01.2017 / PubMed / Full text

FBXW7[править]

FCER1G[править]

  • A Microglial Signature Directing Human Aging and Neurodegeneration-Related Gene Networks. / 2019 / PubMed / Full text

FCGR2A[править]

  • Impact of C-reactive protein on osteo-/chondrogenic transdifferentiation and calcification of vascular smooth muscle cells. / 03.08.2019 / PubMed / Full text

FCGR3A[править]

  • Genomic regulation of senescence and innate immunity signaling in the retinal pigment epithelium. / 06.2015 / PubMed / Full text

FDPS[править]

  • Targeting the phospholipase A2 receptor ameliorates premature aging phenotypes. / 12.2018 / PubMed / Full text

FDXR[править]

  • The aged testis. A good model to find proteins involved in age-related changes of testis by proteomic analysis. / 01-02.2014 / PubMed

FER[править]

  • Tracking the recognition of static and dynamic facial expressions of emotion across the life span. / 04.09.2018 / PubMed / Full text

FER1L6[править]

  • Genome-wide association study and annotating candidate gene networks affecting age at first calving in Nellore cattle. / 12.2017 / PubMed / Full text

FEZ1[править]

  • Disruption to schizophrenia-associated gene Fez1 in the hippocampus of HDAC11 knockout mice. / 19.09.2017 / PubMed / Full text

FGB[править]

  • [Clinical and genetic characteristics of long-livers in Moscow region]. / 2013 / PubMed

FGF14[править]

  • Fibroblast Growth Factor 14 Modulates the Neurogenesis of Granule Neurons in the Adult Dentate Gyrus. / 12.2016 / PubMed / Full text

FGF7[править]

  • Prostatic microenvironment in senescence: fibroblastic growth factors × hormonal imbalance. / 05.2014 / PubMed / Full text

FGF8[править]

  • Prostatic microenvironment in senescence: fibroblastic growth factors × hormonal imbalance. / 05.2014 / PubMed / Full text

FGFBP1[править]

  • Muscle Fibers Secrete FGFBP1 to Slow Degeneration of Neuromuscular Synapses during Aging and Progression of ALS. / 04.01.2017 / PubMed / Full text

FGFR3[править]

  • New evidence for positive selection helps explain the paternal age effect observed in achondroplasia. / 15.10.2013 / PubMed / Full text

FGL2[править]

  • Developmental expression of B cell molecules in equine lymphoid tissues. / 01.2017 / PubMed / Full text

FICD[править]

  • Defining the limits of normal conjunctival fornix anatomy in a healthy South Asian population. / 02.2014 / PubMed / Full text

FIG4[править]

  • Knockdown of the Drosophila FIG4 induces deficient locomotive behavior, shortening of motor neuron, axonal targeting aberration, reduction of life span and defects in eye development. / 03.2016 / PubMed / Full text

FIGNL1[править]

  • Comparative proteomic analysis of primordial follicles from ovaries of immature and aged rats. / 2015 / PubMed / Full text

FKBP1A[править]

  • The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. / 29.07.2020 / PubMed / Full text

FKBP1B[править]

  • The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. / 29.07.2020 / PubMed / Full text

FKRP[править]

  • Progressive Dystrophic Pathology in Diaphragm and Impairment of Cardiac Function in FKRP P448L Mutant Mice. / 2016 / PubMed / Full text

FLCN[править]

  • Loss of the Birt-Hogg-Dubé gene product folliculin induces longevity in a hypoxia-inducible factor-dependent manner. / 08.2013 / PubMed / Full text

FLNA[править]

  • SQSTM1/p62 mediates crosstalk between autophagy and the UPS in DNA repair. / 02.10.2016 / PubMed / Full text

FLT3[править]

  • Sequential acquisition of mutations in myelodysplastic syndromes. / 2017 / PubMed / Full text

FLT4[править]

  • Impact of Aging on the Phenotype of Invariant Natural Killer T Cells in Mouse Thymus. / 2020 / PubMed / Full text

FMN2[править]

  • Genomic regulation of senescence and innate immunity signaling in the retinal pigment epithelium. / 06.2015 / PubMed / Full text

FMO1[править]

  • Functional analysis and transcriptional output of the Göttingen minipig genome. / 14.11.2015 / PubMed / Full text

FMO3[править]

  • Genetic and Nongenetic Factors Associated with Protein Abundance of Flavin-Containing Monooxygenase 3 in Human Liver. / 11.2017 / PubMed / Full text

FNTA[править]

  • The Hip Morphology Changes with Ageing in Asian Population. / 2018 / PubMed / Full text

FOSL1[править]

  • RNA-Seq analysis reveals new evidence for inflammation-related changes in aged kidney. / 24.05.2016 / PubMed / Full text

FOSL2[править]

  • LncRNA GUARDIN suppresses cellular senescence through a LRP130-PGC1α-FOXO4-p21-dependent signaling axis. / 03.04.2020 / PubMed / Full text

FOXA3[править]

  • Glucose restriction delays senescence and promotes proliferation of HUVECs via the AMPK/SIRT1-FOXA3-Beclin1 pathway. / 01.10.2020 / PubMed / Full text

FOXD1[править]

  • MicroRNA-338-5p plays a tumor suppressor role in glioma through inhibition of the MAPK-signaling pathway by binding to FOXD1. / 12.2018 / PubMed / Full text

FOXP4[править]

  • Identification of the neurotransmitter profile of AmFoxP expressing neurons in the honeybee brain using double-label in situ hybridization. / 06.11.2018 / PubMed / Full text

FRAS1[править]

  • FRAS1-related extracellular matrix 3 (FREM3) single-nucleotide polymorphism effects on gene expression, amygdala reactivity and perceptual processing speed: An accelerated aging pathway of depression risk. / 2015 / PubMed / Full text

FREM3[править]

  • FRAS1-related extracellular matrix 3 (FREM3) single-nucleotide polymorphism effects on gene expression, amygdala reactivity and perceptual processing speed: An accelerated aging pathway of depression risk. / 2015 / PubMed / Full text

FRG1[править]

  • Intergenerational response of steroidogenesis-related genes to maternal malnutrition. / 10.2019 / PubMed / Full text

FRG2[править]

  • Intergenerational response of steroidogenesis-related genes to maternal malnutrition. / 10.2019 / PubMed / Full text

FSHB[править]

  • Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. / 29.09.2015 / PubMed / Full text

FSTL5[править]

  • Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. / 12.2017 / PubMed / Full text

FTL[править]

  • Noncoding variation of the gene for ferritin light chain in hereditary and age-related cataract. / 2013 / PubMed / Full text

FZD1[править]

  • Frizzled-1 receptor regulates adult hippocampal neurogenesis. / 15.03.2016 / PubMed / Full text

FZD4[править]

  • MiR-1292 Targets FZD4 to Regulate Senescence and Osteogenic Differentiation of Stem Cells in TE/SJ/Mesenchymal Tissue System via the Wnt/β-catenin Pathway. / 12.2018 / PubMed / Full text

G0S2[править]

  • Investigating the specific core genetic-and-epigenetic networks of cellular mechanisms involved in human aging in peripheral blood mononuclear cells. / 23.02.2016 / PubMed / Full text

G3BP1[править]

  • Dissecting the molecular mechanisms that impair stress granule formation in aging cells. / 03.2017 / PubMed / Full text

G6PC[править]

  • Detection of a novel, primate-specific 'kill switch' tumor suppression mechanism that may fundamentally control cancer risk in humans: an unexpected twist in the basic biology of TP53. / 11.2018 / PubMed / Full text

G6PC2[править]

  • Genome-wide association study identifies common loci influencing circulating glycated hemoglobin (HbA1c) levels in non-diabetic subjects: the Long Life Family Study (LLFS). / 04.2014 / PubMed / Full text

G6PC3[править]

  • Both Granulocytic and Non-Granulocytic Blood Cells Are Affected in Patients with Severe Congenital Neutropenia and Their Non-Neutropenic Family Members: An Evaluation of Morphology, Function, and Cell Death / 13.11.2018 / PubMed / Full text

GAB2[править]

  • Age-related gene expression changes, and transcriptome wide association study of physical and cognitive aging traits, in the Lothian Birth Cohort 1936. / 01.12.2017 / PubMed / Full text

GABRR3[править]

  • Discovery of novel non-synonymous SNP variants in 988 candidate genes from 6 centenarians by target capture and next-generation sequencing. / 10.2013 / PubMed / Full text

GADD45B[править]

  • Are There Common Mechanisms Between the Hutchinson-Gilford Progeria Syndrome and Natural Aging? / 2019 / PubMed / Full text

GADD45G[править]

  • SIP1 is a downstream effector of GADD45G in senescence induction and growth inhibition of liver tumor cells. / 20.10.2015 / PubMed / Full text

GADD45GIP1[править]

  • Nucleus accumbens-1/GADD45GIP1 axis mediates cisplatin resistance through cellular senescence in ovarian cancer. / 06.2017 / PubMed / Full text

GAGE10[править]

  • An epigenome-wide association study of sex-specific chronological ageing. / 31.12.2019 / PubMed / Full text

GALNT18[править]

  • Genome-wide association study identifies [i]SIAH3[/i] locus influencing the rate of ventricular enlargement in non-demented elders. / 11.11.2019 / PubMed / Full text

GAR1[править]

  • Pseudouridylation defect due to [i]DKC1[/i] and [i]NOP10[/i] mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis. / 30.06.2020 / PubMed / Full text

GART[править]

  • Maintaining the continuity of HIV-care records for patients transferring care between centers: challenges, workloads, needs and risks. / 08.2016 / PubMed / Full text

GAS2[править]

  • Truncated HBx-dependent silencing of GAS2 promotes hepatocarcinogenesis through deregulation of cell cycle, senescence and p53-mediated apoptosis. / 09.2015 / PubMed / Full text

GAST[править]

  • The effects of age and muscle contraction on AMPK activity and heterotrimer composition. / 07.2014 / PubMed / Full text

GATA1[править]

  • Aging negatively impacts the ability of megakaryocytes to stimulate osteoblast proliferation and bone mass. / 10.2019 / PubMed / Full text

GBA2[править]

  • Reduced sphingolipid hydrolase activities, substrate accumulation and ganglioside decline in Parkinson's disease. / 08.11.2019 / PubMed / Full text

GBF1[править]

  • Phosphorylation Affects DNA-Binding of the Senescence-Regulating bZIP Transcription Factor GBF1. / 16.09.2015 / PubMed / Full text

GCGR[править]

  • Population pharmacokinetics and pharmacodynamics of IONIS-GCGR , an antisense oligonucleotide for type 2 diabetes mellitus: a red blood cell lifespan model. / 06.2017 / PubMed / Full text

GCH1[править]

  • Aging modifies the effect of GCH1 RS11158026 on DAT uptake and Parkinson's disease clinical severity. / 02.2017 / PubMed / Full text

GCNT2[править]

  • Human iPSC-derived MSCs (iMSCs) from aged individuals acquire a rejuvenation signature. / 18.03.2019 / PubMed / Full text

GDA[править]

  • Comparison of the Shear Bond Strength of Metal Orthodontic Brackets Bonded to Long-term Water-aged and Fresh Porcelain and Composite Surfaces. / 03.2019 / PubMed / Full text

GDF5[править]

  • An embryonic CaVβ1 isoform promotes muscle mass maintenance via GDF5 signaling in adult mouse. / 06.11.2019 / PubMed / Full text

GEN1[править]

  • US acculturation and poor sleep among an intergenerational cohort of adult Latinos in Sacramento, California. / 01.03.2019 / PubMed / Full text

GFRA1[править]

  • Determination phase at transition of gonocytes to spermatogonial stem cells improves establishment efficiency of spermatogonial stem cells in domestic cats. / 2015 / PubMed / Full text

GFRAL[править]

  • Growth differentiation factor 15 (GDF15): A survival protein with therapeutic potential in metabolic diseases. / 06.2019 / PubMed / Full text

GGA3[править]

  • The pathological roles of NDRG2 in Alzheimer's disease, a study using animal models and APPwt-overexpressed cells. / 08.2017 / PubMed / Full text

GGCX[править]

  • Multiple Modes of Vitamin K Actions in Aging-Related Musculoskeletal Disorders. / 11.06.2019 / PubMed / Full text

GGT1[править]

  • Relation of size of seminal vesicles on ultrasound to premature ejaculation. / 09-10.2017 / PubMed / Full text

GIGYF1[править]

  • Drosophila Gyf/GRB10 interacting GYF protein is an autophagy regulator that controls neuron and muscle homeostasis. / 2015 / PubMed / Full text

GIGYF2[править]

  • Drosophila Gyf/GRB10 interacting GYF protein is an autophagy regulator that controls neuron and muscle homeostasis. / 2015 / PubMed / Full text

GJA3[править]

  • Down-regulation of GJA3 is associated with lens epithelial cell apoptosis and age-related cataract. / 26.02.2017 / PubMed / Full text

GJA8[править]

  • The impact of GJA8 SNPs on susceptibility to age-related cataract. / 12.2018 / PubMed / Full text

GJB2[править]

  • Reduced expression of Connexin26 and its DNA promoter hypermethylation in the inner ear of mimetic aging rats induced by d-galactose. / 26.09.2014 / PubMed / Full text

GJC2[править]

  • Zebrafish brain RNA sequencing reveals that cell adhesion molecules are critical in brain aging. / 10.2020 / PubMed / Full text

GLP1R[править]

  • A nutrigenomics approach for the study of anti-aging interventions: olive oil phenols and the modulation of gene and microRNA expression profiles in mouse brain. / 03.2017 / PubMed / Full text

GLRA1[править]

  • Age-associated changes in DNA methylation across multiple tissues in an inbred mouse model. / 03.2016 / PubMed / Full text

GLRA2[править]

  • Gene Expression Switching of Receptor Subunits in Human Brain Development. / 12.2015 / PubMed / Full text

GLRA3[править]

  • Gene Expression Switching of Receptor Subunits in Human Brain Development. / 12.2015 / PubMed / Full text

GMDS[править]

  • Validity and clinical utilization of the Chinese version of the Gotland Male Depression Scale at a men's health polyclinic. / 2014 / PubMed / Full text

GML[править]

  • Age independently affects myelin integrity as detected by magnetization transfer magnetic resonance imaging in multiple sclerosis. / 2014 / PubMed / Full text

GNA11[править]

  • GNAQ expression initiated in multipotent neural crest cells drives aggressive melanoma of the central nervous system. / 01.2020 / PubMed / Full text

GNA14[править]

  • Genetic correlation and genome-wide association study (GWAS) of the length of productive life, days open, and 305-days milk yield in crossbred Holstein dairy cattle. / 29.06.2017 / PubMed / Full text

GNG11[править]

  • GNG11 (G-protein subunit γ 11) suppresses cell growth with induction of reactive oxygen species and abnormal nuclear morphology in human SUSM-1 cells. / 08.2017 / PubMed / Full text

GNG4[править]

  • Neurotransmitter Pathway Genes in Cognitive Decline During Aging: Evidence for GNG4 and KCNQ2 Genes. / 05.2018 / PubMed / Full text

GNPAT[править]

  • Plasmalogens Inhibit Endocytosis of Toll-like Receptor 4 to Attenuate the Inflammatory Signal in Microglial Cells. / 05.2019 / PubMed / Full text

GNPDA2[править]

  • The influence of obesity-related single nucleotide polymorphisms on BMI across the life course: the PAGE study. / 05.2013 / PubMed / Full text

GNRH2[править]

  • Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus. / 2015 / PubMed / Full text

GORAB[править]

  • Examining tissue composition, whole-bone morphology and mechanical behavior of Gorab mice tibiae: A mouse model of premature aging. / 08.12.2017 / PubMed / Full text

GOT1[править]

  • Low expression of aging-related [[NRXN3]] is associated with Alzheimer disease: A systematic review and meta-analysis. / 07.2018 / PubMed / Full text

GOT2[править]

  • An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. / 12.2019 / PubMed / Full text

GP1BA[править]

  • Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text

GP9[править]

  • Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text

GPBAR1[править]

  • Activation of the bile acid receptor GPBAR1 (TGR5) ameliorates interleukin-1β (IL-1β)- induced chondrocytes senescence. / 10.2018 / PubMed / Full text

GPC1[править]

  • Decreased expression of GPC1 in human skin keratinocytes and epidermis during ageing. / 15.10.2019 / PubMed / Full text

GPD1[править]

  • The phenotype of a knockout mouse identifies flavin-containing monooxygenase 5 (FMO5) as a regulator of metabolic ageing. / 01.08.2015 / PubMed / Full text

GPD2[править]

  • Switching off IMMP2L signaling drives senescence via simultaneous metabolic alteration and blockage of cell death. / 06.2018 / PubMed / Full text

GPR1[править]

  • The Arabidopsis GPR1 Gene Negatively Affects Pollen Germination, Pollen Tube Growth, and Gametophyte Senescence. / 21.06.2017 / PubMed / Full text

GPR101[править]

  • Regulation of Gonadotropin-Releasing Hormone-(1-5) Signaling Genes by Estradiol Is Age Dependent. / 2017 / PubMed / Full text

GPR173[править]

  • Regulation of Gonadotropin-Releasing Hormone-(1-5) Signaling Genes by Estradiol Is Age Dependent. / 2017 / PubMed / Full text

GPR19[править]

  • Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text

GPR37[править]

  • Prosaposin and its receptors are differentially expressed in the salivary glands of male and female rats. / 08.2018 / PubMed / Full text

GPR37L1[править]

  • Prosaposin and its receptors are differentially expressed in the salivary glands of male and female rats. / 08.2018 / PubMed / Full text

GPR4[править]

  • The proton-activated receptor GPR4 modulates glucose homeostasis by increasing insulin sensitivity. / 2013 / PubMed / Full text

GPR6[править]

  • Accelerated Epigenetic Aging and Methylation Disruptions Occur in Human Immunodeficiency Virus Infection Prior to Antiretroviral Therapy. / 22.09.2020 / PubMed / Full text

GPR78[править]

  • A meta-analysis of genome-wide association studies identifies multiple longevity genes. / 14.08.2019 / PubMed / Full text

GPRC5C[править]

  • Anti-diabetic action of all-trans retinoic acid and the orphan G protein coupled receptor GPRC5C in pancreatic β-cells. / 31.03.2017 / PubMed / Full text

GPX3[править]

  • Long noncoding RNA glutathione peroxidase 3-antisense inhibits lens epithelial cell apoptosis by upregulating glutathione peroxidase 3 expression in age-related cataract. / 2019 / PubMed / Full text

GPX7[править]

  • Metformin alleviates human cellular aging by upregulating the endoplasmic reticulum glutathione peroxidase 7. / 08.2018 / PubMed / Full text

GREM1[править]

  • GREM1 inhibits osteogenic differentiation, senescence and BMP transcription of adipose-derived stem cells. / 09.03.2020 / PubMed / Full text

GREM2[править]

  • Increase of gremlin 2 with age in human adipose-derived stromal/stem cells and its inhibitory effect on adipogenesis. / 12.2019 / PubMed / Full text

GRIA1[править]

  • Hippocampal proteomics defines pathways associated with memory decline and resilience in normal aging and Alzheimer's disease mouse models. / 30.03.2017 / PubMed / Full text

GRID1[править]

  • Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. / 03.2020 / PubMed / Full text

GRIN2A[править]

  • Gene Expression Switching of Receptor Subunits in Human Brain Development. / 12.2015 / PubMed / Full text

GRINA[править]

  • Genome-wide association study for lactation persistency, female fertility, longevity, and lifetime profit index traits in Holstein dairy cattle. / 02.2017 / PubMed / Full text

GRK4[править]

  • G protein-coupled receptor kinase 4-induced cellular senescence and its senescence-associated gene expression profiling. / 15.11.2017 / PubMed / Full text

GRK6[править]

  • Age-dependent effects of dopamine receptor inactivation on cocaine-induced behaviors in male rats: Evidence of dorsal striatal D2 receptor supersensitivity. / 12.2019 / PubMed / Full text

GRM2[править]

  • Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. / 11.2017 / PubMed / Full text

GRM6[править]

  • Amyloid Precursor-Like Protein 2 deletion-induced retinal synaptopathy related to congenital stationary night blindness: structural, functional and molecular characteristics. / 08.06.2016 / PubMed / Full text

GRP[править]

  • A new approach to quantifying the EEG during walking: Initial evidence of gait related potentials and their changes with aging and dual tasking. / 15.10.2019 / PubMed / Full text

GRPR[править]

  • Gastrin-Releasing Peptide Receptor Knockdown Induces Senescence in Glioblastoma Cells. / 03.2017 / PubMed / Full text

GSN[править]

  • Oral administration of alcalase potato protein hydrolysate-APPH attenuates high fat diet-induced cardiac complications via TGF-β/GSN axis in aging rats. / 01.2019 / PubMed / Full text

GSTA3[править]

  • Effects of insulin-like growth factor 1 on glutathione S-transferases and thioredoxin in growth hormone receptor knockout mice. / 2014 / PubMed / Full text

GSTM2[править]

  • Small Extracellular Vesicles Have GST Activity and Ameliorate Senescence-Related Tissue Damage. / 07.07.2020 / PubMed / Full text

GSTO1[править]

  • Age-associated changes in GSH S-transferase gene/proteins in livers of rats. / 12.2018 / PubMed / Full text

GSTT2[править]

  • Age-associated changes in GSH S-transferase gene/proteins in livers of rats. / 12.2018 / PubMed / Full text

GTF3C4[править]

  • A multidimensional systems biology analysis of cellular senescence in aging and disease. / 07.04.2020 / PubMed / Full text

GTSF1[править]

  • Postovulatory aging affects dynamics of mRNA, expression and localization of maternal effect proteins, spindle integrity and pericentromeric proteins in mouse oocytes. / 01.2016 / PubMed / Full text

GUK1[править]

  • Characterization of the impact of GMP/GDP synthesis inhibition on replicative lifespan extension in yeast. / 08.2020 / PubMed / Full text

GUSB[править]

  • Identification of reference genes for RT-qPCR data normalisation in aging studies. / 27.09.2019 / PubMed / Full text

GYS2[править]

  • In ovo feeding of creatine pyruvate modulates growth performance, energy reserves and mRNA expression levels of gluconeogenesis and glycogenesis enzymes in liver of embryos and neonatal broilers. / 04.2018 / PubMed / Full text

GZMH[править]

  • Age-related profiling of DNA methylation in CD8 T cells reveals changes in immune response and transcriptional regulator genes. / 19.08.2015 / PubMed / Full text

GZMK[править]

  • Comprehensive Profiling of an Aging Immune System Reveals Clonal GZMK CD8 T Cells as Conserved Hallmark of Inflammaging. / 21.11.2020 / PubMed / Full text

HABP4[править]

  • Microneedle fractional radiofrequency increases epidermal hyaluronan and reverses age-related epidermal dysfunction. / 02.2016 / PubMed / Full text

HACE1[править]

  • HACE1 reduces oxidative stress and mutant Huntingtin toxicity by promoting the NRF2 response. / 25.02.2014 / PubMed / Full text

HADH[править]

  • Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone. / 07.2014 / PubMed / Full text

HADHA[править]

  • Exosomes from hyperglycemia-stimulated vascular endothelial cells contain versican that regulate calcification/senescence in vascular smooth muscle cells. / 2019 / PubMed / Full text

HAMP[править]

  • A potent tilapia secreted granulin peptide enhances the survival of transgenic zebrafish infected by Vibrio vulnificus via modulation of innate immunity. / 04.2018 / PubMed / Full text

HAP1[править]

  • The longevity SNP rs2802292 uncovered: HSF1 activates stress-dependent expression of FOXO3 through an intronic enhancer. / 20.06.2018 / PubMed / Full text

