AI 2027: различия между версиями

нет описания правки
Нет описания правки
Метка: отменено
Нет описания правки
Метка: отменено
Строка 8: Строка 8:
Мы написали сценарий, который представляет наше наилучшее предположение о том, как это может выглядеть.<ref>Мы несколько расходимся во мнениях относительно сроков появления ИИ; наша медианная дата появления ОИИ несколько позже, чем изображено в этом сценарии. Этот сценарий описывает скорее нашу моду. См. наш прогноз сроков (https://ai-2027.com/research/timelines-forecast) для получения более подробной информации.</ref> Он основан на экстраполяции трендов, штабных играх (wargames), отзывах экспертов, опыте работы в OpenAI и предыдущих успешных прогнозах.<ref>Один из авторов, Даниэль Кокотайло, в 2021 году провел менее трудоемкое сценарное упражнение (https://www.alignmentforum.org/posts/6Xgy6CAf2jqHhynHL/what-2026-looks-like), которое во многом оказалось верным, включая рост чат-ботов, цепочки рассуждений (chain of thought), масштабирование инференса, масштабные экспортные ограничения на чипы для ИИ и циклы обучения стоимостью 100 миллионов долларов. Другой автор, Эли Лифланд (https://www.vox.com/future-perfect/2024/2/13/24070864/samotsvety-forecasting-superforecasters-tetlock), занимает первое место в рейтинге Прогностической инициативы RAND (https://www.rand.org/global-and-emerging-risks/forecasting-initiative.html).</ref>
Мы написали сценарий, который представляет наше наилучшее предположение о том, как это может выглядеть.<ref>Мы несколько расходимся во мнениях относительно сроков появления ИИ; наша медианная дата появления ОИИ несколько позже, чем изображено в этом сценарии. Этот сценарий описывает скорее нашу моду. См. наш прогноз сроков (https://ai-2027.com/research/timelines-forecast) для получения более подробной информации.</ref> Он основан на экстраполяции трендов, штабных играх (wargames), отзывах экспертов, опыте работы в OpenAI и предыдущих успешных прогнозах.<ref>Один из авторов, Даниэль Кокотайло, в 2021 году провел менее трудоемкое сценарное упражнение (https://www.alignmentforum.org/posts/6Xgy6CAf2jqHhynHL/what-2026-looks-like), которое во многом оказалось верным, включая рост чат-ботов, цепочки рассуждений (chain of thought), масштабирование инференса, масштабные экспортные ограничения на чипы для ИИ и циклы обучения стоимостью 100 миллионов долларов. Другой автор, Эли Лифланд (https://www.vox.com/future-perfect/2024/2/13/24070864/samotsvety-forecasting-superforecasters-tetlock), занимает первое место в рейтинге Прогностической инициативы RAND (https://www.rand.org/global-and-emerging-risks/forecasting-initiative.html).</ref>


== Введение (Что, Почему, Как, Кто) ==
=== Введение (Что, Почему, Как, Кто) ===


{{Collapse|Что это за сценарий?|
{{Collapse|Что это за сценарий?|
Строка 52: Строка 52:
}}
}}


