Aging genes 1-2: различия между версиями
Перейти к навигации
Перейти к поиску
Нет описания правки |
Нет описания правки |
||
(не показаны 3 промежуточные версии 2 участников) | |||
Строка 1: | Строка 1: | ||
__NOTOC__ | __NOTOC__ | ||
* [[Aging genes | * [[Aging genes 300|Genes with 300 and more publications]] | ||
* [[Aging genes | * [[Aging genes 200-299|Genes with 200-299 publications]] | ||
* [[Aging genes 100-199|Genes with 100-199 publications]] | |||
* [[Aging genes 90-99|Genes with 90-99 publications]] | |||
* [[Aging genes 80-89|Genes with 80-89 publications]] | |||
* [[Aging genes 70-79|Genes with 70-79 publications]] | |||
* [[Aging genes 60-69|Genes with 60-69 publications]] | |||
* [[Aging genes 50-59|Genes with 50-59 publications]] | |||
* [[Aging genes 40-49|Genes with 40-49 publications]] | |||
* [[Aging genes 30-39|Genes with 30-39 publications]] | |||
* [[Aging genes 20-29|Genes with 20-29 publications]] | |||
* [[Aging genes 10-19|Genes with 10-19 publications]] | |||
* [[Aging genes 5-9|Genes with 5-9 publications]] | |||
* [[Aging genes 3-4|Genes with 3-4 publications]] | |||
* [[Aging genes 1-2|Genes with 1-2 publications]] | |||
* [[Aging_genes_A-Z_table]] | |||
== | ==AACS== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Sex differences in subjective age-associated changes in sleep: a prospective elderly cohort study. | ||
|date=2020 | |date=07.11.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33170149 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695390 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. | ||
|date= | |date=05.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28325852 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827 | ||
}} | }} | ||
== | ==ABCC2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Proteomic Analysis of the Developmental Trajectory of Human Hepatic Membrane Transporter Proteins in the First Three Months of Life. | ||
|date= | |date=07.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27103634 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1124/dmd.115.068577 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Developmental characteristics of urinary coproporphyrin I/(I III) ratio. | ||
|date= | |date=10.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26920082 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1111/ped.12965 | ||
}} | }} | ||
== | ==ABCG1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Disrupted cholesterol metabolism promotes age-related photoreceptor neurodegeneration. | ||
|date= | |date=08.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29946056 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071770 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Elevated COX2 expression and PGE2 production by downregulation of RXRα in senescent macrophages. | ||
|date= | |date=11.10.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24051096 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.bbrc.2013.09.047 | ||
}} | }} | ||
== | ==ABCG5== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=2, 3, 4', 5-tetrahydroxystilbene-2-0-β-d Glycoside Attenuates Age- and Diet-Associated Non-Alcoholic Steatohepatitis and Atherosclerosis in LDL Receptor Knockout Mice and Its Possible Mechanisms. | ||
|date= | |date=01.04.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30939745 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479705 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Genetic determinants of macular pigments in women of the Carotenoids in Age-Related Eye Disease Study. | ||
|date= | |date=28.03.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23404124 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3626525 | ||
}} | }} | ||
== | ==ABI3== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Arabidopsis seed-specific vacuolar aquaporins are involved in maintaining seed longevity under the control of ABSCISIC ACID INSENSITIVE 3. | ||
|date= | |date=08.2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26019256 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4507774 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=A forward genetic approach in Arabidopsis thaliana identifies a RING-type ubiquitin ligase as a novel determinant of seed longevity. | ||
|date=02. | |date=02.2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24388521 | ||
|full-text-url=https://sci-hub.do/10.1016/j. | |full-text-url=https://sci-hub.do/10.1016/j.plantsci.2013.11.004 | ||
}} | }} | ||
== | ==ACACA== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Expression of lipogenic markers is decreased in subcutaneous adipose tissue and adipocytes of older women and is negatively linked to [[GDF15]] expression. | ||
|date= | |date=08.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30912009 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1007/s13105-019-00676-6 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=GH prevents adipogenic differentiation of mesenchymal stromal stem cells derived from human trabecular bone via canonical Wnt signaling. | ||
|date= | |date=07.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29694926 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1016/j.bone.2018.04.014 | ||
}} | }} | ||
== | ==ACAT2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Cholesterol Homeostasis: An In Silico Investigation into How Aging Disrupts Its Key Hepatic Regulatory Mechanisms. | ||
|date= | |date=30.09.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33007859 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599957 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Serum starvation of A[[RPE]]-19 changes the cellular distribution of cholesterol and Fibulin3 in patterns reminiscent of age-related macular degeneration. | ||
|date= | |date=15.12.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29097185 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701823 | ||
}} | }} | ||
== | ==ACTA1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Explaining meat quality of bulls and steers by differential proteome and phosphoproteome analysis of skeletal muscle. | ||
|date= | |date=15.05.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30862562 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.jprot.2019.03.004 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Serum starvation of A[[RPE]]-19 changes the cellular distribution of cholesterol and Fibulin3 in patterns reminiscent of age-related macular degeneration. | ||
|date= | |date=15.12.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29097185 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701823 | ||
}} | }} | ||
== | ==ACTB== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Selection of a Real-Time PCR Housekeeping Gene Panel in Human Endothelial Colony Forming Cells for Cellular Senescence Studies. | ||
|date= | |date=2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30915334 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421261 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=WNT-activated bone grafts repair osteonecrotic lesions in aged animals. | ||
|date= | |date=27.10.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29079746 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5660190 | ||
}} | }} | ||
== | ==ACVR1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Fibrodysplasia Ossificans Progressiva (FOP): A Segmental Progeroid Syndrome. | ||
|date= | |date=2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31998237 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966325 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=BMP-SMAD-ID promotes reprogramming to pluripotency by inhibiting p16/INK4A-dependent senescence. | ||
|date= | |date=15.11.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27794120 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5135304 | ||
}} | }} | ||
== | ==ADAMTS4== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Influences of circulatory factors on intervertebral disc aging phenotype. | ||
|date= | |date=11.06.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32527988 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343497 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Genotoxic stress accelerates age-associated degenerative changes in intervertebral discs. | ||
|date= | |date=01-02.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23262094 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3558562 | ||
}} | }} | ||
== | ==ADH5== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Can Serum Nitrosoproteome Predict Longevity of Aged Women? | ||
|date= | |date=27.11.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33260845 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731247 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Denitrosylate and live longer: how [[ADH5]]/GSNOR links mitophagy to aging. | ||
|date= | |date=2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30029585 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6103690 | ||
}} | }} | ||
== | ==ADIPOR1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=A Novel [i]Dnmt3a1[/i] Transcript Inhibits Adipogenesis. | ||
|date= | |date=2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30333755 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6176318 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Contribution of adiponectin and its type 1 receptor to age-related hearing impairment. | ||
|date= | |date=06.2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25911279 | ||
|full-text-url=https://sci-hub.do/10.1016/j. | |full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2015.02.030 | ||
}} | }} | ||
== | ==ADNP== | ||
* {{medline-title | * {{medline-title | ||
|title=[ | |title=[[ADNP]] differentially interact with genes/proteins in correlation with aging: a novel marker for muscle aging. | ||
|date= | |date=06.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31264075 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6702513 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[[ADNP]]: A major autism mutated gene is differentially distributed (age and gender) in the songbird brain. | ||
|date= | |date=10.2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25895853 | ||
|full-text-url=https://sci-hub.do/10.1016/j. | |full-text-url=https://sci-hub.do/10.1016/j.peptides.2015.04.008 | ||
}} | }} | ||
== | ==ADRA2B== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Aging and the Combined effects of [[ADRA2B]] and CB1 deletions on Affective Working Memory. | ||
|date= | |date=11.03.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30858399 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411975 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Aging and the genetic road towards the positivity effect in memory. | ||
|date= | |date=09.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27350108 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.exger.2016.06.011 | ||
}} | }} | ||
== | ==ADRB2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Interactions between social/ behavioral factors and [[ADRB2]] genotypes may be associated with health at advanced ages in China. | ||
|date= | |date=09.09.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24016068 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3846634 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[[ADRB2]], brain white matter integrity and cognitive ageing in the Lothian Birth Cohort 1936. | ||
|date= | |date=01.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23229623 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1007/s10519-012-9570-x | ||
}} | }} | ||
== | ==AGO2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Profiling of m6A RNA modifications identified an age-associated regulation of [[AGO2]] mRNA stability. | ||
|date= | |date=06.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29573145 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946072 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=miRNA processing gene polymorphisms, blood DNA methylation age and long-term ambient PM exposure in elderly men. | ||
|date= | |date=12.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29106301 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5704092 | ||
}} | }} | ||
== | ==AHCY== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. | ||
|date= | |date=11.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30071357 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.arr.2018.07.004 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Tissue-specific down-regulation of S-adenosyl-homocysteine via suppression of dAhcyL1/dAhcyL2 extends health span and life span in Drosophila. | ||
|date= | |date=15.06.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27313316 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4926864 | ||
}} | }} | ||
== | ==AIDA== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Identification of Postharvest Senescence Regulators Through Map-Based Cloning Using Detached Arabidopsis Inflorescences as a Model Tissue. | ||
|date= | |date=2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29392668 | ||
|full-text-url=https://sci-hub.do/10.1007/ | |full-text-url=https://sci-hub.do/10.1007/978-1-4939-7672-0_17 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Interaction of DHPG-LTD and synaptic-LTD at senescent [[CA3]]-[[CA1]] hippocampal synapses. | ||
|date= | |date=04.2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24390964 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959216 | ||
}} | }} | ||
== | ==AKT2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=A conserved role of the insulin-like signaling pathway in diet-dependent uric acid pathologies in Drosophila melanogaster. | ||
|date= | |date=08.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31415568 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695094 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats. | ||
|date= | |date=02.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30661688 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1016/j.clnesp.2018.10.003 | ||
}} | }} | ||
== | ==AKT3== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Oxidative stress-induced miRNAs modulate AKT signaling and promote cellular senescence in uterine leiomyoma. | ||
|date= | |date=10.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30097674 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6135677 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=MicroRNA-22 induces endothelial progenitor cell senescence by targeting [[AKT3]]. | ||
|date= | |date=2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25323119 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1159/000366358 | ||
}} | }} | ||
== | ==AKTIP== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Mice with reduced expression of the telomere-associated protein Ft1 develop p53-sensitive progeroid traits. | ||
|date= | |date=08.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29635765 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052474 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=The telomeric protein [[AKTIP]] interacts with A- and B-type lamins and is involved in regulation of cellular senescence. | ||
|date= | |date=08.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27512140 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5008010 | ||
}} | }} | ||
== | ==ALDOA== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. | ||
|date= | |date=2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31733664 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939615 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=An Adult Drosophila Glioma Model for Studying Pathometabolic Pathways of Gliomagenesis. | ||
|date=06. | |date=06.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30357574 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1007/s12035-018-1392-2 | ||
}} | }} | ||
== | ==ALKBH8== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Loss of epitranscriptomic control of selenocysteine utilization engages senescence and mitochondrial reprogramming . | ||
|date= | |date=01.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31765888 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904832 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=ALKB-8, a 2-Oxoglutarate-Dependent Dioxygenase and S-Adenosine Methionine-Dependent Methyltransferase Modulates Metabolic Events Linked to Lysosome-Related Organelles and Aging in C. elegans. | ||
|date= | |date=2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30338756 | ||
}} | }} | ||
== | ==ALOX5== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis. | ||
|date= | |date=19.12.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31687975 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6975274 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Functional Characterization of Knock-In Mice Expressing a 12/15-Lipoxygenating Alox5 Mutant Instead of the 5-Lipoxygenating Wild-Type Enzyme. | ||
|date= | |date=01.01.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31642348 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1089/ars.2019.7751 | ||
}} | }} | ||
== | ==ANK1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Alzheimer's Disease Associated Genes Ankyrin and Tau Cause Shortened Lifespan and Memory Loss in [i]Drosophila[/i]. | ||
|date= | |date=2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31244615 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6581016 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. | ||
|date= | |date=25.07.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30045751 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058387 | ||
}} | }} | ||
== | ==ANK3== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Age-related atrophy of cortical thickness and genetic effect of [[ANK3]] gene in first episode MDD patients. | ||
|date= | |date=26.08.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32911427 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7490581 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title=[[ | |title=Mood, stress and longevity: convergence on [[ANK3]]. | ||
|date= | |date=08.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27217151 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1038/mp.2016.65 | ||
}} | }} | ||
== | ==AP2B1== | ||
* {{medline-title | * {{medline-title | ||
|title=[[ | |title=Circular RNA [[NF1]]-419 enhances autophagy to ameliorate senile dementia by binding Dynamin-1 and Adaptor protein 2 B1 in AD-like mice. | ||
|date= | |date=20.12.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31860870 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949063 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Investigating the specific core genetic-and-epigenetic networks of cellular mechanisms involved in human aging in peripheral blood mononuclear cells. | ||
|date= | |date=23.02.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26895224 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890987 | ||
}} | }} | ||
