Открыть главное меню
Главная
Случайная
Войти
Настройки
О hpluswiki
Отказ от ответственности
hpluswiki
Найти
Редактирование:
Aging genes 60-69
(раздел)
Внимание:
Вы не вошли в систему. Ваш IP-адрес будет общедоступен, если вы запишете какие-либо изменения. Если вы
войдёте
или
создадите учётную запись
, её имя будет использоваться вместо IP-адреса, наряду с другими преимуществами.
Анти-спам проверка.
Не
заполняйте это!
Дополнительно
Спецсимволы
Справка
Заголовок
Уровень 2
Уровень 3
Уровень 4
Уровень 5
Формат
Вставка
Латинские
Латинские расширенные
МФА (IPA)
Символы
Греческие
Расширенный греческий
Кириллица
Арабские
Арабские расширенные
Иврит
Бенгальские
Тамильский
Телугу
Сингальские
Деванагари
Гуджарати
Тайские
Лаосские
Кхмерские
Канадское слоговое письмо
Руны
Á
á
À
à
Â
â
Ä
ä
Ã
ã
Ǎ
ǎ
Ā
ā
Ă
ă
Ą
ą
Å
å
Ć
ć
Ĉ
ĉ
Ç
ç
Č
č
Ċ
ċ
Đ
đ
Ď
ď
É
é
È
è
Ê
ê
Ë
ë
Ě
ě
Ē
ē
Ĕ
ĕ
Ė
ė
Ę
ę
Ĝ
ĝ
Ģ
ģ
Ğ
ğ
Ġ
ġ
Ĥ
ĥ
Ħ
ħ
Í
í
Ì
ì
Î
î
Ï
ï
Ĩ
ĩ
Ǐ
ǐ
Ī
ī
Ĭ
ĭ
İ
ı
Į
į
Ĵ
ĵ
Ķ
ķ
Ĺ
ĺ
Ļ
ļ
Ľ
ľ
Ł
ł
Ń
ń
Ñ
ñ
Ņ
ņ
Ň
ň
Ó
ó
Ò
ò
Ô
ô
Ö
ö
Õ
õ
Ǒ
ǒ
Ō
ō
Ŏ
ŏ
Ǫ
ǫ
Ő
ő
Ŕ
ŕ
Ŗ
ŗ
Ř
ř
Ś
ś
Ŝ
ŝ
Ş
ş
Š
š
Ș
ș
Ț
ț
Ť
ť
Ú
ú
Ù
ù
Û
û
Ü
ü
Ũ
ũ
Ů
ů
Ǔ
ǔ
Ū
ū
ǖ
ǘ
ǚ
ǜ
Ŭ
ŭ
Ų
ų
Ű
ű
Ŵ
ŵ
Ý
ý
Ŷ
ŷ
Ÿ
ÿ
Ȳ
ȳ
Ź
ź
Ž
ž
Ż
ż
Æ
æ
Ǣ
ǣ
Ø
ø
Œ
œ
ß
Ð
ð
Þ
þ
Ə
ə
Форматирование
Ссылки
Заголовки
Списки
Файлы
Примечания
Обсуждение
Описание
Что вы вводите
Что вы получаете
Курсив
''Курсивное начертание''
Курсивное начертание
Полужирный
'''Полужирное начертание'''
Полужирное начертание
Полужирный курсив
'''''Полужирный курсив'''''
Полужирный курсив
==GDF11== * {{medline-title |title=Data mining of human plasma proteins generates a multitude of highly predictive aging clocks that reflect different aspects of aging. |date=11.2020 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33031577 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7681068 }} * {{medline-title |title=Cellular and Molecular Biomarkers Indicate Premature Aging in Pseudoxanthoma Elasticum Patients. |date=05.2020 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32489700 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7220280 }} * {{medline-title |title=Growth differentiation factor-11 supplementation improves survival and promotes recovery after ischemic stroke in aged mice. |date=04.05.2020 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32365331 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244081 }} * {{medline-title |title=Anti-Aging Effects of [[GDF11]] on Skin. |date=09.04.2020 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32283613 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177281 }} * {{medline-title |title=Targeted Approach to Distinguish and Determine Absolute Levels of GDF8 and [[GDF11]] in Mouse Serum. |date=06.2020 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32104967 |full-text-url=https://sci-hub.do/10.1002/pmic.201900104 }} * {{medline-title |title=Growth differentiation factor 11 impairs titanium implant healing in the femur and leads to mandibular bone loss. |date=09.2020 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31983062 |full-text-url=https://sci-hub.do/10.1002/JPER.19-0247 }} * {{medline-title |title=Quercetin, caffeic acid and resveratrol regulate circadian clock genes and aging-related genes in young and old human lung fibroblast cells. |date=02.2020 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31773385 |full-text-url=https://sci-hub.do/10.1007/s11033-019-05194-8 }} * {{medline-title |title=Systemic [[GDF11]] stimulates the secretion of adiponectin and induces a calorie restriction-like phenotype in aged mice. |date=01.2020 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31637864 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974718 }} * {{medline-title |title=Circulating factors in young blood as potential therapeutic agents for age-related neurodegenerative and neurovascular diseases. |date=11.2019 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31400495 |full-text-url=https://sci-hub.do/10.1016/j.brainresbull.2019.08.004 }} * {{medline-title |title=Effects of Exercise Training on Growth and Differentiation Factor 11 Expression in Aged Mice. |date=2019 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31417428 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6684741 }} * {{medline-title |title=[[TERT]] assists [[GDF11]] to rejuvenate senescent VEGFR2 /CD133 cells in elderly patients with myocardial infarction. |date=11.2019 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31292540 |full-text-url=https://sci-hub.do/10.1038/s41374-019-0290-1 }} * {{medline-title |title=The role of [[GDF11]] in aging and skeletal