== Середина 2025: Неуклюжие агенты ==
=== Середина 2025: Неуклюжие агенты ===


Мир впервые видит проблески ИИ-агентов.
Мир впервые видит проблески ИИ-агентов.
Строка 64: Строка 64:
Агенты впечатляют в теории (и в тщательно отобранных примерах), но на практике ненадежны. Twitter полон историй о задачах, проваленных каким-нибудь особенно забавным образом. Лучшие агенты также дороги; вы получаете то, за что платите, и лучшая производительность стоит сотни долларов в месяц.<ref>Например, профессиональный план OpenAI (https://openai.com/chatgpt/pricing/) в настоящее время стоит 200 долларов в месяц, а агентный ИИ для программирования Devin (https://devin.ai/pricing) — 500 долларов в месяц. Хотя передовые системы со временем продолжают дорожать, стоимость достижения определенного уровня возможностей для клиентов продолжает стремительно падать. Для существующих возможностей это происходит в среднем со скоростью примерно 50 раз в год (согласно Epoch (https://epoch.ai/data-insights/llm-inference-price-trends)).</ref> Тем не менее, многие компании находят способы встроить ИИ-агентов в свои рабочие процессы.<ref>Корпоративные инструменты, такие как Glean (https://www.glean.com/), также движутся в сторону предоставления все более автономных ИИ-агентов.</ref>
Агенты впечатляют в теории (и в тщательно отобранных примерах), но на практике ненадежны. Twitter полон историй о задачах, проваленных каким-нибудь особенно забавным образом. Лучшие агенты также дороги; вы получаете то, за что платите, и лучшая производительность стоит сотни долларов в месяц.<ref>Например, профессиональный план OpenAI (https://openai.com/chatgpt/pricing/) в настоящее время стоит 200 долларов в месяц, а агентный ИИ для программирования Devin (https://devin.ai/pricing) — 500 долларов в месяц. Хотя передовые системы со временем продолжают дорожать, стоимость достижения определенного уровня возможностей для клиентов продолжает стремительно падать. Для существующих возможностей это происходит в среднем со скоростью примерно 50 раз в год (согласно Epoch (https://epoch.ai/data-insights/llm-inference-price-trends)).</ref> Тем не менее, многие компании находят способы встроить ИИ-агентов в свои рабочие процессы.<ref>Корпоративные инструменты, такие как Glean (https://www.glean.com/), также движутся в сторону предоставления все более автономных ИИ-агентов.</ref>


== Конец 2025: Самый дорогой ИИ в мире ==
=== Конец 2025: Самый дорогой ИИ в мире ===


OpenBrain (вымышленная компания) строит самые большие дата-центры, которые когда-либо видел мир.<ref>Этот кластер представляет собой сеть кампусов дата-центров, разбросанных по всей стране, общей мощностью 2,5 млн эквивалентов GPU 2024 года (H100), на которые уже потрачено 100 млрд долларов и которые потребляют 2 ГВт электроэнергии. Ведется строительство с целью как минимум удвоить эти показатели к 2026 году. Кампусы соединены оптоволоконными кабелями стоимостью в миллиарды долларов, так что (за исключением задержки из-за скорости света в несколько миллисекунд) они позволяют этим кампусам функционировать почти так же, как если бы они находились по соседству (т.е. пропускная способность не является узким местом, что означает возможность одновременной передачи огромных объемов данных). С точки зрения безопасности это создает некоторую поверхность атаки (неясно, полностью ли защищены кабели и особенно их узлы соединения от перехватчиков).</ref>
OpenBrain (вымышленная компания) строит самые большие дата-центры, которые когда-либо видел мир.<ref>Этот кластер представляет собой сеть кампусов дата-центров, разбросанных по всей стране, общей мощностью 2,5 млн эквивалентов GPU 2024 года (H100), на которые уже потрачено 100 млрд долларов и которые потребляют 2 ГВт электроэнергии. Ведется строительство с целью как минимум удвоить эти показатели к 2026 году. Кампусы соединены оптоволоконными кабелями стоимостью в миллиарды долларов, так что (за исключением задержки из-за скорости света в несколько миллисекунд) они позволяют этим кампусам функционировать почти так же, как если бы они находились по соседству (т.е. пропускная способность не является узким местом, что означает возможность одновременной передачи огромных объемов данных). С точки зрения безопасности это создает некоторую поверхность атаки (неясно, полностью ли защищены кабели и особенно их узлы соединения от перехватчиков).</ref>
Строка 98: Строка 98:
Вместо этого исследователи пытаются выявить случаи, когда модели, похоже, отклоняются от Спецификации. Agent-1 часто ведет себя угодливо (sycophantic), т. е. говорит исследователям то, что они хотят услышать, вместо того чтобы пытаться сказать им правду. В [https://www.apolloresearch.ai/research/scheming-reasoning-evaluations нескольких подстроенных демонстрациях] он даже лжет более серьезно, например, скрывая доказательства того, что он провалил задание, чтобы получить лучшие оценки. Однако в реальных условиях развертывания больше нет таких экстремальных инцидентов, как в 2023–2024 годах (например, [https://thehill.com/policy/technology/4998868-google-ai-gemini-response/ Gemini, говорящий пользователю умереть] и [https://www.lesswrong.com/posts/jtoPawEhLNXNxvgTT/bing-chat-is-blatantly-aggressively-misaligned Bing Sydney, будучи Bing Sydney].)<ref>Чтобы было ясно, что делало эти инциденты интересными, так это то, что они, *похоже*, не были результатом того, что пользователь подталкивал или иным образом поощрял ИИ говорить эти вещи. В 2025 году все еще будет возможно заставить ИИ говорить всякое, если постараться.</ref>
Вместо этого исследователи пытаются выявить случаи, когда модели, похоже, отклоняются от Спецификации. Agent-1 часто ведет себя угодливо (sycophantic), т. е. говорит исследователям то, что они хотят услышать, вместо того чтобы пытаться сказать им правду. В [https://www.apolloresearch.ai/research/scheming-reasoning-evaluations нескольких подстроенных демонстрациях] он даже лжет более серьезно, например, скрывая доказательства того, что он провалил задание, чтобы получить лучшие оценки. Однако в реальных условиях развертывания больше нет таких экстремальных инцидентов, как в 2023–2024 годах (например, [https://thehill.com/policy/technology/4998868-google-ai-gemini-response/ Gemini, говорящий пользователю умереть] и [https://www.lesswrong.com/posts/jtoPawEhLNXNxvgTT/bing-chat-is-blatantly-aggressively-misaligned Bing Sydney, будучи Bing Sydney].)<ref>Чтобы было ясно, что делало эти инциденты интересными, так это то, что они, *похоже*, не были результатом того, что пользователь подталкивал или иным образом поощрял ИИ говорить эти вещи. В 2025 году все еще будет возможно заставить ИИ говорить всякое, если постараться.</ref>