== | ==APOD== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Identification of reference genes for RT-qPCR data normalisation in aging studies. | ||
|date= | |date=27.09.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31562345 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764958 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Apolipoprotein D takes center stage in the stress response of the aging and degenerative brain. | ||
|date= | |date=07.2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24612673 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3988949 | ||
}} | }} | ||
== | ==APOL1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[[APOL1]] Risk Alleles Are Associated with Exaggerated Age-Related Changes in Glomerular Number and Volume in African-American Adults: An Autopsy Study. | ||
|date= | |date=12.2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26038529 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4657832 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Apolipoprotein L1, income and early kidney damage. | ||
|date= | |date=10.02.2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25884165 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361142 | ||
}} | }} | ||
== | ==APPL2== | ||
* {{medline-title | * {{medline-title | ||
|title=The [[ | |title=The reversal effect of physical exercise on aging-related increases in [[APPL2]] content in skeletal muscle. | ||
|date= | |date=01.10.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30189216 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1016/j.lfs.2018.09.006 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Adaptor Protein [[APPL2]] Affects Adult Antidepressant Behaviors and Hippocampal Neurogenesis via Regulating the Sensitivity of Glucocorticoid Receptor. | ||
|date=07. | |date=07.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28965332 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1007/s12035-017-0785-y | ||
}} | }} | ||
== | ==AQP2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=A bell-shaped pattern of urinary aquaporin-2-bearing extracellular vesicle release in an experimental model of nephronophthisis. | ||
|date= | |date=05.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31074077 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509436 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Nitric oxide and [[AQP2]] in hypothyroid rats: a link between aging and water homeostasis. | ||
|date= | |date=09.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23706747 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.metabol.2013.04.013 | ||
}} | }} | ||
== | ==AQP3== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Transbuccal platform for delivery of lipogenic actives to facial skin: Because fat matters. | ||
|date= | |date=08.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32592290 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1002/term.3087 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[Age-related changes of water transport by corneal endothelial cells in rats.] | ||
|date= | |date=2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29322730 | ||
}} | }} | ||
== | ==ARID1B== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=A 69-year-old woman with Coffin-Siris syndrome. | ||
|date= | |date=08.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30055038 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1002/ajmg.a.38844 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=SWI/SNF regulates a transcriptional program that induces senescence to prevent liver cancer. | ||
|date=01. | |date=01.10.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27737960 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5088567 | ||
}} | }} | ||
== | ==ARX== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Converting Adult Pancreatic Islet α Cells into β Cells by Targeting Both Dnmt1 and Arx. | ||
|date= | |date=07.03.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28215845 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5358097 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Acacetin 7-O-α-l-rhamnopyranosyl (1-2) β-D-xylopyranoside Elicits Life-span Extension and Stress Resistance in Caenorhabditis elegans. | ||
|date= | |date=09.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26433219 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1093/gerona/glv173 | ||
}} | }} | ||
== | ==ASXL2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. | ||
|date= | |date=10.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27329260 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013013 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=The [[BAP1]]/[[ASXL2]] Histone H2A Deubiquitinase Complex Regulates Cell Proliferation and Is Disrupted in Cancer. | ||
|date= | |date=27.11.2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26416890 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4661380 | ||
}} | }} | ||
== | ==ATF2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Transcriptional regulation of stress kinase JNK2 in pro-arrhythmic CaMKIIδ expression in the aged atrium. | ||
|date= | |date=01.04.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29360953 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5915954 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Prmt7 Deficiency Causes Reduced Skeletal Muscle Oxidative Metabolism and Age-Related Obesity. | ||
|date= | |date=07.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27207521 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.2337/db15-1500 | ||
}} | }} | ||
== | ==ATF7== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Stress-induced and [[ATF7]]-dependent epigenetic change influences cellular senescence. | ||
|date= | |date=09.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31294895 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1111/gtc.12713 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Identification of ATF-7 and the insulin signaling pathway in the regulation of metallothionein in C. elegans suggests roles in aging and reactive oxygen species. | ||
|date= | |date=2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28632756 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5478092 | ||
}} | }} | ||
== | ==ATG9A== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[[SIRT1]] protects cochlear hair cell and delays age-related hearing loss via autophagy. | ||
|date= | |date=08.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31170533 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2019.04.003 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Activation of miR-34a impairs autophagic flux and promotes cochlear cell death via repressing [[ATG9A]]: implications for age-related hearing loss. | ||
|date= | |date=05.10.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28981097 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5680584 | ||
}} | }} | ||
== | ==ATOH1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=In Vivo Interplay between p27 , [[GATA3]], [[ATOH1]], and [[POU4F3]] Converts Non-sensory Cells to Hair Cells in Adult Mice. | ||
|date= | |date=11.04.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28402854 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5423718 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=A new mutation of the Atoh1 gene in mice with normal life span allows analysis of inner ear and cerebellar phenotype in aging. | ||
|date= | |date=2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24265785 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827170 | ||
}} | }} | ||
== | ==ATP1A2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=SerThr-PhosphoProteome of Brain from Aged [[PINK1]]-KO A53T-[[SNCA]] Mice Reveals pT1928-[[MAP1B]] and pS3781-[[ANK2]] Deficits, as Hub between Autophagy and Synapse Changes. | ||
|date=04. | |date=04.07.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31277379 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651490 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=The Influence of Na( ), K( )-ATPase on Glutamate Signaling in Neurodegenerative Diseases and Senescence. | ||
|date= | |date=2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27313535 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890531 | ||
}} | }} | ||
== | ==ATP6V1E1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Low expression of aging-related [[[[NRXN3]]]] is associated with Alzheimer disease: A systematic review and meta-analysis. | ||
|date= | |date=07.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29995770 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076205 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Chemical screening identifies [[ATM]] as a target for alleviating senescence. | ||
|date= | |date=06.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28346404 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1038/nchembio.2342 | ||
}} | }} | ||
== | ==ATP7A== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Adipocyte-specific disruption of ATPase copper transporting α in mice accelerates lipoatrophy. | ||
|date= | |date=12.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31396659 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1007/s00125-019-4966-2 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=TAp73 regulates [[ATP7A]]: possible implications for ageing-related diseases. | ||
|date= | |date=08.12.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30530920 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326685 | ||
}} | }} | ||
== | ==ATXN3== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Rescue of [[ATXN3]] neuronal toxicity in [i]Caenorhabditis[/i][i]elegans[/i] by chemical modification of endoplasmic reticulum stress. | ||
|date= | |date=19.12.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29061563 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5769603 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Sodium valproate alleviates neurodegeneration in SCA3/MJD via suppressing apoptosis and rescuing the hypoacetylation levels of histone H3 and H4. | ||
|date= | |date=2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23382971 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3557284 | ||
}} | }} | ||
== | ==AXL== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Extracellular acidosis triggers a senescence-like phenotype in human melanoma cells. | ||
|date= | |date=01.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31310445 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1111/pcmr.12811 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=CSF protein changes associated with hippocampal sclerosis risk gene variants highlight impact of [[GRN]]/P[[GRN]]. | ||
|date= | |date=04.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28189700 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5389672 | ||
}} | }} | ||
== | ==B4GALT1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Expression of β-1,4-galactosyltransferases during Aging in Caenorhabditis elegans. | ||
|date= | |date=2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33171474 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1159/000510722 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Glycobiology of Aging. | ||
|date= | |date=2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30779020 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1007/978-981-13-2835-0_17 | ||
}} | }} | ||
== | ==BACH2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Age-related changes in the [[BACH2]] and [[PRDM1]] genes in lymphocytes from healthy donors and chronic lymphocytic leukemia patients. | ||
|date= | |date=17.01.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30654767 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6337793 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[[BACH2]]: a marker of DNA damage and ageing. | ||
|date= | |date=11.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24075570 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912324 | ||
}} | }} | ||
== | ==BAG3== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Nrf2 mediates the expression of [[BAG3]] and autophagy cargo adaptor proteins and tau clearance in an age-dependent manner. | ||
|date= | |date=03.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29304346 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5801049 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Age-related obesity and type 2 diabetes dysregulate neuronal associated genes and proteins in humans. | ||
|date= | |date=06.10.2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26337083 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745765 | ||
}} | }} | ||
== | ==BANF1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=An additional case of Néstor-Guillermo progeria syndrome diagnosed in early childhood. | ||
|date= | |date=10.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32783369 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1002/ajmg.a.61777 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Néstor-Guillermo Progeria Syndrome: a biochemical insight into Barrier-to-Autointegration Factor 1, alanine 12 threonine mutation. | ||
|date= | |date=12.12.2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25495845 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266902 | ||
}} | }} | ||
== | ==BARD1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=BRCA1 and [[BARD1]] mediate apoptotic resistance but not longevity upon mitochondrial stress in [i]Caenorhabditis elegans[/i]. | ||
|date= | |date=12.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30366941 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6280797 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title=The | |title=The Histone Variant MacroH2A1 Is a [[BRCA1]] Ubiquitin Ligase Substrate. | ||
|date= | |date=30.05.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28564596 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6507409 | ||
}} | }} | ||
== | ==BCL11B== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Responders and non-responders to influenza vaccination: A DNA methylation approach on blood cells. | ||
|date= | |date=05.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29360511 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5989724 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Age-related profiling of DNA methylation in CD8 T cells reveals changes in immune response and transcriptional regulator genes. | ||
|date= | |date=19.08.2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26286994 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541364 | ||
}} | }} | ||
== | ==BCL2L1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=The transcription factor [[ETS1]] promotes apoptosis resistance of senescent cholangiocytes by epigenetically up-regulating the apoptosis suppressor [[BCL2]]L1. | ||
|date= | |date=06.12.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31659122 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6901313 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[[SIRT6]] histone deacetylase functions as a potential oncogene in human melanoma. | ||
|date= | |date=09.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29234488 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724804 | ||
}} | }} | ||
== | ==BMPR1B== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Growth hormone during in vitro fertilization in older women modulates the density of receptors in granulosa cells, with improved pregnancy outcomes. | ||
|date= | |date=12.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30503129 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.fertnstert.2018.08.018 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Dysregulation of granulosal bone morphogenetic protein receptor 1B density is associated with reduced ovarian reserve and the age-related decline in human fertility. | ||
|date= | |date=15.04.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26805635 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.mce.2016.01.016 | ||
}} | }} | ||
== | ==BMX== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Inducible Activation of [[FGFR2]] in Adult Mice Promotes Bone Formation After Bone Marrow Ablation. | ||
|date= | |date=11.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28650109 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1002/jbmr.3204 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Enhanced activity of an angiotensin-(1-7) neuropeptidase in glucocorticoid-induced fetal programming. | ||
|date= | |date=02.2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24355101 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157337 | ||
}} | }} | ||
== | ==BRD2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Brd2 haploinsufficiency extends lifespan and healthspan in C57B6/J mice. | ||
|date= | |date=2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32559200 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304595 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Genetic architecture differences between pediatric and adult-onset inflammatory bowel diseases in the Polish population. | ||
|date= | |date=23.12.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28008999 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5180213 | ||
}} | }} | ||
== | ==BTC== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Behavioral tagging and capture: long-term memory decline in middle-aged rats. | ||
|date= | |date=07.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29609080 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5964067 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Estimates of genetic parameters for content of boar taint compounds in adipose tissue of intact males at 160 and 220 days of age. | ||
|date= | |date=09.2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26440326 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.2527/jas.2015-9252 | ||
}} | }} | ||
== | ==BTG1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Effects of hydrogen peroxide, doxorubicin and ultraviolet irradiation on senescence of human dental pulp stem cells. | ||
|date=09.2020 | |date=09.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32592933 | ||
|full-text-url=https://sci-hub.do/10.1016/j.archoralbio.2020.104819 | |||
}} | |||
* {{medline-title | |||
|title=Tumor cell escape from therapy-induced senescence. | |||
|date=04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30576620 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bcp.2018.12.013 | |||
}} | |||
==BTK== | |||
* {{medline-title | |||
|title=Amelioration of age-related brain function decline by Bruton's tyrosine kinase inhibition. | |||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31736210 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974713 | |||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[[BTK]] suppresses myeloma cellular senescence through activating AKT/P27/Rb signaling. | ||
|date= | |date=22.08.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28915637 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5593608 | ||