muscle, cardiac and bone homeostasis. |date=04.2019 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31144559 |full-text-url=https://sci-hub.do/10.1080/10409238.2019.1610722 }} * {{medline-title |title=Circulating [[GDF11]] levels are decreased with age but are unchanged with obesity and type 2 diabetes. |date=21.03.2019 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30897065 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6461177 }} * {{medline-title |title=Activin type II receptor signaling in cardiac aging and heart failure. |date=06.03.2019 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30842316 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7124007 }} * {{medline-title |title=Neuroprotective potential of [[GDF11]] in experimental intracerebral hemorrhage in elderly rats. |date=05.2019 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30827882 |full-text-url=https://sci-hub.do/10.1016/j.jocn.2019.02.016 }} * {{medline-title |title=The influence of [[GDF11]] on brain fate and function. |date=02.2019 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30729414 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423340 }} * {{medline-title |title=Administration of r[[GDF11]] retards the aging process in male mice via action of anti-oxidant system. |date=08.2019 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30726519 |full-text-url=https://sci-hub.do/10.1007/s10522-019-09799-1 }} * {{medline-title |title=Novel biomolecules of ageing, sex differences and potential underlying mechanisms of telomere shortening in coronary artery disease. |date=05.2019 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30684534 |full-text-url=https://sci-hub.do/10.1016/j.exger.2019.01.020 }} * {{medline-title |title=The Growth Differentiation Factor 11 is Involved in Skin Fibroblast Ageing and is Induced by a Preparation of Peptides and Sugars Derived from Plant Cell Cultures. |date=03.2019 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30661170 |full-text-url=https://sci-hub.do/10.1007/s12033-019-00154-w }} * {{medline-title |title=[The role of «Youth and aging proteins» in essential hypertension pathogenesis.] |date=2018 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30584875 }} * {{medline-title |title=Regenerative Capacity of Endogenous Factor: Growth Differentiation Factor 11; a New Approach of the Management of Age-Related Cardiovascular Events. |date=12.12.2018 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30545044 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6321079 }} * {{medline-title |title=Late-onset administration of [[GDF11]] extends life span and delays development of age-related markers in the annual fish Nothobranchius guentheri. |date=04.2019 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30519861 |full-text-url=https://sci-hub.do/10.1007/s10522-018-09789-9 }} * {{medline-title |title=Growth Differentiation Factor 11 treatment leads to neuronal and vascular improvements in the hippocampus of aged mice. |date=23.11.2018 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30470794 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6251885 }} * {{medline-title |title=Relationship of Circulating Growth and Differentiation Factors 8 and 11 and Their Antagonists as Measured Using Liquid Chromatography-Tandem Mass Spectrometry With Age and Skeletal Muscle Strength in Healthy Adults. |date=01.01.2019 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30380014 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6298188 }} * {{medline-title |title=The [[GDF11]]-[[FTO]]-PPARγ axis controls the shift of osteoporotic [[MSC]] fate to adipocyte and inhibits bone formation during osteoporosis. |date=12.2018 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30279140 |full-text-url=https://sci-hub.do/10.1016/j.bbadis.2018.09.015 }} * {{medline-title |title=The effects of aging, diabetes mellitus, and antiplatelet drugs on growth factors and anti-aging proteins in platelet-rich plasma. |date=2019 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30252623 |full-text-url=https://sci-hub.do/10.1080/09537104.2018.1514110 }} * {{medline-title |title=Relationship of muscle function to circulating myostatin, follistatin and [[GDF11]] in older women and men. |date=30.08.2018 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30165829 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6117873 }} * {{medline-title |title=Activin subfamily peptides predict chronological age in humans. |date=09.2018 