HAUS4[править]

  • A multidimensional systems biology analysis of cellular senescence in aging and disease. / 07.04.2020 / PubMed / Full text

HAX1[править]

  • Both Granulocytic and Non-Granulocytic Blood Cells Are Affected in Patients with Severe Congenital Neutropenia and Their Non-Neutropenic Family Members: An Evaluation of Morphology, Function, and Cell Death / 13.11.2018 / PubMed / Full text

HBM[править]

  • The effects of dietary fatty acids on bone, hematopoietic marrow and marrow adipose tissue in a murine model of senile osteoporosis. / 25.09.2019 / PubMed / Full text

HBZ[править]

  • HTLV-1 Infection and Adult T-Cell Leukemia/Lymphoma-A Tale of Two Proteins: Tax and HBZ. / 16.06.2016 / PubMed / Full text

HDAC10[править]

  • Middle-aged female rats lack changes in histone H3 acetylation in the anterior hypothalamus observed in young females on the day of a luteinizing hormone surge. / 17.09.2019 / PubMed / Full text

HDAC11[править]

  • Disruption to schizophrenia-associated gene Fez1 in the hippocampus of HDAC11 knockout mice. / 19.09.2017 / PubMed / Full text

HDAC8[править]

  • Histone deacetylase 1 expression is inversely correlated with age in the short-lived fish Nothobranchius furzeri. / 09.2018 / PubMed / Full text

HDC[править]

  • Induced pluripotency and spontaneous reversal of cellular aging in supercentenarian donor cells. / 07.05.2020 / PubMed / Full text

HDX[править]

  • Pathways of aging: comparative analysis of gene signatures in replicative senescence and stress induced premature senescence. / 28.12.2016 / PubMed / Full text

HEPN1[править]

  • Functional analysis and transcriptional output of the Göttingen minipig genome. / 14.11.2015 / PubMed / Full text

HERC2[править]

  • Endothelial SIRT1 prevents adverse arterial remodeling by facilitating HERC2-mediated degradation of acetylated LKB1. / 28.06.2016 / PubMed / Full text

HGSNAT[править]

  • Progressive neurologic and somatic disease in a novel mouse model of human mucopolysaccharidosis type IIIC. / 01.09.2016 / PubMed / Full text

HHIP[править]

  • Hhip haploinsufficiency sensitizes mice to age-related emphysema. / 09.08.2016 / PubMed / Full text

HHLA2[править]

  • Impaired Cytolytic Activity and Loss of Clonal Neoantigens in Elderly Patients With Lung Adenocarcinoma. / 05.2019 / PubMed / Full text

HIF3A[править]

  • Hypoxia-inducible transcription factors, HIF1A and HIF2A, increase in aging mucosal tissues. / 07.2018 / PubMed / Full text

HIP1[править]

  • Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text

HIPK2[править]

  • Nore1a drives Ras to flick the P53 senescence switch. / 05.2016 / PubMed / Full text

HJURP[править]

  • HJURP regulates cellular senescence in human fibroblasts and endothelial cells via a p53-dependent pathway. / 08.2013 / PubMed / Full text

HJV[править]

  • Hemojuvelin is a novel suppressor for Duchenne muscular dystrophy and age-related muscle wasting. / 06.2019 / PubMed / Full text

HLA-DMA[править]

  • Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. / 10.2019 / PubMed / Full text

HLA-DPA1[править]

  • 17th IHIW component "Immunogenetics of Ageing" - New NGS data. / 09.2019 / PubMed / Full text

HLA-DRA[править]

  • Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis. / 24.02.2016 / PubMed / Full text

HLA-DRB4[править]

  • Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text

HLA-DRB5[править]

  • Late Onset Alzheimer's Disease Risk Variants in Cognitive Decline: The PATH Through Life Study. / 2017 / PubMed / Full text

HLA-E[править]

  • Senescent cells evade immune clearance via HLA-E-mediated NK and CD8 T cell inhibition. / 03.06.2019 / PubMed / Full text

HLA-F[править]

  • Extended lifespan and reduced adiposity in mice lacking the FAT10 gene. / 08.04.2014 / PubMed / Full text

HLF[править]

  • Healthy lifestyle and normal waist circumference are associated with a lower 5-year risk of type 2 diabetes in middle-aged and elderly individuals: Results from the healthy aging longitudinal study in Taiwan (HALST). / 02.2017 / PubMed / Full text

HMGCS2[править]

  • The aged testis. A good model to find proteins involved in age-related changes of testis by proteomic analysis. / 01-02.2014 / PubMed

HMGN2[править]

  • FAM96B inhibits the senescence of dental pulp stem cells. / 05.2020 / PubMed / Full text

HMMR[править]

  • The Naked Mole Rat Genome Resource: facilitating analyses of cancer and longevity-related adaptations. / 15.12.2014 / PubMed / Full text

HMX1[править]

  • Pathways of aging: comparative analysis of gene signatures in replicative senescence and stress induced premature senescence. / 28.12.2016 / PubMed / Full text

HNF1A[править]

  • The Impact of Biomarker Screening and Cascade Genetic Testing on the Cost-Effectiveness of MODY Genetic Testing. / 12.2019 / PubMed / Full text

HNMT[править]

  • Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text

HNRNPA0[править]

  • The transcript expression levels of HNRNPM, HNRNPA0 and AKAP17A splicing factors may be predictively associated with ageing phenotypes in human peripheral blood. / 10.2019 / PubMed / Full text

HNRNPA2B1[править]

  • Changes in the expression of splicing factor transcripts and variations in alternative splicing are associated with lifespan in mice and humans. / 10.2016 / PubMed / Full text

HNRNPF[править]

  • Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text

HNRNPM[править]

  • The transcript expression levels of HNRNPM, HNRNPA0 and AKAP17A splicing factors may be predictively associated with ageing phenotypes in human peripheral blood. / 10.2019 / PubMed / Full text

HOXA3[править]

  • DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. / 25.07.2018 / PubMed / Full text

HOXA4[править]

  • Epigenetic signatures of Werner syndrome occur early in life and are distinct from normal epigenetic aging processes. / 10.2019 / PubMed / Full text

HOXA9[править]

  • Co-regulation of senescence-associated genes by oncogenic homeobox proteins and polycomb repressive complexes. / 15.07.2013 / PubMed / Full text

HOXB7[править]

  • Impact of HOXB7 overexpression on human adipose-derived mesenchymal progenitors. / 19.03.2019 / PubMed / Full text

HOXC13[править]

  • Pathways of aging: comparative analysis of gene signatures in replicative senescence and stress induced premature senescence. / 28.12.2016 / PubMed / Full text

HOXD8[править]

  • Single-Cell Transcriptome Analysis Reveals Six Subpopulations Reflecting Distinct Cellular Fates in Senescent Mouse Embryonic Fibroblasts. / 2020 / PubMed / Full text

HP1BP3[править]

  • Systems genetics identifies Hp1bp3 as a novel modulator of cognitive aging. / 10.2016 / PubMed / Full text

HPDL[править]

  • Characterization and cytological effects of a novel glycated gelatine substrate. / 04.2014 / PubMed / Full text

HPSE[править]

  • Distribution of heparan sulfate correlated with the expression of heparanase-1 and matrix metalloproteinase-9 in an ovariectomized rats skin. / 07.2020 / PubMed / Full text

HRC[править]

  • Differences in false recollection according to the cognitive reserve of healthy older people. / 09.2016 / PubMed / Full text

HRH4[править]

  • Histamime Receptor H4 as a New Therapeutic Target for Age-related Macular Degeneration. / 11.2016 / PubMed

HS2ST1[править]

  • Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text

HSD17B1[править]

  • Genetic Basis of the Relationship Between Reproduction and Longevity: A Study on Common Variants of Three Genes in Steroid Hormone Metabolism--CYP17, HSD17B1, and COMT. / 10.2015 / PubMed / Full text

HSD17B14[править]

  • Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. / 04.2018 / PubMed / Full text

HSD17B4[править]

  • Autonomous Purkinje cell axonal dystrophy causes ataxia in peroxisomal multifunctional protein-2 deficiency. / 09.2018 / PubMed / Full text

HSPA13[править]

  • Genetic associations with age of menopause in familial longevity. / 10.2019 / PubMed / Full text

HSPA1L[править]

  • Melatonin suppresses senescence-derived mitochondrial dysfunction in mesenchymal stem cells via the HSPA1L-mitophagy pathway. / 03.2020 / PubMed / Full text

HSPA4[править]

  • Assessment of the risk of blastomere biopsy during preimplantation genetic diagnosis in a mouse model: reducing female ovary function with an increase in age by proteomics method. / 06.12.2013 / PubMed / Full text

HSPA5[править]

  • Expression of lipogenic markers is decreased in subcutaneous adipose tissue and adipocytes of older women and is negatively linked to GDF15 expression. / 08.2019 / PubMed / Full text

HSPBP1[править]

HSPG2[править]

  • Proteomic profiling of follicle fluids after superstimulation in one-month-old lambs. / 02.2018 / PubMed / Full text

HTR1A[править]

  • Gene Expression Switching of Receptor Subunits in Human Brain Development. / 12.2015 / PubMed / Full text

HTR1B[править]

  • Polymorphic variants of neurotransmitter receptor genes may affect sexual function in aging males: data from the HALS study. / 2013 / PubMed / Full text

HTR2A[править]

  • Region-specific regulation of the serotonin 2A receptor expression in development and ageing in post mortem human brain. / 06.2015 / PubMed / Full text

HTR2B[править]

  • Up-regulation of serotonin receptor 2B mRNA and protein in the peri-infarcted area of aged rats and stroke patients. / 05.04.2016 / PubMed / Full text

HTR4[править]

  • ADAM19 and HTR4 variants and pulmonary function: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text

HTR5A[править]

  • Gene Expression Switching of Receptor Subunits in Human Brain Development. / 12.2015 / PubMed / Full text

HTRA2[править]

HYOU1[править]

  • Expression of lipogenic markers is decreased in subcutaneous adipose tissue and adipocytes of older women and is negatively linked to GDF15 expression. / 08.2019 / PubMed / Full text

IBSP[править]

  • P4 medicine and osteoporosis: a systematic review. / 12.2016 / PubMed / Full text

ICAM5[править]

  • A reverse genetics cell-based evaluation of genes linked to healthy human tissue age. / 01.2017 / PubMed / Full text

ICE1[править]

  • ATBS1-INTERACTING FACTOR 2 negatively regulates dark- and brassinosteroid-induced leaf senescence through interactions with INDUCER OF CBF EXPRESSION 1. / 19.02.2020 / PubMed / Full text

IFI27[править]

  • Ultraviolet B irradiation-induced keratinocyte senescence and impaired development of 3D epidermal reconstruct. / 01.06.2021 / PubMed / Full text

IFIH1[править]

  • Comparative analysis of microbial sensing molecules in mucosal tissues with aging. / 03.2018 / PubMed / Full text

IFNAR2[править]

  • Type I interferon receptors in goose: molecular cloning, structural identification, evolutionary analysis and age-related tissue expression profile. / 25.04.2015 / PubMed / Full text

IFNB1[править]

  • Effects of aging in the expression of NOD-like receptors and inflammasome-related genes in oral mucosa. / 02.2016 / PubMed / Full text

IFNGR2[править]

  • Lifespan of mice and primates correlates with immunoproteasome expression. / 05.2015 / PubMed / Full text

IFT140[править]

IGF2BP2[править]

  • Gene transcripts associated with muscle strength: a CHARGE meta-analysis of 7,781 persons. / 01.2016 / PubMed / Full text

IGF2BP3[править]

  • Avenanthramide A Induces Cellular Senescence via miR-129-3p/Pirh2/p53 Signaling Pathway To Suppress Colon Cancer Growth. / 01.05.2019 / PubMed / Full text

IGFBP6[править]

  • Proteomic profiling of follicle fluids after superstimulation in one-month-old lambs. / 02.2018 / PubMed / Full text

IGHG2[править]

  • Human IgG2- and IgG4-expressing memory B cells display enhanced molecular and phenotypic signs of maturity and accumulate with age. / 10.2017 / PubMed / Full text

IGHM[править]

  • Developmental expression of B cell molecules in equine lymphoid tissues. / 01.2017 / PubMed / Full text

IGLL5[править]

  • Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution. / 07.12.2015 / PubMed / Full text

IKBKB[править]

  • Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats. / 02.2019 / PubMed / Full text

IL10RA[править]

  • Exome sequencing analysis reveals variants in primary immunodeficiency genes in patients with very early onset inflammatory bowel disease. / 11.2015 / PubMed / Full text

IL11[править]

  • Myocardial Infarction Superimposed on Aging: MMP-9 Deletion Promotes M2 Macrophage Polarization. / 04.2016 / PubMed / Full text

IL12B[править]

  • Association and Interaction Effects of Interleukin-12 Related Genes and Physical Activity on Cognitive Aging in Old Adults in the Taiwanese Population. / 2019 / PubMed / Full text

IL13RA1[править]

  • Genetic correlation and genome-wide association study (GWAS) of the length of productive life, days open, and 305-days milk yield in crossbred Holstein dairy cattle. / 29.06.2017 / PubMed / Full text

IL17C[править]

  • Age-dependent changes in inflammation and extracellular matrix in bovine oviduct epithelial cells during the post-ovulatory phase. / 09.2016 / PubMed / Full text

IL17D[править]

  • Genetic determinants of P wave duration and PR segment. / 08.2014 / PubMed / Full text

IL17RA[править]

  • Chronic disruptions of circadian sleep regulation induce specific proinflammatory responses in the rat colon. / 2017 / PubMed / Full text

IL17RB[править]

  • Identification of genes associated with endometrial cell aging. / 01.12.2020 / PubMed / Full text

IL17RC[править]

  • Overstimulation can create health problems due to increases in PI3K/Akt/GSK3 insensitivity and GSK3 activity. / 2014 / PubMed / Full text

IL18RAP[править]

  • Age and pro-inflammatory gene polymorphisms influence adjacent segment disc degeneration more than fusion does in patients treated for chronic low back pain. / 01.2016 / PubMed / Full text

IL1R2[править]

  • Lower levels of interleukin-1β gene expression are associated with impaired Langerhans' cell migration in aged human skin. / 01.2018 / PubMed / Full text

IL1RN[править]

  • Transcriptomic and epigenetic analyses reveal a gender difference in aging-associated inflammation: the Vitality 90 study. / 08.2015 / PubMed / Full text

IL21[править]

  • The expression of IL6 and 21 in crossbred calves upregulated by inactivated trivalent FMD vaccine. / 03.04.2014 / PubMed / Full text

IL22[править]

  • Age-specific changes in the molecular phenotype of patients with moderate-to-severe atopic dermatitis. / 07.2019 / PubMed / Full text

IL2RA[править]

  • Dynamic demethylation of the IL2RA promoter during in vitro CD4 T cell activation in association with IL2RA expression. / 2018 / PubMed / Full text

IL2RG[править]

  • Generation of a Nonhuman Primate Model of Severe Combined Immunodeficiency Using Highly Efficient Genome Editing. / 07.07.2016 / PubMed / Full text

IL33[править]

  • Interleukin33 deficiency causes tau abnormality and neurodegeneration with Alzheimer-like symptoms in aged mice. / 04.07.2017 / PubMed / Full text

IL36RN[править]

  • Elderly-Onset Generalized Pustular Psoriasis without a Previous History of Psoriasis Vulgaris. / 05-08.2015 / PubMed / Full text

IL5[править]

  • Low Molecular Weight Hyaluronan Induces an Inflammatory Response in Ovarian Stromal Cells and Impairs Gamete Development In Vitro. / 04.02.2020 / PubMed / Full text

IL6ST[править]

  • The senescent status of endothelial cells affects proliferation, inflammatory profile and SOX2 expression in bone marrow-derived mesenchymal stem cells. / 06.2019 / PubMed / Full text

IMMP2L[править]

  • Switching off IMMP2L signaling drives senescence via simultaneous metabolic alteration and blockage of cell death. / 06.2018 / PubMed / Full text

IMMT[править]

  • A multidimensional systems biology analysis of cellular senescence in aging and disease. / 07.04.2020 / PubMed / Full text

IMPA1[править]

  • Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text

IMPA2[править]

  • Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text

INHBA[править]

  • Proteomic profiling of follicle fluids after superstimulation in one-month-old lambs. / 02.2018 / PubMed / Full text

INHBE[править]

  • Human iPSC-derived MSCs (iMSCs) from aged individuals acquire a rejuvenation signature. / 18.03.2019 / PubMed / Full text

INO80D[править]

  • Whole exome sequencing implicates an INO80D mutation in a syndrome of aortic hypoplasia, premature atherosclerosis, and arterial stiffness. / 10.2014 / PubMed / Full text

INPP4B[править]

  • [Target protein candidates of hypothalamus in aging rats with intervention by Qiongyugao]. / 04.2016 / PubMed / Full text

INPPL1[править]

  • Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text

IP6K1[править]

  • The Role of the IGF-1 Signaling Cascade in Muscle Protein Synthesis and Anabolic Resistance in Aging Skeletal Muscle. / 2019 / PubMed / Full text

IP6K3[править]

  • Inositol Hexakisphosphate Kinase 3 Regulates Metabolism and Lifespan in Mice. / 31.08.2016 / PubMed / Full text

IPMK[править]

  • Inositol Polyphosphate Multikinase ([i]IPMK[/i]), a Gene Coding for a Potential Moonlighting Protein, Contributes to Human Female Longevity. / 08.02.2019 / PubMed / Full text

IRAK1[править]

  • Age-associated changes in microRNA expression in bone marrow derived dendritic cells. / 2013 / PubMed / Full text

IRAK4[править]

  • The Expression Changes of Inflammasomes in the Aging Rat Kidneys. / 06.2016 / PubMed / Full text

IRF1[править]

  • Sirtuin 1-Chromatin-Binding Dynamics Points to a Common Mechanism Regulating Inflammatory Targets in SIV Infection and in the Aging Brain. / 06.2018 / PubMed / Full text

IRF5[править]

  • Age-related differences in interferon regulatory factor-4 and -5 signaling in ischemic brains of mice. / 11.2017 / PubMed / Full text

IRF9[править]

  • Bioinformatic characterization of angiotensin-converting enzyme 2, the entry receptor for SARS-CoV-2. / 2020 / PubMed / Full text

IRX2[править]

  • Pathways of aging: comparative analysis of gene signatures in replicative senescence and stress induced premature senescence. / 28.12.2016 / PubMed / Full text

ISG20[править]

  • A Large Genome-Wide Association Study of Age-Related Hearing Impairment Using Electronic Health Records. / 10.2016 / PubMed / Full text

ISYNA1[править]

  • Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text

ITCH[править]

  • Selective multifaceted E3 ubiquitin ligases barricade extreme defense: Potential therapeutic targets for neurodegeneration and ageing. / 11.2015 / PubMed / Full text

ITGA2[править]

  • [Clinical and genetic characteristics of long-livers in Moscow region]. / 2013 / PubMed

ITGA3[править]

  • A transcriptomic analysis of serial-cultured, tonsil-derived mesenchymal stem cells reveals decreased integrin α3 protein as a potential biomarker of senescent cells. / 17.08.2020 / PubMed / Full text

ITGA5[править]

  • Kaempferol alleviates the reduction of developmental competence during aging of porcine oocytes. / 11.2019 / PubMed / Full text

ITGA6[править]

  • Selective molecular biomarkers to predict biologic behavior in pituitary tumors. / 05.2017 / PubMed / Full text

ITGA8[править]

  • Comparative Analysis of Gene Expression Patterns for Oral Epithelium-Related Functions with Aging. / 2019 / PubMed / Full text

ITGB1[править]

  • Switch in Laminin β2 to Laminin β1 Isoforms During Aging Controls Endothelial Cell Functions-Brief Report. / 05.2018 / PubMed / Full text

ITGB4[править]

  • ITGB4 deficiency induces senescence of airway epithelial cells through p53 activation. / 03.2019 / PubMed / Full text

ITGB5[править]

  • Differential DNA Methylation in Relation to Age and Health Risks of Obesity. / 24.07.2015 / PubMed / Full text

ITM2B[править]

ITPKB[править]

  • Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text

ITPR1[править]

  • Age-associated repression of type 1 inositol 1, 4, 5-triphosphate receptor impairs muscle regeneration. / 21.09.2016 / PubMed / Full text

ITPR2[править]

  • The nuclear receptor RXRA controls cellular senescence by regulating calcium signaling. / 12.2018 / PubMed / Full text

JAG1[править]

  • Targeted sequencing of genome wide significant loci associated with bone mineral density (BMD) reveals significant novel and rare variants: the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) targeted sequencing study. / 01.12.2016 / PubMed / Full text

JAGN1[править]

  • Both Granulocytic and Non-Granulocytic Blood Cells Are Affected in Patients with Severe Congenital Neutropenia and Their Non-Neutropenic Family Members: An Evaluation of Morphology, Function, and Cell Death / 13.11.2018 / PubMed / Full text

JAM3[править]

  • Selective molecular biomarkers to predict biologic behavior in pituitary tumors. / 05.2017 / PubMed / Full text

JARID2[править]

  • Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. / 02.2018 / PubMed / Full text

JDP2[править]

  • Jun dimerization protein 2 controls hypoxia-induced replicative senescence via both the p16 -pRb and Arf-p53 pathways. / 11.2017 / PubMed / Full text

JHY[править]

  • Disruption of the mouse Jhy gene causes abnormal ciliary microtubule patterning and juvenile hydrocephalus. / 01.10.2013 / PubMed / Full text

JMJD1C[править]

  • JMJD1C, a JmjC domain-containing protein, is required for long-term maintenance of male germ cells in mice. / 10.2013 / PubMed / Full text

JUNB[править]

  • Promotion of cellular senescence by THG-1/TSC22D4 knockout through activation of JUNB. / 19.02.2020 / PubMed / Full text

JUP[править]

  • From comorbidities of chronic obstructive pulmonary disease to identification of shared molecular mechanisms by data integration. / 22.11.2016 / PubMed / Full text

KALRN[править]

  • Age-dependent increase in Kalirin-9 and Kalirin-12 transcripts in human orbitofrontal cortex. / 10.2016 / PubMed / Full text

KANSL1[править]

  • Koolen-de Vries Syndrome: Clinical Report of an Adult and Literature Review. / 2016 / PubMed / Full text

KAT6B[править]

  • Aging-associated decrease in the histone acetyltransferase KAT6B is linked to altered hematopoietic stem cell differentiation. / 02.2020 / PubMed / Full text

KCNAB3[править]

  • Tracking age-correlated DNA methylation markers in the young. / 09.2018 / PubMed / Full text

KCNC3[править]

  • DNA methylation levels in candidate genes associated with chronological age in mammals are not conserved in a long-lived seabird. / 2017 / PubMed / Full text

KCNC4[править]

  • Targeted deletion of [i]Kcne3[/i] impairs skeletal muscle function in mice. / 07.2017 / PubMed / Full text

KCND3[править]

  • Genetic determinants of P wave duration and PR segment. / 08.2014 / PubMed / Full text

KCNE1[править]

  • Delayed pharyngeal repolarization promotes abnormal calcium buildup in aging muscle. / 12.04.2013 / PubMed / Full text

KCNE3[править]

  • Targeted deletion of [i]Kcne3[/i] impairs skeletal muscle function in mice. / 07.2017 / PubMed / Full text

KCNE4[править]

  • Kcne4 deletion sex-specifically predisposes to cardiac arrhythmia via testosterone-dependent impairment of RISK/SAFE pathway induction in aged mice. / 29.05.2018 / PubMed / Full text

KCNH2[править]

  • Targeted deletion of [i]Kcne3[/i] impairs skeletal muscle function in mice. / 07.2017 / PubMed / Full text