}} | }} | ||
== | ==BTLA== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Combinatorial approach to cancer immunotherapy: strength in numbers. | ||
|date= | |date=08.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27256570 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608090 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[[BTLA]] expression declines on B cells of the aged and is associated with low responsiveness to the trivalent influenza vaccine. | ||
|date= | |date=14.08.2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26277622 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4637297 | ||
}} | }} | ||
== | ==CA12== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Co-culturing nucleus pulposus mesenchymal stem cells with notochordal cell-rich nucleus pulposus explants attenuates tumor necrosis factor-α-induced senescence. | ||
|date= | |date=26.06.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29941029 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019307 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Notochordal and nucleus pulposus marker expression is maintained by sub-populations of adult human nucleus pulposus cells through aging and degeneration. | ||
|date=05. | |date=04.05.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28473691 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431421 | ||
}} | }} | ||
== | ==CACNA1C== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Profiling gene expression in the human dentate gyrus granule cell layer reveals insights into schizophrenia and its genetic risk. | ||
|date=04.2020 | |date=04.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32203495 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1038/s41593-020-0604-z | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Epigenetic regulation of L-type voltage-gated Ca channels in mesenteric arteries of aging hypertensive rats. | ||
|date= | |date=05.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27881847 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1038/hr.2016.167 | ||
}} | }} | ||
== | ==CALR== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Elevated circulating HtrA4 in preeclampsia may alter endothelial expression of senescence genes. | ||
|date= | |date=15.01.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32056555 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.placenta.2019.12.012 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Molecular Pathogenesis of Myeloproliferative Neoplasms: Influence of Age and Gender. | ||
|date= | |date=10.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28948454 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1007/s11899-017-0411-0 | ||
}} | }} | ||
== | ==CASK== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Integrated study on comparative transcriptome and skeletal muscle function in aged rats. | ||
|date= | |date=01.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29325930 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.mad.2018.01.001 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Neurexins 1-3 Each Have a Distinct Pattern of Expression in the Early Developing Human Cerebral Cortex. | ||
|date= | |date=01.01.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28013231 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5654756 | ||
}} | }} | ||
== | ==CASP1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy. | ||
|date= | |date=02.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31691183 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035207 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Gene expression of inflammasome components in peripheral blood mononuclear cells (PBMC) of vascular patients increases with age. | ||
|date= | |date=2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26448778 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596365 | ||
}} | }} | ||
== | ==CASP7== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Global Characteristics of CSIG-Associated Gene Expression Changes in Human HEK293 Cells and the Implications for CSIG Regulating Cell Proliferation and Senescence. | ||
|date= | |date=2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26029164 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432801 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Dual role of the caspase enzymes in satellite cells from aged and young subjects. | ||
|date= | |date=12.12.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24336075 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877545 | ||
}} | }} | ||
== | ==CASP8== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Crucial role of the terminal complement complex in chondrocyte death and hypertrophy after cartilage trauma. | ||
|date= | |date=05.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31981738 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1016/j.joca.2020.01.004 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[Association of polymorphic markers of [[CASP8]], [[BCL2]] and [[BAX]] genes with aging and longevity]. | ||
|date= | |date=2012 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23289213 | ||
}} | }} | ||
== | ==CASQ2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Single delivery of an adeno-associated viral construct to transfer the [[CASQ2]] gene to knock-in mice affected by catecholaminergic polymorphic ventricular tachycardia is able to cure the disease from birth to advanced age. | ||
|date= | |date=24.06.2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24888331 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1161/CIRCULATIONAHA.113.006901 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title=The | |title=The role of mutant protein level in autosomal recessive catecholamine dependent polymorphic ventricular tachycardia (CPVT2). | ||
|date= | |date=01.12.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24070655 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103182 | ||
}} | }} | ||
== | ==CAST== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Cytomatrix proteins [[CAST]] and ELKS regulate retinal photoreceptor development and maintenance. | ||
|date= | |date=05.11.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30190286 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219712 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Short Telomeres Induce p53 and Autophagy and Modulate Age-Associated Changes in Cardiac Progenitor Cell Fate. | ||
|date= | |date=06.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29441645 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5992026 | ||
}} | }} | ||
== | ==CAV1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Candesartan Neuroprotection in Rat Primary Neurons Negatively Correlates with Aging and Senescence: a Transcriptomic Analysis. | ||
|date= | |date=03.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31811565 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062590 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Broad range metabolomics coupled with network analysis for explaining possible mechanisms of Er-Zhi-Wan in treating liver-kidney Yin deficiency syndrome of Traditional Chinese medicine. | ||
|date= | |date=24.04.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30690072 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.jep.2019.01.019 | ||
}} | }} | ||
== | ==CBX4== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. | ||
|date= | |date=24.09.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Maintenance of Nucleolar Homeostasis by [[CBX4]] Alleviates Senescence and Osteoarthritis. | ||
|date=03. | |date=26.03.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30917318 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.celrep.2019.02.088 | ||
}} | }} | ||
== | ==CBX8== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[[PIM1]]-catalyzed [[CBX8]] phosphorylation promotes the oncogene-induced senescence of human diploid fibroblast. | ||
|date= | |date=27.06.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29763603 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.bbrc.2018.05.070 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[[CBX8]] antagonizes the effect of Sirtinol on premature senescence through the AKT-RB-[[E2F1]] pathway in K562 leukemia cells. | ||
|date= | |date=22.01.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26718407 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.bbrc.2015.12.070 | ||
}} | }} | ||
== | ==CCL13== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Age-specific changes in the molecular phenotype of patients with moderate-to-severe atopic dermatitis. | ||
|date= | |date=07.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30685456 | ||
|full-text-url=https://sci-hub.do/10.1016/j. | |full-text-url=https://sci-hub.do/10.1016/j.jaci.2019.01.015 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Differential Gene Expression Profiles Reflecting Macrophage Polarization in Aging and Periodontitis Gingival Tissues. | ||
|date= | |date=2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26397131 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786741 | ||
}} | }} | ||
== | ==CCL17== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Aging and chronic high-fat feeding negatively affects kidney size, function, and gene expression in CTRP1-deficient mice. | ||
|date=2020 | |date=21.10.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33085906 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1152/ajpregu.00139.2020 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Senescent thyrocytes and thyroid tumor cells induce M2-like macrophage polarization of human monocytes via a PGE2-dependent mechanism. | ||
|date= | |date=21.05.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31113465 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6528237 | ||
}} | }} | ||
== | ==CCL24== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner. | ||
|date= | |date=2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31285764 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599663 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Anserine/Carnosine Supplementation Suppresses the Expression of the Inflammatory Chemokine [[CCL24]] in Peripheral Blood Mononuclear Cells from Elderly People. | ||
|date= | |date=31.10.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29088099 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707671 | ||
}} | }} | ||
== | ==CCL7== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Increased cardiovascular and atherosclerosis markers in blood of older patients with atopic dermatitis. | ||
|date=2020 | |date=01.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31622668 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.anai.2019.10.013 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Advanced atherosclerosis is associated with inflammation, vascular dysfunction and oxidative stress, but not hypertension. | ||
|date= | |date=02.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28017665 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.phrs.2016.12.032 | ||
}} | }} | ||
== | ==CCNG2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=A Novel [i]Dnmt3a1[/i] Transcript Inhibits Adipogenesis. | ||
|date= | |date=2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30333755 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6176318 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Hypoxia-inducible transcription factors, [[HIF1A]] and HIF2A, increase in aging mucosal tissues. | ||
|date= | |date=07.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29338076 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002220 | ||
}} | }} | ||
== | ==CCR4== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=mTOR regulates the expression of DNA damage response enzymes in long-lived Snell dwarf, GHRKO, and [[PAPPA]]-KO mice. | ||
|date=02. | |date=02.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27618784 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5242303 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Circulating T helper and T regulatory subsets in untreated early rheumatoid arthritis and healthy control subjects. | ||
|date= | |date=10.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27190305 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1189/jlb.5A0116-025R | ||
}} | }} | ||
== | ==CD209== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Senescence in Monocytes Facilitates Dengue Virus Infection by Increasing Infectivity. | ||
|date= | |date=2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32850477 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7399640 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Comparative analysis of microbial sensing molecules in mucosal tissues with aging. | ||
|date= | |date=03.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29066255 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821569 | ||
}} | }} | ||
== | ==CD46== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Soluble forms of [[CD46]] are detected in Bos taurus plasma and neutralize BVDV, the bovine pestivirus. | ||
|date= | |date=12.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27865262 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.cimid.2016.09.001 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Brain innate immunity in the regulation of neuroinflammation: therapeutic strategies by modulating [[CD200]]-[[CD200]]R interaction involve the cannabinoid system. | ||
|date= | |date=2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24588829 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157566 | ||
}} | }} | ||
== | ==CD70== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[[CD70]] contributes to age-associated T cell defects and overwhelming inflammatory responses. | ||
|date= | |date=19.06.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32559178 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343466 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Molecular mechanisms involved in the aging of the T-cell immune response. | ||
|date= | |date=12.2012 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23730199 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3492799 | |||
}} | }} | ||
== | ==CDH1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Cdc6 as a novel target in cancer: Oncogenic potential, senescence and subcellular localisation. | ||
|date=09.2020 | |date=15.09.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32010971 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7496346 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=A Multigene Test Could Cost-Effectively Help Extend Life Expectancy for Women at Risk of Hereditary Breast Cancer. | ||
|date= | |date=04.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28407996 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1016/j.jval.2017.01.006 | ||
}} | }} | ||
== | ==CDKN1B== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=A Novel [i]Dnmt3a1[/i] Transcript Inhibits Adipogenesis. | ||
|date= | |date=2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30333755 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6176318 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=RNA methyltransferase [[NSUN2]] promotes stress-induced HUVEC senescence. | ||
|date= | |date=12.04.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26992231 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4991368 | ||
}} | }} | ||
== | ==CDKN1C== | ||
* {{medline-title | * {{medline-title | ||
|title=[ | |title=Human iPSC-derived [[MSC]]s (i[[MSC]]s) from aged individuals acquire a rejuvenation signature. | ||
|date= | |date=18.03.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30885246 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423778 | |||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Expansion of adipose tissue-derived stromal cells at "physiologic" hypoxia attenuates replicative senescence. | ||
|date= | |date=06.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28589682 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1002/cbf.3267 | ||
}} | }} | ||
== | ==CDR1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Two Distinct Pathways in Mice Generate Antinuclear Antigen-Reactive B Cell Repertoires. | ||
|date= | |date=2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29403498 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5786517 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Neuro-degeneration profile of Alzheimer's patients: A brain morphometry study. | ||
|date= | |date=2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28459000 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5397580 | ||
}} | }} | ||
== | ==CDX2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Maternal ageing impairs mitochondrial DNA kinetics during early embryogenesis in mice. | ||
|date= | |date=08.07.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31174209 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1093/humrep/dez054 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Autophagic homeostasis is required for the pluripotency of cancer stem cells. | ||
|date= | |date=02.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27929731 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5324853 | ||
}} | }} | ||
== | ==CEBPB== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Integrative Analysis of Hippocampus Gene Expression Profiles Identifies Network Alterations in Aging and Alzheimer's Disease. | ||
|date= | |date=2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29875655 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974201 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=The microRNA miR-17-3p inhibits mouse cardiac fibroblast senescence by targeting Par4. | ||
|date= | |date=15.01.2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25472717 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1242/jcs.158360 | ||
}} | }} | ||
== | ==CELF1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. | ||
|date= | |date=11.04.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28199971 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421828 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Gene-based aggregate SNP associations between candidate AD genes and cognitive decline. | ||
|date= | |date=04.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27005436 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5005889 | ||
}} | }} | ||
== | ==CHEK1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Candesartan Neuroprotection in Rat Primary Neurons Negatively Correlates with Aging and Senescence: a Transcriptomic Analysis. | ||
|date= | |date=03.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31811565 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062590 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=The Ubiquitin-like with PHD and Ring Finger Domains 1 ([[UHRF1]])/DNA Methyltransferase 1 ([[DNMT1]]) Axis Is a Primary Regulator of Cell Senescence. | ||
