CCL4
C-C motif chemokine 4 precursor (G-26 T-lymphocyte-secreted protein) (HC21) (Lymphocyte activation gene 1 protein) (LAG-1) (MIP-1-beta(1-69)) (Macrophage inflammatory protein 1-beta) (MIP-1-beta) (PAT 744) (Protein H400) (SIS-gamma) (Small-inducible cytokine A4) (T-cell activation protein 2) (ACT-2) [Contains: MIP-1-beta(3-69)] [LAG1] [MIP1B] [SCYA4]
PublicationsПравить
Alzheimer's disease (AD) is an age-associated neurodegenerative disease characterized by amyloidosis, tauopathy, and activation of microglia, the brain resident innate immune cells. We show that a RiboTag translational profiling approach can bypass biases due to cellular enrichment/cell sorting. Using this approach in models of amyloidosis, tauopathy, and aging, we revealed a common set of alterations and identified a central APOE-driven network that converged on CCL3 and CCL4 across all conditions. Notably, aged females demonstrated a significant exacerbation of many of these shared transcripts in this APOE network, revealing a potential mechanism for increased AD susceptibility in females. This study has broad implications for microglial transcriptomic approaches and provides new insights into microglial pathways associated with different pathological aspects of aging and AD.
MeSH Terms
- Aging
- Alzheimer Disease
- Amyloid
- Amyloidosis
- Animals
- Apolipoproteins E
- Chemokine CCL3
- Chemokine CCL4
- Disease Models, Animal
- Female
- Male
- Mice
- Mice, Transgenic
- Microglia
- Signal Transduction
- tau Proteins
Wound age estimation is an important research field in forensic pathology. The expression levels of cytokines in the incised skeletal muscle were analyzed using a mouse model to explore the applicability for wound aging. A 5-mm long incisional wound was made at the biceps femoris muscle, and the muscle and serum were sampled at 6, 12, 24 and 48 hours after injury. Using a multiplex bead-based immunoassay, we measured the tissue levels of nine cytokines (IL-1β, IL-6, IL-7, CCL2, CCL3, CCL4, CXCL1, CXCL2, and CXCL10), which are all involved in the pathways of inflammatory response and tissue injury. Immunoassay of post-injury muscle samples revealed significant increases in the levels of six cytokines, except for CCL3, CCL4 and IL-7, at 6 hours after injury. The elevated tissue levels of these six cytokines were maintained during 48 hours after injury, although the levels of IL-6 and CXCL1 were significantly decreased at 12 hours. In case of CCL3, its tissue levels were increased only at 12 hours. By contrast, CCL4 and IL-7 levels were increased only at 48 hours. Moreover, serum levels of most cytokines, except for CXCL1, remained unchanged during 24 hours after injury, followed by significant increases at 48 hours. Serum CXCL1 levels were increased at 6 hours and then decreased to the basal levels. Thus, the significant increase in the muscle levels of CXCL1 and IL-7 was observed at 6 and 48 hours after injury, respectively. Measuring muscle CXCL1 and IL-7 levels is helpful for estimating incised wound aging.
