PICALM

Версия от 22:12, 29 апреля 2021; OdysseusBot (обсуждение | вклад) (Новая страница: «Phosphatidylinositol-binding clathrin assembly protein (Clathrin assembly lymphoid myeloid leukemia protein) [CALM] ==Publications== {{medline-entry |title=Sing...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)

Phosphatidylinositol-binding clathrin assembly protein (Clathrin assembly lymphoid myeloid leukemia protein) [CALM]

PublicationsПравить

Single Nucleotide Polymorphisms in Alzheimer's Disease Risk Genes Are Associated with Intrinsic Connectivity in Middle Age.

It is critical to identify individuals at risk for Alzheimer's disease (AD) earlier in the disease time course, such as middle age and preferably well prior to the onset of clinical symptoms, when intervention efforts may be more successful. Genome-wide association and candidate gene studies have identified single nucleotide polymorphisms (SNPs) in APOE, CLU, CR1, PICALM, and SORL1 that confer increased risk of AD. In the current study, we investigated the associations between SNPs in these genes and resting-state functional connectivity within the default mode network (DMN), frontoparietal network (FPN), and executive control network (ECN) in healthy, non-demented middle-aged adults (age 40 -60; N = 123; 74 females). Resting state networks of interest were identified through independent components analysis using a template-matching procedure and individual spatial maps and time courses were extracted using dual regression. Within the posterior DMN, functional connectivity was associated with CR1 rs1408077 and CLU rs9331888 polymorphisms (p's < 0.05). FPN connectivity was associated with CR1 rs1408077, CLU rs1136000, SORL1 rs641120, and SORL1 rs689021 (p's < 0.05). Functional connectivity within the ECN was associated with the CLU rs11136000 (p < 0.05). There were no APOE- or PICALM-related differences in any of the networks investigated (p's > 0.05). This is the first demonstration of the relationship between intrinsic network connectivity and AD risk alleles in CLU, CR1, and SORL1 in healthy, middle-aged adults. These SNPs should be considered in future investigations aimed at identifying potential preclinical biomarkers for AD.


Keywords

  • Aging
  • Alzheimer’s disease
  • middle aged
  • neuroimaging
  • single nucleotide

polymorphism


Genetic Association between Alzheimer's Disease Risk Variant of the PICALM Gene and Auditory Event-Related Potentials in Aging.

Aging and genetic predisposition are major risk factors in age-related neurodegenerative disorders. The most common neurodegenerative disorder is Alzheimer's disease (AD). Genome-wide association studies (GWAS) have identified statistically significant association of the PICALM rs3851179 polymorphism with AD. The PICALM G allele increases the risk of AD, while the A allele has a protective effect. We examined the association of the PICALM rs3851179 polymorphism with parameters of the P3 component of auditory event-related potentials (ERPs) in 87 non-demented volunteers (age, 19-77 years) subdivided into two cohorts younger and older than 50 years of age. We found statistically significant association between the AD risk variant PICALM GG and increase in the P3 latency in subjects over 50 years old. The age-dependent increase in the P3 latency was more pronounced in the PICALM GG carriers than in the carriers of the PICALM AA and PICALM AG genotypes. The observed PICALM-associated changes in the neurophysiological processes indicate a decline in the information processing speed with aging due, probably, to neuronal dysfunction and subclinical neurodegeneration of the neuronal networks in the hippocampus and the frontal and parietal cortical areas. Such changes were less pronounced in the carriers of the PICALM gene A allele, which might explain the protective effect of this allele in the cognitive decline and AD development.

MeSH Terms

  • Adult
  • Aged
  • Aging
  • Alleles
  • Alzheimer Disease
  • Evoked Potentials
  • Female
  • Genetic Predisposition to Disease
  • Genotype
  • Humans
  • Male
  • Middle Aged
  • Monomeric Clathrin Assembly Proteins
  • Polymorphism, Single Nucleotide
  • Risk Factors
  • Young Adult


Integrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer's disease susceptibility.