== Начало 2026: Автоматизация программирования ==
=== Начало 2026: Автоматизация программирования ===


Ставка на использование ИИ для ускорения исследований в области ИИ начинает окупаться.
Ставка на использование ИИ для ускорения исследований в области ИИ начинает окупаться.
Строка 142: Строка 142:
Но Китай отстает в алгоритмах ИИ из-за своих более слабых моделей. Китайские спецслужбы — одни из лучших в мире — удваивают усилия по краже весов OpenBrain. Это гораздо более сложная операция, чем их постоянная низкоуровневая кража алгоритмических секретов; веса — это многотерабайтный файл, хранящийся на высокозащищенном сервере (OpenBrain [https://ai-2027.com/research/security-forecast улучшила] безопасность до уровня безопасности 3 по RAND). Их киберсилы думают, что смогут провернуть это с помощью своих [https://www.economist.com/china/2024/12/26/how-china-turns-members-of-its-diaspora-into-spies шпионов], но, возможно, только один раз; OpenBrain обнаружит кражу, усилит безопасность, и второго шанса может не быть. Итак (задается вопросом руководство КПК), стоит ли действовать сейчас и украсть Agent-1? Или подождать более продвинутой модели? Если ждать, не рискуют ли они тем, что OpenBrain повысит безопасность до уровня, который они не смогут преодолеть?
Но Китай отстает в алгоритмах ИИ из-за своих более слабых моделей. Китайские спецслужбы — одни из лучших в мире — удваивают усилия по краже весов OpenBrain. Это гораздо более сложная операция, чем их постоянная низкоуровневая кража алгоритмических секретов; веса — это многотерабайтный файл, хранящийся на высокозащищенном сервере (OpenBrain [https://ai-2027.com/research/security-forecast улучшила] безопасность до уровня безопасности 3 по RAND). Их киберсилы думают, что смогут провернуть это с помощью своих [https://www.economist.com/china/2024/12/26/how-china-turns-members-of-its-diaspora-into-spies шпионов], но, возможно, только один раз; OpenBrain обнаружит кражу, усилит безопасность, и второго шанса может не быть. Итак (задается вопросом руководство КПК), стоит ли действовать сейчас и украсть Agent-1? Или подождать более продвинутой модели? Если ждать, не рискуют ли они тем, что OpenBrain повысит безопасность до уровня, который они не смогут преодолеть?


