Белковая инженерия
Белковая инженерия занимается разработкой белков, которые могут принимать участие в метаболизме клетки, экспрессии генов, улучшению структуры клетки или доставке веществ внутрь клетки из внешнего мира. Как дисциплина, белковая инженерия исследует фолдинг (сворачивание) белков, а также принципы их создания и модификации.
Методы[править]
- Направленная модификация - для внесения изменений использует подробное знание об устройстве и назначении молекулы белка
- Направленная эволюция - из случайных мутантов белка отбираются экземпляры наиболее близкие целевым параметрам, после чего случайный мутагенез повторяется, пока в итоге не будут получены мутанты целевым параметрам удовлетворяющие (циклы мутация-селекция).
Примеры[править]
Энзимы[править]
Энзимы или ферменты, это белки, выполняющие роль биологических катализаторов. Найдено множество видов для каждого типа энзима.
В еде[править]
Трансглютаминазы - группа энзимов, которые применяются в пищевой индустрии и молекулярной кухне. Альтернативное название, "мясной клей", говорит о многом - трансглютаминаза позволяет склеить и сформировать фарш. (Википедия)
В фармакологии[править]
Гиалуронидазы - группа энзимов, которая применяется в медицине для повышения биодоступности лекарств и вакцин.
В моющих средствах[править]
Энзимы для моющих средств производятся в промышленных масштабах. Они дают гораздо лучший баланс между стоимостью производства и безопасностью для потребителя, детей и домашних животных. Распространённые виды:
- липаза - расщепляет липиды
- протеаза - расщепляет белки, производится из сои[1]
- амилаза - расщепляет крахмал и соединения с ним, производится бактериями и грибками[2] [3]
- целлюлаза - расщепляет целлюлозу
- пектиназа - расщепляет пектин
- кератиназа - расщепляет кератин
Перспективы[править]
Нанотехнологии[править]
Белок - основной "стройматериал" для организма, так как его просто создавать в больших количествах и белки могут выполнять самые разные функции. Есть целая связанная область науки - нанотехнология протеинов[4].
Метаболизм пластика и биопластик[править]
Загрязнение пластиком - известная современная проблема. Создание новых белков, которые смогут разложить его может быть одним из решений. Создание белков, которые станут компонентами новых видов пластика или пойдут ему на замену в некоторых индустриях - не менее ценная инициатива.[5]
- InTechOpen - Protein Engineering Methods and Applications
- InTechOpen - Protein engineering of enzymes involved in bioplastic metabolism
- Wikipedia - Bioplastic
Бесклеточные системы трансляции[править]
Бесклеточные системы трансляции (англ. «Cell-free translation systems»)[6][7] - альтернатива получению белков in vivo.
Процесс происходит таким образом: ДНК или мРНК добавляется в раствор и белки получаются без участия клеток.
Cell-free translation systems are based on the ribosomal protein system of cells, which is provided as a cell extract from Escherichia coli etc. obtained as a supernatant upon centrifugation at 30’000 g. This supernatant contains necessary compounds for protein synthesis, such as ribosomes, t-RNAs, translation factors and aminoacyl-tRNA synthetases.
Стройматериалы[править]
Человечество использует дерево как материал на протяжении практически всего своего развития. Можно ли развить дерево и придумать лучшие альтернативы целлюлозе? Можно ли вырастить здание?
Есть три пути, которые позволят рассмотреть эту тему.
- Грибки + разложение отходов
- Фотосинтез, как это делают растения. В таком разрезе, для фотосинтеза необходима только вода, углекислый газ и минимум материалов, а для разложения - добавочная масса отходов для переработки.
- Переработка отходов и последующее использование бесклеточной системы трансляции
Требуется информация от эксперта! |
---|
Запрос: Следует ли рассматривать разработку белков и новых организмов для замены стройматериалов, как идею, которая может быть однажды практичной? |
Экспертиза: биолог, физик |
Требуется информация от эксперта! |
---|
Запрос: Какие энергозатраты понадобятся для создания массы белка путём фотосинтеза из углекислого газа? Что выгоднее: цианобактерии или генномодифицированные растения? |
Экспертиза: биолог, физик |
Требуется информация от эксперта! |
---|
Запрос: Какие энергозатраты понадобятся для создания массы белка путём разложения грибком? Не возникнет ли проблемы с доставкой материала между клетками? |
Экспертиза: биолог, физик |
Требуется информация от эксперта! |
---|
Запрос: Какие энергозатраты понадобятся для предварительной переработки органических отходов, если для получения белков будет применяться бесклеточная система трансляции? |
Экспертиза: биолог, физик |
Требуется информация от эксперта! |
---|
Запрос: Какие проблемы можно ожидать от работы бесклеточной системы трансляции в контексте индустриального производства белка? |
Экспертиза: биолог |
Инструменты[править]
Ссылки[править]
- ↑ High-yield Bacillus subtilis protease production by solid-state fermentation, Valeria F Soares, Leda R Castilho, Elba P S Bon, Denise M G Freire, PMID: 15917609
- ↑ Elmansy, E.A., Asker, M.S., El-Kady, E.M. et al. Production and optimization of α-amylase from thermo-halophilic bacteria isolated from different local marine environments. Bull Natl Res Cent 42, 31 (2018)
- ↑ Singh, Shalini & Singh, Sanamdeep & Bali, Vrinda & Sharma, Lovleen & Mangla, Jyoti. (2014). Production of Fungal Amylases Using Cheap, Readily Available Agriresidues, for Potential Application in Textile Industry. BioMed research international. 2014. 215748.
- ↑ NCBI: Protein nanotechnology: what is it?, Juliet A Gerrard, PMID: 23504415
- ↑ Здесь следует отметить, что сейчас крайне популярен биопластик, изготовленный из крахмала, который является полимером, хоть и извлекается из картофеля и кукурузы.
- ↑ Protein Engineering Methods and Applications, Burcu Turanli-Yildiz, Ceren Alkim, Z. Petek Cakar, Feb. 2012
- ↑ Cell‐free translation systems for protein engineering , Yoshihiro Shimizu, Yutetsu Kuruma, Bei‐Wen Ying, So Umekage, Takuya Ueda, August 2006