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30178598 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6121122 }} * {{medline-title |title=Growth differentiation factor 11 worsens hepatocellular injury and liver regeneration after liver ischemia reperfusion injury. |date=09.2018 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29913561 |full-text-url=https://sci-hub.do/10.1096/fj.201800195R }} * {{medline-title |title=The [i]Drosophila[/i] TGF-beta/Activin-like ligands Dawdle and Myoglianin appear to modulate adult lifespan through regulation of 26S proteasome function in adult muscle. |date=26.04.2018 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29615416 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5936056 }} * {{medline-title |title=Lifelong exercise, but not short-term high-intensity interval training, increases [[GDF11]], a marker of successful aging: a preliminary investigation. |date=07.2017 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28701523 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5506528 }} * {{medline-title |title=Exogenous [[GDF11]] induces cardiac and skeletal muscle dysfunction and wasting. |date=07.2017 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28647906 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833306 }} * {{medline-title |title=["Protein of senility" [[CCL11]], "protein of juvenility" [[GDF11]] and their role in age-related pathology]. |date=2016 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28556640 }} * {{medline-title |title=A targeted proteomic assay for the measurement of plasma proteoforms related to human aging phenotypes. |date=08.2017 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28508553 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5863538 }} * {{medline-title |title=The Growth Differentiation Factor 11 ([[GDF11]]) and Myostatin (MSTN) in tissue specific aging. |date=06.2017 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28472635 |full-text-url=https://sci-hub.do/10.1016/j.mad.2017.04.009 }} * {{medline-title |title=Targeted myocardial delivery of [[GDF11]] gene rejuvenates the aged mouse heart and enhances myocardial regeneration after ischemia-reperfusion injury. |date=01.2017 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28004242 |full-text-url=https://sci-hub.do/10.1007/s00395-016-0593-y }} * {{medline-title |title=[[GDF11]] Treatment Attenuates the Recovery of Skeletal Muscle Function After Injury in Older Rats. |date=03.2017 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27924614 |full-text-url=https://sci-hub.do/10.1208/s12248-016-0024-x }} * {{medline-title |title=[[GDF11]] improves tubular regeneration after acute kidney injury in elderly mice. |date=05.10.2016 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27703192 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5050408 }} * {{medline-title |title=Increased serum [[GDF11]] concentration is associated with a high prevalence of osteoporosis in elderly native Chinese women. |date=11.2016 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27557752 |full-text-url=https://sci-hub.do/10.1111/1440-1681.12651 }} * {{medline-title |title=[[GDF11]] administration does not extend lifespan in a mouse model of premature aging. |date=30.08.2016 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27507054 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302888 }} * {{medline-title |title=[[GDF11]] Inhibits Bone Formation by Activating Smad2/3 in Bone Marrow Mesenchymal Stem Cells. |date=11.2016 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27395058 |full-text-url=https://sci-hub.do/10.1007/s00223-016-0173-z }} * {{medline-title |title=Serum Levels of Growth Differentiation Factor 11 Are Independently Associated with Low Hemoglobin Values in Hemodialysis Patients. |date=2016 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27298756 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4900214 }} * {{medline-title |title=Quantification of [[GDF11]] and Myostatin in Human Aging and Cardiovascular Disease. |date=14.06.2016 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27304512 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4913514 }} * {{medline-title |title=Lack of evidence for [[GDF11]] as a rejuvenator of aged skeletal muscle satellite cells. |date=06.2016 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27139744 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854912 }} * {{medline-title |title=Is Growth Differentiation Factor 11 a Realistic Therapeutic for Aging-Dependent Muscle