MeSH Terms
- Aging
- Animals
- Biomarkers
- Cytokines
- Gene Expression Regulation
- Immunoassay
- Inflammation Mediators
- Male
- Mice, Inbred BALB C
- Muscle, Skeletal
- RNA, Messenger
- Time Factors
- Wounds and Injuries
Keywords
- bead-based immunoassay
- cytokines
- sharp force injury
- skeletal muscle
- wound aging
Natural killer (NK) lymphocyte-mediated cytotoxicity and cytokine secretion control infections and cancers, but these crucial activities decline with age. NK cell development, homeostasis, and function require IL-15 and its chaperone, IL-15 receptor alpha (IL-15Rα). Macrophages and dendritic cells (DC) are major sources of these proteins. We had previously postulated that additional IL-15 and IL-15Rα is made by skeletal muscle and adipose tissue. These sources may be important in aging, when IL-15-producing immune cells decline. NK cells circulate through adipose tissue, where they may be exposed to local IL-15. The objectives of this work were to determine (1) if human muscle, subcutaneous adipose tissue (SAT), and visceral adipose tissue (VAT) are sources of IL-15 and IL-15 Rα, and (2) whether any of these tissues correlate with NK cell activity in elderly humans. We first investigated IL-15 and IL-15Rα RNA expression in paired muscle and SAT biopsies from healthy human subjects. Both tissues expressed these transcripts, but IL-15Rα RNA levels were higher in SAT than in skeletal muscle. We also investigated tissue obtained from surgeries and found that SAT and VAT expressed equivalent amounts of IL-15 and IL-15Rα RNA, respectively. Furthermore, stromal vascular fraction cells expressed more IL-15 RNA than did adipocytes. To test if these findings related to circulating IL-15 protein and NK cell function, we tested 50 healthy adults aged > 70 years old. Plasma IL-15 levels significantly correlated with abdominal VAT mass in the entire cohort and in non-obese subjects. However, plasma IL-15 levels did not correlate with skeletal muscle cross-sectional area and correlated inversely with muscle strength. Plasma IL-15 did correlate with NK cell cytotoxic granule exocytosis and with CCL4 (MIP-1β) production in response to NKp46-crosslinking. Additionally, NK cell responses to K562 leukemia cells correlated inversely with muscle strength. With aging, immune function declines while infections, cancers, and deaths increase. We propose that VAT-derived IL-15 and IL-15Rα is a compensatory NK cell support mechanism in elderly humans.
MeSH Terms
- Adult
- Aged
- Aging
- Body Composition
- Cohort Studies
- Cytotoxicity, Immunologic
- Female
- Gene Expression Regulation
- Humans
- Immunity
- Interleukin-15
- Interleukin-15 Receptor alpha Subunit
- Intra-Abdominal Fat
- K562 Cells
- Killer Cells, Natural
- Male
- Middle Aged
- Muscle Strength
- Natural Cytotoxicity Triggering Receptor 1
- Young Adult
Keywords
- IL-15
- adipose tissue
- aging
- natural killer cell
- skeletal muscle strength
To reveal age-related aqueous cytokine changes in human aqueous humor. Aqueous humor was collected from 12 young children (3-6.5 years old) and 71 healthy adults (22-106 years old) with cataract but without other systemic or ocular disorders. Levels of 22 cytokines, chemokines and vascular endothelial growth factor (VEGF) were measured and analyzed. The following proteins showed significant increase from childhood to adult: interferon-gamma (IFN-γ), interleukin (IL)-13, IL-6, IL-12(p70), IL-10, CCL2, CCL3, CCL4, CXCL8, CXCL9, CXCL10, IFN-α2 and VEGF (all [i]P[/i]<0.05). IFN-γ, IL-13, IL-12(p70), IL-10, CCL3, CXCL9 and VEGF also showed moderate strength age-related increase in the adult group ([i]r[/i]>0.5). The strength of correlation between aging and CCL4 were fair ([i]r[/i]=0.398). The concentrations of IL-2, IL-4, IL-5, IL-1β and TNF-α were low in both groups. From childhood to adult, the immunological milieu of the anterior chamber become more pro-inflammatory and pro-angiogenic. Such changes may represent the parainflammation state of the human eye.
Keywords
- aging
- aqueous humor
- cytokines
- macrophage
- parainflammation
- vascular endothelial growth factor
Aging is accompanied by an increase in markers of innate immunity. How aging affects neutrophil functions remains of debate.The adenosine A receptor (A R), essential to the resolution of inflammation, modulates neutrophil functions. We sought to determine whether or not A R protects against the effects of aging. We monitored neutrophil influx, viability, and activation as well as cytokine accumulation in wild-type (WT) and A R-knockout mice (KO) at three different ages.Several readouts decreased with aging: neutrophil counts in dorsal air pouches (by up to 55%), neutrophil viability (by up to 56%), elastase and total protein in exudates (by up to 80%), and local levels of cytokines (by up to 90%). Each of these parameters was significantly more affected in A R-KO mice. CXCL1-3 levels were largely unaffected. The effects of aging were not observed systemically. Preventing neutrophil influx into the air pouch caused a comparable cytokine pattern in young WT mice. Gene expression (mRNA) in leukocytes was affected, with CXCL1 and CCL4 increasing and with TNF and IL-1α decreasing. Aging has deleterious effects on the acute inflammatory response and neutrophil-related activities, and defective migration appears as an important factor. A functional A R signaling pathway delays some of these.
