ADH1C
Alcohol dehydrogenase 1C (EC 1.1.1.1) (Alcohol dehydrogenase subunit gamma) [ADH3]
Publications[править]
Profound changes in drug metabolizing enzyme (DME) expression occurs during development that impacts the risk of adverse drug events in the fetus and child. A review of our current knowledge suggests individual hepatic DME ontogeny can be categorized into one of three groups. Some enzymes, e.g., CYP3A7, are expressed at their highest level during the first trimester and either remain at high concentrations or decrease during gestation, but are silenced or expressed at low levels within one to two years after birth. SULT1A1 is an example of the second group of DME. These enzymes are expressed at relatively constant levels throughout gestation and minimal changes are observed postnatally. ADH1C is typical of the third DME group that are not expressed or are expressed at low levels in the fetus, usually during the second or third trimester. Substantial increases in enzyme levels are observed within the first one to two years after birth. Combined with our knowledge of other physiological factors during early life stages, knowledge regarding DME ontogeny has permitted the development of robust physiological based pharmacokinetic models and an improved capability to predict drug disposition in pediatric patients. This review will provide an overview of DME developmental expression patterns and discuss some implications of the data with regards to drug therapy. Common themes emerging from our current knowledge also will be discussed. Finally, the review will highlight gaps in knowledge that will be important to advance this field.
MeSH Terms
- Aging
- Animals
- Drug-Related Side Effects and Adverse Reactions
- Enzymes
- Humans
- Oxidoreductases
- Pharmaceutical Preparations
- Tissue Distribution
Chronic alcohol misuse by human subjects leads to neuronal loss in regions such as the superior frontal cortex. Reduced GABA transmission may mediate this. The expression of GABA(A) receptor beta(1), beta(2), and beta(3) isoform proteins was analyzed by western blotting in vulnerable (superior frontal cortex) and spared (primary motor cortex) cortical tissue obtained at autopsy from Caucasian subjects, and the effect of genotypes of candidate genes for alcoholism assessed. There was a significant regional difference in global isoform expression, but no significant overall group difference in beta(2) or beta(3)expression between controls and alcoholics undifferentiated by genotype in either cortical region. There were significant, regionally selective, interactions of DRD2B, SLC1A2 and APOE genotypes with beta protein expression when alcoholics were compared with controls. In each instance possession of the alcoholism-associated allele increased the beta(2):beta(3) ratio in the pathologically vulnerable region, by two distinct mechanisms. The SFC beta(2):beta(3) ratio in DRD2B-B2,B2 alcoholics was 22% higher than that in DRD2B-B1,B1 alcoholics, and 17% higher than that in DRD2B-B2,B2 controls. The SFC beta(2):beta(3) ratio in SLC1A2A603 homozygote alcoholics was 25% higher than that in alcoholics with at least one 603G allele, and 75% higher than that in SLC1A2A603 homozygote controls. The SFC beta(2):beta(3) ratio in alcoholics lacking an APOE epsilon3 allele was 73% higher than that in alcoholics with at least one epsilon3 allele, and 70% higher than that in controls without an epsilon3 allele. ADH1C genotype also differentiated cases and controls, but the effect was not localized. GABRB2 and GRIN2B genotypes were associated with significant regional differences in the pattern of beta subunit expression, but this was not influenced by alcoholism status. DRD2A and SLC6A4 genotypes were without significant effect. A restricted set of genotypes may influence subunit expression in this group of high-consumption alcoholics.
MeSH Terms
- Aging
- Alcoholism
- Blotting, Western
- Brain Chemistry
- Data Interpretation, Statistical
- Electrophoresis, Polyacrylamide Gel
- Female
- Genotype
- Humans
- Immunoblotting
- Male
- Nerve Tissue Proteins
- Phenotype
- Postmortem Changes
- RNA, Messenger
- Receptors, GABA-A