HMGCL

Материал из hpluswiki
Версия от 16:30, 12 мая 2021; OdysseusBot (обсуждение | вклад) (Новая страница: «Hydroxymethylglutaryl-CoA lyase, mitochondrial precursor (EC 4.1.3.4) (HL) (HMG-CoA lyase) (3-hydroxy-3-methylglutarate-CoA lyase) ==Publications== {{medline-en...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску

Hydroxymethylglutaryl-CoA lyase, mitochondrial precursor (EC 4.1.3.4) (HL) (HMG-CoA lyase) (3-hydroxy-3-methylglutarate-CoA lyase)

Publications[править]

Supplementation with the reduced form of Coenzyme Q10 decelerates phenotypic characteristics of senescence and induces a peroxisome proliferator-activated receptor-alpha gene expression signature in SAMP1 mice.

Our present study reveals significant decelerating effects on senescence processes in middle-aged SAMP1 mice supplemented for 6 or 14 months with the reduced form (Q(10)H(2), 500 mg/kg BW/day) of coenzyme Q(10) (CoQ(10)). To unravel molecular mechanisms of these CoQ(10) effects, a genome-wide transcript profiling in liver, heart, brain and kidney of SAMP1 mice supplemented with the reduced (Q(10)H(2)) or oxidized form of CoQ(10) (Q(10)) was performed. Liver seems to be the main target tissue of CoQ(10) intervention, followed by kidney, heart and brain. Stringent evaluation of the resulting data revealed that Q(10)H(2) has a stronger impact on gene expression than Q(10), primarily due to differences in the bioavailability. Indeed, Q(10)H(2) supplementation was more effective than Q(10) to increase levels of CoQ(10) in the liver of SAMP1 mice. To identify functional and regulatory connections of the "top 50" (p<0.05) Q(10)H(2)-sensitive transcripts in liver, text mining analysis was used. Hereby, we identified Q(10)H(2)-sensitive genes which are regulated by peroxisome proliferator-activated receptor-alpha and are primarily involved in cholesterol synthesis (e.g. HMGCS1, HMGCL and HMGCR), fat assimilation (FABP5), lipoprotein metabolism (PLTP) and inflammation (STAT-1). These data may explain, at least in part, the decelerating effects on degenerative processes observed in Q(10)H(2)-supplemented SAMP1 mice.

MeSH Terms

  • Aging
  • Animals
  • Dietary Supplements
  • Eating
  • Female
  • Gene Expression Profiling
  • Gene Expression Regulation
  • Liver
  • Mice
  • Oxidation-Reduction
  • PPAR alpha
  • Phenotype
  • Ubiquinone


Manipulation of thyroid status and/or GH injection alters hepatic gene expression in the juvenile chicken.

Both thyroid hormone (T3) and growth hormone (GH) are important regulators of somatic growth in birds and mammals. Although T3-mediated gene transcription is well known, the molecular basis of T3 interaction with GH on growth and development of birds remains unknown. In earlier studies, we discovered that exogenous GH alone increased accumulation of visceral fat in young chickens, while the combination of GH injections and dietary T3 worked synergistically to deplete body fat. In the present study, cDNA microarray and quantitative RT-PCR analyses enabled us to examine hepatic gene expression in young chickens after chronic manipulation of thyroid status and GH injection alone or in combination with T3. Thyroid status modulates expression of common and unique sets of genes involved in a wide range of molecular functions (i.e., energy metabolism, storage and transport, signal transduction, protein turnover and drug detoxification). Hepatic expression of 35 genes was altered by hypothyroidism (e.g., ADFP, ANGPTL3, GSTalpha, CAT, PPARG, HMGCL, GHR, IGF1, STAT3, THRSPalpha), whereas hyperthyroidism affected expression of another cluster of 13 genes (e.g., IGFBP1, KHK, LDHB, BAIA2L1, SULT1B, TRIAD3). Several genes were identified which have not been previously ascribed as T3 responsive (e.g., DEFB9, EPS8L2, ARHGAP1, LASS2, INHBC). Exogenous GH altered expression of 17 genes (e.g., CCAR1, CYP2C45, GYS2, ENOB, HK1, FABP1, SQLE, SOCS2, UPG2). The T3 GH treatment depleted the greatest amount of body fat, where 34 differentially expressed genes were unique to this group (e.g., C/EBP, CDC42EP1, SYDE2, PCK2, PIK4CA, TH1L, GPT2, BHMT). The marked reduction in body fat brought about by the T3 GH synergism could involve modulation of hormone signaling via altered activity of the Ras superfamily of molecular switches, which control diverse biological processes. In conclusion, this study provides the first global analysis of endocrine (T3 and GH) regulation of hepatic gene transcription in the chicken.

MeSH Terms

  • Adipose Tissue
  • Aging
  • Animals
  • Body Weight
  • Chickens
  • Gene Expression Regulation
  • Growth Hormone
  • Liver
  • Phenotype
  • RNA, Messenger
  • Thyroid Gland
  • Transcription, Genetic
  • Triiodothyronine