Defects? |date=01.04.2016 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27034276 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4829942 }} * {{medline-title |title=Biochemistry and Biology of [[GDF11]] and Myostatin: Similarities, Differences, and Questions for Future Investigation. |date=01.04.2016 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27034275 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4818972 }} * {{medline-title |title=Circulating Concentrations of Growth Differentiation Factor 11 Are Heritable and Correlate With Life Span. |date=12.2016 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26774117 |full-text-url=https://sci-hub.do/10.1093/gerona/glv308 }} * {{medline-title |title=Evaluation of growth differentiation factor 11 ([[GDF11]]) levels in dogs with chronic mitral valve insufficiency. |date=01.2016 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26733738 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686040 }} * {{medline-title |title=Molecular mechanism of endothelial and vascular aging: implications for cardiovascular disease. |date=21.12.2015 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26543043 |full-text-url=https://sci-hub.do/10.1093/eurheartj/ehv587 }} * {{medline-title |title=Circulating Growth Differentiation Factor 11/8 Levels Decline With Age. |date=08.01.2016 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26489925 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748736 }} * {{medline-title |title=[[GDF11]] does not rescue aging-related pathological hypertrophy. |date=06.11.2015 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26383970 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4636963 }} * {{medline-title |title=Splenocytes derived from young WT mice prevent AD progression in APPswe/PSENldE9 transgenic mice. |date=28.08.2015 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26317549 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4673234 }} * {{medline-title |title=Blood-Borne Revitalization of the Aged Brain. |date=10.2015 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26237737 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4867550 }} * {{medline-title |title=[[GDF11]] Increases with Age and Inhibits Skeletal Muscle Regeneration. |date=07.07.2015 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26001423 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4497834 }} * {{medline-title |title=The aging human recipient of transfusion products. |date=06.2015 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25921506 |full-text-url=https://sci-hub.do/10.1016/j.transci.2015.04.009 }} * {{medline-title |title=Systemic factors mediate reversible age-associated brain dysfunction. |date=12.2014 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25400086 |full-text-url=https://sci-hub.do/10.1089/rej.2014.1643 }} * {{medline-title |title=Rejuvenation: it's in our blood. |date=01.07.2014 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24988454 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126586 }} * {{medline-title |title=Intertissue control of the nucleolus via a myokine-dependent longevity pathway. |date=12.06.2014 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24882005 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125979 }} * {{medline-title |title=Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. |date=09.05.2014 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24797482 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4123747 }} * {{medline-title |title=Restoring systemic [[GDF11]] levels reverses age-related dysfunction in mouse skeletal muscle. |date=09.05.2014 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24797481 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104429 }} * {{medline-title |title=Ageing of the heart reversed by youthful systemic factors! |date=14.08.2013 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23860129 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746199 }} * {{medline-title |title=Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. |date=09.05.2013 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23663781 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677132 }}
Описание изменений:
Пожалуйста, учтите, что любой ваш вклад в проект «hpluswiki» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см.
Hpluswiki:Авторские права
).
НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!
Отменить
Справка по редактированию
(в новом окне)
Закрыть
Загрузка редактора…