Here we use deep sequencing to identify sources of variation in mRNA splicing in the dorsolateral prefrontal cortex (DLPFC) of 450 subjects from two aging cohorts. Hundreds of aberrant pre-mRNA splicing events are reproducibly associated with Alzheimer's disease. We also generate a catalog of splicing quantitative trait loci (sQTL) effects: splicing of 3,006 genes is influenced by genetic variation. We report that altered splicing is the mechanism for the effects of the PICALM, CLU and PTK2B susceptibility alleles. Furthermore, we performed a transcriptome-wide association study and identified 21 genes with significant associations with Alzheimer's disease, many of which are found in known loci, whereas 8 are in novel loci. These results highlight the convergence of old and new genes associated with Alzheimer's disease in autophagy-lysosomal-related pathways. Overall, this study of the transcriptome of the aging brain provides evidence that dysregulation of mRNA splicing is a feature of Alzheimer's disease and is, in some cases, genetically driven.

MeSH Terms

  • Aged
  • Aged, 80 and over
  • Aging
  • Alternative Splicing
  • Alzheimer Disease
  • Brain
  • Chromosome Mapping
  • Cohort Studies
  • Female
  • Gene Expression Profiling
  • Genetic Predisposition to Disease
  • Genome-Wide Association Study
  • Humans
  • Male
  • Quantitative Trait Loci
  • RNA Splicing
  • Systems Biology
  • Systems Integration
  • Transcriptome


Recent studies on cellular and molecular mechanisms in Alzheimer's disease: focus on epigenetic factors and histone deacetylase.

Alzheimer's disease (AD) is one of the most common neurodegenerative disorders mainly affecting elderly people. It is characterized by progressive loss of memory and cognitive function. More than 95% of AD cases are related to sporadic or late-onset AD (LOAD). The etiology of LOAD is still unclear. It has been reported that environmental factors and epigenetic alterations play a significant role in AD pathogenesis. Furthermore, recently, genome-wide association studies (GWAS) identified 10 novel risk genes: ABCA7, APOE, BIN1, CD2AP, CD33, CLU, CR1, MS4A6A, MS4A4E, and PICALM, which play an important role for LOAD. In this review, the therapeutic approaches of AD by epigenetic modifications have been discussed. Nowadays, HDAC inhibitors have clinically proven its activity for epigenetic modifications. Furthermore, we try to establish the relationship between HDAC inhibitors and above mentioned LOAD risk genes. Finally, we are hoping that this review may open new area of research for AD treatment.

MeSH Terms

  • Aging
  • Alzheimer Disease
  • Animals
  • Cognition Disorders
  • Epigenesis, Genetic
  • Genetic Predisposition to Disease
  • Genome-Wide Association Study
  • Histone Deacetylase Inhibitors
  • Histone Deacetylases
  • Humans

Keywords

  • Alzheimer’s disease
  • GWAS
  • HDAC inhibitors
  • LOAD
  • epigenetic modification


Alterations in endocytic protein expression with increasing age in the transgenic APP695 V717I London mouse model of amyloid pathology: implications for Alzheimer's disease.

A major risk factor for the development of Alzheimer's disease (AD) is increasing age, but the reason behind this association has not been identified. It is thought that the changes in endocytosis seen in AD patients are causal for this condition. Thus, we hypothesized that the increased risk of developing AD associated with ageing may be because of changes in endocytosis. We investigated using Western blotting whether the expression of endocytic proteins involved in clathrin-mediated and clathrin-independent endocytosis are altered by increasing age in a mouse model of amyloid pathology. We used mice transgenic for human amyloid precursor protein containing the V717I London mutation. We compared the London mutation mice with age-matched wild-type (WT) controls at three ages, 3, 9 and 18 months, representing different stages in the development of pathology in this model. Having verified that the London mutation mice overexpressed amyloid precursor protein and β-amyloid, we found that the expression of the smallest isoform of PICALM, a key protein involved in the regulation of clathrin-coated pit formation, was significantly increased in WT mice, but decreased in the London mutation mice with age. PICALM levels in WT 18-month mice and clathrin levels in WT 9-month mice were significantly higher than those in the London mutation mice of the same ages. The expression of caveolin-1, involved in clathrin-independent endocytosis, was significantly increased with age in all mice. Our results suggest that endocytic processes could be altered by the ageing process and such changes could partly explain the association between ageing and AD.