KCNJ10[править]

  • Compromised potassium recycling in the cochlea contributes to conservation of endocochlear potential in a mouse model of age-related hearing loss. / 25.10.2013 / PubMed / Full text

KCNJ11[править]

  • A mouse model of human hyperinsulinism produced by the E1506K mutation in the sulphonylurea receptor SUR1. / 11.2013 / PubMed / Full text

KCNJ12[править]

  • Altered expression of genes for Kir ion channels in dilated cardiomyopathy. / 08.2013 / PubMed / Full text

KCNJ14[править]

  • Altered expression of genes for Kir ion channels in dilated cardiomyopathy. / 08.2013 / PubMed / Full text

KCNJ2[править]

  • Altered expression of genes for Kir ion channels in dilated cardiomyopathy. / 08.2013 / PubMed / Full text

KCNJ4[править]

  • Altered expression of genes for Kir ion channels in dilated cardiomyopathy. / 08.2013 / PubMed / Full text

KCNJ6[править]

  • Genetic correlates of the development of theta event related oscillations in adolescents and young adults. / 05.2017 / PubMed / Full text

KCNK2[править]

  • Brain age prediction using deep learning uncovers associated sequence variants. / 27.11.2019 / PubMed / Full text

KCNK4[править]

  • Targeted deletion of [i]Kcne3[/i] impairs skeletal muscle function in mice. / 07.2017 / PubMed / Full text

KCNQ1[править]

  • Compromised potassium recycling in the cochlea contributes to conservation of endocochlear potential in a mouse model of age-related hearing loss. / 25.10.2013 / PubMed / Full text

KCNQ1DN[править]

  • The EpiTect Methyl qPCR Assay as novel age estimation method in forensic biology. / 07.2016 / PubMed / Full text

KCNQ2[править]

  • Neurotransmitter Pathway Genes in Cognitive Decline During Aging: Evidence for GNG4 and KCNQ2 Genes. / 05.2018 / PubMed / Full text

KCNQ4[править]

  • Guanylyl Cyclase A/cGMP Signaling Slows Hidden, Age- and Acoustic Trauma-Induced Hearing Loss. / 2020 / PubMed / Full text

KCNS3[править]

  • Vitamin D-responsive SGPP2 variants associated with lung cell expression and lung function. / 25.11.2013 / PubMed / Full text

KCP[править]

  • The kielin/chordin-like protein KCP attenuates nonalcoholic fatty liver disease in mice. / 01.10.2016 / PubMed / Full text

KCTD12[править]

  • The association between poverty and gene expression within peripheral blood mononuclear cells in a diverse Baltimore City cohort. / 2020 / PubMed / Full text

KDF1[править]

  • The histological characteristics, age-related thickness change of skin, and expression of the HSPs in the skin during hair cycle in yak (Bos grunniens). / 2017 / PubMed / Full text

KDM1A[править]

  • Modulation of KDM1A with vafidemstat rescues memory deficit and behavioral alterations. / 2020 / PubMed / Full text

KDM2A[править]

  • SIRT6 mono-ADP ribosylates KDM2A to locally increase H3K36me2 at DNA damage sites to inhibit transcription and promote repair. / 25.06.2020 / PubMed / Full text

KDM4A[править]

  • Structure-Based Discovery of a Selective KDM5A Inhibitor that Exhibits Anti-Cancer Activity via Inducing Cell Cycle Arrest and Senescence in Breast Cancer Cell Lines. / 15.01.2019 / PubMed / Full text

KDM5A[править]

  • Structure-Based Discovery of a Selective KDM5A Inhibitor that Exhibits Anti-Cancer Activity via Inducing Cell Cycle Arrest and Senescence in Breast Cancer Cell Lines. / 15.01.2019 / PubMed / Full text

KDM5B[править]

  • Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases. / 03.2016 / PubMed / Full text

KDR[править]

  • Regulation of endothelial progenitor cell differentiation and function by dimethylarginine dimethylaminohydrolase 2 in an asymmetric dimethylarginine-independent manner. / 09.2014 / PubMed / Full text

KIAA0319[править]

  • The Dyslexia-susceptibility Protein KIAA0319 Inhibits Axon Growth Through Smad2 Signaling. / 01.03.2017 / PubMed / Full text

KIAA0930[править]

  • Genetics of facial telangiectasia in the Rotterdam Study: a genome-wide association study and candidate gene approach. / 23.10.2020 / PubMed / Full text

KIAA1755[править]

  • Identifying blood-specific age-related DNA methylation markers on the Illumina MethylationEPIC® BeadChip. / 10.2019 / PubMed / Full text

KIF11[править]

  • Bmk-1 regulates lifespan in Caenorhabditis elegans by activating hsp-16. / 07.08.2015 / PubMed / Full text

KIF1A[править]

  • SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text

KIF3A[править]

  • Progressive axonal transport and synaptic protein changes correlate with behavioral and neuropathological abnormalities in the heterozygous Q175 KI mouse model of Huntington's disease. / 01.09.2014 / PubMed / Full text

KIF4A[править]

  • Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text

KIF5C[править]

  • Alteration of Motor Protein Expression Involved in Bidirectional Transport in Peripheral Blood Mononuclear Cells of Patients with Amyotrophic Lateral Sclerosis. / 2016 / PubMed / Full text

KIF6[править]

  • Gene variants at FTO, 9p21, and 2q36.3 are age-independently associated with myocardial infarction in Czech men. / 15.02.2016 / PubMed / Full text

KIR3DL2[править]

  • Expression of aberrant HLA-B27 molecules is dependent on B27 dosage and peptide supply. / 04.2014 / PubMed / Full text

KLB[править]

  • Infants Uniquely Express High Levels of RBM3 and Other Cold-Adaptive Neuroprotectant Proteins in the Human Brain. / 2018 / PubMed / Full text

KLF1[править]

  • Mutant KLF1 in Adult Anemic Nan Mice Leads to Profound Transcriptome Changes and Disordered Erythropoiesis. / 24.08.2018 / PubMed / Full text

KLF10[править]

  • Polymorphism rs7278468 is associated with Age-related cataract through decreasing transcriptional activity of the CRYAA promoter. / 17.03.2016 / PubMed / Full text

KLF2[править]

  • KLF2 induces the senescence of pancreatic cancer cells by cooperating with FOXO4 to upregulate p21. / 01.03.2020 / PubMed / Full text

KLHL13[править]

  • Genetic correlation and genome-wide association study (GWAS) of the length of productive life, days open, and 305-days milk yield in crossbred Holstein dairy cattle. / 29.06.2017 / PubMed / Full text

KLHL22[править]

  • KLHL22 activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing. / 05.2018 / PubMed / Full text

KPNA5[править]

  • Global Characteristics of CSIG-Associated Gene Expression Changes in Human HEK293 Cells and the Implications for CSIG Regulating Cell Proliferation and Senescence. / 2015 / PubMed / Full text

KRR1[править]

  • Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. / 29.09.2015 / PubMed / Full text

KRT15[править]

  • Extracellular proteoglycan decorin maintains human hair follicle stem cells. / 12.2018 / PubMed / Full text

KRT18[править]

  • Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. / 11.2018 / PubMed / Full text

KRT19[править]

  • Characterization of Krt19 allele for targeting the nucleus pulposus cells in the postnatal mouse intervertebral disc. / 01.2020 / PubMed / Full text

KRT5[править]

  • Alternative Progenitor Lineages Regenerate the Adult Lung Depleted of Alveolar Epithelial Type 2 Cells. / 04.2017 / PubMed / Full text

KTN1[править]

  • Common genetic variants influence human subcortical brain structures. / 09.04.2015 / PubMed / Full text

KY[править]

  • Combination of acupuncture and Chinese herbal formula for elderly adults with mild cognitive impairment: protocol for a randomized controlled trial. / 11.02.2019 / PubMed / Full text

L3MBTL1[править]

  • Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. / 12.2015 / PubMed / Full text

LAGE3[править]

  • Novel homozygous OSGEP gene pathogenic variants in two unrelated patients with Galloway-Mowat syndrome: case report and review of the literature. / 11.04.2019 / PubMed / Full text

LAMA1[править]

  • Laminin α1 regulates age-related mesangial cell proliferation and mesangial matrix accumulation through the TGF-β pathway. / 06.2014 / PubMed / Full text

LAMA2[править]

  • [Alu insertion-deletion polymorphism of COL13A1 and LAMA2 genes: The analysis of association with longevity]. / 10.2016 / PubMed

LATS1[править]

  • Impaired liver regeneration in aged mice can be rescued by silencing Hippo core kinases MST1 and MST2. / 01.2017 / PubMed / Full text

LDB2[править]

  • Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. / 11.2017 / PubMed / Full text

LDHC[править]

  • The aged testis. A good model to find proteins involved in age-related changes of testis by proteomic analysis. / 01-02.2014 / PubMed

LDLRAD4[править]

  • Epigenetics of neuroinflammation: Immune response, inflammatory response and cholinergic synaptic involvement evidenced by genome-wide DNA methylation analysis of delirious inpatients. / 10.2020 / PubMed / Full text

LEF1[править]

  • LncRNA H19 targets miR-22 to modulate H O -induced deregulation in nucleus pulposus cell senescence, proliferation, and ECM synthesis through Wnt signaling. / 06.2018 / PubMed / Full text

LGALS1[править]

  • Quantitative proteomic profiling of tumor cell response to telomere dysfunction using isotope-coded protein labeling (ICPL) reveals interaction network of candidate senescence markers. / 08.10.2013 / PubMed / Full text

LGALS3[править]

  • Tissue Taurine Depletion Induces Profibrotic Pattern of Gene Expression and Causes Aging-Related Cardiac Fibrosis in Heart in Mice. / 2018 / PubMed / Full text

LGR6[править]

  • Effect of defensins-containing eye cream on periocular rhytids and skin quality. / 08.2020 / PubMed / Full text

LIMK2[править]

  • Reduced corporal fibrosis to protect erectile function by inhibiting the Rho-kinase/LIM-kinase/cofilin pathway in the aged transgenic rat harboring human tissue kallikrein 1. / 01-02.2017 / PubMed / Full text

LINC00862[править]

  • Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. / 12.2017 / PubMed / Full text

LIPC[править]

  • Quantitative and Qualitative Role of Antagonistic Heterogeneity in Genetics of Blood Lipids. / 25.09.2020 / PubMed / Full text

LIPG[править]

  • Quantitative and Qualitative Role of Antagonistic Heterogeneity in Genetics of Blood Lipids. / 25.09.2020 / PubMed / Full text

LMNB2[править]

  • Physiological and Pathological Aging Affects Chromatin Dynamics, Structure and Function at the Nuclear Edge. / 2016 / PubMed / Full text

LMO2[править]

  • Aging-dependent DNA hypermethylation and gene expression of GSTM1 involved in T cell differentiation. / 25.07.2017 / PubMed / Full text

LMX1A[править]

  • Phenotypic Reprogramming of Striatal Neurons into Dopaminergic Neuron-like Cells in the Adult Mouse Brain. / 13.11.2018 / PubMed / Full text

LMX1B[править]

  • LMX1B is essential for the maintenance of differentiated podocytes in adult kidneys. / 11.2013 / PubMed / Full text

LOXL4[править]

  • Blood Vessel Basement Membrane Alterations in Human Retinal Microaneurysms During Aging. / 01.02.2017 / PubMed / Full text

LPAR3[править]

  • Upregulated microRNA-15b alleviates ovarian cancer through inhitbition of the PI3K/Akt pathway by targeting LPAR3. / 12.2019 / PubMed / Full text

LRAT[править]

  • Oxidative stress induces mitochondrial dysfunction and a protective unfolded protein response in RPE cells. / 04.2014 / PubMed / Full text

LRCH1[править]

  • Genetic determinants of P wave duration and PR segment. / 08.2014 / PubMed / Full text

LRP2[править]

  • Single-Cell Transcriptomics Characterizes Cell Types in the Subventricular Zone and Uncovers Molecular Defects Impairing Adult Neurogenesis. / 27.11.2018 / PubMed / Full text

LRP8[править]

  • SFRS11 Loss Leads to Aging-Associated Cognitive Decline by Modulating LRP8 and ApoE. / 02.07.2019 / PubMed / Full text

LRRC23[править]

  • Common genetic variants in ARNTL and NPAS2 and at chromosome 12p13 are associated with objectively measured sleep traits in the elderly. / 01.03.2013 / PubMed / Full text

LRRC34[править]

  • The polygenic nature of telomere length and the anti-ageing properties of lithium. / 03.2019 / PubMed / Full text

LRRC8B[править]

  • DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. / 25.07.2018 / PubMed / Full text

LRRK1[править]

  • Age-Dependent Dopaminergic Neurodegeneration and Impairment of the Autophagy-Lysosomal Pathway in LRRK-Deficient Mice. / 15.11.2017 / PubMed / Full text

LTBP4[править]

  • Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text

LY6D[править]

  • LY6D-induced macropinocytosis as a survival mechanism of senescent cells. / 09.11.2020 / PubMed / Full text

LY86[править]

  • Identification of age- and gender-associated long noncoding RNAs in the human brain with Alzheimer's disease. / 09.2019 / PubMed / Full text

LYG1[править]

  • Uncovering genetic mechanisms of kidney aging through transcriptomics, genomics, and epigenomics. / 03.2019 / PubMed / Full text

LYST[править]

  • Whole-Exome Sequencing of an Exceptional Longevity Cohort. / 16.08.2019 / PubMed / Full text

MACROD2[править]

  • Survival analyses in Holstein cows considering direct disease diagnoses and specific SNP marker effects. / 09.2020 / PubMed / Full text

MADD[править]

  • Association of levels of fasting glucose and insulin with rare variants at the chromosome 11p11.2-MADD locus: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text

MAFB[править]

  • Age-dependent skeletal muscle transcriptome response to bed rest-induced atrophy. / 01.04.2019 / PubMed / Full text

MAGOHB[править]

  • Proteomic analysis reveals novel common genes modulated in both replicative and stress-induced senescence. / 14.10.2015 / PubMed / Full text

MAK[править]

  • Age-dependent autophagy induction after injury promotes axon regeneration by limiting NOTCH. / 11.2020 / PubMed / Full text

MANBA[править]

  • A meta-analysis of genome-wide association studies of epigenetic age acceleration. / 11.2019 / PubMed / Full text

MANF[править]

  • Age-dependent decrease in chaperone activity impairs MANF expression, leading to Purkinje cell degeneration in inducible SCA17 mice. / 22.01.2014 / PubMed / Full text

MAOB[править]

  • Modulation of KDM1A with vafidemstat rescues memory deficit and behavioral alterations. / 2020 / PubMed / Full text

MAP2K3[править]

  • Associations of [i]MAP2K3[/i] Gene Variants With Superior Memory in SuperAgers. / 2018 / PubMed / Full text

MAP3K11[править]

MAP3K5[править]

  • Analysis of Polymorphisms in 59 Potential Candidate Genes for Association With Human Longevity. / 08.10.2018 / PubMed / Full text

MAP4K3[править]

MAPK10[править]

  • Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text

MAPK11[править]

  • lncRNA ENSMUST00000134285 Increases MAPK11 Activity, Regulating Aging-Related Myocardial Apoptosis. / 09.07.2018 / PubMed / Full text

MAPK13[править]

  • Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text

MAPK8[править]

  • Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats. / 02.2019 / PubMed / Full text

MARCKSL1[править]

  • MARCKSL1 Regulates Spine Formation in the Amygdala and Controls the Hypothalamic-Pituitary-Adrenal Axis and Anxiety-Like Behaviors. / 04.2018 / PubMed / Full text

MARK1[править]

  • SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text

MARK4[править]

  • Two-stage Bayesian GWAS of 9576 individuals identifies SNP regions that are targeted by miRNAs inversely expressed in Alzheimer's and cancer. / 01.2020 / PubMed / Full text

MAS1[править]

  • AVE0991, a nonpeptide analogue of Ang-(1-7), attenuates aging-related neuroinflammation. / 17.04.2018 / PubMed / Full text

MASP1[править]

  • Polymorphisms in the MASP1 gene are associated with serum levels of MASP-1, MASP-3, and MAp44. / 2013 / PubMed / Full text

MATN2[править]

  • Mice Lacking the Matrilin Family of Extracellular Matrix Proteins Develop Mild Skeletal Abnormalities and Are Susceptible to Age-Associated Osteoarthritis. / 19.01.2020 / PubMed / Full text

MATN3[править]

  • Mice Lacking the Matrilin Family of Extracellular Matrix Proteins Develop Mild Skeletal Abnormalities and Are Susceptible to Age-Associated Osteoarthritis. / 19.01.2020 / PubMed / Full text

MATN4[править]

  • Mice Lacking the Matrilin Family of Extracellular Matrix Proteins Develop Mild Skeletal Abnormalities and Are Susceptible to Age-Associated Osteoarthritis. / 19.01.2020 / PubMed / Full text

MATR3[править]

  • Heterogeneity of Matrin 3 in the developing and aging murine central nervous system. / 01.10.2016 / PubMed / Full text

MBD2[править]

  • Age-related Changes in the Global DNA Methylation Profile of Oligodendrocyte Progenitor Cells Derived from Rat Spinal Cords. / 02.2019 / PubMed / Full text

MBOAT2[править]

  • Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. / 03.2020 / PubMed / Full text

MBTD1[править]

  • LncRNA TTN-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/MBTD1 axis. / 10.10.2019 / PubMed / Full text

MCF2L[править]

  • DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. / 25.07.2018 / PubMed / Full text

MCM3AP[править]

  • Nodes and biological processes identified on the basis of network analysis in the brain of the senescence accelerated mice as an Alzheimer's disease animal model. / 2013 / PubMed / Full text

MCM5[править]

MCM6[править]

MCUR1[править]

  • Cytosolic and mitochondrial Ca concentrations in primary hepatocytes change with ageing and in consequence of an mtDNA mutation. / 09.2019 / PubMed / Full text

MDK[править]

  • A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass. / 20.06.2019 / PubMed / Full text

MDN1[править]

  • Whole-Exome Sequencing of an Exceptional Longevity Cohort. / 16.08.2019 / PubMed / Full text

ME3[править]

  • Acceleration of age-associated methylation patterns in HIV-1-infected adults. / 2015 / PubMed / Full text

MECOM[править]

  • Clinical and genetic risk factors for decreased bone mineral density in Japanese patients with inflammatory bowel disease. / 11.2018 / PubMed / Full text

MED25[править]

  • The [i]HAC1[/i] histone acetyltransferase promotes leaf senescence and regulates the expression of [i]ERF022[/i]. / 08.2019 / PubMed / Full text

MED28[править]

  • Redox regulation of the MED28 and MED32 mediator subunits is important for development and senescence. / 05.2016 / PubMed / Full text

MEIS2[править]

  • Pbx1 is required for adult subventricular zone neurogenesis. / 01.07.2016 / PubMed / Full text

MEPE[править]

  • Remodeling process in bone of aged rats in response to resistance training. / 01.09.2020 / PubMed / Full text

MERTK[править]

  • Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text

MESP1[править]

  • Simulated Microgravity Exerts an Age-Dependent Effect on the Differentiation of Cardiovascular Progenitors Isolated from the Human Heart. / 2015 / PubMed / Full text

MEST[править]

  • Improving specific autobiographical memory in older adults: impacts on mood, social problem solving, and functional limitations. / 09.2018 / PubMed / Full text

MFAP4[править]

  • The role of microfibrillar-associated protein 4 (MFAP4) in the formation and function of splenic compartments during embryonic and adult life. / 07.2016 / PubMed / Full text

MFSD2A[править]

  • Decreased Blood Level of MFSD2a as a Potential Biomarker of Alzheimer's Disease. / 20.12.2019 / PubMed / Full text

MICB[править]

  • Genetic associations with age of menopause in familial longevity. / 10.2019 / PubMed / Full text

MICU1[править]

  • Cytosolic and mitochondrial Ca concentrations in primary hepatocytes change with ageing and in consequence of an mtDNA mutation. / 09.2019 / PubMed / Full text

MIPEP[править]

  • [Metabolic Alteration in Aging Process: Metabolic Remodeling in White Adipose Tissue by Caloric Restriction]. / 2020 / PubMed / Full text

MKRN1[править]

  • Endothelial senescence-associated secretory phenotype (SASP) is regulated by Makorin-1 ubiquitin E3 ligase. / 11.2019 / PubMed / Full text

MLH3[править]

  • Age-Dependent Alterations in Meiotic Recombination Cause Chromosome Segregation Errors in Spermatocytes. / 19.10.2017 / PubMed / Full text

MLST8[править]

MMP20[править]

  • Identification of the effects of aging-related gene-matrix metalloproteinase on allograft outcomes in kidney transplantation. / 07-08.2013 / PubMed / Full text

MOB1B[править]

  • Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. / 05.03.2020 / PubMed / Full text

MOG[править]

  • Efficacy of vitamin D in treating multiple sclerosis-like neuroinflammation depends on developmental stage. / 11.2013 / PubMed / Full text

MORF4L1[править]

  • A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass. / 20.06.2019 / PubMed / Full text

MPC1[править]

  • Age-related impairments in skeletal muscle PDH phosphorylation and plasma lactate are indicative of metabolic inflexibility and the effects of exercise training. / 01.07.2016 / PubMed / Full text

MPG[править]

  • Menoprogen, a TCM Herbal Formula for Menopause, Increases Endogenous E2 in an Aged Rat Model of Menopause by Reducing Ovarian Granulosa Cell Apoptosis. / 2016 / PubMed / Full text

MPHOSPH6[править]

  • Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. / 05.03.2020 / PubMed / Full text

MPL[править]

  • Molecular Pathogenesis of Myeloproliferative Neoplasms: Influence of Age and Gender. / 10.2017 / PubMed / Full text

MPP3[править]

  • MPP3 regulates levels of PALS1 and adhesion between photoreceptors and Müller cells. / 10.2013 / PubMed / Full text

MPP4[править]

  • DNA damage tolerance in hematopoietic stem and progenitor cells in mice. / 15.08.2017 / PubMed / Full text

MPST[править]

  • Methionine restriction leads to hyperhomocysteinemia and alters hepatic H S production capacity in Fischer-344 rats. / 12.2018 / PubMed / Full text

MPV17[править]

  • The Human Mitochondrial DNA Depletion Syndrome Gene MPV17 Encodes a Non-selective Channel That Modulates Membrane Potential. / 29.05.2015 / PubMed / Full text

MR1[править]

MRC1[править]

  • Myocardial Infarction Superimposed on Aging: MMP-9 Deletion Promotes M2 Macrophage Polarization. / 04.2016 / PubMed / Full text

MRO[править]

  • [Effects of different intensities exercise combined with resveratrol on RBP4 in aged obese rats]. / 08.05.2017 / PubMed / Full text

MRTFA[править]

  • Endothelial progerin expression causes cardiovascular pathology through an impaired mechanoresponse. / 01.02.2019 / PubMed / Full text

MS4A1[править]

  • Age-related but not longevity-related genes are found by weighted gene co-expression network analysis in the peripheral blood cells of humans. / 19.01.2019 / PubMed / Full text

MS4A4A[править]

  • Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text

MS4A6A[править]

  • Recent studies on cellular and molecular mechanisms in Alzheimer's disease: focus on epigenetic factors and histone deacetylase. / 28.03.2018 / PubMed / Full text

MSH3[править]

  • RNA-Seq analysis of differentially expressed genes relevant to mismatch repair in aging hematopoietic stem-progenitor cells. / 25.02.2019 / PubMed / Full text

MSH5[править]

  • Exome sequencing analysis reveals variants in primary immunodeficiency genes in patients with very early onset inflammatory bowel disease. / 11.2015 / PubMed / Full text