MeSH Terms
- Aging
- Animals
- Chemotaxis, Leukocyte
- Inflammation
- Mice
- Mice, Knockout
- Neutrophils
- Receptor, Adenosine A2A
Keywords
- adenosine
- aging
- apoptosis
- cytokines
- migration
- neutrophils
Assessment of incised wound age in skeletal muscles is important because fatal injuries are often complicated with muscle involvement. Transcriptome of injured skeletal muscle along with histopathological and immunohistochemistry staining, were analyzed to explore the biological effect of incised injuries using a mouse incised injury model. An incisional wound was made at the biceps femoris muscle of anesthetized mice, and the muscles were sampled at 6, 12, 24, 36 and 48h post-injury. DNA microarray analysis using RNA extracted from the muscle samples of 12h post-injury identified 3,655 upregulated and 3,583 downregulated genes. Referring to the results of the gene ontology and gene expression pathway analysis, time course expression of five cytokines, namely chemokine (C-C motif) ligand 4 (CCL4), chemokine (C-X-C motif) ligand 5 (CXCL5), interleukin-1 beta (IL-1β), interleukin- 6 (IL-6) and interleukin-7 (IL-7), were analyzed by quantative reverse transcription PCR (qRT-PCR). CXCL5 was the most upregulated gene throughout the post-injury period with higher expression from 6 through 36h post injury. Upregulation of CCL4 and IL-1β was also persisted until 36h post injury. IL-6 mRNA was highly and rapidly expressed at 6h post-injury followed by significant decrease at 12h. Unlike other four cytokines, IL-7 showed slow and steady increasing over time until 48h post-injury. Immunohistochemical staining of post-injury samples showed gradual mild increase of staining intensity proportional to increasing time points especially around the wound edges. The present study highlights the unique dynamics of each cytokine and reflects their roles in the process of muscle wound healing, and suggests the potential of them as a tool for forensic wound age estimation.
MeSH Terms
- Animals
- Cytokines
- Forensic Pathology
- Gene Expression Regulation
- Interleukin-6
- Mice
- Muscle, Skeletal
- Oligonucleotide Array Sequence Analysis
- Time Factors
- Wound Healing
Keywords
- Cytokines
- DNA microarray
- Gene expression
- Incised wound
- Skeletal muscle
- Wound aging
The mechanisms of kidney aging are not yet clear. Studies have shown that immunological inflammation is related to kidney aging. Toll-like receptors (TLRs) are one of the receptor types of the body's innate immune system. The function of the TLR system and the mechanisms by which it functions in renal aging remain unclear. In the present study, we, for the first time, systematically investigated the role of the TLR system and the inflammation responses activated by TLRs during kidney aging. We used western blot and immunohistochemistry to systematically analyze the changes in the expression and activation of the endogenous TLR ligands HSP70 and HMGB1, the TLRs (TLR1-TLR11), their downstream signaling pathway molecules MyD88 and Phospho-IRF-3, and the NF-κB signaling pathway molecules Phospho-IKKβ, Phospho-IκBα (NF-κB inhibition factor α), NF-κBp65, and Phospho-NF-κBp65 (activated NF-κB p65) in the kidneys of 3 months old (youth group), 12 months old (middle age group), and 24 months old (elderly group) rats. We used RT-qPCR to detect the mRNA expression changes of the proinflammatory cytokines CCL3, CCL4, CCL5, CD80, TNF-α, and IL-12b in the rat renal tissues of the various age groups. We found that during kidney aging, the HSP70 and HMGB1 expression levels were significantly increased, and the expression levels of TLR1, 2, 3, 4, 5, and 11 and their downstream signaling pathway molecules MyD88 and Phospho-IRF-3 were markedly elevated. Further studies have shown that in the aging kidneys, the expression levels of the NF-κB signaling pathway molecules Phospho-IKKβ, Phospho-IκBα, NF-κBp65, and Phospho-NF-κBp65 were obviously increased, and those of the proinflammatory cytokines CCL3, CCL4, CCL5, CD80, TNF-α, and IL-12b were significantly upregulated. These results showed that the TLR system might play an important role during the kidney aging process maybe by activating the NF-κB signaling pathway and promoting the high expression of inflammation factors.