MeSH Terms

  • Aging
  • Alzheimer Disease
  • Amyloid beta-Peptides
  • Amyloid beta-Protein Precursor
  • Animals
  • Blotting, Western
  • Caveolin 1
  • Cerebral Cortex
  • Clathrin
  • Disease Models, Animal
  • Endocytosis
  • Enzyme-Linked Immunosorbent Assay
  • Humans
  • Male
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • Monomeric Clathrin Assembly Proteins
  • Peptide Fragments


Role of CLU, PICALM, and TNK1 Genotypes in Aging With and Without Alzheimer's Disease.

Healthy and impaired cognitive aging may be associated to different prevalences of single-nucleotide polymorphisms (SNPs). In a multicenter case-control association study, we studied the SNPs rs11136000 (clusterin, CLU), rs541458 (phosphatidylinositol binding clatrin assembly protein, PICALM), and rs1554948 (transcription factor A, and tyrosine kinase, non-receptor, 1, TNK1) according to the three age groups 50-65 years (group 1), 66-80 years (group 2), and 80 years (group 3) in 569 older subjects without cognitive impairment (NoCI) and 520 Alzheimer's disease (AD) patients. In NoCI subjects, a regression analysis suggested a relationship between age and TNK1 genotypes, with the TNK1-A/A genotype frequency that increased with higher age, and resulting in a different distribution of the TNK1-A allele. In AD patients, a regression analysis suggested a relationship between age and PICALM genotypes and TNK1 genotypes, with the PICALM-T/C and TNK1-A/A genotype frequencies that decreased with increasing age. A resulting difference in the distribution of PICALM-C allele and TNK1-A allele was also observed. The TNK1-A allele was overrepresented in NoCI subjects than in AD patients in age groups 2 and 3. These results confirmed after adjustment for apolipoprotein E polymorphism, which suggested a different role of PICALM and TNK1 in healthy and impaired cognitive aging. More studies, however, are needed to confirm the observed associations.

MeSH Terms

  • Aged
  • Aged, 80 and over
  • Aging
  • Alleles
  • Alzheimer Disease
  • Clusterin
  • Cohort Studies
  • Female
  • Fetal Proteins
  • Gene Frequency
  • Genetic Predisposition to Disease
  • Humans
  • Male
  • Middle Aged
  • Monomeric Clathrin Assembly Proteins
  • Polymorphism, Single Nucleotide
  • Protein-Tyrosine Kinases

Keywords

  • Alzheimer’s disease
  • Biogerontology
  • Brain aging
  • Cognition
  • Dementia
  • Genetics


Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population.

Genome-wide association studies and meta-analyses implicated that increased risk of developing Alzheimer's diseases (AD) has been associated with the ABCA7, APOE, BIN1, CASS4, CD2AP, CD33, CELF1, CLU, CR1, DSG2, EPHA1, FERMT2, HLA-DRB1, HLA-DRB4, INPP5D, MEF2C, MS4A4A, MS4A4E, MS4A6E, NME8, PICALM, PLD3, PTK2B, RIN3, SLC24A4, SORL1, and ZCWPW1 genes. In this study, we assessed whether single nucleotide polymorphisms (SNPs) within these 27 AD-associatedgenes are linked with cognitive aging independently and/or through complex interactions in an older Taiwanese population. We also analyzed the interactions between lifestyle and these genes in influencing cognitive aging. A total of 634 Taiwanese subjects aged over 60 years from the Taiwan Biobank were analyzed. Mini-Mental State Examination (MMSE) scores were performed for all subjects to evaluate cognitive functions. Out of the 588 SNPs tested in this study, only the association between CASS4-rs911159 and cognitive aging persisted significantly (P = 2.2 x 10-5) after Bonferroni correction. Our data also showed a nominal association of cognitive aging with the SNPs in six more key AD-associated genes, including EPHA1-rs10952552, FERMT2-rs4901317, MEF2C-rs9293506, PLD3-rs11672825, RIN3-rs1885747, and SLC24A4-rs67063100 (P = 0.0018~0.0097). Additionally, we found the interactions among CASS4-rs911159, EPHA-rs10952552, FERMT2-rs4901317, MEF2C-rs9293506, or SLC24A4-rs67063100 on cognitive aging (P = 0.004~0.035). Moreover, our analysis suggested the interactions of SLC24A4-rs67063100 or MEF2C-rs9293506 with lifestyle such as alcohol consumption, smoking status, physical activity, or social support on cognitive aging (P = 0.008~0.041). Our study indicates that the AD-associated genes may contribute to the risk of cognitive aging independently as well as through gene-gene and gene-lifestyle interactions.