MSN[править]

  • The sigma-1 receptor mediates the beneficial effects of pridopidine in a mouse model of Huntington disease. / 01.2017 / PubMed / Full text

MSR1[править]

  • Role of TGFβ signaling in the pathogenesis of Alzheimer's disease. / 2015 / PubMed / Full text

MSRA[править]

  • Temporal pattern of neuronal insulin release during Caenorhabditis elegans aging: Role of redox homeostasis. / 02.2019 / PubMed / Full text

MT1B[править]

  • Pharmacological advantages of melatonin in immunosenescence by improving activity of T lymphocytes. / 07.2016 / PubMed / Full text

MT1M[править]

  • A novel strain of Lactobacillus mucosae isolated from a Gaotian villager improves in vitro and in vivo antioxidant as well as biological properties in D-galactose-induced aging mice. / 02.2016 / PubMed / Full text

MT3[править]

  • Age-related changes of metallothionein 1/2 and metallothionein 3 expression in rat brain. / 01.2017 / PubMed / Full text

MTBP[править]

  • Multiomics Approach to Novel Therapeutic Targets for Cancer and Aging-Related Diseases: Role of Sld7 in Yeast Aging Network. / 02.2017 / PubMed / Full text

MTCH2[править]

  • The influence of obesity-related single nucleotide polymorphisms on BMI across the life course: the PAGE study. / 05.2013 / PubMed / Full text

MTHFD2[править]

  • A multidimensional systems biology analysis of cellular senescence in aging and disease. / 07.04.2020 / PubMed / Full text

MTNR1A[править]

  • Influence of melatonin receptor 1A gene polymorphisms on seasonal reproduction in Sarda ewes with different body condition scores and ages. / 10.2014 / PubMed / Full text

MTTP[править]

  • Active vitamin D supplementation alleviates initiation and progression of nonalcoholic fatty liver disease by repressing the p53 pathway. / 15.01.2020 / PubMed / Full text

MUC7[править]

  • Reduced Salivary Mucin Binding and Glycosylation in Older Adults Influences Taste in an In Vitro Cell Model. / 24.09.2019 / PubMed / Full text

MUL1[править]

  • Effects of MUL1 and PARKIN on the circadian clock, brain and behaviour in Drosophila Parkinson's disease models. / 28.05.2019 / PubMed / Full text

MUTYH[править]

  • Cholangiocyte senescence caused by lysophosphatidylcholine as a potential implication in carcinogenesis. / 09.2015 / PubMed / Full text

MVP[править]

  • Reexamining the minimum viable population concept for long-lived species. / 06.2013 / PubMed / Full text

MYBBP1A[править]

  • The protein-interaction network with functional roles in tumorigenesis, neurodegeneration, and aging. / 12.2016 / PubMed / Full text

MYBPC1[править]

  • Myosin Binding Protein-C Slow Phosphorylation is Altered in Duchenne Dystrophy and Arthrogryposis Myopathy in Fast-Twitch Skeletal Muscles. / 19.08.2015 / PubMed / Full text

MYCN[править]

  • Silencing of AURKA augments the antitumor efficacy of the AURKA inhibitor MLN8237 on neuroblastoma cells. / 2020 / PubMed / Full text

MYCNOS[править]

  • Insights into the Function of Long Noncoding RNAs in Sepsis Revealed by Gene Co-Expression Network Analysis. / 26.01.2017 / PubMed / Full text

MYH10[править]

  • Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. / 10.2019 / PubMed / Full text

MYH9[править]

  • Estimated glomerular filtration rate (eGFR), 25(OH) D3, chronic kidney disease (CKD), the MYH9 (myosin heavy chain 9) gene in old and very elderly people. / 08.2015 / PubMed / Full text

MYLPF[править]

  • Explaining meat quality of bulls and steers by differential proteome and phosphoproteome analysis of skeletal muscle. / 15.05.2019 / PubMed / Full text

MYNN[править]

  • Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text

MYO18B[править]

  • A common variant in myosin-18B contributes to mathematical abilities in children with dyslexia and intraparietal sulcus variability in adults. / 19.02.2013 / PubMed / Full text

MYO1F[править]

  • A Microglial Signature Directing Human Aging and Neurodegeneration-Related Gene Networks. / 2019 / PubMed / Full text

MYO5B[править]

  • Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. / 12.2017 / PubMed / Full text

MYOC[править]

  • Binding of a glaucoma-associated myocilin variant to the αB-crystallin chaperone impedes protein clearance in trabecular meshwork cells. / 28.12.2018 / PubMed / Full text

MYOF[править]

  • Genetics of Human Longevity From Incomplete Data: New Findings From the Long Life Family Study. / 08.10.2018 / PubMed / Full text

MYOG[править]

  • Low Six4 and Six5 gene dosage improves dystrophic phenotype and prolongs life span of mdx mice. / 08.2016 / PubMed / Full text

MYSM1[править]

  • MYSM1 Suppresses Cellular Senescence and the Aging Process to Prolong Lifespan. / 11.2020 / PubMed / Full text

MYT1[править]

  • ESC-sEVs Rejuvenate Aging Hippocampal NSCs by Transferring SMADs to Regulate the MYT1-Egln3-Sirt1 Axis. / 01.10.2020 / PubMed / Full text

NACA[править]

  • Age and Sex Are Strongly Correlated to the Rate and Type of Mountain Injuries Requiring Search and Rescue Missions. / 12.2019 / PubMed / Full text

NAF1[править]

  • Telomere length and aging-related outcomes in humans: A Mendelian randomization study in 261,000 older participants. / 12.2019 / PubMed / Full text

NAIP[править]

  • Protective effect of xanthohumol against age-related brain damage. / 11.2017 / PubMed / Full text

NBPF6[править]

  • Genomewide Association Scan of a Mortality Associated Endophenotype for a Long and Healthy Life in the Long Life Family Study. / 01.10.2017 / PubMed / Full text

NCAPD2[править]

  • KDM3A and KDM4C Regulate Mesenchymal Stromal Cell Senescence and Bone Aging via Condensin-mediated Heterochromatin Reorganization. / 22.11.2019 / PubMed / Full text

NCAPG2[править]

  • KDM3A and KDM4C Regulate Mesenchymal Stromal Cell Senescence and Bone Aging via Condensin-mediated Heterochromatin Reorganization. / 22.11.2019 / PubMed / Full text

NCK2[править]

  • Genetic associations with age of menopause in familial longevity. / 10.2019 / PubMed / Full text

NCOR2[править]

  • DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. / 25.07.2018 / PubMed / Full text

NCSTN[править]

  • The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. / 29.07.2020 / PubMed / Full text

NDN[править]

  • The Changing Landscape of Naive T Cell Receptor Repertoire With Human Aging. / 2018 / PubMed / Full text

NDP[править]

  • Association between Cognitive Status before Surgery and Outcomes in Elderly Patients with Hip Fracture in a Dedicated Orthogeriatric Care Pathway. / 2017 / PubMed / Full text

NDUFA8[править]

  • Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text

NDUFA9[править]

  • Preservation of skeletal muscle mitochondrial content in older adults: relationship between mitochondria, fibre type and high-intensity exercise training. / 01.06.2017 / PubMed / Full text

NDUFAB1[править]

  • Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. / 02.2018 / PubMed / Full text

NDUFS4[править]

NDUFS7[править]

  • Nod-like receptor pyrin containing 3 (NLRP3) in the post-mortem frontal cortex from patients with bipolar disorder: A potential mediator between mitochondria and immune-activation. / 01.2016 / PubMed / Full text

NDUFS8[править]

  • Mitochondrial Complex I Mutations Predispose Drosophila to Isoflurane Neurotoxicity. / 01.10.2020 / PubMed / Full text

NDUFV1[править]

  • Contribution of genetic polymorphisms on functional status at very old age: a gene-based analysis of 38 genes (311 SNPs) in the oxidative stress pathway. / 04.2014 / PubMed / Full text

NEBL[править]

  • Isolation and characterization of the human immature osteoblast culture system from the alveolar bones of aged donors for bone regeneration therapy. / 12.2014 / PubMed / Full text

NEDD4L[править]

  • DP1 Activation Reverses Age-Related Hypertension Via NEDD4L-Mediated T-Bet Degradation in T Cells. / 25.02.2020 / PubMed / Full text

NEGR1[править]

  • The influence of obesity-related single nucleotide polymorphisms on BMI across the life course: the PAGE study. / 05.2013 / PubMed / Full text

NEIL3[править]

  • Age-Related Oxidative Changes in Primary Porcine Fibroblasts Expressing Mutated Huntingtin. / 2019 / PubMed / Full text

NEK9[править]

  • Effect of sex, age and genetics on crossover interference in cattle. / 28.11.2016 / PubMed / Full text

NELL1[править]

  • Pharmacogenomics study of thiazide diuretics and QT interval in multi-ethnic populations: the cohorts for heart and aging research in genomic epidemiology. / 04.2018 / PubMed / Full text

NEU1[править]

  • Sialylation regulates myofibroblast differentiation of human skin fibroblasts. / 18.04.2017 / PubMed / Full text

NF2[править]

  • Rac1-Mediated DNA Damage and Inflammation Promote Nf2 Tumorigenesis but Also Limit Cell-Cycle Progression. / 21.11.2016 / PubMed / Full text

NFIA[править]

  • Cell-type-specific expression of NFIX in the developing and adult cerebellum. / 07.2017 / PubMed / Full text

NFIL3[править]

  • [Identification of single nucleotide polymorphisms in centenarians]. / 05-06.2016 / PubMed / Full text

NFIX[править]

  • Cell-type-specific expression of NFIX in the developing and adult cerebellum. / 07.2017 / PubMed / Full text

NFKB2[править]

  • Partial sleep deprivation activates the DNA damage response (DDR) and the senescence-associated secretory phenotype (SASP) in aged adult humans. / 01.2016 / PubMed / Full text

NFKBIA[править]

  • Analysis of molecular networks and targets mining of Chinese herbal medicines on anti-aging. / 28.12.2016 / PubMed / Full text

NHP2[править]

  • Pseudouridylation defect due to [i]DKC1[/i] and [i]NOP10[/i] mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis. / 30.06.2020 / PubMed / Full text

NIN[править]

  • Increased macromolecular damage due to oxidative stress in the neocortex and hippocampus of WNIN/Ob, a novel rat model of premature aging. / 06.06.2014 / PubMed / Full text

NIPA2[править]

  • A multidimensional systems biology analysis of cellular senescence in aging and disease. / 07.04.2020 / PubMed / Full text

NKAP[править]

  • NKAP Regulates Senescence and Cell Death Pathways in Hematopoietic Progenitors. / 2019 / PubMed / Full text

NKIRAS2[править]

  • Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. / 11.2017 / PubMed / Full text

NKX2-1[править]

  • Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. / 03.2015 / PubMed / Full text

NKX2-5[править]

  • Isolation, Characterization, and Differentiation of Cardiac Stem Cells from the Adult Mouse Heart. / 07.01.2019 / PubMed / Full text

NKX6-1[править]

  • The dynamic methylome of islets in health and disease. / 09.2019 / PubMed / Full text

NLRP5[править]

  • Effects of aging in the expression of NOD-like receptors and inflammasome-related genes in oral mucosa. / 02.2016 / PubMed / Full text

NLRP6[править]

  • LRP6 targeting suppresses gastric tumorigenesis via P14 -Mdm2-P53-dependent cellular senescence. / 19.12.2017 / PubMed / Full text

NMI[править]

  • Age-Dependent Control of Shoulder Muscles During a Reach-and-Lift Task. / 10.12.2019 / PubMed / Full text

NMNAT3[править]

  • Restoration of Mitochondrial NAD Levels Delays Stem Cell Senescence and Facilitates Reprogramming of Aged Somatic Cells. / 12.2016 / PubMed / Full text

NMRK2[править]

  • Aged Nicotinamide Riboside Kinase 2 Deficient Mice Present an Altered Response to Endurance Exercise Training. / 2018 / PubMed / Full text

NMU[править]

  • [Medicinal Chemistry Focused on Mid-sized Peptides Derived from Biomolecules]. / 2019 / PubMed / Full text

NMUR1[править]

  • [Medicinal Chemistry Focused on Mid-sized Peptides Derived from Biomolecules]. / 2019 / PubMed / Full text

NMUR2[править]

  • [Medicinal Chemistry Focused on Mid-sized Peptides Derived from Biomolecules]. / 2019 / PubMed / Full text

NOBOX[править]

  • Observation of the influences of diosgenin on aging ovarian reserve and function in a mouse model. / 18.10.2017 / PubMed / Full text

NOD2[править]

  • Molecular modeling in the age of clinical genomics, the enterprise of the next generation. / 03.2017 / PubMed / Full text

NOL12[править]

  • NOL12 Repression Induces Nucleolar Stress-Driven Cellular Senescence and Is Associated with Normative Aging. / 15.06.2019 / PubMed / Full text

NOLC1[править]

  • Enhanced NOLC1 promotes cell senescence and represses hepatocellular carcinoma cell proliferation by disturbing the organization of nucleolus. / 08.2017 / PubMed / Full text

NOTCH4[править]

  • Age-dependent autophagy induction after injury promotes axon regeneration by limiting NOTCH. / 11.2020 / PubMed / Full text

NPB[править]

  • The Role of the IGF-1 Signaling Cascade in Muscle Protein Synthesis and Anabolic Resistance in Aging Skeletal Muscle. / 2019 / PubMed / Full text

NPBWR1[править]

  • Genome-wide association study and annotating candidate gene networks affecting age at first calving in Nellore cattle. / 12.2017 / PubMed / Full text

NPFFR2[править]

  • Genome-wide association study for longevity with whole-genome sequencing in 3 cattle breeds. / 09.2016 / PubMed / Full text

NPPB[править]

  • Chloride channels are involved in sperm motility and are downregulated in spermatozoa from patients with asthenozoospermia. / 07-08.2017 / PubMed / Full text

NPRL2[править]

  • KLHL22 activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing. / 05.2018 / PubMed / Full text

NPRL3[править]

  • KLHL22 activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing. / 05.2018 / PubMed / Full text

NPSR1[править]

  • Variants of asthma and chronic obstructive pulmonary disease genes and lung function decline in aging. / 07.2014 / PubMed / Full text

NPY2R[править]

  • Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus. / 2015 / PubMed / Full text

NQO2[править]

  • The ontogeny and population variability of human hepatic dihydronicotinamide riboside:quinone oxidoreductase (NQO2). / 08.2017 / PubMed / Full text

NR1D1[править]

  • Quercetin, caffeic acid and resveratrol regulate circadian clock genes and aging-related genes in young and old human lung fibroblast cells. / 02.2020 / PubMed / Full text

NR1H3[править]

  • Association of levels of fasting glucose and insulin with rare variants at the chromosome 11p11.2-MADD locus: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text

NR2C2[править]

  • Minireview: Pathophysiological roles of the TR4 nuclear receptor: lessons learned from mice lacking TR4. / 06.2014 / PubMed / Full text

NR2F2[править]

  • Fine mapping genetic variants associated with age at puberty and sow fertility using SowPro90 genotyping array. / 01.10.2020 / PubMed / Full text

NR5A2[править]

  • Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. / 12.2017 / PubMed / Full text

NRARP[править]

  • Low dose Emodin induces tumor senescence for boosting breast cancer chemotherapy via silencing NRARP. / 10.11.2018 / PubMed / Full text

NRSN2[править]

  • Down-Regulated NRSN2 Promotes Cell Proliferation and Survival Through PI3K/Akt/mTOR Pathway in Hepatocellular Carcinoma. / 10.2015 / PubMed / Full text

NRXN2[править]

  • Neurexins 1-3 Each Have a Distinct Pattern of Expression in the Early Developing Human Cerebral Cortex. / 01.01.2017 / PubMed / Full text

NSD1[править]

  • Screening for genes that accelerate the epigenetic aging clock in humans reveals a role for the H3K36 methyltransferase NSD1. / 14.08.2019 / PubMed / Full text

NSF[править]

  • Effects of air pollution on children from a socioecological perspective. / 15.11.2019 / PubMed / Full text

NSMCE2[править]

  • NSMCE2 suppresses cancer and aging in mice independently of its SUMO ligase activity. / 03.11.2015 / PubMed / Full text

NSUN2[править]

  • RNA methyltransferase NSUN2 promotes stress-induced HUVEC senescence. / 12.04.2016 / PubMed / Full text

NSUN5[править]

  • Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan. / 30.01.2015 / PubMed / Full text

NT5E[править]

  • The NT5E gene variant strongly affects the degradation rate of inosine 5'-monophosphate under postmortem conditions in Japanese Black beef. / 12.2019 / PubMed / Full text

NTHL1[править]

  • Mitochondrial base excision repair positively correlates with longevity in the liver and heart of mammals. / 04.2020 / PubMed / Full text

NTM[править]

  • Attenuated heme oxygenase-1 responses predispose the elderly to pulmonary nontuberculous mycobacterial infections. / 01.11.2016 / PubMed / Full text

NTN4[править]

  • EGF/EGFR upregulates and cooperates with Netrin-4 to protect glioblastoma cells from DNA damage-induced senescence. / 04.12.2018 / PubMed / Full text

NTNG2[править]

  • Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. / 03.2020 / PubMed / Full text

NUBP2[править]

  • Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. / 10.2016 / PubMed / Full text

NUCB2[править]

  • Ontogenetic Pattern Changes of Nucleobindin-2/Nesfatin-1 in the Brain and Intestinal Bulb of the Short Lived African Turquoise Killifish. / 31.12.2019 / PubMed / Full text

NUDT12[править]

  • Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text

NUPR1[править]

NUSAP1[править]

  • Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text

NVL[править]

  • [The effectiveness of non-invasive lung ventilation in lateral amyotrophic sclerosis]. / 2014 / PubMed

NXF1[править]

  • WRN modulates translation by influencing nuclear mRNA export in HeLa cancer cells. / 14.10.2020 / PubMed / Full text

OAS1[править]

  • Fine mapping genetic variants associated with age at puberty and sow fertility using SowPro90 genotyping array. / 01.10.2020 / PubMed / Full text

OASL[править]

  • Effect of age on the pathogenesis of DHV-1 in Pekin ducks and on the innate immune responses of ducks to infection. / 05.2014 / PubMed / Full text

OAZ1[править]

  • Identification of reference genes for RT-qPCR data normalisation in aging studies. / 27.09.2019 / PubMed / Full text

OCLN[править]

  • Reduction of Aging-Induced Oxidative Stress and Activation of Autophagy by Bilberry Anthocyanin Supplementation via the AMPK-mTOR Signaling Pathway in Aged Female Rats. / 17.07.2019 / PubMed / Full text

OCRL[править]

  • Decreased urinary excretion of the ectodomain form of megalin (A-megalin) in children with OCRL gene mutations. / 04.2017 / PubMed / Full text

ODC1[править]

  • The curious case of polyamines: spermidine drives reversal of B cell senescence. / 03.2020 / PubMed / Full text

OGDH[править]

  • An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. / 12.2019 / PubMed / Full text

OGFOD1[править]

  • 2-Oxoglutarate-dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process. / 10.2015 / PubMed / Full text

OLFML3[править]

  • Dexamethasone Induces a Specific Form of Ramified Dysfunctional Microglia. / 02.2019 / PubMed / Full text

OMA1[править]

ONECUT1[править]

  • Survival analyses in Holstein cows considering direct disease diagnoses and specific SNP marker effects. / 09.2020 / PubMed / Full text

OOEP[править]

  • Maternal gene [i]Ooep[/i] may participate in homologous recombination-mediated DNA double-strand break repair in mouse oocytes. / 18.11.2018 / PubMed / Full text

OPLAH[править]

  • An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. / 12.2019 / PubMed / Full text

OPRD1[править]

  • A commonly carried genetic variant in the delta opioid receptor gene, OPRD1, is associated with smaller regional brain volumes: replication in elderly and young populations. / 04.2014 / PubMed / Full text

OR2AG1[править]

  • The activation of OR51E1 causes growth suppression of human prostate cancer cells. / 26.07.2016 / PubMed / Full text

OR51E1[править]

  • The activation of OR51E1 causes growth suppression of human prostate cancer cells. / 26.07.2016 / PubMed / Full text

OR51E2[править]

  • The activation of OR51E1 causes growth suppression of human prostate cancer cells. / 26.07.2016 / PubMed / Full text

ORC1[править]

  • The hyperornithinemia-hyperammonemia-homocitrullinuria syndrome. / 11.03.2015 / PubMed / Full text

ORMDL3[править]

  • Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. / 12.2019 / PubMed / Full text

OSCAR[править]

  • Awareness tool for safe and responsible driving (OSCAR): a potential educational intervention for increasing interest, openness and knowledge about the abilities required and compensatory strategies among older drivers. / 2015 / PubMed / Full text

OSGEP[править]

  • Novel homozygous OSGEP gene pathogenic variants in two unrelated patients with Galloway-Mowat syndrome: case report and review of the literature. / 11.04.2019 / PubMed / Full text

OTUD7A[править]

  • A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. / 07.2013 / PubMed / Full text

OXT[править]

  • Medial amygdala lesions modify aggressive behavior and immediate early gene expression in oxytocin and vasopressin neurons during intermale exposure. / 15.05.2013 / PubMed / Full text

P2RX3[править]

  • Fine mapping genetic variants associated with age at puberty and sow fertility using SowPro90 genotyping array. / 01.10.2020 / PubMed / Full text

P2RX4[править]

  • A rare functional haplotype of the P2RX4 and P2RX7 genes leads to loss of innate phagocytosis and confers increased risk of age-related macular degeneration. / 04.2013 / PubMed / Full text

P2RY10[править]

  • Divergent age-dependent peripheral immune transcriptomic profile following traumatic brain injury. / 12.06.2019 / PubMed / Full text

P4HA2[править]

  • Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients. / 03.09.2019 / PubMed / Full text

P4HA3[править]

  • Age-associated genes in human mammary gland drive human breast cancer progression. / 15.06.2020 / PubMed / Full text

PABPC1[править]

  • Comprehensive Analysis of Interaction Networks of Telomerase Reverse Transcriptase with Multiple Bioinformatic Approaches: Deep Mining the Potential Functions of Telomere and Telomerase. / 08.2017 / PubMed / Full text

PACSIN1[править]

  • GluN3A promotes dendritic spine pruning and destabilization during postnatal development. / 09.07.2014 / PubMed / Full text

PAFAH2[править]

  • Elevated truncated oxidized phospholipids as a factor exacerbating ALI in the aging lungs. / 03.2019 / PubMed / Full text

PAK2[править]

  • Targeting genes in insulin-associated signalling pathway, DNA damage, cell proliferation and cell differentiation pathways by tocotrienol-rich fraction in preventing cellular senescence of human diploid fibroblasts. / 11-12.2015 / PubMed / Full text

PALM[править]

  • Signatures of malaria vaccine efficacy in ageing murine immune memory. / 05.2014 / PubMed / Full text

PAPSS1[править]

  • Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text

PARN[править]

  • CD8 T-cell senescence and skewed lymphocyte subsets in young Dyskeratosis Congenita patients with PARN and DKC1 mutations. / 09.2020 / PubMed / Full text

PARP2[править]

  • Molecular evolutionary patterns of NAD /Sirtuin aging signaling pathway across taxa. / 2017 / PubMed / Full text

PATE1[править]

  • Aged men share the sperm protein PATE1 defect with young asthenozoospermia patients. / 04.2015 / PubMed / Full text

PAX1[править]

  • Co-culturing nucleus pulposus mesenchymal stem cells with notochordal cell-rich nucleus pulposus explants attenuates tumor necrosis factor-α-induced senescence. / 26.06.2018 / PubMed / Full text

PAX4[править]

  • Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. / 03.2015 / PubMed / Full text

