AURKC

Материал из hpluswiki
Перейти к навигации Перейти к поиску

Aurora kinase C (EC 2.7.11.1) (Aurora 3) (Aurora/IPL1-related kinase 3) (ARK-3) (Aurora-related kinase 3) (Aurora/IPL1/Eg2 protein 2) (Serine/threonine-protein kinase 13) (Serine/threonine-protein kinase aurora-C) [AIE2] [AIK3] [AIRK3] [ARK3] [STK13]

Publications[править]

Aurora kinase mRNA expression is reduced with increasing gestational age and in severe early onset fetal growth restriction.

Oxidative damage and biochemical ageing are implicated in placental dysfunction and potentially fetal death. Cellular senescence may play a role in the pathophysiology of fetal growth restriction (FGR) and preeclampsia (PE). Aurora kinases (AURKA, B and C) are important regulators of cellular division in mitosis and meiosis with implications in cellular senescence. We aimed to investigate whether aurora kinase expression is altered with placental dysfunction or placental ageing. Placenta and blood was obtained across gestation from pregnancies complicated by PE, FGR or both PE and FGR, as well as gestation-matched control samples. Expression of AURKA, B and C mRNA was examined using real time qPCR in both the placenta and maternal circulation. Placental aurora kinase expression decreased as gestation progressed: AURKA and AURKB were significantly reduced at 37-40 weeks, whereas AURKC was significantly reduced at 34-37 weeks, when compared to <34 weeks. In the maternal circulation, the mRNA level of AURKB was significantly reduced at >40 weeks compared to <34 weeks gestation. A significant reduction in AURKC was seen in FGR pregnancies <34 weeks compared to gestation-matched controls. Placental AURK expression is reduced with increased gestation. Circulating AURKB mRNA reduces at >40 weeks gestation, when compared to <34 weeks. AURKC is significantly reduced in placentas from pregnancies complicated by severe early onset (<34 weeks) FGR compared with gestation-matched controls. The functional role of aurora kinase in the placenta and in gestational age warrants further investigation.


Keywords

  • Aurora kinase
  • Cellular senescence
  • FGR
  • Preeclampsia