GABRB2
Gamma-aminobutyric acid receptor subunit beta-2 precursor (GABA(A) receptor subunit beta-2)
Publications[править]
Chronic alcohol misuse by human subjects leads to neuronal loss in regions such as the superior frontal cortex. Reduced GABA transmission may mediate this. The expression of GABA(A) receptor beta(1), beta(2), and beta(3) isoform proteins was analyzed by western blotting in vulnerable (superior frontal cortex) and spared (primary motor cortex) cortical tissue obtained at autopsy from Caucasian subjects, and the effect of genotypes of candidate genes for alcoholism assessed. There was a significant regional difference in global isoform expression, but no significant overall group difference in beta(2) or beta(3)expression between controls and alcoholics undifferentiated by genotype in either cortical region. There were significant, regionally selective, interactions of DRD2B, SLC1A2 and APOE genotypes with beta protein expression when alcoholics were compared with controls. In each instance possession of the alcoholism-associated allele increased the beta(2):beta(3) ratio in the pathologically vulnerable region, by two distinct mechanisms. The SFC beta(2):beta(3) ratio in DRD2B-B2,B2 alcoholics was 22% higher than that in DRD2B-B1,B1 alcoholics, and 17% higher than that in DRD2B-B2,B2 controls. The SFC beta(2):beta(3) ratio in SLC1A2A603 homozygote alcoholics was 25% higher than that in alcoholics with at least one 603G allele, and 75% higher than that in SLC1A2A603 homozygote controls. The SFC beta(2):beta(3) ratio in alcoholics lacking an APOE epsilon3 allele was 73% higher than that in alcoholics with at least one epsilon3 allele, and 70% higher than that in controls without an epsilon3 allele. ADH1C genotype also differentiated cases and controls, but the effect was not localized. GABRB2 and GRIN2B genotypes were associated with significant regional differences in the pattern of beta subunit expression, but this was not influenced by alcoholism status. DRD2A and SLC6A4 genotypes were without significant effect. A restricted set of genotypes may influence subunit expression in this group of high-consumption alcoholics.
MeSH Terms
- Aging
- Alcoholism
- Blotting, Western
- Brain Chemistry
- Data Interpretation, Statistical
- Electrophoresis, Polyacrylamide Gel
- Female
- Genotype
- Humans
- Immunoblotting
- Male
- Nerve Tissue Proteins
- Phenotype
- Postmortem Changes
- RNA, Messenger
- Receptors, GABA-A