PAX7[править]

  • Muscle health and performance in monozygotic twins with 30 years of discordant exercise habits. / 10.2018 / PubMed / Full text

PAX8[править]

  • Inadequate control of thyroid hormones sensitizes to hepatocarcinogenesis and unhealthy aging. / 13.09.2019 / PubMed / Full text

PBX4[править]

  • Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. / 12.2019 / PubMed / Full text

PCBP2[править]

  • RNA-binding Protein PCBP2 Regulates p73 Expression and p73-dependent Antioxidant Defense. / 29.04.2016 / PubMed / Full text

PCCA[править]

  • Propionyl-CoA carboxylase pcca-1 and pccb-1 gene deletions in Caenorhabditis elegans globally impair mitochondrial energy metabolism. / 03.2018 / PubMed / Full text

PCCB[править]

  • Propionyl-CoA carboxylase pcca-1 and pccb-1 gene deletions in Caenorhabditis elegans globally impair mitochondrial energy metabolism. / 03.2018 / PubMed / Full text

PCDH9[править]

  • A reverse genetics cell-based evaluation of genes linked to healthy human tissue age. / 01.2017 / PubMed / Full text

PCDHGA3[править]

  • DNA methylation associated with healthy aging of elderly twins. / 12.2018 / PubMed / Full text

PCGF2[править]

  • Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text

PCGF3[править]

  • Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text

PCGF5[править]

  • Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text

PCK1[править]

  • PCK1 is negatively regulated by bta-miR-26a, and a single-nucleotide polymorphism in the 3' untranslated region is involved in semen quality and longevity of Holstein bulls. / 03.2016 / PubMed / Full text

PCMTD1[править]

  • Genome-wide association study and annotating candidate gene networks affecting age at first calving in Nellore cattle. / 12.2017 / PubMed / Full text

PCP4[править]

  • Specific age-related molecular alterations in the cerebellum of Down syndrome mouse models. / 01.09.2016 / PubMed / Full text

PDE11A[править]

  • Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text

PDE1B[править]

  • Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text

PDE3B[править]

  • Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text

PDE4A[править]

  • Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text

PDE7A[править]

  • Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text

PDE7B[править]

  • Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text

PDE8A[править]

  • Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text

PDE8B[править]

  • Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text

PDGFRA[править]

  • GBM-associated mutations and altered protein expression are more common in young patients. / 25.10.2016 / PubMed / Full text

PDP1[править]

  • Age-related impairments in skeletal muscle PDH phosphorylation and plasma lactate are indicative of metabolic inflexibility and the effects of exercise training. / 01.07.2016 / PubMed / Full text

PDP2[править]

  • Age-related impairments in skeletal muscle PDH phosphorylation and plasma lactate are indicative of metabolic inflexibility and the effects of exercise training. / 01.07.2016 / PubMed / Full text

PEBP1[править]

  • [i]Drosophila[/i] PEBP1 inhibits intestinal stem cell aging via suppression of ERK pathway. / 06.04.2018 / PubMed / Full text

PER3[править]

  • Effects of PER3 clock gene polymorphisms on aging-related changes of the cerebral cortex. / 03.2018 / PubMed / Full text

PEX1[править]

  • Transcription factor PEX1 modulates extracellular matrix turnover through regulation of MMP-9 expression. / 02.2017 / PubMed / Full text

PEX19[править]

  • A genome-wide screen identifies genes that suppress the accumulation of spontaneous mutations in young and aged yeast cells. / 02.2020 / PubMed / Full text

PEX5[править]

  • Aging lowers PEX5 levels in cortical neurons in male and female mouse brains. / 09.2020 / PubMed / Full text

PF4V1[править]

  • Involvement of ERK1/2 activation in the gene expression of senescence-associated secretory factors in human hepatic stellate cells. / 05.2019 / PubMed / Full text

PFKL[править]

  • Developmental changes in hepatic glucose metabolism in a newborn piglet model: A comparative analysis for suckling period and early weaning period. / 19.02.2016 / PubMed / Full text

PGAP1[править]

  • Hypoxia-inducible transcription factors, HIF1A and HIF2A, increase in aging mucosal tissues. / 07.2018 / PubMed / Full text

PGK2[править]

  • Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice. / 01.2020 / PubMed / Full text

PGLS[править]

  • 547 transcriptomes from 44 brain areas reveal features of the aging brain in non-human primates. / 28.11.2019 / PubMed / Full text

PGLYRP1[править]

  • PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan. / 16.01.2014 / PubMed / Full text

PGLYRP2[править]

  • Innate immune response to LPS in airway epithelium is dependent on chronological age and antecedent exposures. / 11.2013 / PubMed / Full text

PGM1[править]

  • Explaining meat quality of bulls and steers by differential proteome and phosphoproteome analysis of skeletal muscle. / 15.05.2019 / PubMed / Full text

PHAX[править]

  • Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text

PHF19[править]

  • A reverse genetics cell-based evaluation of genes linked to healthy human tissue age. / 01.2017 / PubMed / Full text

PHF6[править]

  • miR-128 regulates neuronal migration, outgrowth and intrinsic excitability via the intellectual disability gene Phf6. / 03.01.2015 / PubMed / Full text

PHGDH[править]

  • Tanshinone prevents alveolar bone loss in ovariectomized osteoporosis rats by up-regulating phosphoglycerate dehydrogenase. / 01.08.2019 / PubMed / Full text

PHLPP1[править]

  • Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans. / 28.06.2016 / PubMed / Full text

PHOSPHO1[править]

  • Phospho1 deficiency transiently modifies bone architecture yet produces consistent modification in osteocyte differentiation and vascular porosity with ageing. / 12.2015 / PubMed / Full text

PI4KA[править]

  • Combined aerobic exercise and enzyme replacement therapy rejuvenates the mitochondrial-lysosomal axis and alleviates autophagic blockage in Pompe disease. / 10.2015 / PubMed / Full text

PIAS1[править]

  • Age-Dependent and -Independent Effects of Perivascular Adipose Tissue and Its Paracrine Activities during Neointima Formation. / 31.12.2019 / PubMed / Full text

PICK1[править]

  • Development- and age-related alterations in the expression of AMPA receptor subunit GluR2 and its trafficking proteins in the hippocampus of male mouse brain. / 06.2015 / PubMed / Full text

PIGR[править]

  • Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. / 02.2018 / PubMed / Full text

PIK3C2A[править]

  • Identification of key genes and transcription factors in aging mesenchymal stem cells by DNA microarray data. / 15.04.2019 / PubMed / Full text

PIK3C2B[править]

  • In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. / 12.2019 / PubMed / Full text

PIK3C3[править]

  • Metabolomic analyses reveal that anti-aging metabolites are depleted by palmitate but increased by oleate in vivo. / 03.08.2015 / PubMed / Full text

PIK3CB[править]

  • Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text

PIK3R1[править]

  • Analysis of Polymorphisms in 59 Potential Candidate Genes for Association With Human Longevity. / 08.10.2018 / PubMed / Full text

PIK3R3[править]

  • Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text

PIM1[править]

  • PIM1-catalyzed CBX8 phosphorylation promotes the oncogene-induced senescence of human diploid fibroblast. / 27.06.2018 / PubMed / Full text

PIP5K1C[править]

  • [Target protein candidates of hypothalamus in aging rats with intervention by Qiongyugao]. / 04.2016 / PubMed / Full text

PIPOX[править]

  • Aging related methylation influences the gene expression of key control genes in colorectal cancer and adenoma. / 21.12.2016 / PubMed / Full text

PKD1[править]

  • The protein kinase D1-mediated classical protein secretory pathway regulates the Ras oncogene-induced senescence response. / 16.03.2018 / PubMed / Full text

PKHD1L1[править]

PKLR[править]

  • Developmental changes in hepatic glucose metabolism in a newborn piglet model: A comparative analysis for suckling period and early weaning period. / 19.02.2016 / PubMed / Full text

PKNOX1[править]

  • The effects of environmental stressors on candidate aging associated genes. / 08.2020 / PubMed / Full text

PLA2G4A[править]

  • Coordination of gene expression of arachidonic and docosahexaenoic acid cascade enzymes during human brain development and aging. / 2014 / PubMed / Full text

PLA2G4B[править]

  • Monocytes present age-related changes in phospholipid concentration and decreased energy metabolism. / 04.2020 / PubMed / Full text

PLA2G7[править]

  • Elevated PLA2G7 gene promoter methylation as a gender-specific marker of aging increases the risk of coronary heart disease in females. / 2013 / PubMed / Full text

PLAGL1[править]

  • Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. / 12.2015 / PubMed / Full text

PLAT[править]

PLCB1[править]

  • Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text

PLCD1[править]

  • Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text

PLCG2[править]

  • A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer's disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity. / 08.2019 / PubMed / Full text

PLEC[править]

  • Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. / 07.2014 / PubMed / Full text

PLEKHA6[править]

  • In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. / 12.2019 / PubMed / Full text

PLEKHO1[править]

  • Increased PLEKHO1 within osteoblasts suppresses Smad-dependent BMP signaling to inhibit bone formation during aging. / 04.2017 / PubMed / Full text

PLIN1[править]

  • Determination of the Mechanisms that Cause Sarcopenia through cDNA Microarray. / 2017 / PubMed / Full text

PLK2[править]

  • Age- and brain region-dependent α-synuclein oligomerization is attributed to alterations in intrinsic enzymes regulating α-synuclein phosphorylation in aging monkey brains. / 23.02.2016 / PubMed / Full text

PLP1[править]

  • Age-related changes in a patient with Pelizaeus-Merzbacher disease determined by repeated 1H-magnetic resonance spectroscopy. / 02.2014 / PubMed / Full text

PLTP[править]

  • PLTP deficiency impairs learning and memory capabilities partially due to alteration of amyloid-β metabolism in old mice. / 2014 / PubMed / Full text

PLXNA4[править]

  • Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text

PMM2[править]

  • Synaptic roles for phosphomannomutase type 2 in a new Drosophila congenital disorder of glycosylation disease model. / 01.05.2016 / PubMed / Full text

PMS1[править]

  • RNA-Seq analysis of differentially expressed genes relevant to mismatch repair in aging hematopoietic stem-progenitor cells. / 25.02.2019 / PubMed / Full text

PNPLA6[править]

  • Delayed Induction of Human NTE (PNPLA6) Rescues Neurodegeneration and Mobility Defects of Drosophila swiss cheese (sws) Mutants. / 2015 / PubMed / Full text

PODXL[править]

  • Induced Pluripotent Stem Cell-Derived Dopaminergic Neurons from Adult Common Marmoset Fibroblasts. / 01.09.2017 / PubMed / Full text

POLDIP2[править]

  • Essential role of POLDIP2 in Tau aggregation and neurotoxicity via autophagy/proteasome inhibition. / 26.06.2015 / PubMed / Full text

POLL[править]

  • Temporal trends in loss of life expectancy after a cancer diagnosis among the Australian population. / 04.2020 / PubMed / Full text

POLN[править]

  • Analysis of DNA polymerase ν function in meiotic recombination, immunoglobulin class-switching, and DNA damage tolerance. / 06.2017 / PubMed / Full text

POLR3A[править]

  • Nucleolar disruption, activation of P53 and premature senescence in POLR3A-mutated Wiedemann-Rautenstrauch syndrome fibroblasts. / 12.2020 / PubMed / Full text

POU2F1[править]

  • Methyl CpG level at distal part of heat-shock protein promoter HSP70 exhibits epigenetic memory for heat stress by modulating recruitment of POU2F1-associated nucleosome-remodeling deacetylase (NuRD) complex. / 05.2017 / PubMed / Full text

POU3F2[править]

  • POU3F2 participates in cognitive function and adult hippocampal neurogenesis via mammalian-characteristic amino acid repeats. / 02.2018 / PubMed / Full text

POU4F3[править]

PPA2[править]

  • Characterization of long living yeast deletion mutants that lack mitochondrial metabolism genes DSS1, PPA2 and AFG3. / 20.07.2019 / PubMed / Full text

PPARA[править]

  • [Genotype and allele frequencies of UCP and PPAR gene families in residents of besieged Leningrad and in the control group]. / 2014 / PubMed

PPCDC[править]

  • Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text

PPFIA1[править]

  • Explorative results from multistep screening for potential genetic risk loci of Alzheimer's disease in the longitudinal VITA study cohort. / 01.2018 / PubMed / Full text

PPM1A[править]

  • The TGF-β1/p53/PAI-1 Signaling Axis in Vascular Senescence: Role of Caveolin-1. / 03.08.2019 / PubMed / Full text

PPM1B[править]

  • PPM1B depletion induces premature senescence in human IMR-90 fibroblasts. / 06.2014 / PubMed / Full text

PPP1R12B[править]

  • BDA-410 Treatment Reduces Body Weight and Fat Content by Enhancing Lipolysis in Sedentary Senescent Mice. / 01.08.2017 / PubMed / Full text

PPP1R15B[править]

  • In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. / 12.2019 / PubMed / Full text

PPP1R1B[править]

  • Effects of PPP1R1B (DARPP-32) Polymorphism on Feedback-Related Brain Potentials Across the Life Span. / 2013 / PubMed / Full text

PPP1R3C[править]

  • Uncovering genetic mechanisms of kidney aging through transcriptomics, genomics, and epigenomics. / 03.2019 / PubMed / Full text

PPP2R1A[править]

  • Identification of key genes and transcription factors in aging mesenchymal stem cells by DNA microarray data. / 15.04.2019 / PubMed / Full text

PPP2R2B[править]

  • Germline genetics of the p53 pathway affect longevity in a gender specific manner. / 2014 / PubMed / Full text

PPP2R3C[править]

  • The mir-465 family is upregulated with age and attenuates growth hormone signaling in mouse liver. / 04.2019 / PubMed / Full text

PPT1[править]

  • Neuroprotection and lifespan extension in Ppt1(-/-) mice by NtBuHA: therapeutic implications for INCL. / 11.2013 / PubMed / Full text

PRDM1[править]

  • Age-related changes in the BACH2 and PRDM1 genes in lymphocytes from healthy donors and chronic lymphocytic leukemia patients. / 17.01.2019 / PubMed / Full text

PRDM8[править]

  • PRDM8 reveals aberrant DNA methylation in aging syndromes and is relevant for hematopoietic and neuronal differentiation. / 20.08.2020 / PubMed / Full text

PRDX2[править]

PRDX5[править]

  • The antioxidant icariin protects porcine oocytes from age-related damage in vitro. / 12.05.2020 / PubMed / Full text

PRG2[править]

  • Peritoneal carcinomatosis of colorectal cancer is characterized by structural and functional reorganization of the tumor microenvironment inducing senescence and proliferation arrest in cancer cells. / 2016 / PubMed / Full text

PRKAA1[править]

  • Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats. / 02.2019 / PubMed / Full text

PRKACA[править]

  • Intratumoral heterogeneity of the tumor cells based on in situ cortisol excess in cortisol-producing adenomas; ∼An association among morphometry, genotype and cellular senescence∼. / 11.2020 / PubMed / Full text

PRKCB[править]

  • MEF2A alters the proliferation, inflammation-related gene expression profiles and its silencing induces cellular senescence in human coronary endothelial cells. / 18.03.2019 / PubMed / Full text

PRKCD[править]

  • Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text

PRKCH[править]

  • Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text

PRKDC[править]

  • DNA-PKcs modulates progenitor cell proliferation and fibroblast senescence in idiopathic pulmonary fibrosis. / 29.08.2019 / PubMed / Full text

PRKN[править]

  • PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. / 03.2019 / PubMed / Full text

PRLR[править]

  • Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text

PRM1[править]

  • Cytological and molecular aspects of the ageing sperm. / 01.02.2019 / PubMed / Full text

PRM2[править]

  • Cytological and molecular aspects of the ageing sperm. / 01.02.2019 / PubMed / Full text

PRODH[править]

  • Proline dehydrogenase promotes senescence through the generation of reactive oxygen species. / 15.04.2017 / PubMed / Full text

PRR9[править]

  • Circadian control of [i]ORE1[/i] by PRR9 positively regulates leaf senescence in [i]Arabidopsis[/i]. / 14.08.2018 / PubMed / Full text

PRRC2A[править]

  • Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. / 05.03.2020 / PubMed / Full text

PRRX1[править]

  • A SIRT1-centered circuitry regulates breast cancer stemness and metastasis. / 12.2018 / PubMed / Full text

PRSS16[править]

  • The complex genetics of gait speed: genome-wide meta-analysis approach. / 10.01.2017 / PubMed / Full text

PSAP[править]

  • Prosaposin and its receptors are differentially expressed in the salivary glands of male and female rats. / 08.2018 / PubMed / Full text

PSMA7[править]

  • Role of the Ubiquitin C-Terminal Hydrolase L1-Modulated Ubiquitin Proteasome System in Auditory Cortex Senescence. / 2017 / PubMed / Full text

PSMB10[править]

  • Identification of the activating cytotoxicity receptor NKG2D as a senescence marker in zero-hour kidney biopsies is indicative for clinical outcome. / 06.2017 / PubMed / Full text

PSMB5[править]

  • Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression. / 24.01.2014 / PubMed / Full text

PSMB9[править]

  • Identification of the activating cytotoxicity receptor NKG2D as a senescence marker in zero-hour kidney biopsies is indicative for clinical outcome. / 06.2017 / PubMed / Full text

PSMD11[править]

  • The effect and mechanism of 19S proteasome PSMD11/Rpn6 subunit in D-Galactose induced mimetic aging models. / 01.09.2020 / PubMed / Full text

PSMD13[править]

  • Lifelong Football Training: Effects on Autophagy and Healthy Longevity Promotion. / 2019 / PubMed / Full text

PSMD14[править]

  • Upregulation of deubiquitinase PSMD14 in lung adenocarcinoma (LUAD) and its prognostic significance. / 2020 / PubMed / Full text

PSMG1[править]

  • Long-lived rodents reveal signatures of positive selection in genes associated with lifespan. / 03.2018 / PubMed / Full text

PSTK[править]

  • Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text

PTCH1[править]

  • Sonic hedgehog regulation of cavernous nerve regeneration and neurite formation in aged pelvic plexus. / 02.2019 / PubMed / Full text

PTGDR[править]

  • Does prostaglandin D2 hold the cure to male pattern baldness? / 04.2014 / PubMed / Full text

PTGDS[править]

  • Does prostaglandin D2 hold the cure to male pattern baldness? / 04.2014 / PubMed / Full text

PTGER2[править]

  • Molecular cloning and expression analysis of prostaglandin E receptor 2 gene in cashmere goat (Capra hircus) skin during hair follicle development. / 03.04.2014 / PubMed / Full text

PTH2R[править]

  • Variation in the [[PTH2R]] gene is associated with age-related degenerative changes in the lumbar spine. / 01.2015 / PubMed / Full text

PTHLH[править]

  • Variation in the [[PTH2R]] gene is associated with age-related degenerative changes in the lumbar spine. / 01.2015 / PubMed / Full text

PTK2[править]

  • PTK2 rs7460 and rs7843014 polymorphisms and exceptional longevity: a functional replication study. / 10.2014 / PubMed / Full text

PTP4A3[править]

  • Transcriptional and Functional Changes of the Human Microvasculature during Physiological Aging and Alzheimer Disease. / 05.2020 / PubMed / Full text

PTPN7[править]

  • DNA methylation-based age prediction from saliva: High age predictability by combination of 7 CpG markers. / 07.2017 / PubMed / Full text

PTPRC[править]

  • Selective molecular biomarkers to predict biologic behavior in pituitary tumors. / 05.2017 / PubMed / Full text

PTPRD[править]

  • Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text

PTPRR[править]

  • Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text

PTPRT[править]

  • The complex genetics of gait speed: genome-wide meta-analysis approach. / 10.01.2017 / PubMed / Full text

PUM1[править]

  • Identification of reference genes for RT-qPCR data normalisation in aging studies. / 27.09.2019 / PubMed / Full text

PXN[править]

  • pxn-1 and pxn-2 May Interact Negatively during Neuronal Development and Aging in C. elegans. / 08.2015 / PubMed / Full text

QRFPR[править]

  • Explorative results from multistep screening for potential genetic risk loci of Alzheimer's disease in the longitudinal VITA study cohort. / 01.2018 / PubMed / Full text

RAB10[править]

  • Aberrant mitochondrial morphology and function associated with impaired mitophagy and DNM1L-MAPK/ERK signaling are found in aged mutant Parkinsonian LRRK2 mice. / 10.12.2020 / PubMed / Full text

RAB1B[править]

  • Lifelong Football Training: Effects on Autophagy and Healthy Longevity Promotion. / 2019 / PubMed / Full text

RAB27A[править]

  • Reduced expression level of the cyclic adenosine monophosphate response element-binding protein contributes to lung aging. / 01.2014 / PubMed / Full text

RAC3[править]

  • RAC3 more than a nuclear receptor coactivator: a key inhibitor of senescence that is downregulated in aging. / 15.10.2015 / PubMed / Full text

RAD21[править]

  • Suppression of RAD21 Induces Senescence of MDA-MB-231 Human Breast Cancer Cells Through RB1 Pathway Activation Via c-Myc Downregulation. / 06.2016 / PubMed / Full text

RAD23A[править]

  • Lifelong Football Training: Effects on Autophagy and Healthy Longevity Promotion. / 2019 / PubMed / Full text

RAD51C[править]

  • Polymorphisms of the DNA repair gene EXO1 modulate cognitive aging in old adults in a Taiwanese population. / 06.2019 / PubMed / Full text

RAD9A[править]

  • Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. / 02.2018 / PubMed / Full text

RAI1[править]

  • DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. / 25.07.2018 / PubMed / Full text

RAMP1[править]

  • Depressed perivascular sensory innervation of mouse mesenteric arteries with advanced age. / 15.04.2016 / PubMed / Full text

RAMP2[править]

  • Vascular endothelial adrenomedullin-RAMP2 system is essential for vascular integrity and organ homeostasis. / 19.02.2013 / PubMed / Full text

RAPGEF2[править]

  • Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. / 12.2017 / PubMed / Full text

RARB[править]

  • Genome-wide meta-analysis of macronutrient intake of 91,114 European ancestry participants from the cohorts for heart and aging research in genomic epidemiology consortium. / 12.2019 / PubMed / Full text

RASEF[править]

  • Near-genomewide RNAi screening for regulators of BRAF(V600E) -induced senescence identifies RASEF, a gene epigenetically silenced in melanoma. / 07.2014 / PubMed / Full text

RASGEF1A[править]

  • Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text

RASGRF2[править]

  • A single nucleotide polymorphism associated with reduced alcohol intake in the RASGRF2 gene predicts larger cortical volumes but faster longitudinal ventricular expansion in the elderly. / 2013 / PubMed / Full text

RB1CC1[править]

  • Tumor-suppressive functions of 15-Lipoxygenase-2 and RB1CC1 in prostate cancer. / 2014 / PubMed / Full text

RBBP4[править]

  • Retinoblastoma-binding Protein 4-regulated Classical Nuclear Transport Is Involved in Cellular Senescence. / 04.12.2015 / PubMed / Full text

RBFOX1[править]

  • Genetics of Gene Expression in the Aging Human Brain Reveal TDP-43 Proteinopathy Pathophysiology. / 05.08.2020 / PubMed / Full text

RBL1[править]

  • Deregulation of hsa-miR-20b expression in TNF-α-induced premature senescence of human pulmonary microvascular endothelial cells. / 11.2017 / PubMed / Full text

RBM25[править]

  • HPV shapes tumor transcriptome by globally modifying the pool of RNA binding protein-binding motif. / 29.04.2019 / PubMed / Full text

RBM3[править]

  • Infants Uniquely Express High Levels of RBM3 and Other Cold-Adaptive Neuroprotectant Proteins in the Human Brain. / 2018 / PubMed / Full text

