Материал из hpluswiki
Перейти к навигации Перейти к поиску

Coagulation factor XI precursor (EC (FXI) (Plasma thromboplastin antecedent) (PTA) [Contains: Coagulation factor XIa heavy chain; Coagulation factor XIa light chain]


A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium.

Venous thromboembolism (VTE) is a common, heritable disease resulting in high rates of hospitalization and mortality. Yet few associations between VTE and genetic variants, all in the coagulation pathway, have been established. To identify additional genetic determinants of VTE, we conducted a two-stage genome-wide association study (GWAS) among individuals of European ancestry in the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) VTE consortium. The discovery GWAS comprised 1,618 incident VTE cases out of 44,499 participants from six community-based studies. Genotypes for genome-wide single-nucleotide polymorphisms (SNPs) were imputed to approximately 2.5 million SNPs in HapMap and association with VTE assessed using study-design appropriate regression methods. Meta-analysis of these results identified two known loci, in F5 and ABO. Top 1,047 tag SNPs (P ≤ 0.0016) from the discovery GWAS were tested for association in an additional 3,231 cases and 3,536 controls from three case-control studies. In the combined data from these two stages, additional genome-wide significant associations were observed on 4q35 at F11 (top SNP rs4253399, intronic to F11) and on 4q28 at FGG (rs6536024, 9.7 kb from FGG; P < 5.0 × 10(-13) for both). The associations at the FGG locus were not completely explained by previously reported variants. Loci at or near SUSD1 and OTUD7A showed borderline yet novel associations (P < 5.0 × 10(-6) ) and constitute new candidate genes. In conclusion, this large GWAS replicated key genetic associations in F5 and ABO, and confirmed the importance of F11 and FGG loci for VTE. Future studies are warranted to better characterize the associations with F11 and FGG and to replicate the new candidate associations.

MeSH Terms

  • Aged
  • Aging
  • Case-Control Studies
  • Cohort Studies
  • Female
  • Genome-Wide Association Study
  • Humans
  • Male
  • Meta-Analysis as Topic
  • Middle Aged
  • Polymorphism, Single Nucleotide
  • Regression Analysis
  • Risk Factors
  • Venous Thromboembolism

Nonspecific association of 2',3'-cyclic nucleotide 3'-phosphodiesterase with the rat forebrain postsynaptic density fraction.

The 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP), a protein of unknown function in vivo, is abundantly expressed in myelinating glia in two isoforms, CNP1 and CNP2. In this study, immunoblot analysis showed that CNP1 is the major isoform in adult forebrain, and that both isoforms are included in the postsynaptic density (PSD) fraction and tyrosine-phosphorylated at the basal level. However, subcellular distribution and detergent extraction data showed that CNP is nonspecifically associated with the PSD fraction. Immunocytochemistry revealed that CNP is detected, in a weak but punctate pattern, in dissociated rat hippocampal neurons of 3 days to 2 weeks in vitro. The CNP-positive punctae were distributed throughout soma and dendrites, and distinct from PSD95-positive ones. Immunoblot analysis indicated that CNP is also expressed in neuronal stem cell lines, HiB5 and F11. Interestingly, in addition to the known two isoforms, a new CNP isoform of MW 45 kDa was expressed in these cell lines and was the major type of isoform in F11 cells. Taken together, our data suggest that CNP is expressed in the early stage of in vitro development and nonspecifically included in the adult rat PSD fraction.

MeSH Terms

  • 2',3'-Cyclic-Nucleotide Phosphodiesterases
  • Aging
  • Animals
  • Cells, Cultured
  • Hippocampus
  • Immunohistochemistry
  • Nerve Tissue Proteins
  • Neurons
  • Phosphotyrosine
  • Prosencephalon
  • Rats
  • Rats, Sprague-Dawley
  • Substrate Specificity

Comparative studies on the biology and filarial susceptibility of selected blood-feeding and autogenous Aedes togoi sub-colonies.

Blood-feeding and autogenous sub-colonies were selected from a laboratory, stock colony of Aedes togoi, which was originally collected from Koh Nom Sao, Chanthaburi province, Southeast Thailand. Comparative biology and filarial susceptibility between the two sub-colonies (blood-feeding: F11, F13; autogeny: F38, F40) were investigated to evaluate their viability and vectorial capacity. The results of comparison on biology revealed intraspecific differences, i.e., the average egg deposition/gravid female (F11/F38; F13/F40), embryonation rate (F13/F40), hatchability rate (F11/F38; F13/F40), egg width (F11/F38), wing length of females (F13/F40), and wing length and width of males (F11/F38) in the blood-feeding sub-colony were significantly greater than that in the autogenous sub-colony; and egg length (F11/F38) and width (F13/F40), and mean longevity of adult females (F11/F38) and males (F13/F40) in the blood-feeding sub-colony were significantly less than that in the autogenous sub-colony. The results of comparison on filarial susceptibility demonstrated that both sub-colonies yielded similar susceptibilities to Brugia malayi [blood-feeding/autogeny = 56.7% (F11)/53.3%(F38), 60%(F13)/83.3%(F40)] and Dirofilaria immitis [blood-feeding/autogeny = 85.7%(F11)/75%(F38), 45%(F13)/29.4%(F40)], suggesting autogenous Ae. togoi sub-colony was an efficient laboratory vector in study of filariasis.

MeSH Terms

  • Aedes
  • Animals
  • Brugia malayi
  • Cricetinae
  • Dirofilaria immitis
  • Feeding Behavior
  • Female
  • Host-Parasite Interactions
  • Insect Vectors
  • Longevity
  • Male
  • Oviposition