MeSH Terms
- Aging
- Animals
- Kidney
- Male
- NF-kappa B
- Phosphorylation
- Rats
- Rats, Inbred F344
- Signal Transduction
- Toll-Like Receptors
The detrimental effect of activation of the chemokine CCL4/MIP-1β on neuronal integrity in patients with HIV-associated dementia has directed attention to the potential role of CCL4 expression and regulation in Alzheimer disease. Here, we show that CCL4 mRNA and protein are overexpressed in the brains of APPswe/PS1ΔE9 (APP/PS1) double-transgenic mice, a model of cerebral amyloid deposition; expression was minimal in brains from nontransgenic littermates or single-mutant controls. Increased levels of CCL4 mRNA and protein directly correlated with the age-related progression of cerebral amyloid-β (Aβ) levels in APP/PS1 mice. We also found significantly increased expression of activating transcription factor 3 (ATF3), which was positively correlated with age-related Aβ deposition and CCL4 in the brains of APP/PS1 mice. Results from chromatin immunoprecipitation-quantitative polymerase chain reaction confirmed that ATF3 binds to the promoter region of the CCL4 gene, consistent with a potential role in regulating CCL4 transcription. Finally, elevated ATF3 mRNA expression in APP/PS1 brains was associated with hypomethylation of the ATF3 gene promoter region. These observations prompt the testable hypothesis for future study that CCL4 overexpression, regulated in part by hypomethylation of the ATF3 gene, may contribute to neuropathologic progression associated with amyloid deposition in Alzheimer disease.
MeSH Terms
- Activating Transcription Factor 3
- Aging
- Alzheimer Disease
- Amyloid beta-Peptides
- Amyloid beta-Protein Precursor
- Animals
- Brain
- Chemokine CCL4
- Chromatin Immunoprecipitation
- Disease Models, Animal
- Enzyme-Linked Immunosorbent Assay
- Gene Expression Regulation
- Glial Fibrillary Acidic Protein
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Mutation
- Presenilin-1
CD8 T cells stimulated with a suboptimal dose of anti-CD3 Abs (100 pg/ml) in the presence of IL-15 retain a naive phenotype with expression of CD45RA, CD28, CD27, and CCR7 but acquire new functions and differentiate into immunosuppressive T cells. CD8 CCR7 regulatory T cells (Tregs) express FOXP3 and prevent CD4 T cells from responding to TCR stimulation and entering the cell cycle. Naive CD4 T cells are more susceptible to inhibition than memory cells. The suppressive activity of CD8 CCR7 Tregs is not mediated by IL-10, TGF-β, CTLA-4, CCL4, or adenosine and relies on interference with very early steps of the TCR signaling cascade. Specifically, CD8 CCR7 Tregs prevent TCR-induced phosphorylation of ZAP70 and dampen the rise of intracellular calcium in CD4 T cells. The inducibility of CD8 CCR7 Tregs is correlated with the age of the individual with PBLs of donors older than 60 y yielding low numbers of FOXP3(low) CD8 Tregs. Loss of CD8 CCR7 Tregs in the elderly host may be of relevance in the aging immune system as immunosenescence is associated with a state of chronic smoldering inflammation.
MeSH Terms
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Aging
- CD8 Antigens
- Cell Death
- Cell Differentiation
- Forkhead Transcription Factors
- Humans
- Immune Tolerance
- Leukocyte Common Antigens
- Middle Aged
- Primary Cell Culture
- Receptors, CCR7
- T-Lymphocyte Subsets
- T-Lymphocytes, Regulatory
Age-associated thymic involution is characterized by decreased thymopoiesis, adipocyte deposition and changes in the expression of various thymic microenvironmental factors. In this work, we characterized the distribution of fat-storing cells within the aging thymus. We found an increase of unilocular adipocytes, ERTR7( ) and CCR5( )fat-storing multilocular cells in the thymic septa and parenchymal regions, thus suggesting that mesenchymal cells could be immigrating and differentiating in the aging thymus. We verified that the expression of CCR5 and its ligands, CCL3, CCL4 and CCL5, were increased in the thymus with age. Hypothesizing that the increased expression of chemokines and the CCR5 receptor may play a role in adipocyte recruitment and/or differentiation within the aging thymus, we examined the potential role for CCR5 signaling on adipocyte physiology using 3T3-L1 pre-adipocyte cell line. Increased expression of the adipocyte differentiation markers, PPARgamma2 and aP2 in 3T3-L1 cells was observed under treatment with CCR5 ligands. Moreover, 3T3-L1 cells demonstrated an ability to migrate in vitro in response to CCR5 ligands. We believe that the increased presence of fat-storing cells expressing CCR5 within the aging thymus strongly suggests that these cells may be an active component of the thymic stromal cell compartment in the physiology of thymic aging. Moreover, we found that adipocyte differentiation appear to be influenced by the proinflammatory chemokines, CCL3, CCL4 and CCL5.