|date= | |date=03.03.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28100769 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5339756 | ||
}} | }} | ||
== | ==CHEK2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Elevated circulating HtrA4 in preeclampsia may alter endothelial expression of senescence genes. | ||
|date= | |date=15.01.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32056555 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.placenta.2019.12.012 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass. | ||
|date= | |date=20.06.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31219803 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628988 | ||
}} | }} | ||
== | ==CHI3L1== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Postsynaptic damage and microglial activation in AD patients could be linked [[CXCR4]]/[[CXCL12]] expression levels. | ||
|date= | |date=15.12.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32949560 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://sci-hub.do/10.1016/j.brainres.2020.147127 | ||
}} | |||
* {{medline-title | |||
|title=Sex difference in [[CHI3L1]] expression levels in human brain aging and in Alzheimer's disease. | |||
|date=01.10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31247206 | |||
|full-text-url=https://sci-hub.do/10.1016/j.brainres.2019.146305 | |||
}} | |||
==CHIA== | |||
* {{medline-title | |||
|title=Lipoprotein Profile in Aged Rats Fed Chia Oil- or Hydroxytyrosol-Enriched Pork in High Cholesterol/High Saturated Fat Diets. | |||
|date=26.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30486328 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6316572 | |||
}} | |||
* {{medline-title | |||
|title=Chia Oil-Enriched Restructured Pork Effects on Oxidative and Inflammatory Status of Aged Rats Fed High Cholesterol/High Fat Diets. | |||
|date=05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28294699 | |||
|full-text-url=https://sci-hub.do/10.1089/jmf.2016.0161 | |||
}} | |||
==CHL1== | |||
* {{medline-title | |||
|title=Close Homolog of L1 Regulates Dendritic Spine Density in the Mouse Cerebral Cortex Through Semaphorin 3B. | |||
|date=07.08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31182634 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687901 | |||
}} | |||
* {{medline-title | |||
|title=Age-dependent loss of parvalbumin-expressing hippocampal interneurons in mice deficient in [[CHL1]], a mental retardation and schizophrenia susceptibility gene. | |||
|date=11.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26285062 | |||
|full-text-url=https://sci-hub.do/10.1111/jnc.13284 | |||
}} | |||
==CHM== | |||
* {{medline-title | |||
|title=[Molecular regulative mechanisms of aging and interventional effects of Chinese herbal medicine]. | |||
|date=08.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29171222 | |||
|full-text-url=https://sci-hub.do/10.19540/j.cnki.cjcmm.20170731.001 | |||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[Molecular mechanisms of autophagy in regulating renal aging and interventional effects of Chinese herbal medicine]. | ||
|date= | |date=11.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28929674 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.4268/cjcmm20162105 | ||
}} | }} | ||
== | ==CIDEA== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Growth hormone receptor expression in human gluteal versus abdominal subcutaneous adipose tissue: Association with body shape. | ||
|date=05. | |date=05.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27015877 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5084456 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=The developmental transition of ovine adipose tissue through early life. | ||
|date= | |date=01.2014 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23351024 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1111/apha.12053 | ||
}} | }} | ||
== | ==CIP2A== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Long-lived mice with reduced growth hormone signaling have a constitutive upregulation of hepatic chaperone-mediated autophagy. | ||
|date= | |date=12.02.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32013718 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1080/15548627.2020.1725378 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title=Inhibition of | |title=Inhibition of [[CIP2A]] attenuates tumor progression by inducing cell cycle arrest and promoting cellular senescence in hepatocellular carcinoma. | ||
|date= | |date=08.01.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29175329 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.bbrc.2017.11.124 | ||
}} | }} | ||
== | ==CLC== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Impact of Intervention to Improve Nursing Home Resident-Staff Interactions and Engagement. | ||
|date= | |date=13.07.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29718195 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6455946 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Effect of cholesterol loaded cyclodextrin on semen cryopreservation of Aksaray Malakli shepherd dogs of different ages. | ||
|date= | |date=06.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29699920 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1016/j.anireprosci.2018.04.068 | ||
}} | }} | ||
== | ==CLEC3B== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=[[CLEC3B]] p.S106G Mutant in a Caucasian Population of Successful Neurological Aging. | ||
|date= | |date=16.09.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31570938 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7494029 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Exome-wide Association Study Identifies [[CLEC3B]] Missense Variant p.S106G as Being Associated With Extreme Longevity in East Asian Populations. | ||
|date= | |date=01.03.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27154906 | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861862 | ||
}} | }} | ||
== | ==CLPP== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Mitochondrial unfolded protein response: a stress response with implications for fertility and reproductive aging. | ||
|date= | |date=02.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30691623 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.fertnstert.2018.11.048 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Mitochondrial unfolded protein response gene Clpp is required to maintain ovarian follicular reserve during aging, for oocyte competence, and development of pre-implantation embryos. | ||
|date= | |date=08.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29851234 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052477 | ||
}} | }} | ||
== | ==CLSTN2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Investigating the influence of KIBRA and [[CLSTN2]] genetic polymorphisms on cross-sectional and longitudinal measures of memory performance and hippocampal volume in older individuals. | ||
|date= | |date=11.2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26415670 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.neuropsychologia.2015.09.031 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Genetic effects on old-age cognitive functioning: a population-based study. | ||
|date= | |date=03.2013 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23276211 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1037/a0030829 | ||
}} | }} | ||
== | ==CNP== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Environmental Enrichment Elicits a Transient Rise of Bioactive C-Type Natriuretic Peptide in Young but Not Aged Rats. | ||
|date= | |date=2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30072880 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6060231 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=In aging, the vulnerability of rat brain mitochondria is enhanced due to reduced level of 2',3'-cyclic nucleotide-3'-phosphodiesterase ([[CNP]]) and subsequently increased permeability transition in brain mitochondria in old animals. | ||
|date= | |date=01.2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25277077 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.neuint.2014.09.008 | ||
}} | }} | ||
== | ==CNTF== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Absence of axonal sprouting following unilateral lesion in 125-day-old rat supraoptic nucleus may be due to age-dependent decrease in protein levels of ciliary neurotrophic factor receptor alpha. | ||
|date= | |date=01.10.2019 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30861131 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6656591 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Maintenance of membrane organization in the aging mouse brain as the determining factor for preventing receptor dysfunction and for improving response to anti-Alzheimer treatments. | ||
|date= | |date=06.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28347928 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2017.02.015 | ||
}} | }} | ||
== | ==CNTNAP2== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Selective molecular biomarkers to predict biologic behavior in pituitary tumors. | ||
|date= | |date=05.2017 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30063456 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1080/17446651.2017.1312341 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=A common copy number variation polymorphism in the [[CNTNAP2]] gene: sexual dimorphism in association with healthy aging and disease. | ||
|date= | |date=2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25139204 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1159/000363320 | ||
}} | }} | ||
== | ==COPE== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Patterns and characteristics of cognitive functioning in older patients approaching end stage kidney disease, the [[COPE]]-study. | ||
|date= | |date=09.04.2020 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32272897 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7147053 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Falls self-efficacy and falls incidence in community-dwelling older people: the mediating role of coping. | ||
|date= | |date=05.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29113615 | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1017/S1041610217002319 | ||
}} | }} | ||
== | ==COQ7== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Reduction in the levels of CoQ biosynthetic proteins is related to an increase in lifespan without evidence of hepatic mitohormesis. | ||
|date=18. | |date=18.09.2018 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30228311 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143522 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Gene expression differences in relation to age and social environment in queen and worker bumble bees. | ||
|date= | |date=05.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26883339 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.exger.2016.02.007 | ||
}} | }} | ||
== | ==COX5B== | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Role of Mitochondrial Complex IV in Age-Dependent Obesity. | ||
|date= | |date=13.09.2016 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27626667 | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.celrep.2016.08.041 | ||
}} | }} | ||
* {{medline-title | * {{medline-title | ||
|title= | |title=Loss of [[COX5B]] inhibits proliferation and promotes senescence via mitochondrial dysfunction in breast cancer. | ||
|date= | |date=22.12.2015 | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26506233 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791237 | ||
}} | |||
==CPNE1== | |||
* {{medline-title | |||
|title=Prevalent intron retention fine-tunes gene expression and contributes to cellular senescence. | |||
|date=04.12.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33274830 | |||
|full-text-url=https://sci-hub.do/10.1111/acel.13276 | |||
}} | |||
* {{medline-title | |||
|title=Genome-wide Associations Reveal Human-Mouse Genetic Convergence and Modifiers of Myogenesis, [[CPNE1]] and [[STC2]]. | |||
|date=05.12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31761296 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904802 | |||
}} | |||
==CPQ== | |||
* {{medline-title | |||
|title=A Spanish Adaptation of the Computer and Mobile Device Proficiency Questionnaires ([[CPQ]] and MDPQ) for Older Adults. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31214066 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6554441 | |||
}} | |||
* {{medline-title | |||
|title=Protective Effect of Semisynthetic and Natural Flavonoid on Aged Rat Microglia-enriched Cultures. | |||
|date=11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31230229 | |||
|full-text-url=https://sci-hub.do/10.1007/s12640-019-00071-5 | |||
}} | |||
==CPT1B== | |||
* {{medline-title | |||
|title=Effects of carnitine palmitoyltransferases on cancer cellular senescence. | |||
|date=02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30070697 | |||
|full-text-url=https://sci-hub.do/10.1002/jcp.27042 | |||
}} | |||
* {{medline-title | |||
|title=Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone. | |||
|date=07.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24760536 | |||
|full-text-url=https://sci-hub.do/10.1530/EJE-14-0006 | |||
}} | |||
==CPT2== | |||
* {{medline-title | |||
|title=The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32729662 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511879 | |||
}} | |||
* {{medline-title | |||
|title=Glial β-oxidation regulates Drosophila energy metabolism. | |||
|date=15.01.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25588812 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295106 | |||
}} | |||
==CRABP2== | |||
* {{medline-title | |||
|title=Preconception resveratrol intake against infertility: Friend or foe? | |||
|date=04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32273814 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138940 | |||
}} | |||
* {{medline-title | |||
|title=Cross platform analysis of transcriptomic data identifies ageing has distinct and opposite effects on tendon in males and females. | |||
|date=31.10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29089527 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5663855 | |||
}} | |||
==CREB5== | |||
* {{medline-title | |||
|title=Cellular senescence induces replication stress with almost no affect on DNA replication timing. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29963964 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6133336 | |||
}} | |||
* {{medline-title | |||
|title=Transcriptomic and epigenetic analyses reveal a gender difference in aging-associated inflammation: the Vitality 90 study. | |||
|date=08.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26188803 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506741 | |||
}} | |||
==CREBBP== | |||
* {{medline-title | |||
|title=Systems biology and network pharmacology of frailty reveal novel epigenetic targets and mechanisms. | |||
|date=22.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31332237 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6646318 | |||
}} | |||
* {{medline-title | |||
|title=Genetic variants in a 'cAMP element binding protein' (CREB)-dependent histone acetylation pathway influence memory performance in cognitively healthy elderly individuals. | |||
|date=12.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25150575 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4253058 | |||
}} | |||
==CRYAB== | |||
* {{medline-title | |||
|title=Binding of a glaucoma-associated myocilin variant to the αB-crystallin chaperone impedes protein clearance in trabecular meshwork cells. | |||
|date=28.12.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30389787 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311499 | |||
}} | |||
* {{medline-title | |||
|title=Quantitative proteomics analysis by iTRAQ in human nuclear cataracts of different ages and normal lens nuclei. | |||
|date=08.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25418515 | |||
|full-text-url=https://sci-hub.do/10.1002/prca.201400061 | |||
}} | |||
==CSRP1== | |||
* {{medline-title | |||
|title=[[FOXO3]], a Molecular Search for the Fountain of Youth. | |||
|date=07.03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30849363 | |||
|full-text-url=https://sci-hub.do/10.1016/j.stem.2019.02.008 | |||
}} | |||
* {{medline-title | |||
|title=[[FOXO3]]-Engineered Human ESC-Derived Vascular Cells Promote Vascular Protection and Regeneration. | |||
|date=07.03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30661960 | |||
|full-text-url=https://sci-hub.do/10.1016/j.stem.2018.12.002 | |||
}} | |||
==CYB5A== | |||
* {{medline-title | |||
|title=11-Oxygenated C19 Steroids Do Not Decline With Age in Women. | |||
|date=01.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30753518 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525564 | |||
}} | |||
* {{medline-title | |||
|title=3βHSD and [[CYB5A]] double positive adrenocortical cells during adrenal development/aging. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24832628 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4242803 | |||
}} | |||
==CYP11B2== | |||
* {{medline-title | |||
|title=Expression of aldosterone synthase [[CYP11B2]] was inversely correlated with longevity. | |||
|date=07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30974191 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6786771 | |||
}} | |||
* {{medline-title | |||
|title=Age-Related Autonomous Aldosteronism. | |||
|date=25.07.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28566337 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568806 | |||
}} | |||
==CYP27A1== | |||
* {{medline-title | |||
|title=Prenatal betaine exposure alleviates corticosterone-induced inhibition of [[CYP27A1]] expression in the liver of juvenile chickens associated with its promoter DNA methylation. | |||
|date=15.05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28039067 | |||
|full-text-url=https://sci-hub.do/10.1016/j.ygcen.2016.12.014 | |||
}} | |||
* {{medline-title | |||
|title=Synergic hypocholesterolaemic effect of n-3 PUFA and oestrogen by modulation of hepatic cholesterol metabolism in female rats. | |||
|date=14.12.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26388416 | |||
|full-text-url=https://sci-hub.do/10.1017/S0007114515003517 | |||
}} | |||
==CYP2A6== | |||
* {{medline-title | |||
|title=Analysis of the variability of the pharmacokinetics of multiple drugs in young adult and elderly subjects and its implications for acceptable daily exposures and cleaning validation limits. | |||
|date=06.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28396010 | |||
|full-text-url=https://sci-hub.do/10.1016/j.ijheh.2017.03.007 | |||
}} | |||
* {{medline-title | |||