MeSH Terms

  • Age Factors
  • Aged
  • Alleles
  • Alzheimer Disease
  • Cognitive Aging
  • Epistasis, Genetic
  • Female
  • Gene-Environment Interaction
  • Genetic Association Studies
  • Genetic Predisposition to Disease
  • Humans
  • Life Style
  • Male
  • Middle Aged
  • Polymorphism, Single Nucleotide
  • Risk Factors
  • Taiwan

Keywords

  • Alzheimer’s diseases
  • Gerotarget
  • Mini-Mental State Examination
  • cognitive aging
  • gene-gene and gene-lifestyle interactions
  • single nucleotide polymorphisms


The Interactive Effects of Age and PICALM rs541458 Polymorphism on Cognitive Performance, Brain Structure, and Function in Non-demented Elderly.

The PICALM rs541458 T allele has been recognized as a risk factor for late-onset Alzheimer's disease, and age might modulate the effects that genetic factors have on cognitive functions and brain. Thus, the current study intended to examine whether the effects of rs541458 on cognitive functions, brain structure, and function were modulated by age in non-demented Chinese elderly. We enrolled 638 subjects aged 50 to 82 years and evaluated their cognitive functions through a series of neuropsychological tests. Seventy-eight of these participants also received T1-weighted structural and resting state functional magnetic resonance imaging. Dividing subjects into groups <65 and ≥65 years old, results of neuropsychological tests showed that interactive effects of rs541458 × age existed with regard to executive function and processing speed after controlling for gender, years of education and APOE ε4 status. In addition, the effects of rs541458 on resting state functional connectivity of left superior parietal gyrus within left frontal-parietal network and on gray matter volume of left middle temporal gyrus were modulated by age. Furthermore, reduction of functional connectivity of left superior parietal gyrus was closely related with better executive function in the T allele carriers <65 years old. Further, greater volume of left middle temporal gyrus was significantly related to better executive function in both CC genotype <65 years old and CC genotype ≥65 years old groups, separately. Pending further confirmation from additional studies, our results support the hypothesis that the modulation of age, with respect to the rs541458, has interactional effects on cognitive performance, brain function, and structural measurements.

MeSH Terms

  • Aged
  • Aged, 80 and over
  • Aging
  • Apolipoproteins E
  • Brain
  • Cognition
  • Female
  • Gene-Environment Interaction
  • Genotype
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Middle Aged
  • Monomeric Clathrin Assembly Proteins
  • Neuropsychological Tests
  • Organ Size

Keywords

  • Alzheimer’s disease
  • Executive function
  • Functional connectivity
  • Gray matter volume
  • PICALM


Quantitative EEG during normal aging: association with the Alzheimer's disease genetic risk variant in PICALM gene.

Genome-wide association studies have identified novel risk variants for Alzheimer's disease (AD). Among these, a gene carrying one of the highest risks for AD is PICALM. The PICALM rs3851179 A allele is thought to have a protective effect, whereas the G allele appears to confer risk for AD. The influence of the PICALM genotype on brain function in nondemented subjects remains largely unknown. We examined the possible effect of the PICALM rs3851179 genotype on quantitative electroencephalography recording at rest in 137 nondemented volunteers (age range: 20-79 years) subdivided into cohorts of those younger than and those older than 50 years of age. The homozygous presence of the AD risk variant PICALM GG was associated with an increase in beta relative power, with the effect being more pronounced in the older cohort. Beta power elevation in resting-state electroencephalography has previously been linked to cortical disinhibition and hyperexcitability. The increase in beta relative power in the carriers of the AD risk PICALM GG genotype suggests changes in the cortical excitatory-inhibitory balance, which are heightened during normal aging.

MeSH Terms

  • Adult
  • Aged
  • Aging
  • Alzheimer Disease
  • Cohort Studies
  • Electroencephalography
  • Female
  • Genome-Wide Association Study
  • Genotype
  • Humans
  • Male
  • Middle Aged
  • Monomeric Clathrin Assembly Proteins
  • Risk
  • Young Adult

Keywords

  • Aging
  • Alzheimer's disease (AD)
  • Electroencephalography (EEG)
  • PICALM


An Alzheimer's Disease Genetic Risk Score Predicts Longitudinal Thinning of Hippocampal Complex Subregions in Healthy Older Adults.