RBM34[править]

  • The association between poverty and gene expression within peripheral blood mononuclear cells in a diverse Baltimore City cohort. / 2020 / PubMed / Full text

RBM38[править]

  • Genetic Ablation of [i]Rbm38[/i] Promotes Lymphomagenesis in the Context of Mutant p53 by Downregulating PTEN. / 15.03.2018 / PubMed / Full text

RBM6[править]

  • Bayesian association scan reveals loci associated with human lifespan and linked biomarkers. / 27.07.2017 / PubMed / Full text

RBMXL1[править]

  • Whole-Exome Sequencing of an Exceptional Longevity Cohort. / 16.08.2019 / PubMed / Full text

RBP1[править]

  • The SR proteins SF2 and RBP1 regulate triglyceride storage in the fat body of Drosophila. / 27.08.2019 / PubMed / Full text

RC3H2[править]

  • The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. / 29.07.2020 / PubMed / Full text

RDX[править]

  • Toxicity of the conventional energetics TNT and RDX relative to new insensitive munitions constituents DNAN and NTO in Rana pipiens tadpoles. / 04.2015 / PubMed / Full text

REEP4[править]

  • Chromosome Missegregation in Single Human Oocytes Is Related to the Age and Gene Expression Profile. / 12.03.2020 / PubMed / Full text

REL[править]

  • Impact of loss of NF-κB1, NF-κB2 or c-REL on SLE-like autoimmune disease and lymphadenopathy in Fas(lpr/lpr) mutant mice. / 01.2016 / PubMed / Full text

RELB[править]

  • New control of the senescence barrier in breast cancer. / 2020 / PubMed / Full text

REV1[править]

  • REV1 inhibitor JH-RE-06 enhances tumor cell response to chemotherapy by triggering senescence hallmarks. / 17.11.2020 / PubMed / Full text

RFWD3[править]

  • Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. / 05.03.2020 / PubMed / Full text

RGL1[править]

  • Arabidopsis WRKY45 Interacts with the DELLA Protein RGL1 to Positively Regulate Age-Triggered Leaf Senescence. / 12.09.2017 / PubMed / Full text

RGS10[править]

  • Age-related changes in regulator of G-protein signaling (RGS)-10 expression in peripheral and central immune cells may influence the risk for age-related degeneration. / 05.2015 / PubMed / Full text

RGS14[править]

  • Enhanced longevity and metabolism by brown adipose tissue with disruption of the regulator of G protein signaling 14. / 08.2018 / PubMed / Full text

RGS3[править]

  • The roles of ribosomal protein S19 C-terminus in a shortened neutrophil lifespan through delta lactoferrin. / 09.2015 / PubMed / Full text

RHCG[править]

  • Rh type C-glycoprotein functions as a novel tumor suppressor gene by inhibiting tumorigenicity and metastasis in head and neck squamous cell carcinoma. / 06.06.2019 / PubMed / Full text

RHD[править]

  • Suppression and narrative time shifts in adults with right-hemisphere brain damage. / 05.2013 / PubMed / Full text

RHEBL1[править]

  • Long-lived rodents reveal signatures of positive selection in genes associated with lifespan. / 03.2018 / PubMed / Full text

RHOB[править]

  • Regulation of RhoB Gene Expression during Tumorigenesis and Aging Process and Its Potential Applications in These Processes. / 13.06.2019 / PubMed / Full text

RIC3[править]

  • Genetic modifiers of cognitive maintenance among older adults. / 09.2014 / PubMed / Full text

RIF1[править]

  • 53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination. / 02.01.2020 / PubMed / Full text

RIMS2[править]

  • Age-related gene and miRNA expression changes in airways of healthy individuals. / 06.03.2019 / PubMed / Full text

RIN3[править]

  • Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text

RNASEL[править]

  • Age-related methylation profiles of equine blood leukocytes in the RNASEL locus. / 08.2016 / PubMed / Full text

RNF10[править]

  • Reduced RING finger protein 10 expression in macrophages is associated with aging-related inflammation. / 28.11.2020 / PubMed / Full text

RNF111[править]

  • Global-genome Nucleotide Excision Repair Controlled by Ubiquitin/Sumo Modifiers. / 2016 / PubMed / Full text

RNF13[править]

  • The effects of environmental stressors on candidate aging associated genes. / 08.2020 / PubMed / Full text

RNF144A[править]

  • Identification of age- and gender-associated long noncoding RNAs in the human brain with Alzheimer's disease. / 09.2019 / PubMed / Full text

RORB[править]

  • Effects of circadian clock genes and environmental factors on cognitive aging in old adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text

ROS1[править]

  • Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text

RPA1[править]

  • Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text

RPA2[править]

  • Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. / 11.2017 / PubMed / Full text

RPL13[править]

  • Selection of a Real-Time PCR Housekeeping Gene Panel in Human Endothelial Colony Forming Cells for Cellular Senescence Studies. / 2019 / PubMed / Full text

RPL18[править]

  • Comprehensive analysis of the ubiquitinome during oncogene-induced senescence in human fibroblasts. / 2015 / PubMed / Full text

RPL30[править]

  • Selection of a Real-Time PCR Housekeeping Gene Panel in Human Endothelial Colony Forming Cells for Cellular Senescence Studies. / 2019 / PubMed / Full text

RPL31[править]

  • Selection of a Real-Time PCR Housekeeping Gene Panel in Human Endothelial Colony Forming Cells for Cellular Senescence Studies. / 2019 / PubMed / Full text

RPL36[править]

  • Lifelong Football Training: Effects on Autophagy and Healthy Longevity Promotion. / 2019 / PubMed / Full text

RPL37[править]

  • Selection of a Real-Time PCR Housekeeping Gene Panel in Human Endothelial Colony Forming Cells for Cellular Senescence Studies. / 2019 / PubMed / Full text

RPL4[править]

  • Lifelong Football Training: Effects on Autophagy and Healthy Longevity Promotion. / 2019 / PubMed / Full text

RPS11[править]

  • Comprehensive analysis of the ubiquitinome during oncogene-induced senescence in human fibroblasts. / 2015 / PubMed / Full text

RPS19BP1[править]

  • Material basis, effect, and mechanism of ethanol extract of Pinellia ternata tubers on oxidative stress-induced cell senescence. / 10.2020 / PubMed / Full text

RPS6KA1[править]

  • Genetic analysis of TOR complex gene variation with human longevity: a nested case-control study of American men of Japanese ancestry. / 02.2015 / PubMed / Full text

RPS6KB1[править]

  • Inhibition of glioma growth by flavokawain B is mediated through endoplasmic reticulum stress induced autophagy. / 2018 / PubMed / Full text

RPS7[править]

  • Comprehensive analysis of the ubiquitinome during oncogene-induced senescence in human fibroblasts. / 2015 / PubMed / Full text

RRAD[править]

  • Pan-senescence transcriptome analysis identified RRAD as a marker and negative regulator of cellular senescence. / 01.2019 / PubMed / Full text

RRM2B[править]

  • Troponin T3 associates with DNA consensus sequence that overlaps with p53 binding motifs. / 15.07.2018 / PubMed / Full text

RS1[править]

  • Retinoschisin gene therapy in photoreceptors, Müller glia or all retinal cells in the Rs1h-/- mouse. / 06.2014 / PubMed / Full text

RSAD2[править]

  • Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation. / 02.08.2017 / PubMed / Full text

RSF1[править]

  • The SR proteins SF2 and RBP1 regulate triglyceride storage in the fat body of Drosophila. / 27.08.2019 / PubMed / Full text

RSL1D1[править]

  • Ribosomal L1 domain and lysine-rich region are essential for CSIG/ RSL1D1 to regulate proliferation and senescence. / 15.01.2016 / PubMed / Full text

RTN3[править]

  • Dysfunctional tubular endoplasmic reticulum constitutes a pathological feature of Alzheimer's disease. / 09.2016 / PubMed / Full text

RTN4[править]

  • Cell fate regulation by reticulon-4 in human prostate cancers. / 07.2019 / PubMed / Full text

RUNX3[править]

  • circLARP4 induces cellular senescence through regulating miR-761/RUNX3/p53/p21 signaling in hepatocellular carcinoma. / 02.2019 / PubMed / Full text

RUVBL2[править]

  • Proton irradiation impacts age-driven modulations of cancer progression influenced by immune system transcriptome modifications from splenic tissue. / 09.2015 / PubMed / Full text

RXFP1[править]

  • Sex- and age-specific differences in relaxin family peptide receptor expression within the hippocampus and amygdala in rats. / 22.01.2015 / PubMed / Full text

RXFP3[править]

  • The RXFP3 receptor is functionally associated with cellular responses to oxidative stress and DNA damage. / 03.12.2019 / PubMed / Full text

RXRA[править]

  • The nuclear receptor RXRA controls cellular senescence by regulating calcium signaling. / 12.2018 / PubMed / Full text

RYR3[править]

  • Association of the RYR3 gene polymorphisms with atherosclerosis in elderly Japanese population. / 14.01.2014 / PubMed / Full text

S100A10[править]

  • Age-related and depot-specific changes in white adipose tissue of growth hormone receptor-null mice. / 01.2014 / PubMed / Full text

S100A13[править]

  • S100A13 promotes senescence-associated secretory phenotype and cellular senescence via modulation of non-classical secretion of IL-1α. / 23.01.2019 / PubMed / Full text

S100A7[править]

  • The secreted protein S100A7 (psoriasin) is induced by telomere dysfunction in human keratinocytes independently of a DNA damage response and cell cycle regulators. / 2014 / PubMed / Full text

S100P[править]

  • Cancer-associated S100P protein binds and inactivates p53, permits therapy-induced senescence and supports chemoresistance. / 19.04.2016 / PubMed / Full text

SAA2[править]

  • Naturally occurring antibodies against serum amyloid A reduce IL-6 release from peripheral blood mononuclear cells. / 2018 / PubMed / Full text

SACM1L[править]

  • Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text

SAMD10[править]

  • Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. / 11.2017 / PubMed / Full text

SAMD12[править]

  • Genome-wide scan of depressive symptomatology in two representative cohorts in the United States and the United Kingdom. / 05.2018 / PubMed / Full text

SAMHD1[править]

  • Gut microbiota lipopolysaccharide accelerates inflamm-aging in mice. / 16.01.2016 / PubMed / Full text

SARM1[править]

  • Sarm1 Deletion, but Not Wld , Confers Lifelong Rescue in a Mouse Model of Severe Axonopathy. / 03.10.2017 / PubMed / Full text

SAT1[править]

  • Triethylenetetramine (trientine): a caloric restriction mimetic with a new mode of action. / 08.2020 / PubMed / Full text

SCAMP1[править]

  • Secretory Carrier Membrane Protein (SCAMP) deficiency influences behavior of adult flies. / 2014 / PubMed / Full text

SCAMP4[править]

SCD5[править]

  • Bovine brain region-specific stearoyl-CoA desaturase expression and fatty acid composition. / 06.2015 / PubMed / Full text

SCGB1A1[править]

  • Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. / 03.2015 / PubMed / Full text

SCGB2A2[править]

  • Sensitivity of neoplastic cells to senescence unveiled under standard cell culture conditions. / 05.2015 / PubMed

SCGB3A2[править]

  • Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. / 03.2015 / PubMed / Full text

SCN1A[править]

  • Effects of normal aging and SCN1A risk-gene expression on brain metabolites: evidence for an association between SCN1A and myo-inositol. / 02.2014 / PubMed / Full text

SCN2A[править]

  • Na 1.2 haploinsufficiency in Scn2a knock-out mice causes an autistic-like phenotype attenuated with age. / 09.09.2019 / PubMed / Full text

SCN9A[править]

  • The SCN9A channel and plasma membrane depolarization promote cellular senescence through Rb pathway. / 06.2018 / PubMed / Full text

SCNN1B[править]

  • Bitter, Sweet, Salty, Sour and Umami Taste Perception Decreases with Age: Sex-Specific Analysis, Modulation by Genetic Variants and Taste-Preference Associations in 18 to 80 Year-Old Subjects. / 18.10.2018 / PubMed / Full text

SCO1[править]

  • Real-Time PCR Analysis of Metabolism-Related Genes in a Long-Lived Model of C. elegans. / 2020 / PubMed / Full text

SCPEP1[править]

  • Structural and kinetic evidence of aging after organophosphate inhibition of human Cathepsin A. / 07.2020 / PubMed / Full text

SCRIB[править]

  • Scribble is required for pregnancy-induced alveologenesis in the adult mammary gland. / 15.06.2016 / PubMed / Full text

SCX[править]

  • Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text

SDC2[править]

  • Alterations in Corneal Sensory Nerves During Homeostasis, Aging, and After Injury in Mice Lacking the Heparan Sulfate Proteoglycan Syndecan-1. / 01.10.2017 / PubMed / Full text

SDC3[править]

  • Alterations in Corneal Sensory Nerves During Homeostasis, Aging, and After Injury in Mice Lacking the Heparan Sulfate Proteoglycan Syndecan-1. / 01.10.2017 / PubMed / Full text

SDHAF2[править]

  • Long-term prognosis of patients with pediatric pheochromocytoma. / 02.2014 / PubMed / Full text

SDHD[править]

  • Long-term prognosis of patients with pediatric pheochromocytoma. / 02.2014 / PubMed / Full text

SEC23A[править]

  • Pancreatic SEC23B deficiency is sufficient to explain the perinatal lethality of germline SEC23B deficiency in mice. / 14.06.2016 / PubMed / Full text

SEC23B[править]

  • Pancreatic SEC23B deficiency is sufficient to explain the perinatal lethality of germline SEC23B deficiency in mice. / 14.06.2016 / PubMed / Full text

SELENBP1[править]

  • A Caenorhabditis elegans ortholog of human selenium-binding protein 1 is a pro-aging factor protecting against selenite toxicity. / 01.2020 / PubMed / Full text

SELENOH[править]

  • The Thioredoxin-Like Family of Selenoproteins: Implications in Aging and Age-Related Degeneration. / 03.2019 / PubMed / Full text

SELENOK[править]

  • Dietary selenium deficiency and supplementation differentially modulate the expression of two ER-resident selenoproteins (selenoprotein K and selenoprotein M) in the ovaries of aged mice: Preliminary data. / 09.2020 / PubMed / Full text

SELENOP[править]

  • Analyses of Selenotranscriptomes and Selenium Concentrations in Response to Dietary Selenium Deficiency and Age Reveal Common and Distinct Patterns by Tissue and Sex in Telomere-Dysfunctional Mice. / 10.2017 / PubMed / Full text

SELENOT[править]

  • The Thioredoxin-Like Family of Selenoproteins: Implications in Aging and Age-Related Degeneration. / 03.2019 / PubMed / Full text

SELENOV[править]

  • The Thioredoxin-Like Family of Selenoproteins: Implications in Aging and Age-Related Degeneration. / 03.2019 / PubMed / Full text

SELENOW[править]

  • The Thioredoxin-Like Family of Selenoproteins: Implications in Aging and Age-Related Degeneration. / 03.2019 / PubMed / Full text

SELP[править]

  • Effect of age on expression of spermatogonial markers in bovine testis and isolated cells. / 07.2016 / PubMed / Full text

SEMA3A[править]

  • Autoregulation of Osteocyte Sema3A Orchestrates Estrogen Action and Counteracts Bone Aging. / 05.03.2019 / PubMed / Full text

SEMA6C[править]

  • Suppression of SEMA6C promotes preantral follicles atresia with decreased cell junctions in mice ovaries. / 04.2019 / PubMed / Full text

SENP1[править]

  • Aging-related SUMOylation pattern in the cortex and blood plasma of wild type mice. / 06.03.2018 / PubMed / Full text

SENP6[править]

  • Molecular signature for senile and complicated cataracts derived from analysis of sumoylation enzymes and their substrates in human cataract lenses. / 10.2020 / PubMed / Full text

SENP7[править]

  • Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. / 05.03.2020 / PubMed / Full text

SERPINA1[править]

  • Proteomic profiling of follicle fluids after superstimulation in one-month-old lambs. / 02.2018 / PubMed / Full text

SERPINB3[править]

SESN1[править]

  • Sestrins are differentially expressed with age in the skeletal muscle of men: A cross-sectional analysis. / 09.2018 / PubMed / Full text

SETX[править]

  • Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae. / 11.2016 / PubMed / Full text

SFPQ[править]

  • Downregulation of LncRNA NORAD promotes Ox-LDL-induced vascular endothelial cell injury and atherosclerosis. / 08.04.2020 / PubMed / Full text

SFRP5[править]

  • SFRP5 serves a beneficial role in arterial aging by inhibiting the proliferation, migration and inflammation of smooth muscle cells. / 11.2018 / PubMed / Full text

SFTPA1[править]

  • Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. / 03.2015 / PubMed / Full text

SGCE[править]

  • Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. / 12.2015 / PubMed / Full text

SGPP2[править]

  • Vitamin D-responsive SGPP2 variants associated with lung cell expression and lung function. / 25.11.2013 / PubMed / Full text

SGSH[править]

  • MPS-IIIA mice acquire autistic behaviours with age. / 07.2018 / PubMed / Full text

SH2B1[править]

  • The Dyslexia-susceptibility Protein KIAA0319 Inhibits Axon Growth Through Smad2 Signaling. / 01.03.2017 / PubMed / Full text

SH2B3[править]

  • Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity. / 13.10.2017 / PubMed / Full text

SHC1[править]

  • Docosahexaenoic acid prevented tumor necrosis factor alpha-induced endothelial dysfunction and senescence. / 01.2016 / PubMed / Full text

SHCBP1[править]

  • Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text

SHD[править]

  • Does self-reported hearing difficulty decrease older adults' cognitive and physical functioning? The mediating role of social isolation. / 11.2020 / PubMed / Full text

SHMT2[править]

  • Epigenetic regulation of the nuclear-coded GCAT and SHMT2 genes confers human age-associated mitochondrial respiration defects. / 22.05.2015 / PubMed / Full text

SHOX2[править]

  • Role of SHOX2 in the development of intervertebral disc degeneration. / 05.2017 / PubMed / Full text

SHROOM3[править]

  • A roadmap for the genetic analysis of renal aging. / 10.2015 / PubMed / Full text

SIGIRR[править]

  • Anti-Inflamm-Aging Effects of Long-Term Caloric Restriction via Overexpression of SIGIRR to Inhibit NF-κB Signaling Pathway. / 2015 / PubMed / Full text

SIK3[править]

  • Quantitative and Qualitative Role of Antagonistic Heterogeneity in Genetics of Blood Lipids. / 25.09.2020 / PubMed / Full text

SIL1[править]

  • SIL1, the endoplasmic-reticulum-localized BiP co-chaperone, plays a crucial role in maintaining skeletal muscle proteostasis and physiology. / 10.05.2018 / PubMed / Full text

SIX1[править]

  • Low Six4 and Six5 gene dosage improves dystrophic phenotype and prolongs life span of mdx mice. / 08.2016 / PubMed / Full text

SIX2[править]

  • Age-Dependent Pancreatic Gene Regulation Reveals Mechanisms Governing Human β Cell Function. / 10.05.2016 / PubMed / Full text

SIX4[править]

  • Low Six4 and Six5 gene dosage improves dystrophic phenotype and prolongs life span of mdx mice. / 08.2016 / PubMed / Full text

SIX5[править]

  • Low Six4 and Six5 gene dosage improves dystrophic phenotype and prolongs life span of mdx mice. / 08.2016 / PubMed / Full text

SKAP2[править]

  • Longevity-related molecular pathways are subject to midlife "switch" in humans. / 08.2019 / PubMed / Full text

SKI[править]

  • Preventive effect of Shenkang injection against high glucose-induced senescence of renal tubular cells. / 04.2019 / PubMed / Full text

SKP1[править]

  • Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and abscisic acid. / 01.2016 / PubMed / Full text

SLAMF1[править]

  • Systemic Inflammation and the Increased Risk of Inflamm-Aging and Age-Associated Diseases in People Living With HIV on Long Term Suppressive Antiretroviral Therapy. / 2019 / PubMed / Full text

SLAMF7[править]

  • Age-related differences in neuroinflammatory responses associated with a distinct profile of regulatory markers on neonatal microglia. / 04.04.2014 / PubMed / Full text

SLC11A1[править]

  • The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. / 29.07.2020 / PubMed / Full text

SLC12A5[править]

  • DNA methylation-based age prediction from saliva: High age predictability by combination of 7 CpG markers. / 07.2017 / PubMed / Full text

SLC12A8[править]

  • Identifying blood-specific age-related DNA methylation markers on the Illumina MethylationEPIC® BeadChip. / 10.2019 / PubMed / Full text

SLC15A1[править]

  • Molecular changes to the rat renal cotransporters PEPT1 and PEPT2 due to ageing. / 02.2019 / PubMed / Full text

SLC15A2[править]

  • Molecular changes to the rat renal cotransporters PEPT1 and PEPT2 due to ageing. / 02.2019 / PubMed / Full text

SLC16A10[править]

  • The SLC16 gene family - structure, role and regulation in health and disease. / 04-06.2013 / PubMed / Full text

SLC16A2[править]

  • The SLC16 gene family - structure, role and regulation in health and disease. / 04-06.2013 / PubMed / Full text

SLC16A3[править]

  • The SLC16 gene family - structure, role and regulation in health and disease. / 04-06.2013 / PubMed / Full text

SLC17A3[править]

  • Sequencing of 2 subclinical atherosclerosis candidate regions in 3669 individuals: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text

SLC17A4[править]

  • Sequencing of 2 subclinical atherosclerosis candidate regions in 3669 individuals: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text

SLC1A5[править]

  • SLC1A5 glutamine transporter is a target of MYC and mediates reduced mTORC1 signaling and increased fatty acid oxidation in long-lived Myc hypomorphic mice. / 06.2019 / PubMed / Full text

SLC22A12[править]

  • ABCG2 rs2231142 variant in hyperuricemia is modified by SLC2A9 and SLC22A12 polymorphisms and cardiovascular risk factors in an elderly community-dwelling population. / 17.03.2020 / PubMed / Full text

SLC22A14[править]

  • Explorative results from multistep screening for potential genetic risk loci of Alzheimer's disease in the longitudinal VITA study cohort. / 01.2018 / PubMed / Full text

SLC22A23[править]

  • Clinical and genetic risk factors for decreased bone mineral density in Japanese patients with inflammatory bowel disease. / 11.2018 / PubMed / Full text

SLC24A5[править]

SLC25A15[править]

  • The hyperornithinemia-hyperammonemia-homocitrullinuria syndrome. / 11.03.2015 / PubMed / Full text

SLC27A1[править]

  • EPRS is a critical mTORC1-S6K1 effector that influences adiposity in mice. / 16.02.2017 / PubMed / Full text

SLC2A4RG[править]

  • Genome-wide association study for lactation persistency, female fertility, longevity, and lifetime profit index traits in Holstein dairy cattle. / 02.2017 / PubMed / Full text

SLC30A1[править]

  • Changes in Zn homeostasis during long term culture of primary endothelial cells and effects of Zn on endothelial cell senescence. / 01.12.2017 / PubMed / Full text

SLC30A10[править]

  • Changes in Zn homeostasis during long term culture of primary endothelial cells and effects of Zn on endothelial cell senescence. / 01.12.2017 / PubMed / Full text

SLC30A3[править]

  • SLC30A3 and SEP15 gene polymorphisms influence the serum concentrations of zinc and selenium in mature adults. / 09.2014 / PubMed / Full text

SLC30A5[править]

  • Changes in Zn homeostasis during long term culture of primary endothelial cells and effects of Zn on endothelial cell senescence. / 01.12.2017 / PubMed / Full text

SLC36A4[править]