|title=Sex- and age-dependent gene expression in human liver: An implication for drug-metabolizing enzymes. | |||
|date=02.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28153492 | |||
|full-text-url=https://sci-hub.do/10.1016/j.dmpk.2016.10.409 | |||
}} | |||
==CYP2C8== | |||
* {{medline-title | |||
|title=Paclitaxel-induced sensory peripheral neuropathy is associated with an [[ABCB1]] single nucleotide polymorphism and older age in Japanese. | |||
|date=06.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28447211 | |||
|full-text-url=https://sci-hub.do/10.1007/s00280-017-3314-9 | |||
}} | |||
* {{medline-title | |||
|title=Determination of Human Hepatic [[CYP2C8]] and [[CYP1A2]] Age-Dependent Expression to Support Human Health Risk Assessment for Early Ages. | |||
|date=05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28228413 | |||
|full-text-url=https://sci-hub.do/10.1124/dmd.116.074583 | |||
}} | |||
==CYP3A7== | |||
* {{medline-title | |||
|title=Dynamics of Cytosine Methylation in the Proximal Promoters of [[CYP3A4]] and [[CYP3A7]] in Pediatric and Prenatal Livers. | |||
|date=07.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26772622 | |||
|full-text-url=https://sci-hub.do/10.1124/dmd.115.068726 | |||
}} | |||
* {{medline-title | |||
|title=Predicting the "First dose in children" of CYP3A-metabolized drugs: Evaluation of scaling approaches and insights into the [[CYP3A7]]-[[CYP3A4]] switch at young ages. | |||
|date=09.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24676942 | |||
|full-text-url=https://sci-hub.do/10.1002/jcph.294 | |||
}} | |||
==DAO== | |||
* {{medline-title | |||
|title=Age- and gender-dependent D-amino acid oxidase activity in mouse brain and peripheral tissues: implication for aging and neurodegeneration. | |||
|date=01.08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30938755 | |||
|full-text-url=https://sci-hub.do/10.1093/jb/mvz025 | |||
}} | |||
* {{medline-title | |||
|title=Blood levels of D-amino acid oxidase vs. D-amino acids in reflecting cognitive aging. | |||
|date=01.11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29093468 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5665939 | |||
}} | |||
==DAPK1== | |||
* {{medline-title | |||
|title=SerThr-PhosphoProteome of Brain from Aged [[PINK1]]-KO A53T-[[SNCA]] Mice Reveals pT1928-[[MAP1B]] and pS3781-[[ANK2]] Deficits, as Hub between Autophagy and Synapse Changes. | |||
|date=04.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31277379 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651490 | |||
}} | |||
* {{medline-title | |||
|title=Degradation of Caytaxin Causes Learning and Memory Deficits via Activation of [[DAPK1]] in Aging. | |||
|date=05.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30120735 | |||
|full-text-url=https://sci-hub.do/10.1007/s12035-018-1312-5 | |||
}} | |||
==DAZL== | |||
* {{medline-title | |||
|title=[[DAZL]] Regulates Germ Cell Survival through a Network of PolyA-Proximal mRNA Interactions. | |||
|date=30.10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30380414 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6878787 | |||
}} | |||
* {{medline-title | |||
|title=No evidence for neo-oogenesis may link to ovarian senescence in adult monkey. | |||
|date=11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23897655 | |||
|full-text-url=https://sci-hub.do/10.1002/stem.1480 | |||
}} | |||
==DBT== | |||
* {{medline-title | |||
|title=Diurnal rhythms of heart and respiratory rates in donkeys of different age groups during the cold-dry and hot-dry seasons in a tropical savannah. | |||
|date=09.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30187687 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6125241 | |||
}} | |||
* {{medline-title | |||
|title=Anodal Transcranial Direct Current Stimulation Does Not Facilitate Dynamic Balance Task Learning in Healthy Old Adults. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28197085 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5281631 | |||
}} | |||
==DCTN3== | |||
* {{medline-title | |||
|title=Dynactin pathway-related gene expression is altered by aging, but not by vitrification. | |||
|date=09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31260804 | |||
|full-text-url=https://sci-hub.do/10.1016/j.reprotox.2019.06.011 | |||
}} | |||
* {{medline-title | |||
|title=Alteration of Motor Protein Expression Involved in Bidirectional Transport in Peripheral Blood Mononuclear Cells of Patients with Amyotrophic Lateral Sclerosis. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26954557 | |||
|full-text-url=https://sci-hub.do/10.1159/000443664 | |||
}} | |||
==DDAH1== | |||
* {{medline-title | |||
|title=Dimethylarginine Dimethylaminohydrolase 1 Deficiency Induces the Epithelial to Mesenchymal Transition in Renal Proximal Tubular Epithelial Cells and Exacerbates Kidney Damage in Aged and Diabetic Mice. | |||
|date=01.12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28594240 | |||
|full-text-url=https://sci-hub.do/10.1089/ars.2017.7022 | |||
}} | |||
* {{medline-title | |||
|title=Epigallocatechin-3-gallate ameliorates erectile function in aged rats via regulation of [[PRMT1]]/DDAH/ADMA/NOS metabolism pathway. | |||
|date=05-06.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27080477 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5427783 | |||
}} | |||
==DDAH2== | |||
* {{medline-title | |||
|title=Epigallocatechin-3-gallate ameliorates erectile function in aged rats via regulation of [[PRMT1]]/DDAH/ADMA/NOS metabolism pathway. | |||
|date=05-06.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27080477 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5427783 | |||
}} | |||
* {{medline-title | |||
|title=Regulation of endothelial progenitor cell differentiation and function by dimethylarginine dimethylaminohydrolase 2 in an asymmetric dimethylarginine-independent manner. | |||
|date=09.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24764313 | |||
|full-text-url=https://sci-hub.do/10.1002/cbin.10288 | |||
}} | |||
==DDB1== | |||
* {{medline-title | |||
|title=DCAF1 regulates Treg senescence via the ROS axis during immunological aging. | |||
|date=02.11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32730228 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7598062 | |||
}} | |||
* {{medline-title | |||
|title=Deletion of [[DDB1]]- and CUL4- associated factor-17 (Dcaf17) gene causes spermatogenesis defects and male infertility in mice. | |||
|date=15.06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29907856 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6003934 | |||
}} | |||
==DDR2== | |||
* {{medline-title | |||
|title=Selective Role of Discoidin Domain Receptor 2 in Murine Temporomandibular Joint Development and Aging. | |||
|date=03.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29073363 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833185 | |||
}} | |||
* {{medline-title | |||
|title=Type I collagen aging impairs discoidin domain receptor 2-mediated tumor cell growth suppression. | |||
|date=03.05.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27121132 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5041879 | |||
}} | |||
==DDX41== | |||
* {{medline-title | |||
|title=Salidroside influences the cellular cross-talk of human fetal lung diploid fibroblasts: A proteomic approach. | |||
|date=03.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29329019 | |||
|full-text-url=https://sci-hub.do/10.1016/j.etap.2018.01.001 | |||
}} | |||
* {{medline-title | |||
|title=Sequential acquisition of mutations in myelodysplastic syndromes. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28978821 | |||
|full-text-url=https://sci-hub.do/10.11406/rinketsu.58.1828 | |||
}} | |||
==DEGS1== | |||
* {{medline-title | |||
|title=[Frailty: Prevalence in the Resident Population of Germany 70 - 79 Years of Age - a Population-Based Approach]. | |||
|date=11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29156480 | |||
|full-text-url=https://sci-hub.do/10.1055/s-0043-105841 | |||
}} | |||
* {{medline-title | |||
|title=Physical exercise and cognitive function across the life span: Results of a nationwide population-based study. | |||
|date=05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28919495 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jsams.2017.08.022 | |||
}} | |||
==DHFR== | |||
* {{medline-title | |||
|title=Excessive folic acid intake and relation to adverse health outcome. | |||
|date=07.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27131640 | |||
|full-text-url=https://sci-hub.do/10.1016/j.biochi.2016.04.010 | |||
}} | |||
* {{medline-title | |||
|title=Increase in tetrahydrobiopterin concentration with aging in the cerebral cortex of the senescence-accelerated mouse prone 10 strain caused by abnormal regulation of tetrahydrobiopterin biosynthesis. | |||
|date=10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23933678 | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-013-9452-5 | |||
}} | |||
==DHX9== | |||
* {{medline-title | |||
|title=The biology of [[DHX9]] and its potential as a therapeutic target. | |||
|date=05.07.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27034008 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5173168 | |||
}} | |||
* {{medline-title | |||
|title=Suppression of the [[DHX9]] helicase induces premature senescence in human diploid fibroblasts in a p53-dependent manner. | |||
|date=15.08.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24990949 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132785 | |||
}} | |||
==DIAPH1== | |||
* {{medline-title | |||
|title=Diaphanous 1 ([[DIAPH1]]) is Highly Expressed in the Aged Human Medial Temporal Cortex and Upregulated in Myeloid Cells During Alzheimer's Disease. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29966194 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6082178 | |||
}} | |||
* {{medline-title | |||
|title=The multiple faces of RAGE--opportunities for therapeutic intervention in aging and chronic disease. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26558318 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4941230 | |||
}} | |||
==DIRAS3== | |||
* {{medline-title | |||
|title=Silencing of the small GTPase [[DIRAS3]] induces cellular senescence in human white adipose stromal/progenitor cells. | |||
|date=17.03.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28316325 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391236 | |||
}} | |||
* {{medline-title | |||
|title=Weight Loss Upregulates the Small GTPase [[DIRAS3]] in Human White Adipose Progenitor Cells, Which Negatively Regulates Adipogenesis and Activates Autophagy via Akt-mTOR Inhibition. | |||
|date=04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27211557 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4856797 | |||
}} | |||
==DKK2== | |||
* {{medline-title | |||
|title=Low Serum Levels of [[DKK2]] Predict Incident Low-Impact Fracture in Older Women. | |||
|date=07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31372588 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6659448 | |||
}} | |||
* {{medline-title | |||
|title=Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24478790 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894567 | |||
}} | |||
==DLC1== | |||
* {{medline-title | |||
|title=Resveratrol promotes oxidative stress to drive [[DLC1]] mediated cellular senescence in cancer cells. | |||
|date=15.09.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29964052 | |||
|full-text-url=https://sci-hub.do/10.1016/j.yexcr.2018.06.031 | |||
}} | |||
* {{medline-title | |||
|title=Depletion of the transcriptional coactivators megakaryoblastic leukaemia 1 and 2 abolishes hepatocellular carcinoma xenograft growth by inducing oncogene-induced senescence. | |||
|date=09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23853104 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799492 | |||
}} | |||
==DLX5== | |||
* {{medline-title | |||
|title=Inhibition of microRNA-27b-3p relieves osteoarthritis pain via regulation of [[KDM4B]]-dependent [[DLX5]]. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32856377 | |||
|full-text-url=https://sci-hub.do/10.1002/biof.1670 | |||
}} | |||
* {{medline-title | |||
|title=Detection and evaluation of DNA methylation markers found at [[SCGN]] and [[KLF14]] loci to estimate human age. | |||
|date=11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28854399 | |||
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.07.011 | |||
}} | |||
==DNA2== | |||
* {{medline-title | |||
|title=53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination. | |||
|date=02.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31653568 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993210 | |||
}} | |||
* {{medline-title | |||
|title=Replication Stress at Telomeric and Mitochondrial DNA: Common Origins and Consequences on Ageing. | |||
|date=08.10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31597307 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6801922 | |||
}} | |||
==DNAJC5== | |||
* {{medline-title | |||
|title=Gene Therapy of Adult Neuronal Ceroid Lipofuscinoses with CRISPR/Cas9 in Zebrafish. | |||
|date=07.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28478735 | |||
|full-text-url=https://sci-hub.do/10.1089/hum.2016.190 | |||
}} | |||
* {{medline-title | |||
|title=Caenorhabditis elegans dnj-14, the orthologue of the [[DNAJC5]] gene mutated in adult onset neuronal ceroid lipofuscinosis, provides a new platform for neuroprotective drug screening and identifies a SIR-2.1-independent action of resveratrol. | |||
|date=15.11.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24947438 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4204773 | |||
}} | |||
==DOCK11== | |||
* {{medline-title | |||
|title=[Immunosenescence: The Forefront of Infection and Trophic Control]. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32115558 | |||
|full-text-url=https://sci-hub.do/10.1248/yakushi.19-00193-3 | |||
}} | |||
* {{medline-title | |||
|title=Genetic correlation and genome-wide association study (GWAS) of the length of productive life, days open, and 305-days milk yield in crossbred Holstein dairy cattle. | |||
|date=29.06.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28671246 | |||
|full-text-url=https://sci-hub.do/10.4238/gmr16029091 | |||
}} | |||
==DOT1L== | |||
* {{medline-title | |||
|title=Metformin regulates mitochondrial biogenesis and senescence through AMPK mediated H3K79 methylation: Relevance in age-associated vascular dysfunction. | |||
|date=04.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29366775 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbadis.2018.01.018 | |||
}} | |||
* {{medline-title | |||
|title=NF-κB activation impairs somatic cell reprogramming in ageing. | |||
|date=08.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26214134 | |||
|full-text-url=https://sci-hub.do/10.1038/ncb3207 | |||
}} | |||
==DRAM1== | |||
* {{medline-title | |||
|title=Genome-wide meta-analysis of macronutrient intake of 91,114 European ancestry participants from the cohorts for heart and aging research in genomic epidemiology consortium. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29988085 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326896 | |||
}} | |||
* {{medline-title | |||
|title=Di-retinoid-pyridinium-ethanolamine (A2E) Accumulation and the Maintenance of the Visual Cycle Are Independent of Atg7-mediated Autophagy in the Retinal Pigmented Epithelium. | |||
|date=27.11.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26468292 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4661415 | |||
}} | |||
==DRD1== | |||
* {{medline-title | |||
|title=Impact of dopamine-related genetic variants on physical activity in old age - a cohort study. | |||
|date=24.05.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32448293 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245799 | |||
}} | |||
* {{medline-title | |||
|title=Maternal deprivation enhances behavioral vulnerability to stress associated with miR-504 expression in nucleus accumbens of rats. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23922862 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724734 | |||
}} | |||
==DROSHA== | |||
* {{medline-title | |||
|title=Profiling of m6A RNA modifications identified an age-associated regulation of [[AGO2]] mRNA stability. | |||
|date=06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29573145 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946072 | |||
}} | |||
* {{medline-title | |||
|title=Centenarians maintain miRNA biogenesis pathway while it is impaired in octogenarians. | |||
|date=12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28754532 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2017.07.003 | |||
}} | |||
==DSCAM== | |||
* {{medline-title | |||
|title=Age- and speed-dependent modulation of gaits in [[DSCAM]] mutant mice. | |||
|date=01.02.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29093169 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5867377 | |||
}} | |||
* {{medline-title | |||
|title=Developmentally dynamic colocalization patterns of [[DSCAM]] with adhesion and synaptic proteins in the mouse retina. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25352748 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4191645 | |||
}} | |||
==DSG2== | |||
* {{medline-title | |||
|title=Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. | |||
|date=11.04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28199971 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421828 | |||
}} | |||
* {{medline-title | |||
|title=Age-dependent clinical and genetic characteristics in Japanese patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23514727 | |||
|full-text-url=https://sci-hub.do/10.1253/circj.cj-12-1446 | |||
}} | |||
==DSPP== | |||
* {{medline-title | |||
|title=Effects of [i]p[/i]-Cresol on Senescence, Survival, Inflammation, and Odontoblast Differentiation in Canine Dental Pulp Stem Cells. | |||
|date=21.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32967298 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555360 | |||
}} | |||
* {{medline-title | |||
|title=[[GREM1]] inhibits osteogenic differentiation, senescence and BMP transcription of adipose-derived stem cells. | |||
|date=09.03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32151168 | |||
|full-text-url=https://sci-hub.do/10.1080/03008207.2020.1736054 | |||
}} | |||
==DUSP2== | |||
* {{medline-title | |||
|title=The association between poverty and gene expression within peripheral blood mononuclear cells in a diverse Baltimore City cohort. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32970748 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514036 | |||
}} | |||
* {{medline-title | |||
|title=Aging Increases Hippocampal [[DUSP2]] by a Membrane Cholesterol Loss-Mediated RTK/p38MAPK Activation Mechanism. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31293510 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603139 | |||