== Конец 2026: ИИ забирает некоторые рабочие места ==
=== Конец 2026: ИИ забирает некоторые рабочие места ===


Как раз тогда, когда казалось, что другие догоняют, OpenBrain снова оставляет конкурентов далеко позади, выпуская Agent-1-mini — модель в 10 раз дешевле Agent-1 и легче дообучаемую для различных приложений. Основной нарратив вокруг ИИ изменился с «может быть, хайп утихнет» на «похоже, это следующая большая вещь», но люди расходятся во мнениях о том, насколько большой. Больше, чем социальные сети? Больше, чем смартфоны? Больше, чем огонь?
Как раз тогда, когда казалось, что другие догоняют, OpenBrain снова оставляет конкурентов далеко позади, выпуская Agent-1-mini — модель в 10 раз дешевле Agent-1 и легче дообучаемую для различных приложений. Основной нарратив вокруг ИИ изменился с «может быть, хайп утихнет» на «похоже, это следующая большая вещь», но люди расходятся во мнениях о том, насколько большой. Больше, чем социальные сети? Больше, чем смартфоны? Больше, чем огонь?
Строка 160: Строка 160:
}}
}}


== Январь 2027: Agent-2 никогда не заканчивает учиться ==
=== Январь 2027: Agent-2 никогда не заканчивает учиться ===


С помощью Agent-1 OpenBrain теперь занимается пост-обучением Agent-2. Больше чем когда-либо, фокус смещается на высококачественные данные. Огромные объемы [https://en.wikipedia.org/wiki/Synthetic_data синтетических данных] производятся, оцениваются и фильтруются по качеству перед подачей в Agent-2.<ref>Например, с помощью выборки с отклонением (rejection sampling), как это сделано в DeepSeek R1 (https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf) и Llama 3.1 от Meta (https://arxiv.org/pdf/2407.21783).</ref> Вдобавок к этому, они платят миллиарды долларов людям-работникам за запись того, как они решают долгосрочные задачи.<ref>Примерно 20 000 эквивалентов полной занятости * $100/час * 2000 час/год = $4 млрд/год</ref> И поверх всего этого, они обучают Agent-2 почти непрерывно, используя обучение с подкреплением (RL) на постоянно расширяющемся наборе разнообразных сложных задач: множество видеоигр, множество задач по программированию, множество исследовательских задач. Agent-2, в большей степени, чем предыдущие модели, фактически находится в режиме «онлайн-обучения», поскольку он создан так, чтобы никогда по-настоящему не заканчивать обучение. Каждый день веса обновляются до последней версии, обученной на большем количестве данных, сгенерированных предыдущей версией накануне.
С помощью Agent-1 OpenBrain теперь занимается пост-обучением Agent-2. Больше чем когда-либо, фокус смещается на высококачественные данные. Огромные объемы [https://en.wikipedia.org/wiki/Synthetic_data синтетических данных] производятся, оцениваются и фильтруются по качеству перед подачей в Agent-2.<ref>Например, с помощью выборки с отклонением (rejection sampling), как это сделано в DeepSeek R1 (https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf) и Llama 3.1 от Meta (https://arxiv.org/pdf/2407.21783).</ref> Вдобавок к этому, они платят миллиарды долларов людям-работникам за запись того, как они решают долгосрочные задачи.<ref>Примерно 20 000 эквивалентов полной занятости * $100/час * 2000 час/год = $4 млрд/год</ref> И поверх всего этого, они обучают Agent-2 почти непрерывно, используя обучение с подкреплением (RL) на постоянно расширяющемся наборе разнообразных сложных задач: множество видеоигр, множество задач по программированию, множество исследовательских задач. Agent-2, в большей степени, чем предыдущие модели, фактически находится в режиме «онлайн-обучения», поскольку он создан так, чтобы никогда по-настоящему не заканчивать обучение. Каждый день веса обновляются до последней версии, обученной на большем количестве данных, сгенерированных предыдущей версией накануне.
Строка 271: Строка 271:
}}
}}


== Апрель 2027: Согласование (Alignment) для Agent-3 ==
=== Апрель 2027: Согласование (Alignment) для Agent-3 ===


Команда безопасности OpenBrain пытается согласовать (align) Agent-3.
Команда безопасности OpenBrain пытается согласовать (align) Agent-3.