FOXA2

Версия от 18:38, 12 мая 2021; OdysseusBot (обсуждение | вклад) (Новая страница: «Hepatocyte nuclear factor 3-beta (HNF-3-beta) (HNF-3B) (Forkhead box protein A2) (Transcription factor 3B) (TCF-3B) [HNF3B] [TCF3B] ==Publications== {{medline-e...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)

Hepatocyte nuclear factor 3-beta (HNF-3-beta) (HNF-3B) (Forkhead box protein A2) (Transcription factor 3B) (TCF-3B) [HNF3B] [TCF3B]

PublicationsПравить

Induced Pluripotent Stem Cell-Derived Dopaminergic Neurons from Adult Common Marmoset Fibroblasts.

The common marmoset monkey (Callithrix jacchus; Cj) is an advantageous nonhuman primate species for modeling age-related disorders, including Parkinson's disease, due to their shorter life span compared to macaques. Cj-derived induced pluripotent stem cells (Cj-iPSCs) from somatic cells are needed for in vitro disease modeling and testing regenerative medicine approaches. Here we report the development of a novel Cj-iPSC line derived from adult marmoset fibroblasts. The Cj-iPSCs showed potent pluripotency properties, including the development of mesodermal lineages in tumors after injection to immunocompromised mice, as well as ectoderm and endoderm lineages after in vitro differentiation regimens, demonstrating differentiated derivatives of all three embryonic layers. In addition, expression of key pluripotency genes (ZFP42, PODXL, DNMT3B, C-MYC, LIN28, KLF4, NANOG, SOX2, and OCT4) was observed. We then tested the neural differentiation capacity and gene expression profiles of Cj-iPSCs and a marmoset embryonic stem cell line (Cj-ESC) after dual-SMAD inhibition. Exposure to CHIR99021 and sonic hedgehog (SHH) for 12 and 16 days, respectively, patterned the cells toward a ventralized midbrain dopaminergic phenotype, confirmed by expression of FOXA2, OTX2, EN-1, and tyrosine hydroxylase. These results demonstrate that common marmoset stem cells will be able to serve as a platform for investigating regenerative medicine approaches targeting the dopaminergic system.

MeSH Terms

  • Aging
  • Animals
  • Callithrix
  • Cell Differentiation
  • Cell Lineage
  • Dopaminergic Neurons
  • Fibroblasts
  • Gene Expression Regulation
  • Induced Pluripotent Stem Cells
  • Mesencephalon

Keywords

  • Parkinson's disease
  • induced pluripotent stem cells
  • neural differentiation
  • nonhuman primate model


Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells.

Expression levels of genes encoding specific transcription factors and other functionally important proteins vary upon aging of pancreatic and bronchial epithelium cell cultures. The peptides KEDW and AEDL tissue-specifically affect gene expression in pancreatic and bronchial cell cultures, respectively. It is established in this work that the DNA methylation patterns of the PDX1, PAX6, NGN3, NKX2-1, and SCGB1A1 gene promoter regions change upon aging in pancreatic and bronchial cell cultures in correlation with variations in their expression levels. Thus, stable changes in gene expression upon aging of cell cultures could be caused by changes in their promoter methylation patterns. The methylation patterns of the PAX4 gene in pancreatic cells as well as those of the FOXA1, SCGB3A2, and SFTPA1 genes in bronchial cells do not change upon aging and are unaffected by peptides, whereas their expression levels change in both cases. The promoter region of the FOXA2 gene in pancreatic cells contains a small number of methylated CpG sites, their methylation levels being affected by cell culture aging and KEDW, though without any correlation with gene expression levels. The promoter region of the FOXA2 gene is completely unmethylated in bronchial cells irrespective of cell culture age and AEDL action. Changes in promoter methylation might be the cause of age- and peptide-induced variations in expression levels of the PDX1, PAX6, and NGN3 genes in pancreatic cells and NKX2-1 and SCGB1A1 genes in bronchial cells. Expression levels of the PAX4 and FOXA2 genes in pancreatic cells and FOXA1, FOXA2, SCGB3A2, and SFTPA1 genes in bronchial cells seem to be controlled by some other mechanisms.

MeSH Terms

  • Aging
  • Cell Line
  • Cellular Senescence
  • DNA Methylation
  • Epigenesis, Genetic
  • Gene Expression Regulation
  • Humans
  • Peptides
  • Promoter Regions, Genetic