}} | |||
==E2F2== | |||
* {{medline-title | |||
|title=MicroRNA-31a-5p from aging BMSCs links bone formation and resorption in the aged bone marrow microenvironment. | |||
|date=08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29896785 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052401 | |||
}} | |||
* {{medline-title | |||
|title=In situ regeneration of retinal pigment epithelium by gene transfer of [[E2F2]]: a potential strategy for treatment of macular degenerations. | |||
|date=12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29188796 | |||
|full-text-url=https://sci-hub.do/10.1038/gt.2017.89 | |||
}} | |||
==EBF1== | |||
* {{medline-title | |||
|title=Genome-wide Association Study of Parental Life Span. | |||
|date=01.10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27816938 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861941 | |||
}} | |||
* {{medline-title | |||
|title=Non-Lethal Ionizing Radiation Promotes Aging-Like Phenotypic Changes of Human Hematopoietic Stem and Progenitor Cells in Humanized Mice. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26161905 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498777 | |||
}} | |||
==ECM1== | |||
* {{medline-title | |||
|title=Novel role of extracellular matrix protein 1 ([[ECM1]]) in cardiac aging and myocardial infarction. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30789914 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383988 | |||
}} | |||
* {{medline-title | |||
|title=Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. | |||
|date=05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28325852 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827 | |||
}} | |||
==EDNRB== | |||
* {{medline-title | |||
|title=Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. | |||
|date=03.03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26863197 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846424 | |||
}} | |||
* {{medline-title | |||
|title=Variation in genes in the endothelin pathway and endothelium-dependent and endothelium-independent vasodilation in an elderly population. | |||
|date=05.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23336501 | |||
|full-text-url=https://sci-hub.do/10.1111/apha.12068 | |||
}} | |||
==EED== | |||
* {{medline-title | |||
|title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. | |||
|date=24.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659 | |||
}} | |||
* {{medline-title | |||
|title=Economic evaluations of eHealth technologies: A systematic review. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29897921 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5999277 | |||
}} | |||
==EIF2B1== | |||
* {{medline-title | |||
|title=Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of [[CSF1R]] and [[NOTCH3]]. | |||
|date=06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29544907 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5937905 | |||
}} | |||
* {{medline-title | |||
|title=Infantile onset Vanishing White Matter disease associated with a novel [[EIF2B5]] variant, remarkably long life span, severe epilepsy, and hypopituitarism. | |||
|date=04.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25758335 | |||
|full-text-url=https://sci-hub.do/10.1002/ajmg.a.36961 | |||
}} | |||
==EIF2B5== | |||
* {{medline-title | |||
|title=Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of [[CSF1R]] and [[NOTCH3]]. | |||
|date=06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29544907 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5937905 | |||
}} | |||
* {{medline-title | |||
|title=Infantile onset Vanishing White Matter disease associated with a novel [[EIF2B5]] variant, remarkably long life span, severe epilepsy, and hypopituitarism. | |||
|date=04.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25758335 | |||
|full-text-url=https://sci-hub.do/10.1002/ajmg.a.36961 | |||
}} | |||
==EIF5A== | |||
* {{medline-title | |||
|title=The curious case of polyamines: spermidine drives reversal of B cell senescence. | |||
|date=03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31795807 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999633 | |||
}} | |||
* {{medline-title | |||
|title=Polyamines reverse immune senescence via the translational control of autophagy. | |||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31679458 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6984486 | |||
}} | |||
==EN1== | |||
* {{medline-title | |||
|title=Electrochemically detecting DNA methylation in the [[EN1]] gene promoter: implications for understanding ageing and disease. | |||
|date=27.11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33135722 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7670582 | |||
}} | |||
* {{medline-title | |||
|title=The role of DNA methylation in ageing and cancer. | |||
|date=11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29708096 | |||
|full-text-url=https://sci-hub.do/10.1017/S0029665118000150 | |||
}} | |||
==ENC1== | |||
* {{medline-title | |||
|title=Selective molecular biomarkers to predict biologic behavior in pituitary tumors. | |||
|date=05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30063456 | |||
|full-text-url=https://sci-hub.do/10.1080/17446651.2017.1312341 | |||
}} | |||
* {{medline-title | |||
|title=Identification of genes associated with dissociation of cognitive performance and neuropathological burden: Multistep analysis of genetic, epigenetic, and transcriptional data. | |||
|date=04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28441426 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5404753 | |||
}} | |||
==ENTPD7== | |||
* {{medline-title | |||
|title=Inhibition of lung cancer cells and Ras/Raf/MEK/ERK signal transduction by ectonucleoside triphosphate phosphohydrolase-7 ([[ENTPD7]]). | |||
|date=23.08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31443651 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6708200 | |||
}} | |||
* {{medline-title | |||
|title=SWI/SNF regulates a transcriptional program that induces senescence to prevent liver cancer. | |||
|date=01.10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27737960 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5088567 | |||
}} | |||
==EOMES== | |||
* {{medline-title | |||
|title=Association of Epigenetic Age and p16INK4a With Markers of T-Cell Composition in a Healthy Cohort. | |||
|date=13.11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32361724 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662168 | |||
}} | |||
* {{medline-title | |||
|title=Eomesodermin Expression in CD4 T Cells Restricts Peripheral Foxp3 Induction. | |||
|date=15.11.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26453746 | |||
|full-text-url=https://sci-hub.do/10.4049/jimmunol.1501159 | |||
}} | |||
==EPHA2== | |||
* {{medline-title | |||
|title=Germ-line and somatic [[EPHA2]] coding variants in lens aging and cataract. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29267365 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5739433 | |||
}} | |||
* {{medline-title | |||
|title=[[EPHA2]] Polymorphisms in Estonian Patients with Age-Related Cataract. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24673449 | |||
|full-text-url=https://sci-hub.do/10.3109/13816810.2014.902080 | |||
}} | |||
==EPM2A== | |||
* {{medline-title | |||
|title=Inflammation in Lafora Disease: Evolution with Disease Progression in Laforin and Malin Knock-out Mouse Models. | |||
|date=07.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27041370 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472678 | |||
}} | |||
* {{medline-title | |||
|title=Loss of GABAergic cortical neurons underlies the neuropathology of Lafora disease. | |||
|date=28.01.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24472629 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917365 | |||
}} | |||
==ERBB2== | |||
* {{medline-title | |||
|title=The biological age linked to oxidative stress modifies breast cancer aggressiveness. | |||
|date=20.05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29550329 | |||
|full-text-url=https://sci-hub.do/10.1016/j.freeradbiomed.2018.03.012 | |||
}} | |||
* {{medline-title | |||
|title=Identification of human age-associated gene co-expressions in functional modules using liquid association. | |||
|date=02.01.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29416677 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5787419 | |||
}} | |||
==ERCC6== | |||
* {{medline-title | |||
|title=Two Cockayne Syndrome patients with a novel splice site mutation - clinical and metabolic analyses. | |||
|date=10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29944916 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2018.06.001 | |||
}} | |||
* {{medline-title | |||
|title=The associations between single nucleotide polymorphisms of DNA repair genes, DNA damage, and age-related cataract: Jiangsu Eye Study. | |||
|date=01.02.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23322570 | |||
|full-text-url=https://sci-hub.do/10.1167/iovs.12-10940 | |||
}} | |||
==ETS2== | |||
* {{medline-title | |||
|title=[[FOXO3]] targets are reprogrammed as Huntington's disease neural cells and striatal neurons face senescence with p16 increase. | |||
|date=11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33156570 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7681055 | |||
}} | |||
* {{medline-title | |||
|title=The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. | |||
|date=29.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32997995 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527782 | |||
}} | |||
==EWSR1== | |||
* {{medline-title | |||
|title=[[EWSR1]], a multifunctional protein, regulates cellular function and aging via genetic and epigenetic pathways. | |||
|date=01.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30481590 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6527469 | |||
}} | |||
* {{medline-title | |||
|title=[[EWSR1]]/ELF5 induces acute myeloid leukemia by inhibiting p53/p21 pathway. | |||
|date=12.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27627705 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5198945 | |||
}} | |||
==EZR== | |||
* {{medline-title | |||
|title=Proteomic analysis of six- and twelve-month hippocampus and cerebellum in a murine Down syndrome model. | |||
|date=03.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29245059 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5801041 | |||
}} | |||
* {{medline-title | |||
|title=Genetic variations and polymorphisms in the ezrin gene are associated with age-related cataract. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23882136 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718490 | |||
}} | |||
==F8== | |||
* {{medline-title | |||
|title=The Pattern of Mu Rhythm Modulation During Emotional Destination Memory: Comparison Between Mild Cognitive Impairment Patients and Healthy Controls. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31524160 | |||
|full-text-url=https://sci-hub.do/10.3233/JAD-190311 | |||
}} | |||
* {{medline-title | |||
|title=Correlations between the signal complexity of cerebral and cardiac electrical activity: a multiscale entropy analysis. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24498375 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912068 | |||
}} | |||
==F9== | |||
* {{medline-title | |||
|title=Hypermaintenance and hypofunction of aged spermatogonia: insight from age-related increase of Plzf expression. | |||
|date=30.06.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25986924 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4599245 | |||
}} | |||
* {{medline-title | |||
|title=eHealth literacy and Web 2.0 health information seeking behaviors among baby boomers and older adults. | |||
|date=17.03.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25783036 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381816 | |||
}} | |||
==FABP1== | |||
* {{medline-title | |||
|title=The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32729662 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511879 | |||
}} | |||
* {{medline-title | |||
|title=Expression of digestive enzyme and intestinal transporter genes during chronic heat stress in the thermally manipulated broiler chicken. | |||
|date=01.09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31065718 | |||
|full-text-url=https://sci-hub.do/10.3382/ps/pez249 | |||
}} | |||
==FADS1== | |||
* {{medline-title | |||
|title=Aging and [[FADS1]] polymorphisms decrease the biosynthetic capacity of long-chain PUFAs: A human trial using [U- C]linoleic acid. | |||
|date=09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31492428 | |||
|full-text-url=https://sci-hub.do/10.1016/j.plefa.2019.07.003 | |||
}} | |||
* {{medline-title | |||
|title=Genetic determinants of macular pigments in women of the Carotenoids in Age-Related Eye Disease Study. | |||
|date=28.03.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23404124 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3626525 | |||
}} | |||
==FAHD1== | |||
* {{medline-title | |||
|title=Oxaloacetate decarboxylase [[FAH]]D1 - a new regulator of mitochondrial function and senescence. | |||
|date=01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30055189 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2018.07.007 | |||
}} | |||
* {{medline-title | |||
|title=Depletion of oxaloacetate decarboxylase [[FAH]]D1 inhibits mitochondrial electron transport and induces cellular senescence in human endothelial cells. | |||
|date=06.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28286170 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2017.03.004 | |||
}} | |||
==FANCD2== | |||
* {{medline-title | |||
|title=[[TFG]]-maintaining stability of overlooked [[FANCD2]] confers early DNA-damage response. | |||
|date=24.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33099537 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7655164 | |||
}} | |||
* {{medline-title | |||
|title=[[FANCD2]] and DNA Damage. | |||
|date=19.08.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28825622 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5578191 | |||
}} | |||
==FAR2== | |||
* {{medline-title | |||
|title=[[FAR2]] is associated with kidney disease in mice and humans. | |||
|date=01.08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29652635 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6139637 | |||
}} | |||
* {{medline-title | |||
|title=Genetic analysis of mesangial matrix expansion in aging mice and identification of Far2 as a candidate gene. | |||
|date=12.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24009241 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3839541 | |||
}} | |||
==FBN1== | |||
* {{medline-title | |||
|title=Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. | |||
|date=05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28325852 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827 | |||
}} | |||
* {{medline-title | |||
|title=Muscle and Bone Impairment in Children With Marfan Syndrome: Correlation With Age and [[FBN1]] Genotype. | |||
|date=08.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25656438 | |||
|full-text-url=https://sci-hub.do/10.1002/jbmr.2471 | |||
}} | |||
==FBN2== | |||
* {{medline-title | |||
|title=Assessment of Human Skin Gene Expression by Different Blends of Plant Extracts with Implications to Periorbital Skin Aging. | |||
|date=26.10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30373163 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274848 | |||
}} | |||
* {{medline-title | |||
|title=Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. | |||
|date=05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28325852 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827 | |||
}} | |||
==FBXO31== | |||
* {{medline-title | |||
|title=The SCF ubiquitin ligase complex mediates degradation of the tumor suppressor [[FBXO31]] and thereby prevents premature cellular senescence. | |||
|date=19.10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30171069 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6200945 | |||
}} | |||
* {{medline-title | |||
|title=Solutions to Peto's paradox revealed by mathematical modelling and cross-species cancer gene analysis. | |||
|date=19.07.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26056366 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581027 | |||
}} | |||
==FGF6== | |||
* {{medline-title | |||
|title=Genome-wide associations and detection of potential candidate genes for direct genetic and maternal genetic effects influencing dairy cattle body weight at different ages. | |||
|date=06.02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30727969 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6366057 | |||
}} | |||
* {{medline-title | |||
|title=Regulation of skeletal muscle stem cells by fibroblast growth factors. | |||
|date=05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28249356 | |||
|full-text-url=https://sci-hub.do/10.1002/dvdy.24495 | |||
}} | |||
==FGG== | |||
* {{medline-title | |||
|title=Candidate SNP associations of optimism and resilience in older adults: exploratory study of 935 community-dwelling adults. | |||
|date=10.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24791650 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163500 | |||
}} | |||
* {{medline-title | |||
|title=A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. | |||
|date=07.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23650146 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990406 | |||
}} | |||
==FHL1== | |||
* {{medline-title | |||
|title=The forkhead-like transcription factor (Fhl1p) maintains yeast replicative lifespan by regulating ribonucleotide reductase 1 (RNR1) gene transcription. | |||
|date=17.06.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28495531 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2017.05.038 | |||
}} | |||
* {{medline-title | |||
|title=Transcription factor genes essential for cell proliferation and replicative lifespan in budding yeast. | |||
|date=31.07.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26022127 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2015.05.067 | |||
}} | |||
==FLT1== | |||
* {{medline-title | |||
|title=Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. | |||
|date=15.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |||
}} | |||
* {{medline-title | |||
|title=Analysis of Polymorphisms in 59 Potential Candidate Genes for Association With Human Longevity. | |||
|date=08.10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29300832 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6175033 | |||
}} | |||
==FOXA2== | |||
* {{medline-title | |||
|title=Induced Pluripotent Stem Cell-Derived Dopaminergic Neurons from Adult Common Marmoset Fibroblasts. | |||
|date=01.09.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28635509 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5576272 | |||