MeSH Terms
- 3T3-L1 Cells
- Adipocytes
- Aging
- Animals
- Blotting, Western
- Cell Differentiation
- Cell Movement
- Chemokine CCL3
- Chemokine CCL4
- Chemokine CCL5
- Immunohistochemistry
- Mice
- Mice, Inbred BALB C
- Oligonucleotide Array Sequence Analysis
- Receptors, CCR5
- Reverse Transcriptase Polymerase Chain Reaction
- Thymus Gland
Keywords
- adipocyte
- adipokines
- aging
- chemokines
- chemotaxis
- differentiation
- involution
- thymus
We previously reported that interleukin (IL)-4 treatment of nonobese diabetic (NOD) mice elevates intrapancreatic CCL4 expression and protects from type 1 diabetes. Here, we show that antibody neutralization of CCL4 abrogates the ability of T-cells from IL-4-treated NOD mice to transfer protection against type 1 diabetes. Intradermal delivery of CCL4 via a plasmid vector stabilized by incorporation of the Epstein-Barr virus EBNA1/oriP episomal maintenance replicon (pHERO8100-CCL4) to NOD mice beginning at later stages of disease progression protects against type 1 diabetes. This protection was associated with a Th2-like response in the spleen and pancreas; decreased recruitment of activated CD8( ) T-cells to islets, accompanied by diminished CCR5 expression on CD8( ) T-cells; and regulatory T-cell activity in the draining pancreatic lymph nodes. Thus, inflammatory responses that target islet beta-cells are suppressed by CCL4, which implicates the use of CCL4 therapeutically to prevent type 1 diabetes.
MeSH Terms
- Aging
- Animals
- Chemokine CCL4
- Chemokines, CC
- Diabetes Mellitus, Type 1
- Genetic Therapy
- Inflammation
- Insulin-Secreting Cells
- Interleukin-4
- Islets of Langerhans Transplantation
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Spleen
- T-Lymphocytes
Accumulation of CD28(null)CD8 T cells and the defects of these cells in response to antigenic stimulation are the hallmarks of age-associated decline of T cell function. However, the mechanism of these age-associated changes is not fully understood. In this study, we report an analysis of the growth of human CD28(null) and CD28 CD8 memory T cells in response to homeostatic cytokine IL-15 in vitro. We showed that 1) there was no proliferative defect of CD28(null)CD8 memory T cells in response to IL-15 compared with their CD28 counterparts; 2) stable loss of CD28 expression occurred in those actively dividing CD28 CD8 memory T cells responding to IL-15; 3) the loss of CD28 was in part mediated by TNF-alpha that was induced by IL-15; and 4) CCL4 (MIP-1beta), also induced by IL-15, had a significant inhibitory effect on the growth of CD28(null) cells, which in turn down-regulated their expression of CCL4 receptor CCR5. Together, these findings demonstrate that CD28(null)CD8 memory T cells proliferate normally in response to IL-15 and that IL-15 and its induced cytokines regulate the generation and growth of CD28(null)CD8 T cells, suggesting a possible role of IL-15 in the increase in CD28(null)CD8 T cells that occurs with aging.
MeSH Terms
- Aging
- CD28 Antigens
- CD8-Positive T-Lymphocytes
- Cell Proliferation
- Cytokines
- Humans
- Immunologic Memory
- Interleukin-15
- Reverse Transcriptase Polymerase Chain Reaction