Variants at 21 genetic loci have been associated with an increased risk for Alzheimer's disease (AD). An important unresolved question is whether multiple genetic risk factors can be combined to increase the power to detect changes in neuroimaging biomarkers for AD. We acquired high-resolution structural images of the hippocampus in 66 healthy, older human subjects. For 45 of these subjects, longitudinal 2-year follow-up data were also available. We calculated an additive AD genetic risk score for each participant and contrasted this with a weighted risk score (WRS) approach. Each score included APOE (apolipoprotein E), CLU (clusterin), PICALM (phosphatidylinositol binding clathrin assembly protein), and family history of AD. Both unweighted risk score (URS) and WRS correlated strongly with the percentage change in thickness across the whole hippocampal complex (URS: r = -0.40; p = 0.003; WRS: r = -0.25, p = 0.048), driven by a strong relationship to entorhinal cortex thinning (URS: r = -0.35; p = 0.009; WRS: r = -0.35, p = 0.009). By contrast, at baseline the risk scores showed no relationship to thickness in any hippocampal complex subregion. These results provide compelling evidence that polygenic AD risk scores may be especially sensitive to structural change over time in regions affected early in AD, like the hippocampus and adjacent entorhinal cortex. This work also supports the paradigm of studying genetic risk for disease in healthy volunteers. Together, these findings will inform clinical trial design by supporting the idea that genetic prescreening in healthy control subjects can be useful to maximize the ability to detect an effect on a longitudinal neuroimaging endpoint, like hippocampal complex cortical thickness.

MeSH Terms

  • Aging
  • Alzheimer Disease
  • Apolipoproteins E
  • Clinical Trials as Topic
  • Clusterin
  • European Continental Ancestry Group
  • Female
  • Follow-Up Studies
  • Genetic Predisposition to Disease
  • Hippocampus
  • Humans
  • Longitudinal Studies
  • Magnetic Resonance Imaging
  • Male
  • Mental Status Schedule
  • Middle Aged
  • Monomeric Clathrin Assembly Proteins
  • Multifactorial Inheritance
  • Multivariate Analysis
  • Neuropsychological Tests
  • Organ Size
  • Prodromal Symptoms

Keywords

  • clinical trials
  • normal aging
  • polygenic risk score
  • preclinical Alzheimer's disease
  • structural MRI


Impact of PICALM and CLU on hippocampal degeneration.

PICALM and CLU are two major risk genes of late-onset Alzheimer's disease (LOAD), and there is strong molecular evidence suggesting their interaction on amyloid-beta deposition, hence finding functional dependency between their risk genotypes may lead to better understanding of their roles in LOAD development and greater clinical utility. In this study, we mainly investigated interaction effects of risk loci PICALM rs3581179 and CLU rs11136000 on hippocampal degeneration in both young and elderly adults in order to understand their neural mechanism on aging process, which may help identify robust biomarkers for early diagnosis and intervention. Besides volume we also assessed hippocampal shape phenotypes derived from diffeomorphic metric mapping and nonlinear dimensionality reduction. In elderly individuals (75.6 ± 6.7 years) significant interaction effects existed on hippocampal volume (P < 0.001), whereas in young healthy adults (19.4 ± 1.1 years) such effects existed on a shape phenotype (P = 0.01) indicating significant variation at hippocampal head and tail that mirror most AD vulnerable regions. Voxel-wise analysis also pointed to the same regions but lacked statistical power. In both cohorts, PICALM protective genotype AA only exhibited protective effects on hippocampal degeneration and cognitive performance when combined with CLU protective T allele, but adverse effects with CLU risk CC. This study revealed novel PICALM and CLU interaction effects on hippocampal degeneration along aging, and validated effectiveness of diffeomorphometry in imaging genetics study. Hum Brain Mapp 37:2419-2430, 2016. © 2016 Wiley Periodicals, Inc.