}} | |||
* {{medline-title | |||
|title=Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. | |||
|date=03.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25761685 | |||
|full-text-url=https://sci-hub.do/10.1134/S0006297915030062 | |||
}} | |||
==FOXC1== | |||
* {{medline-title | |||
|title=Identification of key genes and transcription factors in aging mesenchymal stem cells by DNA microarray data. | |||
|date=15.04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30641220 | |||
|full-text-url=https://sci-hub.do/10.1016/j.gene.2018.12.063 | |||
}} | |||
* {{medline-title | |||
|title=[[FOXC1]] maintains the hair follicle stem cell niche and governs stem cell quiescence to preserve long-term tissue-regenerating potential. | |||
|date=15.03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26912458 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4801248 | |||
}} | |||
==FOXF1== | |||
* {{medline-title | |||
|title=Functional CRISPR screen identifies AP1-associated enhancer regulating [[FOXF1]] to modulate oncogene-induced senescence. | |||
|date=17.08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30119690 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6097335 | |||
}} | |||
* {{medline-title | |||
|title=Co-culturing nucleus pulposus mesenchymal stem cells with notochordal cell-rich nucleus pulposus explants attenuates tumor necrosis factor-α-induced senescence. | |||
|date=26.06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29941029 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019307 | |||
}} | |||
==FOXP2== | |||
* {{medline-title | |||
|title=Identification of the neurotransmitter profile of AmFoxP expressing neurons in the honeybee brain using double-label in situ hybridization. | |||
|date=06.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30400853 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219247 | |||
}} | |||
* {{medline-title | |||
|title=Human skin keratinocytes can be reprogrammed to express neuronal genes and proteins after a single treatment with decitabine. | |||
|date=06.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23741634 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3666219 | |||
}} | |||
==FSTL1== | |||
* {{medline-title | |||
|title=Blocking the [[FSTL1]]-[[DIP2A]] Axis Improves Anti-tumor Immunity. | |||
|date=14.08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30110636 | |||
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2018.07.043 | |||
}} | |||
* {{medline-title | |||
|title=Vitamin D-responsive [[SGPP2]] variants associated with lung cell expression and lung function. | |||
|date=25.11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24274704 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907038 | |||
}} | |||
==FXN== | |||
* {{medline-title | |||
|title=Two different pathogenic mechanisms, dying-back axonal neuropathy and pancreatic senescence, are present in the YG8R mouse model of Friedreich's ataxia. | |||
|date=01.06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27079523 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4920149 | |||
}} | |||
* {{medline-title | |||
|title=Mitochondrial dysfunction induced by frataxin deficiency is associated with cellular senescence and abnormal calcium metabolism. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24860428 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4026758 | |||
}} | |||
==GABARAP== | |||
* {{medline-title | |||
|title=Age-dependent loss of adipose Rubicon promotes metabolic disorders via excess autophagy. | |||
|date=18.08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32811819 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7434891 | |||
}} | |||
* {{medline-title | |||
|title=Age-dependent autophagy induction after injury promotes axon regeneration by limiting NOTCH. | |||
|date=11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31920157 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595581 | |||
}} | |||
==GAK== | |||
* {{medline-title | |||
|title=Auxilin Underlies Progressive Locomotor Deficits and Dopaminergic Neuron Loss in a Drosophila Model of Parkinson's Disease. | |||
|date=31.01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28147270 | |||
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2017.01.005 | |||
}} | |||
* {{medline-title | |||
|title=Disruption of clathrin-mediated trafficking causes centrosome overduplication and senescence. | |||
|date=01.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24138026 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868896 | |||
}} | |||
==GAS6== | |||
* {{medline-title | |||
|title=Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31285764 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599663 | |||
}} | |||
* {{medline-title | |||
|title=Red blood cell distribution width: Genetic evidence for aging pathways in 116,666 volunteers. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28957414 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5619771 | |||
}} | |||
==GATA2== | |||
* {{medline-title | |||
|title=[[GATA2]] hypomorphism induces chronic myelomonocytic leukemia in mice. | |||
|date=04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30710465 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447832 | |||
}} | |||
* {{medline-title | |||
|title=Sequential acquisition of mutations in myelodysplastic syndromes. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28978821 | |||
|full-text-url=https://sci-hub.do/10.11406/rinketsu.58.1828 | |||
}} | |||
==GCAT== | |||
* {{medline-title | |||
|title=Impairing L-Threonine Catabolism Promotes Healthspan through Methylglyoxal-Mediated Proteohormesis. | |||
|date=03.04.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29551589 | |||
|full-text-url=https://sci-hub.do/10.1016/j.cmet.2018.02.004 | |||
}} | |||
* {{medline-title | |||
|title=Epigenetic regulation of the nuclear-coded [[GCAT]] and [[SHMT2]] genes confers human age-associated mitochondrial respiration defects. | |||
|date=22.05.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26000717 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5377050 | |||
}} | |||
==GDF3== | |||
* {{medline-title | |||
|title=In vivo [[GDF3]] administration abrogates aging related muscle regeneration delay following acute sterile injury. | |||
|date=10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30003692 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156497 | |||
}} | |||
* {{medline-title | |||
|title=Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. | |||
|date=05.10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28953873 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5718149 | |||
}} | |||
==GIT1== | |||
* {{medline-title | |||
|title=[[GIT2]]-A keystone in ageing and age-related disease. | |||
|date=05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29452267 | |||
|full-text-url=https://sci-hub.do/10.1016/j.arr.2018.02.002 | |||
}} | |||
* {{medline-title | |||
|title=GluN3A promotes dendritic spine pruning and destabilization during postnatal development. | |||
|date=09.07.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25009255 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608362 | |||
}} | |||
==GLI1== | |||
* {{medline-title | |||
|title=Sonic hedgehog regulation of cavernous nerve regeneration and neurite formation in aged pelvic plexus. | |||
|date=02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30391523 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6342483 | |||
}} | |||
* {{medline-title | |||
|title=[[GLI1]] progenitor cells in the adrenal capsule of the adult mouse give rise to heterotopic gonadal-like tissue. | |||
|date=05.02.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27585489 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5235954 | |||
}} | |||
==GLRX== | |||
* {{medline-title | |||
|title=Gender- and region-dependent changes of redox biomarkers in the brain of successfully aging LOU/C rats. | |||
|date=07.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25956602 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2015.04.002 | |||
}} | |||
* {{medline-title | |||
|title=Contribution of genetic polymorphisms on functional status at very old age: a gene-based analysis of 38 genes (311 SNPs) in the oxidative stress pathway. | |||
|date=04.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24462499 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050201 | |||
}} | |||
==GNAQ== | |||
* {{medline-title | |||
|title=Active notch protects MAPK activated melanoma cell lines from MEK inhibitor cobimetinib. | |||
|date=14.11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33202284 | |||
|full-text-url=https://sci-hub.do/10.1016/j.biopha.2020.111006 | |||
}} | |||
* {{medline-title | |||
|title=[[GNAQ]] expression initiated in multipotent neural crest cells drives aggressive melanoma of the central nervous system. | |||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31680437 | |||
|full-text-url=https://sci-hub.do/10.1111/pcmr.12843 | |||
}} | |||
==GNAS== | |||
* {{medline-title | |||
|title=Intratumoral heterogeneity of the tumor cells based on in situ cortisol excess in cortisol-producing adenomas; ∼An association among morphometry, genotype and cellular senescence∼. | |||
|date=11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33002589 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jsbmb.2020.105764 | |||
}} | |||
* {{medline-title | |||
|title=Clinical characterization and molecular classification of 12 Korean patients with pseudohypoparathyroidism and pseudopseudohypoparathyroidism. | |||
|date=10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24127307 | |||
|full-text-url=https://sci-hub.do/10.1055/s-0033-1349867 | |||
}} | |||
==GNG3== | |||
* {{medline-title | |||
|title=Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30210331 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6119720 | |||
}} | |||
* {{medline-title | |||
|title=Low expression of aging-related [[[[NRXN3]]]] is associated with Alzheimer disease: A systematic review and meta-analysis. | |||
|date=07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29995770 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076205 | |||
}} | |||
==GNRH1== | |||
* {{medline-title | |||
|title=Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. | |||
|date=15.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |||
}} | |||
* {{medline-title | |||
|title=Elucidating the genetic architecture of reproductive ageing in the Japanese population. | |||
|date=17.05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29773799 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5958096 | |||
}} | |||
==GP6== | |||
* {{medline-title | |||
|title=Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. | |||
|date=15.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |||
}} | |||
* {{medline-title | |||
|title=Estimation of human age using N-glycan profiles from bloodstains. | |||
|date=09.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25787342 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4550657 | |||
}} | |||
==GPER1== | |||
* {{medline-title | |||
|title=30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Nongenomic effects via the mineralocorticoid receptor. | |||
|date=07.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28348113 | |||
|full-text-url=https://sci-hub.do/10.1530/JOE-16-0659 | |||
}} | |||
* {{medline-title | |||
|title=Diverse Synaptic Distributions of G Protein-coupled Estrogen Receptor 1 in Monkey Prefrontal Cortex with Aging and Menopause. | |||
|date=01.03.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26941383 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5909633 | |||
}} | |||
==GPR158== | |||
* {{medline-title | |||
|title=Identifying blood-specific age-related DNA methylation markers on the Illumina MethylationEPIC® BeadChip. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31546163 | |||
|full-text-url=https://sci-hub.do/10.1016/j.forsciint.2019.109944 | |||
}} | |||
* {{medline-title | |||
|title=RbAp48 Protein Is a Critical Component of [[GPR158]]/OCN Signaling and Ameliorates Age-Related Memory Loss. | |||
|date=23.10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30355501 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725275 | |||
}} | |||
==GPR17== | |||
* {{medline-title | |||
|title=Pharmaceutical Rejuvenation of Age-Associated Decline in Spatial Memory. | |||
|date=12.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27881050 | |||
|full-text-url=https://sci-hub.do/10.1089/rej.2016.1903 | |||
}} | |||
* {{medline-title | |||
|title=Structural and functional rejuvenation of the aged brain by an approved anti-asthmatic drug. | |||
|date=27.10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26506265 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4639806 | |||
}} | |||
==GPR3== | |||
* {{medline-title | |||
|title=Mice lacking [[GPR3]] receptors display late-onset obese phenotype due to impaired thermogenic function in brown adipose tissue. | |||
|date=12.10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26455425 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4601089 | |||
}} | |||
* {{medline-title | |||
|title=Effects of aging on gene expression and mitochondrial DNA in the equine oocyte and follicle cells. | |||
|date=07.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25786490 | |||
|full-text-url=https://sci-hub.do/10.1071/RD14472 | |||
}} | |||
==GPR39== | |||
* {{medline-title | |||
|title=Zinc-mediated Neurotransmission in Alzheimer's Disease: A Potential Role of the [[GPR39]] in Dementia. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31272355 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327932 | |||
}} | |||
* {{medline-title | |||
|title=[[GPR39]] agonist TC-G 1008 ameliorates IL-1β-induced chondrocyte senescence. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31237151 | |||
|full-text-url=https://sci-hub.do/10.1080/21691401.2019.1626405 | |||
}} | |||
==GRB10== | |||
* {{medline-title | |||
|title=De-silencing [i]Grb10[/i] contributes to acute ER stress-induced steatosis in mouse liver. | |||
|date=05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29555819 | |||
|full-text-url=https://sci-hub.do/10.1530/JME-18-0018 | |||
}} | |||
* {{medline-title | |||
|title=Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. | |||
|date=12.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25824446 | |||
|full-text-url=https://sci-hub.do/10.1136/bjsports-2014-094073 | |||
}} | |||
==GRB2== | |||
* {{medline-title | |||
|title=Fucoidan⁻Fucoxanthin Ameliorated Cardiac Function via [[IRS1]]/[[GRB2]]/ [[SOS1]], GSK3β/CREB Pathways and Metabolic Pathways in Senescent Mice. | |||
|date=21.01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30669571 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356397 | |||
}} | |||
* {{medline-title | |||
|title=The different expression profiles of microRNAs in elderly and young human dental pulp and the role of miR-433 in human dental pulp cells. | |||
|date=03.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25778413 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2015.03.001 | |||
}} | |||
==GRIA2== | |||
* {{medline-title | |||
|title=The EpiTect Methyl qPCR Assay as novel age estimation method in forensic biology. | |||
|date=07.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27108355 | |||
|full-text-url=https://sci-hub.do/10.1016/j.forsciint.2016.03.047 | |||
}} | |||
* {{medline-title | |||
|title=Evaluation of DNA methylation markers and their potential to predict human aging. | |||
|date=08.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26010003 | |||
|full-text-url=https://sci-hub.do/10.1002/elps.201500137 | |||
}} | |||
==GRIK2== | |||
* {{medline-title | |||
|title=Senescence of Normal Human Fibroblasts Relates to the Expression of Ionotropic Glutamate Receptor GluR6/Grik2. | |||
|date=11-12.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33099472 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7675648 | |||
}} | |||
* {{medline-title | |||
|title=Isoforms of Ionotropic Glutamate Receptor [[GRIK2]] Induce Senescence of Carcinoma Cells. | |||
|date=01-02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30587499 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6348395 | |||
}} | |||
==GRIN2B== | |||
* {{medline-title | |||
|title=Medial temporal lobe atrophy relates more strongly to sleep-wake rhythm fragmentation than to age or any other known risk. | |||
|date=04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29864525 | |||
|full-text-url=https://sci-hub.do/10.1016/j.nlm.2018.05.017 | |||
}} | |||
* {{medline-title | |||
|title=Gene Expression Switching of Receptor Subunits in Human Brain Development. | |||
|date=12.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26636753 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4670163 | |||
}} | |||
==GRM3== | |||
* {{medline-title | |||
|title=Profiling gene expression in the human dentate gyrus granule cell layer reveals insights into schizophrenia and its genetic risk. | |||
|date=04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32203495 | |||
|full-text-url=https://sci-hub.do/10.1038/s41593-020-0604-z | |||
}} | |||
* {{medline-title | |||
|title=Hippocampal proteomics defines pathways associated with memory decline and resilience in normal aging and Alzheimer's disease mouse models. | |||
|date=30.03.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27265785 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5135662 | |||
}} | |||
==GRSF1== | |||
* {{medline-title | |||
|title=[[GRSF1]] is an age-related regulator of senescence. | |||
|date=03.04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30944385 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447602 | |||
}} | |||
* {{medline-title | |||
|title=[[GRSF1]] suppresses cell senescence. | |||
|date=07.08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30086537 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6128438 | |||
}} | |||
==GSTA2== | |||
* {{medline-title | |||
|title=The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32729662 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511879 | |||
}} | |||
* {{medline-title | |||
|title=The age-related change of glutathione antioxidant system in mice liver. | |||
|date=07.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23343351 | |||
|full-text-url=https://sci-hub.do/10.3109/15376516.2013.769655 | |||
}} | |||
==GSTA4== | |||
* {{medline-title | |||
|title=Impaired enzymatic reactive aldehyde-detoxifying capacity and glutathione peroxidase activity in the aged human arterial tissue. | |||
|date=02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30472277 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2018.11.013 | |||
}} | |||
* {{medline-title | |||
|title=Age-associated changes in GSH S-transferase gene/proteins in livers of rats. | |||
|date=12.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30444463 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748684 | |||
