ABCG4
ATP-binding cassette sub-family G member 4 [WHITE2]
Publications[править]
ABCG1 and ABCG4 are highly homologous members of the ATP binding cassette (ABC) transporter family that regulate cellular cholesterol homeostasis. In adult mice, ABCG1 is known to be expressed in numerous cell types and tissues, whereas ABCG4 expression is limited to the central nervous system (CNS). Here, we show significant differences in expression of these two transporters during development. Examination of beta-galactosidase-stained tissue sections from Abcg1(-/-)LacZ and Abcg4(-/-)LacZ knockin mice shows that ABCG4 is highly but transiently expressed both in hematopoietic cells and in enterocytes during development. In contrast, ABCG1 is expressed in macrophages and in endothelial cells of both embryonic and adult liver. We also show that ABCG1 and ABCG4 are both expressed as early as E12.5 in the embryonic eye and developing CNS. Loss of both ABCG1 and ABCG4 results in accumulation in the retina and/or brain of oxysterols, in altered expression of liver X receptor and sterol-regulatory element binding protein-2 target genes, and in a stress response gene. Finally, behavioral tests show that Abcg4(-/-) mice have a general deficit in associative fear memory. Together, these data indicate that loss of ABCG1 and/or ABCG4 from the CNS results in changes in metabolic pathways and in behavior.
MeSH Terms
- ATP Binding Cassette Transporter, Subfamily G
- ATP Binding Cassette Transporter, Subfamily G, Member 1
- ATP-Binding Cassette Transporters
- Aging
- Animals
- Behavior, Animal
- Brain
- Central Nervous System
- Conditioning, Classical
- Embryo, Mammalian
- Fear
- Gene Expression Regulation, Developmental
- Lipoproteins
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Electron, Transmission
- Retina
- beta-Galactosidase
High-density lipoproteins (HDL) are considered atheroprotective in contrast to low-density lipoproteins (LDL), which are atherogenic in their oxidized form. A growing body of evidence suggests that HDL exert part of their antiatherogenic effect by counteracting LDL oxidation as well as their proinflammatory effect. However, a number of studies, carried over the past 30 years, have shown that cholesterol efflux plays a major role in the atheroprotective effects of HDL and cholesterol homeostasis. These studies have further identified the scavenger receptor type B-I (SR-BI), the adenosine triphosphate (ATP)-binding cassette transporters ATP-binding cassette subfamily A1 (ABCA1), ATP-binding cassette subfamily G1 (ABCG1) and ABCG4, the liver X receptor/retinoid X receptor (LXR/RXR) and peroxisome proliferator-activated receptorgamma(PPAR gamma) transcription factors, the HDL components apolipoprotein A-I (apoA-I), lecithin-cholesterol acyltransferase (LCAT), and phospholipids as additional mediators of cholesterol transport. Cholesterol efflux occurs via three independent pathways: (1) aqueous diffusion, (2) nonspecific efflux via SR-BI receptors, and (3) specific efflux via cholesterol-responsive members of the ABC superfamily. Whereas aqueous diffusion and scavenger receptor class B, type I (SR-BI)-mediated efflux transport free cholesterol to a wide variety of cholesterol acceptors (particles containing phospholipids, HDL, and lipidated apo-lipoproteins; LDL, etc), the ABCA1 pathway mediates the transport of cholesterol in a unidirectional manner, mainly to lipid-poor apoA-I. In contrast, the ABCG1 pathway is responsible for the transport of cholesterol to all the subfamily members of HDL. Although HDL-mediated cholesterol efflux is apoA-I-dependent, recent studies have suggested an involvement of the enzyme paraoxonase 1 (PON1). Cholesterol efflux is carried on by a number of factors such as genetic mutations, smoking, stress, and high-fat diets. It is attenuated with aging due to changes in the composition and structure of HDL, especially the phosphatidylcholine/sphingomyelin ratio, the fluidity of the phospholipidic layer, the concentration of apoA-I, and the activity of PON1. This review summarizes the findings that cholesterol homeostasis is disrupted with aging as a consequence of dysfunctional cholesterol efflux and the impairment of physiological functions.
MeSH Terms
- ATP-Binding Cassette Transporters
- Aging
- Animals
- Biological Transport
- Cardiovascular Diseases
- Cholesterol
- Humans
- Lipoproteins, HDL
Using in situ hybridization for the mouse brain, we analyzed developmental changes in gene expression for the ATP-binding cassette (ABC) transporter subfamilies ABCA1-4 and 7, and ABCG1, 2, 4, 5 and 8. In the embryonic brains, ABCA1 and A7 were highly expressed in the ventricular (or germinal) zone, whereas ABCA2, A3 and G4 were enriched in the mantle (or differentiating) zone. At the postnatal stages, ABCA1 was detected in both the gray and white matter and in the choroid plexus. On the other hand, ABCA2, A3 and A7 were distributed in the gray matter. In addition, marked up-regulation of ABCA2 occurred in the white matter at 14 days-of-age when various myelin protein genes are known to be up-regulated. In marked contrast, ABCA4 was selective to the choroid plexus throughout development. ABCG1 was expressed in both the gray and white matters, whereas ABCG4 was confined to the gray matter. ABCG2 was diffusely and weakly detected throughout the brain at all stages examined. Immunohistochemistry of ABCG2 showed its preferential expression on the luminal membrane of brain capillaries. Expression signals for ABCG5 and G8 were barely detected at any stages. The distinct spatio-temporal expressions of individual ABCA and G transporters may reflect their distinct cellular expressions in the developing and adult brains, presumably, to regulate and maintain lipid homeostasis in the brain.
MeSH Terms
- ATP-Binding Cassette Transporters
- Aging
- Animals
- Animals, Newborn
- Brain
- Embryo, Mammalian
- Immunohistochemistry
- In Situ Hybridization
- Mice
- Mice, Inbred C57BL
- Tissue Distribution