Материал из hpluswiki
Перейти к навигации Перейти к поиску

Bone morphogenetic protein 7 precursor (BMP-7) (Osteogenic protein 1) (OP-1) (Eptotermin alfa) [OP1]


GREM1 inhibits osteogenic differentiation, senescence and BMP transcription of adipose-derived stem cells.
Adipose-derived stem cells (ADSCs) are ideal for cell-based therapies to support bone regeneration. It is vital to understand the critical genes and molecular mechanisms involved in the functional regulation of ADSCs for enhancing bone regeneration. In the present study, we investigated the Gremlin 1 (GREM1) effect on ADSCs osteogenic differentiation and senescence. : The [i]in vitro[/i] ADSCs osteogenic differentiation potential was evaluated by determining alkaline phosphatase (ALP) activity, mineralization ability, and the expression of osteogenic markers. Cell senescence is determined by SA-β-gal staining, telomerase assay, and the expression of aging markers. : GREM1 overexpression in ADSCs reduced ALP activity and mineralization, inhibited the expression of osteogenic related genes [i]OCN, OPN, DSPP, DMP1[/i], and [i]BSP[/i], and key transcription factors, [i]RUNX2[/i] and [i]OSX[/i]. GREM1 knockdown in ADSCs enhanced ALP activity and mineralization, promoted the expression of [i]OCN, OPN, DSPP, DMP1, BSP, RUNX2[/i], and [i]OSX[/i]. GREM1 overexpression in ADSCs reduced the percent SA-β-Gal positive cells, [i]P16[/i] and [i]P53[/i] expressions, and increased telomerase activity. GREM1 knockdown in ADSCs increased the percentage of SA-β-Gal positive cells, [i]P16[/i] and [i]P53[/i] expressions, and reduced telomerase activity. Furthermore, GREM1 reduced the mRNA expression levels of BMP2, BMP6, and BMP7. : In summary, our findings suggested that GREM1 inhibited ADSCs senescence and osteogenic differentiation and antagonized BMP transcription.


  • BMP
  • GREM1
  • adipose-derived stem cells (ADSCs)
  • osteogenic differentiation
  • senescence

Downregulation of miR-542-3p promotes osteogenic transition of vascular smooth muscle cells in the aging rat by targeting BMP7.

Aging is believed to have a close association with cardiovascular diseases, resulting in various pathological alterations in blood vessels, including vascular cell phenotypic shifts. In aging vessels, the microRNA(miRNA)-mediated mechanism regulating the vascular smooth muscle cell (VSMC) phenotype remains unclarified. MiRNA microarray was used to compare the expressions of miRNAs in VSMCs from old rats (oVSMCs) and young rats (yVSMCs). Quantitative reverse transcription real-time PCR (qRT-PCR) and small RNA transfection were used to explore the miR-542-3p expression in oVSMCs and yVSMCs in vitro. Calcification induction of yVSMCs was conducted by the treatment of β-glycerophosphate (β-GP). Alizarin red staining was used to detect calcium deposition. Western blot and qRT-PCR were used to investigate the expression of the smooth muscle markers, smooth muscle 22α (SM22α) and calponin, and the osteogenic markers, osteopontin (OPN), and runt-related transcription factor 2 (Runx2). Lentivirus was used to overexpress miR-542-3p and bone morphogenetic protein 7 (BMP7) in yVMSCs. Luciferase reporter assay was conducted to identify the target of miR-542-3p. Compared with yVSMCs, 28 downregulated and 34 upregulated miRNAs were identified in oVSMCs. It was confirmed by qRT-PCR that oVSMC expressed four times lower miR-542-3p than yVSMCs. Overexpressing miR-542-3p in yVSMCs suppressed the osteogenic differentiation induced by β-GP. Moreover, miR-542-3p targets BMP7 and overexpressing BMP7 in miR-542-3p-expressing yVSMCs reverses miR-542-3p's inhibition of osteogenic differentiation. miR-542-3p regulates osteogenic differentiation of VSMCs through targeting BMP7, suggesting that the downregulation of miR-542-3p in oVSMCs plays a crucial role in osteogenic transition in the aging rat.

MeSH Terms

  • Aging
  • Animals
  • Base Sequence
  • Bone Morphogenetic Protein 7
  • Down-Regulation
  • Glycerophosphates
  • MicroRNAs
  • Models, Biological
  • Muscle, Smooth, Vascular
  • Myocytes, Smooth Muscle
  • Osteogenesis
  • Rats


  • Aging
  • Mir-542-3p
  • Osteogenic differentiation
  • Vascular smooth muscle cells

TGF-beta receptor mediated telomerase inhibition, telomere shortening and breast cancer cell senescence.