  • The amino acid transporter SLC36A4 regulates the amino acid pool in retinal pigmented epithelial cells and mediates the mechanistic target of rapamycin, complex 1 signaling. / 04.2017 / PubMed / Full text

SLC39A5[править]

  • Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients. / 03.09.2019 / PubMed / Full text

SLC39A6[править]

  • Changes in Zn homeostasis during long term culture of primary endothelial cells and effects of Zn on endothelial cell senescence. / 01.12.2017 / PubMed / Full text

SLC41A1[править]

  • Magnesium transporter protein solute carrier family 41 member 1 suppresses human pancreatic ductal adenocarcinoma through magnesium-dependent Akt/mTOR inhibition and bax-associated mitochondrial apoptosis. / 08.05.2019 / PubMed / Full text

SLC4A7[править]

  • Multivariate genomic scan implicates novel loci and haem metabolism in human ageing. / 16.07.2020 / PubMed / Full text

SLC52A2[править]

  • Clinical, pathological and functional characterization of riboflavin-responsive neuropathy. / 01.11.2017 / PubMed / Full text

SLC52A3[править]

  • Clinical, pathological and functional characterization of riboflavin-responsive neuropathy. / 01.11.2017 / PubMed / Full text

SLCO1B1[править]

  • The SLCO1B1 c.521T>C polymorphism is associated with dose decrease or switching during statin therapy in the Rotterdam Study. / 01.2014 / PubMed / Full text

SLCO1B3[править]

  • Paclitaxel-induced sensory peripheral neuropathy is associated with an ABCB1 single nucleotide polymorphism and older age in Japanese. / 06.2017 / PubMed / Full text

SLCO1C1[править]

  • Genomics and CSF analyses implicate thyroid hormone in hippocampal sclerosis of aging. / 12.2016 / PubMed / Full text

SLIT2[править]

  • Analysis of gene expression during aging of CGNs in culture: implication of SLIT2 and NPY in senescence. / 06.2015 / PubMed / Full text

SLPI[править]

  • Human buccal epithelium acquires microbial hyporesponsiveness at birth, a role for secretory leukocyte protease inhibitor. / 06.2015 / PubMed / Full text

SMAP[править]

  • DNA integrity-protecting and survival-promoting activity of serotonergic system in sturgeon juveniles and sazans. / 08.2017 / PubMed / Full text

SMARCA5[править]

  • The epigenetic regulator SIRT7 guards against mammalian cellular senescence induced by ribosomal DNA instability. / 13.07.2018 / PubMed / Full text

SMARCB1[править]

  • High-Throughput Functional Genetic and Compound Screens Identify Targets for Senescence Induction in Cancer. / 17.10.2017 / PubMed / Full text

SMARCD1[править]

  • Delphinidin-3-glucoside suppresses lipid accumulation in HepG2 cells. / 12.2018 / PubMed / Full text

SMC1A[править]

  • Age-related decrease of meiotic cohesins in human oocytes. / 2014 / PubMed / Full text

SMC1B[править]

  • Age-related decrease of meiotic cohesins in human oocytes. / 2014 / PubMed / Full text

SMC2[править]

  • The proteomic study of serially passaged human skin fibroblast cells uncovers down-regulation of the chromosome condensin complex proteins involved in replicative senescence. / 10.11.2018 / PubMed / Full text

SMC4[править]

  • The proteomic study of serially passaged human skin fibroblast cells uncovers down-regulation of the chromosome condensin complex proteins involved in replicative senescence. / 10.11.2018 / PubMed / Full text

SMC5[править]

  • SMC5/6 is required for the formation of segregation-competent bivalent chromosomes during meiosis I in mouse oocytes. / 01.05.2017 / PubMed / Full text

SMG1[править]

  • SMG1 heterozygosity exacerbates haematopoietic cancer development in Atm null mice by increasing persistent DNA damage and oxidative stress. / 12.2019 / PubMed / Full text

SMG6[править]

  • Genetic Burden Analyses of Phenotypes Relevant to Aging in the Berlin Aging Study II (BASE-II). / 2016 / PubMed / Full text

SMPD3[править]

  • Endoplasmic Reticulum Stress Mediates Vascular Smooth Muscle Cell Calcification via Increased Release of Grp78-Loaded Extracellular Vesicles. / 10.12.2020 / PubMed / Full text

SMURF2[править]

  • Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text

SMYD2[править]

  • Collaboration of MYC and RUNX2 in lymphoma simulates T-cell receptor signaling and attenuates p53 pathway activity. / 10.2019 / PubMed / Full text

SNAI2[править]

  • Reawakening of dormant estrogen-dependent human breast cancer cells by bone marrow stroma secretory senescence. / 17.08.2018 / PubMed / Full text

SNAP23[править]

  • Effects of immobilization and aerobic training on proteins related to intramuscular substrate storage and metabolism in young and older men. / 03.2016 / PubMed / Full text

SND1[править]

  • [Downregulation of SND1 Expression Accelerates Cell Senescence of Human Diploid Fibroblasts 2BS via Modulating the SASP]. / 05.2020 / PubMed / Full text

SNN[править]

  • Evolving Spiking Neural Networks for Recognition of Aged Voices. / 01.2017 / PubMed / Full text

SNRPE[править]

  • In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. / 12.2019 / PubMed / Full text

SNRPN[править]

  • Age-associated changes in gene expression of goat oocytes. / 01.09.2013 / PubMed / Full text

SNX15[править]

SOBP[править]

  • Lifetime increased cancer risk in mice following exposure to clinical proton beam-generated neutrons. / 01.05.2014 / PubMed / Full text

SORCS2[править]

  • Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. / 10.2016 / PubMed / Full text

SORT1[править]

  • Soluble sortilin is present in excess and positively correlates with progranulin in CSF of aging individuals. / 11.2016 / PubMed / Full text

SOS1[править]

  • Fucoidan⁻Fucoxanthin Ameliorated Cardiac Function via IRS1/GRB2/ SOS1, GSK3β/CREB Pathways and Metabolic Pathways in Senescent Mice. / 21.01.2019 / PubMed / Full text

SOX1[править]

  • The APOE gene cluster responds to air pollution factors in mice with coordinated expression of genes that differs by age in humans. / 20.11.2020 / PubMed / Full text

SOX10[править]

  • SOX10 Distinguishes Pilocytic and Pilomyxoid Astrocytomas From Ependymomas but Shows No Differences in Expression Level in Ependymomas From Infants Versus Older Children or Among Molecular Subgroups. / 04.2016 / PubMed / Full text

SOX11[править]

  • A lowered 26S proteasome activity correlates with mantle lymphoma cell lines resistance to genotoxic stress. / 10.08.2017 / PubMed / Full text

SOX13[править]

  • In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. / 12.2019 / PubMed / Full text

SOX17[править]

  • SOX17 Regulates Conversion of Human Fibroblasts Into Endothelial Cells and Erythroblasts by Dedifferentiation Into CD34 Progenitor Cells. / 20.06.2017 / PubMed / Full text

SOX6[править]

  • Gene expression markers in horse articular chondrocytes: Chondrogenic differentiaton IN VITRO depends on the proliferative potential and ageing. Implication for tissue engineering of cartilage. / 02.2020 / PubMed / Full text

SP2[править]

  • Influence of season, age and management on scrotal thermal profile in Murrah bulls using scrotal infrared digital thermography. / 12.2017 / PubMed / Full text

SP7[править]

  • microRNA-31 inhibition partially ameliorates the deficiency of bone marrow stromal cells from cleidocranial dysplasia. / 06.2019 / PubMed / Full text

SP8[править]

  • Molecular control of two novel migratory paths for CGE-derived interneurons in the developing mouse brain. / 15.05.2016 / PubMed / Full text

SPAG9[править]

  • Sperm-associated antigen 9 (SPAG9) promotes the survival and tumor growth of triple-negative breast cancer cells. / 10.2016 / PubMed / Full text

SPATS2L[править]

  • Longitudinal analysis of bronchodilator response in asthmatics and effect modification of age-related trends by genotype. / 02.2019 / PubMed / Full text

SPG11[править]

SPG21[править]

  • Loss of Maspardin Attenuates the Growth and Maturation of Mouse Cortical Neurons. / 2016 / PubMed / Full text

SPG7[править]

  • Loss of the Drosophila m-AAA mitochondrial protease paraplegin results in mitochondrial dysfunction, shortened lifespan, and neuronal and muscular degeneration. / 21.02.2018 / PubMed / Full text

SPHK1[править]

  • Sphingosine Kinase-1 Is Essential for Maintaining External/Outer Limiting Membrane and Associated Adherens Junctions in the Aging Retina. / 10.2019 / PubMed / Full text

SPHK2[править]

  • Loss of genomic integrity induced by lysosphingolipid imbalance drives ageing in the heart. / 04.2019 / PubMed / Full text

SPI1[править]

  • Association of levels of fasting glucose and insulin with rare variants at the chromosome 11p11.2-MADD locus: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text

SPO11[править]

  • "Mitotic Slippage" and Extranuclear DNA in Cancer Chemoresistance: A Focus on Telomeres. / 16.04.2020 / PubMed / Full text

SPX[править]

  • Phosphorus remobilization from rice flag leaves during grain filling: an RNA-seq study. / 01.2017 / PubMed / Full text

SREBF1[править]

  • The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. / 29.09.2020 / PubMed / Full text

SRI[править]

  • The Role of Aging, Drug Dependence, and Hepatitis C Comorbidity in Alcoholism Cortical Compromise. / 01.05.2018 / PubMed / Full text

SRL[править]

  • Income dividends and subjective survival in a Cherokee Indian cohort: a quasi-experiment. / 04-06.2020 / PubMed / Full text

SRPK1[править]

  • [Age-related changes in the content of serine-arginine protein kinase 1 (SRPK1) in human dermis.] / 2017 / PubMed

SRSF1[править]

  • Cellular stress and AMPK activation as a common mechanism of action linking the effects of metformin and diverse compounds that alleviate accelerated aging defects in Hutchinson-Gilford progeria syndrome. / 09.2018 / PubMed / Full text

SRSF10[править]

  • Inflammation and hyperglycemia mediate Deaf1 splicing in the pancreatic lymph nodes via distinct pathways during type 1 diabetes. / 02.2015 / PubMed / Full text

SRSF2[править]

  • Insight into the molecular pathophysiology of myelodysplastic syndromes: targets for novel therapy. / 10.2016 / PubMed / Full text

SRSF3[править]

  • Alternative polyadenylation dependent function of splicing factor SRSF3 contributes to cellular senescence. / 04.03.2019 / PubMed / Full text

SSBP2[править]

  • Genetic associations with age of menopause in familial longevity. / 10.2019 / PubMed / Full text

SSTR3[править]

  • Type 3 Adenylyl Cyclase and Somatostatin Receptor 3 Expression Persists in Aged Rat Neocortical and Hippocampal Neuronal Cilia. / 2016 / PubMed / Full text

SSX2[править]

  • Ectopic expression of cancer/testis antigen SSX2 induces DNA damage and promotes genomic instability. / 02.2015 / PubMed / Full text

ST18[править]

  • [Target protein candidates of hypothalamus in aging rats with intervention by Qiongyugao]. / 04.2016 / PubMed / Full text

STAT5B[править]

  • Reductions in serum IGF-1 during aging impair health span. / 06.2014 / PubMed / Full text

STC1[править]

  • Proteomic profiling of follicle fluids after superstimulation in one-month-old lambs. / 02.2018 / PubMed / Full text

STC2[править]

  • Genome-wide Associations Reveal Human-Mouse Genetic Convergence and Modifiers of Myogenesis, CPNE1 and STC2. / 05.12.2019 / PubMed / Full text

STIP1[править]

  • The E3 ubiquitin ligase STUB1 attenuates cell senescence by promoting the ubiquitination and degradation of the core circadian regulator BMAL1. / 03.04.2020 / PubMed / Full text

STK11[править]

  • A Multigene Test Could Cost-Effectively Help Extend Life Expectancy for Women at Risk of Hereditary Breast Cancer. / 04.2017 / PubMed / Full text

STK32C[править]

  • DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. / 25.07.2018 / PubMed / Full text

STK38L[править]

STOML2[править]

  • Slower Dynamics and Aged Mitochondria in Sporadic Alzheimer's Disease. / 2017 / PubMed / Full text

STRA6[править]

  • Transport of vitamin A across blood-tissue barriers is facilitated by STRA6. / 08.2016 / PubMed / Full text

STX16[править]

  • Clinical characterization and molecular classification of 12 Korean patients with pseudohypoparathyroidism and pseudopseudohypoparathyroidism. / 10.2013 / PubMed / Full text

STX17[править]

  • Directed elimination of senescent cells attenuates development of osteoarthritis by inhibition of c-IAP and XIAP. / 01.10.2019 / PubMed / Full text

SUCLA2[править]

  • An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. / 12.2019 / PubMed / Full text

SUCNR1[править]

  • [The effect of Mexidol on cerebral mitochondriogenesis at a young age and during aging]. / 2020 / PubMed / Full text

SUGCT[править]

  • Knockout of the non-essential gene SUGCT creates diet-linked, age-related microbiome disbalance with a diabetes-like metabolic syndrome phenotype. / 09.2020 / PubMed / Full text

SULT1A1[править]

  • Bayesian association scan reveals loci associated with human lifespan and linked biomarkers. / 27.07.2017 / PubMed / Full text

SULT1E1[править]

  • Sex- and age-dependent gene expression in human liver: An implication for drug-metabolizing enzymes. / 02.2017 / PubMed / Full text

SULT2A1[править]

  • Sex-, age-, and race/ethnicity-dependent variations in drug-processing and NRF2-regulated genes in human livers. / 08.11.2020 / PubMed / Full text

SUMO1[править]

  • SUMO1-conjugation is altered during normal aging but not by increased amyloid burden. / 08.2018 / PubMed / Full text

SUMO2[править]

  • KSHV latent protein LANA2 inhibits sumo2 modification of p53. / 2015 / PubMed / Full text

SUN1[править]

  • Imbalanced nucleocytoskeletal connections create common polarity defects in progeria and physiological aging. / 26.02.2019 / PubMed / Full text

SUN2[править]

  • Imbalanced nucleocytoskeletal connections create common polarity defects in progeria and physiological aging. / 26.02.2019 / PubMed / Full text

SUSD1[править]

  • A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. / 07.2013 / PubMed / Full text

SUSD2[править]

  • Comparing the Effect of TGF-β Receptor Inhibition on Human Perivascular Mesenchymal Stromal Cells Derived from Endometrium, Bone Marrow and Adipose Tissues. / 01.12.2020 / PubMed / Full text

SV2B[править]

  • Mutant Huntingtin Causes a Selective Decrease in the Expression of Synaptic Vesicle Protein 2C. / 10.2018 / PubMed / Full text

SV2C[править]

  • Mutant Huntingtin Causes a Selective Decrease in the Expression of Synaptic Vesicle Protein 2C. / 10.2018 / PubMed / Full text

SYCP2[править]

  • Accelerated reproductive aging in females lacking a novel centromere protein [[SYCP2L]]. / 15.11.2015 / PubMed / Full text

SYCP2L[править]

  • Accelerated reproductive aging in females lacking a novel centromere protein [[SYCP2L]]. / 15.11.2015 / PubMed / Full text

SYCP3[править]

  • Effects of Saikokaryukotsuboreito on Spermatogenesis and Fertility in Aging Male Mice. / 05.04.2016 / PubMed / Full text

SYNE1[править]

  • Nesprin-1 impact on tumorigenic cell phenotypes. / 02.2020 / PubMed / Full text

SYNE2[править]

  • Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. / 03.2020 / PubMed / Full text

SYNJ2[править]

  • DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. / 25.07.2018 / PubMed / Full text

SYT1[править]

  • Two Behavioral Tests Allow a Better Correlation Between Cognitive Function and Expression of Synaptic Proteins. / 2018 / PubMed / Full text

SYT4[править]

  • Age-related obesity and type 2 diabetes dysregulate neuronal associated genes and proteins in humans. / 06.10.2015 / PubMed / Full text

SYT7[править]

  • Synaptotagmin-7, a binding protein of P53, inhibits the senescence and promotes the tumorigenicity of lung cancer cells. / 28.02.2019 / PubMed / Full text

TAAR1[править]

  • Minimal Age-Related Alterations in Behavioral and Hematological Parameters in Trace Amine-Associated Receptor 1 (TAAR1) Knockout Mice. / 03.2020 / PubMed / Full text

TAC3[править]

  • Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus. / 2015 / PubMed / Full text

TAF15[править]

  • FET proteins regulate lifespan and neuronal integrity. / 27.04.2016 / PubMed / Full text

TAF7[править]

  • Basonuclin 1 deficiency causes testicular premature aging: BNC1 cooperates with TAF7L to regulate spermatogenesis. / 22.01.2020 / PubMed / Full text

TAF7L[править]

  • Basonuclin 1 deficiency causes testicular premature aging: BNC1 cooperates with TAF7L to regulate spermatogenesis. / 22.01.2020 / PubMed / Full text

TANK[править]

  • Aging aggravated liver ischemia and reperfusion injury by promoting STING-mediated NLRP3 activation in macrophages. / 08.2020 / PubMed / Full text

TAP1[править]

  • Age-associated methylation change of TAP1 promoter in piglet. / 15.11.2015 / PubMed / Full text

TAP2[править]

  • Lifespan of mice and primates correlates with immunoproteasome expression. / 05.2015 / PubMed / Full text

TAS1R2[править]

  • Bitter, Sweet, Salty, Sour and Umami Taste Perception Decreases with Age: Sex-Specific Analysis, Modulation by Genetic Variants and Taste-Preference Associations in 18 to 80 Year-Old Subjects. / 18.10.2018 / PubMed / Full text

TBC1D2[править]

  • Genome-wide association study identifies [i]SIAH3[/i] locus influencing the rate of ventricular enlargement in non-demented elders. / 11.11.2019 / PubMed / Full text

TBR1[править]

  • DNA methylation-based age prediction from saliva: High age predictability by combination of 7 CpG markers. / 07.2017 / PubMed / Full text

TBX3[править]

  • Coordinated control of senescence by lncRNA and a novel T-box3 co-repressor complex. / 29.05.2014 / PubMed / Full text

TCERG1[править]

  • The longevity-promoting factor, TCER-1, widely represses stress resistance and innate immunity. / 17.07.2019 / PubMed / Full text

TCF15[править]

TCF21[править]

  • Balance between senescence and apoptosis is regulated by telomere damage-induced association between p16 and caspase-3. / 22.06.2018 / PubMed / Full text

TCF7L1[править]

TCP1[править]

  • Proteometabolomic characterization of apical bud maturation in Pinus pinaster. / 01.09.2020 / PubMed / Full text

TCTA[править]

  • Exciplex-Forming Cohost for High Efficiency and High Stability Phosphorescent Organic Light-Emitting Diodes. / 17.01.2018 / PubMed / Full text

TDRD1[править]

  • Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice. / 01.2020 / PubMed / Full text

TDRD6[править]

  • Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice. / 01.2020 / PubMed / Full text

TEAD4[править]

  • Clinical, polysomnographic and genome-wide association analyses of narcolepsy with cataplexy: a European Narcolepsy Network study. / 10.2013 / PubMed / Full text

TECPR2[править]

  • Neuropathology-driven Whole-genome Sequencing Study Points to Novel Candidate Genes for Healthy Brain Aging. / 01-03.2019 / PubMed / Full text

TEP1[править]

  • [Influence of Age on the Susceptibility of Anopheles stephensi to Plasmodium berghei Infection]. / 12.2016 / PubMed

TERF2IP[править]

  • Endothelial senescence-associated secretory phenotype (SASP) is regulated by Makorin-1 ubiquitin E3 ligase. / 11.2019 / PubMed / Full text

TESC[править]

  • Clonogenic Culture of Mouse Thymic Epithelial Cells. / 2019 / PubMed / Full text

TFAP2A[править]

  • Replicative senescence is associated with nuclear reorganization and with DNA methylation at specific transcription factor binding sites. / 2015 / PubMed / Full text

TFE3[править]

  • Towards Age-Related Anti-Inflammatory Therapy: Klotho Suppresses Activation of ER and Golgi Stress Response in Senescent Monocytes. / 21.01.2020 / PubMed / Full text

TFG[править]

TFPI[править]

  • Identification of cardiovascular health gene variants related to longevity in a Chinese population. / 07.09.2020 / PubMed / Full text

TGDS[править]

  • The evaluation and design of a short depression screening tool in Turkish older adults. / 10.2018 / PubMed / Full text

TGFB2[править]

  • Seminal plasma transforming growth factor-β, activin A and follistatin fluctuate within men over time. / 10.2016 / PubMed / Full text

TGFBR1[править]

  • Dexamethasone Induces a Specific Form of Ramified Dysfunctional Microglia. / 02.2019 / PubMed / Full text

TGM2[править]

  • Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. / 11.2018 / PubMed / Full text

THADA[править]

  • Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. / 29.09.2015 / PubMed / Full text

THBS1[править]

  • G protein-coupled receptor kinase 4-induced cellular senescence and its senescence-associated gene expression profiling. / 15.11.2017 / PubMed / Full text

THBS4[править]

  • Specific factors in blood from young but not old mice directly promote synapse formation and NMDA-receptor recruitment. / 18.06.2019 / PubMed / Full text

THEMIS[править]

  • Lifetime benefits of early detection and treatment of diabetic kidney disease. / 2019 / PubMed / Full text

THPO[править]

  • Thrombopoietin is associated with δ's intercept, and only in Non-Hispanic Whites. / 2016 / PubMed / Full text

TIE1[править]

  • Cerebrovascular Senescence Is Associated With Tau Pathology in Alzheimer's Disease. / 2020 / PubMed / Full text

TIMP3[править]

  • Enhanced tissue regeneration potential of juvenile articular cartilage. / 11.2013 / PubMed / Full text

TINF2[править]

  • Acute telomerase components depletion triggers oxidative stress as an early event previous to telomeric shortening. / 04.2018 / PubMed / Full text

TJP1[править]

  • Morphological and immunohistochemical characteristics of the equine corneal epithelium. / 11.2019 / PubMed / Full text

TLR10[править]

  • Innate immune response to LPS in airway epithelium is dependent on chronological age and antecedent exposures. / 11.2013 / PubMed / Full text

TM9SF1[править]

  • Epigallocatechin-3-gallate increases autophagy signaling in resting and unloaded plantaris muscles but selectively suppresses autophagy protein abundance in reloaded muscles of aged rats. / 06.2017 / PubMed / Full text

TMEM127[править]

  • Long-term prognosis of patients with pediatric pheochromocytoma. / 02.2014 / PubMed / Full text

TMEM135[править]

  • Mouse [i]Tmem135[/i] mutation reveals a mechanism involving mitochondrial dynamics that leads to age-dependent retinal pathologies. / 15.11.2016 / PubMed / Full text

TMEM38B[править]

  • Genome wide association study of age at menarche in the Japanese population. / 2013 / PubMed / Full text

TMEM51[править]

  • Genome-wide analysis of DNA methylation profiles in a senescence-accelerated mouse prone 8 brain using whole-genome bisulfite sequencing. / 01.06.2017 / PubMed / Full text

TNFAIP3[править]

TNFRSF11B[править]

  • Genetic Burden Analyses of Phenotypes Relevant to Aging in the Berlin Aging Study II (BASE-II). / 2016 / PubMed / Full text

TNFRSF1A[править]

  • Consumption of protein-enriched milk has minor effects on inflammation in older adults-A 12-week double-blind randomized controlled trial. / 03.2017 / PubMed / Full text

TNFSF13[править]

  • Genome-wide methylation analysis reveals differentially methylated loci that are associated with an age-dependent increase in bovine fibroblast response to LPS. / 25.05.2017 / PubMed / Full text