MeSH Terms

  • Adolescent
  • Aged
  • Aged, 80 and over
  • Aging
  • Alzheimer Disease
  • Clusterin
  • Cohort Studies
  • Female
  • Genetic Association Studies
  • Genetic Load
  • Genetic Predisposition to Disease
  • Genotyping Techniques
  • Hippocampus
  • Humans
  • Image Processing, Computer-Assisted
  • Male
  • Middle Aged
  • Monomeric Clathrin Assembly Proteins
  • Organ Size
  • Phenotype
  • Young Adult

Keywords

  • Alzheimer's disease
  • CLU
  • PICALM
  • hippocampus
  • interaction


Gene-based aggregate SNP associations between candidate AD genes and cognitive decline.

Single nucleotide polymorphisms (SNPs) in and near ABCA7, BIN1, CASS4, CD2AP, CD33, CELF1, CLU, complement receptor 1 (CR1), EPHA1, EXOC3L2, FERMT2, HLA cluster (DRB5-DQA), INPP5D, MEF2C, MS4A cluster (MS4A3-MS4A6E), NME8, PICALM, PTK2B, SLC24A4, SORL1, and ZCWPW1 have been associated with Alzheimer's disease (AD) in large meta-analyses. We aimed to determine whether established AD-associated genes are associated with longitudinal cognitive decline by examining aggregate variation across these gene regions. In two single-sex cohorts of older, community-dwelling adults, we examined the association between SNPs in previously implicated gene regions and cognitive decline (age-adjusted person-specific cognitive slopes) using a Sequence Kernel Association Test (SKAT). In regions which showed aggregate significance, we examined the univariate association between individual SNPs in the region and cognitive decline. Only two of the original AD-associated SNPs were significantly associated with cognitive decline in our cohorts. We identified significant aggregate-level associations between cognitive decline and the gene regions BIN1, CD33, CELF1, CR1, HLA cluster, and MEF2C in the all-female cohort and significant associations with ABCA7, HLA cluster, MS4A6E, PICALM, PTK2B, SLC24A4, and SORL1 in the all-male cohort. We also identified a block of eight correlated SNPs in CD33 and several blocks of correlated SNPs in CELF1 that were significantly associated with cognitive decline in univariate analysis in the all-female cohort.

MeSH Terms

  • Aged
  • Aging
  • Alzheimer Disease
  • Cognition Disorders
  • DNA
  • Female
  • Genetic Association Studies
  • Genetic Predisposition to Disease
  • Humans
  • Male
  • Polymorphism, Single Nucleotide

Keywords

  • Candidate AD genes
  • Cognitive decline
  • SNP associations


The benefits of staying active in old age: physical activity counteracts the negative influence of PICALM, BIN1, and CLU risk alleles on episodic memory functioning.

PICALM, BIN1, CLU, and APOE are top candidate genes for Alzheimer's disease, and they influence episodic memory performance in old age. Physical activity, however, has been shown to protect against age-related decline and counteract genetic influences on cognition. The aims of this study were to assess whether (a) a genetic risk constellation of PICALM, BIN1, and CLU polymorphisms influences cognitive performance in old age; and (b) if physical activity moderates this effect. Data from the SNAC-K population-based study were used, including 2,480 individuals (age range = 60 to 100 years) free of dementia at baseline and at 3- to 6-year follow-ups. Tasks assessing episodic memory, perceptual speed, knowledge, and verbal fluency were administered. Physical activity was measured using self-reports. Individuals who had engaged in frequent health- or fitness-enhancing activities within the past year were compared with those who were inactive. Genetic risk scores were computed based on an integration of risk alleles for PICALM (rs3851179 G allele, rs541458 T allele), BIN1 (rs744373 G allele), and CLU (rs11136000 T allele). High genetic risk was associated with reduced episodic memory performance, controlling for age, education, vascular risk factors, chronic diseases, activities of daily living, and APOE gene status. Critically, physical activity attenuated the effects of genetic risk on episodic memory. Our findings suggest that participants with high genetic risk who maintain a physically active lifestyle show selective benefits in episodic memory performance.

MeSH Terms

  • Adaptor Proteins, Signal Transducing
  • Aged
  • Aged, 80 and over
  • Aging
  • Alleles
  • Alzheimer Disease
  • Clusterin
  • Cognition
  • Exercise
  • Female
  • Genetic Predisposition to Disease
  • Humans
  • Male
  • Memory, Episodic
  • Middle Aged
  • Monomeric Clathrin Assembly Proteins
  • Nuclear Proteins
  • Risk Factors
  • Sweden
  • Tumor Suppressor Proteins