Human telomerase reverse transcriptase (hTERT) plays a central role in telomere lengthening for continuous cell proliferation, but it remains unclear how extracellular cues regulate telomerase lengthening of telomeres. Here we report that the cytokine bone morphogenetic protein-7 (BMP7) induces the hTERT gene repression in a BMPRII receptor- and Smad3-dependent manner in human breast cancer cells. Chonic exposure of human breast cancer cells to BMP7 results in short telomeres, cell senescence and apoptosis. Mutation of the BMPRII receptor, but not TGFbRII, ACTRIIA or ACTRIIB receptor, inhibits BMP7-induced repression of the hTERT gene promoter activity, leading to increased telomerase activity, lengthened telomeres and continued cell proliferation. Expression of hTERT prevents BMP7-induced breast cancer cell senescence and apoptosis. Thus, our data suggest that BMP7 induces breast cancer cell aging by a mechanism involving BMPRII receptor- and Smad3-mediated repression of the hTERT gene.

MeSH Terms

  • Actin-Related Protein 2
  • Activin Receptors, Type II
  • Bone Morphogenetic Protein 7
  • Bone Morphogenetic Protein Receptors, Type II
  • Breast Neoplasms
  • Cellular Senescence
  • Female
  • HeLa Cells
  • Humans
  • MCF-7 Cells
  • Neoplasm Proteins
  • Protein-Serine-Threonine Kinases
  • Receptor, Transforming Growth Factor-beta Type II
  • Receptors, Transforming Growth Factor beta
  • Smad3 Protein
  • Telomerase
  • Telomere Homeostasis


  • TGFbeta
  • breast cancer cells
  • hTERT
  • senescence
  • telomerase
  • telomeres

Effects of Usag-1 and Bmp7 deficiencies on murine tooth morphogenesis.

Wnt5a and Mrfzb1 genes are involved in the regulation of tooth size, and their expression levels are similar to that of Bmp7 during morphogenesis, including during the cap and early bell stages of tooth formation. We previously reported that Usag-1-deficient mice form supernumerary maxillary incisors. Thus, we hypothesized that BMP7 and USAG-1 signaling molecules may play important roles in tooth morphogenesis. In this study, we established double genetically modified mice to examine the in vivo inter-relationships between Bmp7 and Usag-1. We measured the volume and cross-sectional areas of the mandibular incisors using micro-computed tomography (micro-CT) in adult Bmp7- and Usag-1-LacZ knock-in mice and their F2 generation upon interbreeding. The mandibular incisors of adult Bmp7 /- mice were significantly larger than those of wild-type (WT) mice. The mandibular incisors of adult Usag-1-/- mice were the largest of all genotypes examined. In the F2 generation, the effects of these genes were additive; Bmp7 /- was most strongly associated with the increase in tooth size using generalized linear models, and the total area of mandibular supernumerary incisors of Usag-1-/-Bmp7 /- mice was significantly larger than that of Usag-1-/-Bmp7 / mice. At embryonic day 15 (E15), BrdU assays demonstrated that the labeling index of Bmp7 /- embryos was significantly higher than that of WT embryos in the cervical loop. Additionally, the labeling index of Usag-1-/- embryos was significantly the highest of all genotypes examined in dental papilla. Bmp7 heterozygous mice exhibited significantly increased tooth sizes, suggesting that tooth size was controlled by specific gene expression. Our findings may be useful in applications of regenerative medicine and dentistry.

MeSH Terms

  • Adaptor Proteins, Signal Transducing
  • Aging
  • Animals
  • Apoptosis
  • Bone Morphogenetic Protein 7
  • Bone Morphogenetic Proteins
  • Bromodeoxyuridine
  • Cell Proliferation
  • Crosses, Genetic
  • Embryo, Mammalian
  • Female
  • Gene Expression Regulation, Developmental
  • Gene Knock-In Techniques
  • In Situ Nick-End Labeling
  • Incisor
  • Linear Models
  • Male
  • Mandible
  • Mice, Inbred C57BL
  • Molar
  • Morphogenesis
  • Organ Size
  • Phenotype
  • Staining and Labeling
  • Tooth
  • X-Ray Microtomography
  • beta-Galactosidase


  • Bmp7
  • Mouse model
  • Tooth morphogenesis
  • Tooth size
  • Tooth volume
  • Usag-1

Conditional deletion of BMP7 from the limb skeleton does not affect bone formation or fracture repair.

While the osteoinductive activity of recombinant bone morphogenetic protein 7 (BMP7) is well established, evaluation of the role of endogenous BMP7 in bone formation and fracture healing has been hampered by perinatal lethality in BMP7 knockout mice. Here we employ conditional deletion of BMP7 from the embryonic limb prior to the onset of skeletogenesis to create limb bones lacking BMP7. We find that the absence of locally produced BMP7 has no effect on postnatal limb growth, articular cartilage formation, maintenance of bone mass, or fracture healing. Our data suggest that other BMPs present in adult bone are sufficient to compensate for the absence of BMP7.

MeSH Terms

  • Aging
  • Animals
  • Animals, Genetically Modified
  • Animals, Newborn
  • Bone Morphogenetic Protein 4
  • Bone Morphogenetic Protein 7
  • Bone and Bones
  • Calcification, Physiologic
  • Cartilage, Articular
  • Embryo, Mammalian
  • Embryonic Development
  • Extremities
  • Femoral Fractures
  • Fracture Healing
  • Gene Deletion
  • Homeostasis
  • Mice
  • Mice, Knockout
  • Osteogenesis