DNM1

Материал из hpluswiki
Версия от 18:28, 12 мая 2021; OdysseusBot (обсуждение | вклад) (Новая страница: «Dynamin-1 (EC 3.6.5.5) [DNM] ==Publications== {{medline-entry |title=Increased Degradation Rates in the Components of the Mitochondrial Oxidative Phosphorylatio...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску

Dynamin-1 (EC 3.6.5.5) [DNM]

Publications[править]

Increased Degradation Rates in the Components of the Mitochondrial Oxidative Phosphorylation Chain in the Cerebellum of Old Mice.

Brain structures differ in the magnitude of age-related neuron loss with the cerebellum being more affected. An underlying cause could be an age-related decline in mitochondrial bioenergetics. Successful aging of mitochondria reflects a balanced turnover of proteins involved in mitochondrial biogenesis and mitophagy. Thus, an imbalance in mitochondrial turnover can contribute to the diminution of cellular function seen during aging. Mitochondrial biogenesis and mitophagy are mediated by a set of proteins including MFN1, MFN2, OPA1, DRP1, FIS1 as well as DMN1l and DNM1, all of which are required for mitochondrial fission. Using N15 labeling, we report that the turnover rates for DMN1l and FIS1 go in opposite directions in the cerebellum of 22-month-old C57BL6j mice as compared to 3-month-old mice. Previous studies have reported decreased turnover rates for the mitochondrial respiratory complexes of aged rodents. In contrast, we found increased turnover rates for mitochondrial proteins of the oxidative phosphorylation chain in the aged mice as compared to young mice. Furthermore, the turnover rate of the components that are most affected by aging -complex III components ([i]ubiquinol cytochrome C oxidoreductase[/i]) and complex IV components ([i]cytochrome C oxidase[/i])- was significantly increased in the senescent cerebellum. However, the turnover rates of proteins involved in mitophagy (i.e., the proteasomal and lysosomal degradation of damaged mitochondria) were not significantly altered with age. Overall, our results suggest that an age-related imbalance in the turnover rates of proteins involved in mitochondrial biogenesis and mitophagy (DMN1l, FIS1) in conjunction with an age-related imbalance in the turnover rates of proteins of the complexes III and IV of the electron transfer chain, might impair cerebellar mitochondrial bioenergetics in old mice.


Keywords

  • aging
  • cerebellum
  • mice
  • mitochondria
  • proteins
  • turnover


Aging alters the expression of neurotransmission-regulating proteins in the hippocampal synaptoproteome.

Decreased cognitive performance reduces independence and quality of life for aging individuals. Healthy brain aging does not involve significant neuronal loss, but little is known about the effects of aging at synaptic terminals. Age-related cognitive decline likely reflects the manifestation of dysregulated synaptic function and ineffective neurotransmission. In this study, hippocampal synaptosomes were enriched from young-adult (3 months), adult (12 months), and aged (26 months) Fischer 344 x Brown Norway rats, and quantitative alterations in the synaptoproteome were examined by 2-DIGE and MS/MS. Bioinformatic analysis of differentially expressed proteins identified a significant effect of aging on a network of neurotransmission-regulating proteins. Specifically, altered expression of DNM1, HPCA, PSD95, SNAP25, STX1, SYN1, SYN2, SYP, and VAMP2 was confirmed by immunoblotting. 14-3-3 isoforms identified in the proteomic analysis were also confirmed as a result of their implication in the regulation of the synaptic vesicle cycle and neurotransmission modulation. The findings of this study demonstrate a coordinated down-regulation of neurotransmission-regulating proteins that suggests an age-based deterioration of hippocampal neurotransmission occurring between adulthood and advanced age. Altered synaptic protein expression may decrease stimulus-induced neurotransmission and vesicle replenishment during prolonged or intense stimulation, which are necessary for learning and the formation and perseverance of memory.

MeSH Terms

  • Aging
  • Animals
  • Computational Biology
  • Electrophoresis, Gel, Two-Dimensional
  • Gene Expression Regulation
  • Hippocampus
  • Male
  • Mass Spectrometry
  • Membrane Proteins
  • Microscopy, Electron, Transmission
  • Proteome
  • Rats
  • Rats, Inbred F344
  • Synaptic Transmission
  • Synaptosomes