TNFSF15[править]

  • Expression of pro- and anti-inflammatory cytokines and chemokines during the ovulatory cycle and effects of aging on their expression in the uterine mucosa of laying hens. / 11.2018 / PubMed / Full text

TNK1[править]

TNKS2[править]

  • Gene expression in human mesenchymal stem cell aging cultures: modulation by short peptides. / 06.2020 / PubMed / Full text

TNNI1[править]

  • Regular aerobic exercise-ameliorated troponin I carbonylation to mitigate aged rat soleus muscle functional recession. / 05.2019 / PubMed / Full text

TNP1[править]

  • Cytological and molecular aspects of the ageing sperm. / 01.02.2019 / PubMed / Full text

TNP2[править]

  • Cytological and molecular aspects of the ageing sperm. / 01.02.2019 / PubMed / Full text

TNPO3[править]

  • Genetic associations with age of menopause in familial longevity. / 10.2019 / PubMed / Full text

TNS3[править]

  • Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. / 10.2016 / PubMed / Full text

TOP3A[править]

  • Replication Stress at Telomeric and Mitochondrial DNA: Common Origins and Consequences on Ageing. / 08.10.2019 / PubMed / Full text

TOR2A[править]

  • The correlation of copy number variations with longevity in a genome-wide association study of Han Chinese. / 05.06.2018 / PubMed / Full text

TP53BP1[править]

  • Induction of DNA double-strand breaks and cellular senescence by human respiratory syncytial virus. / 18.05.2016 / PubMed / Full text

TP53INP1[править]

  • TP53INP1 deficiency maintains murine B lymphopoiesis in aged bone marrow through redox-controlled IL-7R/STAT5 signaling. / 02.01.2019 / PubMed / Full text

TP53RK[править]

  • Novel homozygous OSGEP gene pathogenic variants in two unrelated patients with Galloway-Mowat syndrome: case report and review of the literature. / 11.04.2019 / PubMed / Full text

TP73[править]

  • G protein-coupled receptor kinase 4-induced cellular senescence and its senescence-associated gene expression profiling. / 15.11.2017 / PubMed / Full text

TPCN1[править]

  • Effect of aging on calcium signaling in C57Bl6J mouse cerebral arteries. / 06.2013 / PubMed / Full text

TPP2[править]

  • Early-onset Evans syndrome, immunodeficiency, and premature immunosenescence associated with tripeptidyl-peptidase II deficiency. / 29.01.2015 / PubMed / Full text

TPRKB[править]

  • Novel homozygous OSGEP gene pathogenic variants in two unrelated patients with Galloway-Mowat syndrome: case report and review of the literature. / 11.04.2019 / PubMed / Full text

TRAV1-2[править]

TRAV27[править]

  • Perturbed CD8 T cell immunity across universal influenza epitopes in the elderly. / 02.2018 / PubMed / Full text

TRBV19[править]

  • Perturbed CD8 T cell immunity across universal influenza epitopes in the elderly. / 02.2018 / PubMed / Full text

TREM1[править]

  • A TREM1 variant alters the accumulation of Alzheimer-related amyloid pathology. / 03.2015 / PubMed / Full text

TRHR[править]

  • Association between polymorphisms in the TRHR gene, fat-free mass, and muscle strength in older women. / 12.2013 / PubMed / Full text

TRIB2[править]

  • TRIB2 functions as novel oncogene in colorectal cancer by blocking cellular senescence through AP4/p21 signaling. / 12.12.2018 / PubMed / Full text

TRIB3[править]

  • Inhibition of glioma growth by flavokawain B is mediated through endoplasmic reticulum stress induced autophagy. / 2018 / PubMed / Full text

TRIM27[править]

  • TRIM27 Functions as a Novel Oncogene in Non-Triple-Negative Breast Cancer by Blocking Cellular Senescence through p21 Ubiquitination. / 04.12.2020 / PubMed / Full text

TRIOBP[править]

  • A Large Genome-Wide Association Study of Age-Related Hearing Impairment Using Electronic Health Records. / 10.2016 / PubMed / Full text

TRPC1[править]

  • Ca entry via TRPC1 is essential for cellular differentiation and modulates secretion via the SNARE complex. / 01.07.2019 / PubMed / Full text

TRPC7[править]

  • Nociceptive transient receptor potential canonical 7 (TRPC7) mediates aging-associated tumorigenesis induced by ultraviolet B. / 01.2020 / PubMed / Full text

TRPM5[править]

  • Genetic strategies to analyze primary TRP channel-expressing cells in mice. / 11.2017 / PubMed / Full text

TRPS1[править]

  • miRNA expression profiling uncovers a role of miR-302b-3p in regulating skin fibroblasts senescence. / 01.2020 / PubMed / Full text

TRPV2[править]

  • The role of transient receptor potential vanilloid 2 channel in cardiac aging. / 10.2017 / PubMed / Full text

TSG101[править]

  • Exosomal Notch3 from high glucose-stimulated endothelial cells regulates vascular smooth muscle cells calcification/aging. / 01.09.2019 / PubMed / Full text

TSHR[править]

  • TSH-independent release of thyroid hormones through cold exposure in aging rats. / 27.10.2017 / PubMed / Full text

TSPYL5[править]

  • Uncovering genetic mechanisms of kidney aging through transcriptomics, genomics, and epigenomics. / 03.2019 / PubMed / Full text

TSSK6[править]

  • DNA methylation-based age prediction from saliva: High age predictability by combination of 7 CpG markers. / 07.2017 / PubMed / Full text

TTF1[править]

  • Senescence and autophagy in usual interstitial pneumonia of different etiology. / 27.08.2020 / PubMed / Full text

TUBA1A[править]

  • Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. / 2019 / PubMed / Full text

TUBAL3[править]

  • Identification of biomarkers of human skin ageing in both genders. Wnt signalling - a label of skin ageing? / 2012 / PubMed / Full text

TWIST2[править]

  • DNA methylation abnormalities at gene promoters are extensive and variable in the elderly and phenocopy cancer cells. / 07.2014 / PubMed / Full text

TXK[править]

  • Phenotypic characteristics of aged CD4 CD28 T lymphocytes are determined by changes in the whole-genome DNA methylation pattern. / 04.2017 / PubMed / Full text

TXN[править]

  • Thioredoxin mitigates radiation-induced hematopoietic stem cell injury in mice. / 15.11.2017 / PubMed / Full text

TXNDC5[править]

  • Genetic associations with age of menopause in familial longevity. / 10.2019 / PubMed / Full text

TXNRD3[править]

  • Mitochondrial thioredoxin reductase 2 is elevated in long-lived primate as well as rodent species and extends fly mean lifespan. / 08.2017 / PubMed / Full text

TYK2[править]

  • Immunologic effects of chronic administration of tofacitinib, a Janus kinase inhibitor, in cynomolgus monkeys and rats - Comparison of juvenile and adult responses. / 04.2018 / PubMed / Full text

TYMS[править]

  • C. elegans lifespan extension by osmotic stress requires FUdR, base excision repair, FOXO, and sirtuins. / 03.2016 / PubMed / Full text

TYRO3[править]

  • The tyrosine kinase receptor Tyro3 enhances lifespan and neuropeptide Y (Npy) neuron survival in the mouse anorexia ([i]anx[/i]) mutation. / 01.05.2017 / PubMed / Full text

TYRP1[править]

  • Thymocid , a Standardized Black Cumin ([i]Nigella sativa[/i]) Seed Extract, Modulates Collagen Cross-Linking, Collagenase and Elastase Activities, and Melanogenesis in Murine B16F10 Melanoma Cells. / 19.07.2020 / PubMed / Full text

UACA[править]

  • Knockdown of [i]UACA[/i] inhibitsproliferation and invasion and promotes senescence of hepatocellular carcinoma cells. / 2018 / PubMed / Full text

UAP1[править]

  • Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice. / 02.2015 / PubMed / Full text

UBC[править]

  • Selection of a Real-Time PCR Housekeeping Gene Panel in Human Endothelial Colony Forming Cells for Cellular Senescence Studies. / 2019 / PubMed / Full text

UBE2C[править]

  • Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text

UBE2D2[править]

  • Stable reference genes in granulosa cells of bovine dominant follicles during follicular growth, FSH stimulation and maternal aging. / 04.2016 / PubMed / Full text

UBE2E3[править]

  • Loss of the ubiquitin conjugating enzyme UBE2E3 induces cellular senescence. / 07.2018 / PubMed / Full text

UBE2N[править]

  • Aged monkey brains reveal the role of ubiquitin-conjugating enzyme UBE2N in the synaptosomal accumulation of mutant huntingtin. / 01.03.2015 / PubMed / Full text

UBE2T[править]

  • Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text

UBE4B[править]

  • CircRNAs in the tree shrew ([i]Tupaia belangeri[/i]) brain during postnatal development and aging. / 30.04.2018 / PubMed / Full text

UBN1[править]

  • O-linked N-acetylglucosamine transferase (OGT) interacts with the histone chaperone HIRA complex and regulates nucleosome assembly and cellular senescence. / 07.06.2016 / PubMed / Full text

UBP1[править]

  • Expression of potato RNA-binding proteins StUBA2a/b and StUBA2c induces hypersensitive-like cell death and early leaf senescence in Arabidopsis. / 07.2015 / PubMed / Full text

UBQLN2[править]

  • Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis. / 24.02.2016 / PubMed / Full text

UBTD1[править]

UBTF[править]

  • Age-associated dysregulation of protein metabolism in the mammalian oocyte. / 12.2017 / PubMed / Full text

UBXN2B[править]

  • Clinical, polysomnographic and genome-wide association analyses of narcolepsy with cataplexy: a European Narcolepsy Network study. / 10.2013 / PubMed / Full text

UCHL3[править]

  • UCHL3 Regulates Topoisomerase-Induced Chromosomal Break Repair by Controlling TDP1 Proteostasis. / 12.06.2018 / PubMed / Full text

UCHL5[править]

  • Amelioration of neuronal cell death in a spontaneous obese rat model by dietary restriction through modulation of ubiquitin proteasome system. / 07.2016 / PubMed / Full text

UCN[править]

  • Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text

UCN3[править]

  • Urocortin 3 signalling in the auditory brainstem aids recovery of hearing after reversible noise-induced threshold shift. / 08.2019 / PubMed / Full text

UGT1A6[править]

  • Expression of UDP-Glucuronosyltransferase 1 (UGT1) and Glucuronidation Activity toward Endogenous Substances in Humanized UGT1 Mouse Brain. / 07.2015 / PubMed / Full text

UGT2B28[править]

  • Ages of hepatocellular carcinoma occurrence and life expectancy are associated with a UGT2B28 genomic variation. / 05.12.2019 / PubMed / Full text

UGT2B7[править]

  • Application of a physiologically based pharmacokinetic model for the prediction of mirabegron plasma concentrations in a population with severe renal impairment. / 05.2019 / PubMed / Full text

ULK2[править]

  • miR-26a suppresses autophagy in swine Sertoli cells by targeting ULK2. / 08.2018 / PubMed / Full text

UNC5C[править]

  • Identification of genes associated with dissociation of cognitive performance and neuropathological burden: Multistep analysis of genetic, epigenetic, and transcriptional data. / 04.2017 / PubMed / Full text

UPF1[править]

  • Differential alternative splicing coupled to nonsense-mediated decay of mRNA ensures dietary restriction-induced longevity. / 21.08.2017 / PubMed / Full text

UPRT[править]

  • UPRT, a suicide-gene therapy candidate in higher eukaryotes, is required for Drosophila larval growth and normal adult lifespan. / 14.08.2015 / PubMed / Full text

UQCRC1[править]

  • Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone. / 07.2014 / PubMed / Full text

UQCRFS1[править]

  • Contribution of genetic polymorphisms on functional status at very old age: a gene-based analysis of 38 genes (311 SNPs) in the oxidative stress pathway. / 04.2014 / PubMed / Full text

USF1[править]

  • The rs2516839 variation of USF1 gene is associated with 4-year mortality of nonagenarian women: The Vitality 90 study. / 01.2019 / PubMed / Full text

USF2[править]

  • Age-Related Expression of Human AT1R Variants and Associated Renal Dysfunction in Transgenic Mice. / 15.10.2018 / PubMed / Full text

USP15[править]

  • Deficiency of parkin and PINK1 impairs age-dependent mitophagy in [i]Drosophila[/i]. / 29.05.2018 / PubMed / Full text

USP28[править]

  • Genetic interrogation of replicative senescence uncovers a dual role for USP28 in coordinating the p53 and GATA4 branches of the senescence program. / 01.10.2017 / PubMed / Full text

USP30[править]

  • Deficiency of parkin and PINK1 impairs age-dependent mitophagy in [i]Drosophila[/i]. / 29.05.2018 / PubMed / Full text

USP4[править]

  • Increased Expression of Ubiquitin-Specific Protease 4 Participates in Neuronal Apoptosis After Intracerebral Hemorrhage in Adult Rats. / 04.2017 / PubMed / Full text

USP8[править]

  • Inhibition of the deubiquitinase USP8 corrects a Drosophila PINK1 model of mitochondria dysfunction. / 04.2019 / PubMed / Full text

UTF1[править]

  • miR-377 induces senescence in human skin fibroblasts by targeting DNA methyltransferase 1. / 09.03.2017 / PubMed / Full text

UVRAG[править]

  • Essential role for UVRAG in autophagy and maintenance of cardiac function. / 01.01.2014 / PubMed / Full text

UVSSA[править]

  • A C. elegans homolog for the UV-hypersensitivity syndrome disease gene UVSSA. / 05.2016 / PubMed / Full text

VAMP2[править]

  • Newly produced synaptic vesicle proteins are preferentially used in synaptic transmission. / 01.08.2018 / PubMed / Full text

VAMP8[править]

VAPB[править]

  • Transforming Cytosolic Proteins into "Insoluble" and Membrane-toxic Forms Triggering Diseases/Aging by Genetic, Pathological or Environmental Factors. / 2017 / PubMed / Full text

VAV3[править]

  • Age-related obesity and type 2 diabetes dysregulate neuronal associated genes and proteins in humans. / 06.10.2015 / PubMed / Full text

VCL[править]

  • The effects of different preservation methods on ide (Leuciscus idus) sperm and the longevity of sperm movement. / 04.2018 / PubMed / Full text

VCPIP1[править]

  • Tandem Deubiquitination and Acetylation of SPRTN Promotes DNA-Protein Crosslink Repair and Protects against Aging. / 03.09.2020 / PubMed / Full text

VDAC3[править]

  • VDAC3 As a Potential Marker of Mitochondrial Status Is Involved in Cancer and Pathology. / 2016 / PubMed / Full text

VEGFC[править]

  • Proteomic profiling of follicle fluids after superstimulation in one-month-old lambs. / 02.2018 / PubMed / Full text

VEGFD[править]

  • Single-Arm Resistance Training Study to Determine the Relationship between Training Outcomes and Muscle Growth Factor mRNAs in Older Adults Consuming Numerous Medications and Supplements. / 2018 / PubMed / Full text

VHLL[править]

  • The Monetary Valuation of Lifetime Health Improvement and Life Expectancy Gains in Turkey. / 29.09.2017 / PubMed / Full text

VIT[править]

  • Autophagy-mediated longevity is modulated by lipoprotein biogenesis. / 2016 / PubMed / Full text

VPREB3[править]

  • Age-related but not longevity-related genes are found by weighted gene co-expression network analysis in the peripheral blood cells of humans. / 19.01.2019 / PubMed / Full text

VPS13C[править]

  • SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text

VPS13D[править]

  • SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text

VPS26A[править]

  • Characterization of novel markers of senescence and their prognostic potential in cancer. / 20.11.2014 / PubMed / Full text

VPS37B[править]

  • Identification of HIV infection-related DNA methylation sites and advanced epigenetic aging in HIV-positive, treatment-naive U.S. veterans. / 20.02.2017 / PubMed / Full text

VPS4A[править]

  • The expression changes of vacuolar protein sorting 4B (VPS4B) following middle cerebral artery occlusion (MCAO) in adult rats brain hippocampus. / 01.2014 / PubMed / Full text

VPS4B[править]

  • The expression changes of vacuolar protein sorting 4B (VPS4B) following middle cerebral artery occlusion (MCAO) in adult rats brain hippocampus. / 01.2014 / PubMed / Full text

VRK2[править]

  • Accelerated Epigenetic Aging and Methylation Disruptions Occur in Human Immunodeficiency Virus Infection Prior to Antiretroviral Therapy. / 22.09.2020 / PubMed / Full text

VSIG4[править]

  • Immune checkpoint protein VSIG4 as a biomarker of aging in murine adipose tissue. / 10.2020 / PubMed / Full text

VSX1[править]

  • Amyloid Precursor-Like Protein 2 deletion-induced retinal synaptopathy related to congenital stationary night blindness: structural, functional and molecular characteristics. / 08.06.2016 / PubMed / Full text

WAC[править]

  • Implementation of Writing Across the Curriculum (WAC) learning approaches in social work and sociology gerontology courses. / 2013 / PubMed / Full text

WASL[править]

  • Loss of Wasl improves pancreatic cancer outcome. / 21.05.2020 / PubMed / Full text

WBP11[править]

  • Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of mRNA splicing relevant proteins in aging HSPCs. / 05.03.2020 / PubMed / Full text

WDR48[править]

  • Genome-wide studies of verbal declarative memory in nondemented older people: the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium. / 15.04.2015 / PubMed / Full text

WDR5[править]

  • Inhibition of the H3K4 methyltransferase MLL1/WDR5 complex attenuates renal senescence in ischemia reperfusion mice by reduction of p16 . / 11.2019 / PubMed / Full text

WDR73[править]

  • Novel homozygous OSGEP gene pathogenic variants in two unrelated patients with Galloway-Mowat syndrome: case report and review of the literature. / 11.04.2019 / PubMed / Full text

WDSUB1[править]

  • The complex genetics of gait speed: genome-wide meta-analysis approach. / 10.01.2017 / PubMed / Full text

WFDC2[править]

  • Differences in biomarkers and molecular pathways according to age for patients with HFrEF. / 01.10.2020 / PubMed / Full text

WIF1[править]

  • Identification of the mechanisms by which age alters the mechanosensitivity of mesenchymal stromal cells on substrates of differing stiffness: Implications for osteogenesis and angiogenesis. / 15.04.2017 / PubMed / Full text

WNK1[править]

  • Overexpression of WNK1 in POMC-expressing neurons reduces weigh gain via WNK4-mediated degradation of Kir6.2. / 10.2018 / PubMed / Full text

WNK4[править]

  • Overexpression of WNK1 in POMC-expressing neurons reduces weigh gain via WNK4-mediated degradation of Kir6.2. / 10.2018 / PubMed / Full text

WNT10A[править]

  • Dysregulation of the Wnt Signaling Pathway and Synovial Stem Cell Dysfunction in Osteoarthritis Development. / 01.04.2020 / PubMed / Full text

WNT3[править]

  • Role of CD133 Molecule in Wnt Response and Renal Repair. / 03.2018 / PubMed / Full text

WNT5B[править]

  • Dysregulation of the Wnt Signaling Pathway and Synovial Stem Cell Dysfunction in Osteoarthritis Development. / 01.04.2020 / PubMed / Full text

WNT7A[править]

  • Exogenous Expression of WNT7A in Leukemia-Derived Cell Lines Induces Resistance to Chemotherapeutic Agents. / 2020 / PubMed / Full text

WWC1[править]

  • WWC1 genotype modulates age-related decline in episodic memory function across the adult life span. / 01.05.2014 / PubMed / Full text

XAF1[править]

  • XIAP-associating factor 1, a transcriptional target of BRD7, contributes to endothelial cell senescence. / 02.02.2016 / PubMed / Full text

XG[править]

  • The effect of administration media on palatability and ease of swallowing of multiparticulate formulations. / 15.11.2018 / PubMed / Full text

XK[править]

  • Neurodegeneration in the elderly - When the blood type matters: An overview of the McLeod syndrome with focus on hematological features. / 06.2015 / PubMed / Full text

XPO1[править]

  • Nuclear Export Inhibition Enhances HLH-30/TFEB Activity, Autophagy, and Lifespan. / 15.05.2018 / PubMed / Full text

XRCC2[править]

  • Copy neutral loss of heterozygosity is more frequent in older ovarian cancer patients. / 09.2013 / PubMed / Full text

XRCC5[править]

  • Repairing DNA damage by XRCC6/KU70 reverses TLR4-deficiency-worsened HCC development via restoring senescence and autophagic flux. / 01.06.2013 / PubMed / Full text

YBX2[править]

  • Preovulatory Aging In Vivo and In Vitro Affects Maturation Rates, Abundance of Selected Proteins, Histone Methylation Pattern and Spindle Integrity in Murine Oocytes. / 2016 / PubMed / Full text

YES1[править]

  • Re-exploring the core genes and modules in the human frontal cortex during chronological aging: insights from network-based analysis of transcriptomic studies. / 20.10.2018 / PubMed / Full text

ZAP70[править]

ZBED6[править]

  • Correlation between ZBED6 Gene Upstream CpG Island methylation and mRNA expression in cattle. / 03.04.2017 / PubMed / Full text

ZBTB7A[править]

  • The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. / 29.09.2020 / PubMed / Full text

ZC3H11A[править]

  • In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. / 12.2019 / PubMed / Full text

ZFHX3[править]

  • Shift work, DNA methylation and epigenetic age. / 01.10.2019 / PubMed / Full text

ZFP36L1[править]

  • Zinc finger protein ZFP36L1 promotes osteoblastic differentiation but represses adipogenic differentiation of mouse multipotent cells. / 28.03.2017 / PubMed / Full text

ZFPM2[править]

  • Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text

ZIC1[править]

  • The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. / 29.09.2020 / PubMed / Full text

ZNF14[править]

  • Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. / 07.2014 / PubMed / Full text

ZNF207[править]

  • Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. / 02.2018 / PubMed / Full text

ZNF211[править]

  • Genetics of facial telangiectasia in the Rotterdam Study: a genome-wide association study and candidate gene approach. / 23.10.2020 / PubMed / Full text

ZNF367[править]

  • RNA-seq of the aging brain in the short-lived fish N. furzeri - conserved pathways and novel genes associated with neurogenesis. / 12.2014 / PubMed / Full text

ZNF396[править]

  • Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text

ZNF467[править]

  • Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text

ZNF483[править]

  • Genome wide association study of age at menarche in the Japanese population. / 2013 / PubMed / Full text

ZNF518B[править]

  • The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. / 29.09.2020 / PubMed / Full text

ZNF616[править]

  • Global Characteristics of CSIG-Associated Gene Expression Changes in Human HEK293 Cells and the Implications for CSIG Regulating Cell Proliferation and Senescence. / 2015 / PubMed / Full text

ZNF619[править]

  • Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. / 12.2019 / PubMed / Full text

ZNF644[править]

  • Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients. / 03.09.2019 / PubMed / Full text

ZNF704[править]

  • Genome-Wide Association Study and Linkage Analysis of the Healthy Aging Index. / 08.2015 / PubMed / Full text

ZPBP2[править]

  • Sex- and age-dependent DNA methylation at the 17q12-q21 locus associated with childhood asthma. / 07.2013 / PubMed / Full text

ZRSR2[править]

  • Insight into the molecular pathophysiology of myelodysplastic syndromes: targets for novel therapy. / 10.2016 / PubMed / Full text

ZSCAN4[править]

  • Genetics of facial telangiectasia in the Rotterdam Study: a genome-wide association study and candidate gene approach. / 23.10.2020 / PubMed / Full text

ZW10[править]

  • Multivariate genomic scan implicates novel loci and haem metabolism in human ageing. / 16.07.2020 / PubMed / Full text