}} | |||
==GSTK1== | |||
* {{medline-title | |||
|title=Age-associated changes in GSH S-transferase gene/proteins in livers of rats. | |||
|date=12.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30444463 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748684 | |||
}} | |||
* {{medline-title | |||
|title=Growth hormone alters the glutathione S-transferase and mitochondrial thioredoxin systems in long-living Ames dwarf mice. | |||
|date=10.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24285747 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172038 | |||
}} | |||
==GSTM3== | |||
* {{medline-title | |||
|title=Age-associated changes in GSH S-transferase gene/proteins in livers of rats. | |||
|date=12.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30444463 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748684 | |||
}} | |||
* {{medline-title | |||
|title=Relationship Between the Altered Expression and Epigenetics of [[GSTM3]] and Age-Related Cataract. | |||
|date=01.09.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27607418 | |||
|full-text-url=https://sci-hub.do/10.1167/iovs.16-19242 | |||
}} | |||
==GSTZ1== | |||
* {{medline-title | |||
|title=Age-associated changes in GSH S-transferase gene/proteins in livers of rats. | |||
|date=12.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30444463 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748684 | |||
}} | |||
* {{medline-title | |||
|title=Effects of insulin-like growth factor 1 on glutathione S-transferases and thioredoxin in growth hormone receptor knockout mice. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25001375 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150915 | |||
}} | |||
==HAPLN1== | |||
* {{medline-title | |||
|title=Remodeling of the Collagen Matrix in Aging Skin Promotes Melanoma Metastasis and Affects Immune Cell Motility. | |||
|date=01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30279173 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6328333 | |||
}} | |||
* {{medline-title | |||
|title=Age-Related Changes in [[HAPLN1]] Increase Lymphatic Permeability and Affect Routes of Melanoma Metastasis. | |||
|date=01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30279172 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6328344 | |||
}} | |||
==HAS1== | |||
* {{medline-title | |||
|title=A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass. | |||
|date=20.06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31219803 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628988 | |||
}} | |||
* {{medline-title | |||
|title=Age-related changes in cyclic phosphatidic acid-induced hyaluronic acid synthesis in human fibroblasts. | |||
|date=01.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29063508 | |||
|full-text-url=https://sci-hub.do/10.1007/s13577-017-0185-7 | |||
}} | |||
==HAS3== | |||
* {{medline-title | |||
|title=Microneedle fractional radiofrequency increases epidermal hyaluronan and reverses age-related epidermal dysfunction. | |||
|date=02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26415023 | |||
|full-text-url=https://sci-hub.do/10.1002/lsm.22420 | |||
}} | |||
* {{medline-title | |||
|title=Age-associated changes in gene expression of goat oocytes. | |||
|date=01.09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23746875 | |||
|full-text-url=https://sci-hub.do/10.1016/j.theriogenology.2013.04.019 | |||
}} | |||
==HAT1== | |||
* {{medline-title | |||
|title=Activation of p53 by spermine mediates induction of autophagy in HT1080 cells. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24189165 | |||
|full-text-url=https://sci-hub.do/10.1016/j.ijbiomac.2013.10.041 | |||
}} | |||
* {{medline-title | |||
|title=Age-associated changes in gene expression of goat oocytes. | |||
|date=01.09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23746875 | |||
|full-text-url=https://sci-hub.do/10.1016/j.theriogenology.2013.04.019 | |||
}} | |||
==HBD== | |||
* {{medline-title | |||
|title=Impact of reproductive aging on the vaginal microbiome and soluble immune mediators in women living with and at-risk for HIV infection. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31026271 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485713 | |||
}} | |||
* {{medline-title | |||
|title=Differences in Cytokine Production during Aging and Its Relationship with Antimicrobial Peptides Production. | |||
|date=01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27618158 | |||
|full-text-url=https://sci-hub.do/10.1080/08820139.2016.1212873 | |||
}} | |||
==HCN3== | |||
* {{medline-title | |||
|title=Characteristics of hyperpolarization-activated cyclic nucleotide-gated channels in dorsal root ganglion neurons at different ages and sizes. | |||
|date=11.11.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26379059 | |||
|full-text-url=https://sci-hub.do/10.1097/WNR.0000000000000455 | |||
}} | |||
* {{medline-title | |||
|title=Integromics network meta-analysis on cardiac aging offers robust multi-layer modular signatures and reveals micronome synergism. | |||
|date=04.03.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25887273 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4367845 | |||
}} | |||
==HCRT== | |||
* {{medline-title | |||
|title=Age-related central regulation of orexin and [[NPY]] in the short-lived African killifish Nothobranchius furzeri. | |||
|date=15.05.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30666646 | |||
|full-text-url=https://sci-hub.do/10.1002/cne.24638 | |||
}} | |||
* {{medline-title | |||
|title=Sleep and cardiovascular phenotype in middle-aged hypocretin-deficient narcoleptic mice. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24033681 | |||
|full-text-url=https://sci-hub.do/10.1111/jsr.12081 | |||
}} | |||
==HELLS== | |||
* {{medline-title | |||
|title=The Ubiquitin-like with PHD and Ring Finger Domains 1 ([[UHRF1]])/DNA Methyltransferase 1 ([[DNMT1]]) Axis Is a Primary Regulator of Cell Senescence. | |||
|date=03.03.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28100769 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5339756 | |||
}} | |||
* {{medline-title | |||
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335 | |||
}} | |||
==HGD== | |||
* {{medline-title | |||
|title=High-glucose diets induce mitochondrial dysfunction in Caenorhabditis elegans. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31846489 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6917275 | |||
}} | |||
* {{medline-title | |||
|title=A high glucose diet induces autophagy in a HLH-30/TFEB-dependent manner and impairs the normal lifespan of [i]C. elegans[/i]. | |||
|date=05.10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30299269 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6224263 | |||
}} | |||
==HIF1A== | |||
* {{medline-title | |||
|title=Hypoxia-inducible transcription factors, [[HIF1A]] and HIF2A, increase in aging mucosal tissues. | |||
|date=07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29338076 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002220 | |||
}} | |||
* {{medline-title | |||
|title=Role of Mitochondrial Complex IV in Age-Dependent Obesity. | |||
|date=13.09.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27626667 | |||
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2016.08.041 | |||
}} | |||
==HK2== | |||
* {{medline-title | |||
|title=Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury. | |||
|date=11.01.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29326403 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5811244 | |||
}} | |||
* {{medline-title | |||
|title=Differentially expressed microRNAs in bone marrow mesenchymal stem cell-derived microvesicles in young and older rats and their effect on tumor growth factor-β1-mediated epithelial-mesenchymal transition in [[HK2]] cells. | |||
|date=28.09.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26415502 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4587922 | |||
}} | |||
==HLA-A== | |||
* {{medline-title | |||
|title=Reduced expression of the lncRNA NRON is a potential hallmark of the CMV-amplified CD8 T cell accumulations commonly seen in older humans. | |||
|date=01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30415066 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2018.11.004 | |||
}} | |||
* {{medline-title | |||
|title=Cytomegalovirus-Specific T Cells Restricted by [[HLA-C]]w*0702 Increase Markedly with Age and Dominate the CD8 T-Cell Repertoire in Older People. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29312307 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5732243 | |||
}} | |||
==HLA-B== | |||
* {{medline-title | |||
|title=Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31254144 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733812 | |||
}} | |||
* {{medline-title | |||
|title=Cytomegalovirus-Specific T Cells Restricted by [[HLA-C]]w*0702 Increase Markedly with Age and Dominate the CD8 T-Cell Repertoire in Older People. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29312307 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5732243 | |||
}} | |||
==HLA-C== | |||
* {{medline-title | |||
|title=Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31254144 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733812 | |||
}} | |||
* {{medline-title | |||
|title=Cytomegalovirus-Specific T Cells Restricted by [[HLA-C]]w*0702 Increase Markedly with Age and Dominate the CD8 T-Cell Repertoire in Older People. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29312307 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5732243 | |||
}} | |||
==HLA-DPB1== | |||
* {{medline-title | |||
|title=17th IHIW component "Immunogenetics of Ageing" - New NGS data. | |||
|date=09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31331679 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6773488 | |||
}} | |||
* {{medline-title | |||
|title=Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31254144 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733812 | |||
}} | |||
==HLA-DQA1== | |||
* {{medline-title | |||
|title=17th IHIW component "Immunogenetics of Ageing" - New NGS data. | |||
|date=09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31331679 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6773488 | |||
}} | |||
* {{medline-title | |||
|title=[Clinical and genetic characteristics of long-livers in Moscow region]. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24640693 | |||
}} | |||
==HLA-DQB1== | |||
* {{medline-title | |||
|title=Identification of new genetic variants of [[HLA-DQB1]] associated with human longevity and lipid homeostasis-a cross-sectional study in a Chinese population. | |||
|date=10.11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29129831 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5723689 | |||
}} | |||
* {{medline-title | |||
|title=[Clinical and genetic characteristics of long-livers in Moscow region]. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24640693 | |||
}} | |||
==HMGCS1== | |||
* {{medline-title | |||
|title=The Age-dependent Elevation of miR-335-3p Leads to Reduced Cholesterol and Impaired Memory in Brain. | |||
|date=15.10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30125687 | |||
|full-text-url=https://sci-hub.do/10.1016/j.neuroscience.2018.08.003 | |||
}} | |||
* {{medline-title | |||
|title=Controlled sumoylation of the mevalonate pathway enzyme HMGS-1 regulates metabolism during aging. | |||
|date=16.09.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25187565 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169931 | |||
}} | |||
==HNF4A== | |||
* {{medline-title | |||
|title=The Impact of Biomarker Screening and Cascade Genetic Testing on the Cost-Effectiveness of MODY Genetic Testing. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31558549 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868460 | |||
}} | |||
* {{medline-title | |||
|title=Hepatocyte Nuclear Factor-4α P2 Promoter Variants Are Associated With the Risk of Metabolic Syndrome and Testosterone Deficiency in Aging Taiwanese Men. | |||
|date=11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30415809 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jsxm.2018.09.012 | |||
}} | |||
==HNRNPA1== | |||
* {{medline-title | |||
|title=[[HNRNPA1]]-mediated 3' UTR length changes of [i]HN1[/i] contributes to cancer- and senescence-associated phenotypes. | |||
|date=30.06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31257225 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660030 | |||
}} | |||
* {{medline-title | |||
|title=Changes in the expression of splicing factor transcripts and variations in alternative splicing are associated with lifespan in mice and humans. | |||
|date=10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27363602 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013025 | |||
}} | |||
==HOPX== | |||
* {{medline-title | |||
|title=Combinations of differentiation markers distinguish subpopulations of alveolar epithelial cells in adult lung. | |||
|date=15.01.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26545903 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4719049 | |||
}} | |||
* {{medline-title | |||
|title=[[HOPX]] is methylated and exerts tumour-suppressive function through Ras-induced senescence in human lung cancer. | |||
|date=02.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25345926 | |||
|full-text-url=https://sci-hub.do/10.1002/path.4469 | |||
}} | |||
==HOXC4== | |||
* {{medline-title | |||
|title=Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. | |||
|date=11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28841467 | |||
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.07.015 | |||
}} | |||
* {{medline-title | |||
|title=Differential DNA Methylation in Relation to Age and Health Risks of Obesity. | |||
|date=24.07.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26213922 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581172 | |||
}} | |||
==HPD== | |||
* {{medline-title | |||
|title=Protein-Amino Acid Metabolism Disarrangements: The Hidden Enemy of Chronic Age-Related Conditions. | |||
|date=22.03.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29565819 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946176 | |||
}} | |||
* {{medline-title | |||
|title=Post-weaning parental care increases fitness but is not heritable in North American red squirrels. | |||
|date=06.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25847376 | |||
|full-text-url=https://sci-hub.do/10.1111/jeb.12633 | |||
}} | |||
==HRG== | |||
* {{medline-title | |||
|title=Chronic dietary ginseng extract administration ameliorates antioxidant and cholinergic systems in the brains of aged mice. | |||
|date=10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29021712 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5628339 | |||
}} | |||
* {{medline-title | |||
|title=Heregulin, a new regulator of telomere length in human cells. | |||
|date=24.11.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26318724 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4741836 | |||
}} | |||
==HSD3B2== | |||
* {{medline-title | |||
|title=11-Oxygenated C19 Steroids Do Not Decline With Age in Women. | |||
|date=01.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30753518 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525564 | |||
}} | |||
* {{medline-title | |||
|title=Testicular gene expression of steroidogenesis-related factors in prepubertal, postpubertal, and aging dogs. | |||
|date=01.03.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28166986 | |||
|full-text-url=https://sci-hub.do/10.1016/j.theriogenology.2016.11.007 | |||
}} | |||
==HSF4== | |||
* {{medline-title | |||
|title=Effect of [[HSF4]]b on age related cataract may through its novel downstream target Hif1α. | |||
|date=24.10.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25088997 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2014.07.118 | |||
}} | |||
* {{medline-title | |||
|title=Copy number variations of DNA repair genes and the age-related cataract: Jiangsu Eye Study. | |||
|date=01.02.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23329665 | |||
|full-text-url=https://sci-hub.do/10.1167/iovs.12-10948 | |||
}} | |||
==HSP90AA1== | |||
* {{medline-title | |||
|title=[[SIRT6]] histone deacetylase functions as a potential oncogene in human melanoma. | |||
|date=09.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29234488 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724804 | |||
}} | |||
* {{medline-title | |||
|title=Integration-independent Transgenic Huntington Disease Fragment Mouse Models Reveal Distinct Phenotypes and Life Span in Vivo. | |||
|date=31.07.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26025364 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521048 | |||
}} | |||
==HSPB1== | |||
* {{medline-title | |||
|title=The beneficial effects of 15 units of high-intensity circuit training in women is modified by age, baseline insulin resistance and physical capacity. | |||
|date=06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31102684 | |||
|full-text-url=https://sci-hub.do/10.1016/j.diabres.2019.05.009 | |||
}} | |||
* {{medline-title | |||
|title=Chicken heat shock protein [[HSPB1]] increases and interacts with αB-crystallin in aged skeletal muscle. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26139560 | |||
|full-text-url=https://sci-hub.do/10.1080/09168451.2015.1061419 | |||
}} | |||
==HSPB6== | |||
* {{medline-title | |||
|title=Lifelong Football Training: Effects on Autophagy and Healthy Longevity Promotion. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30837897 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390296 | |||
}} | |||
* {{medline-title | |||
|title=Apoptosis in muscle-to-meat aging process: The omic witness. | |||
|date=01.07.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25956426 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jprot.2015.04.023 | |||
}} | |||
==HUS1== | |||
* {{medline-title | |||
|title=Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes. | |||
|date=19.10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26477511 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4609912 | |||
}} | |||
* {{medline-title | |||
|title=[Role of DNA repair genes in radiation-induced changes of lifespan of Drosophila melanogaster]. | |||
|date=09-10.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25775840 | |||
}} | |||
==IAPP== | |||
* {{medline-title | |||
|title=Protein aggregates and proteostasis in aging: Amylin and β-cell function. | |||
|date=01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29580826 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2018.03.010 | |||
}} | |||
* {{medline-title | |||
|title=Causative factors for formation of toxic islet amyloid polypeptide oligomer in type 2 diabetes mellitus. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26604727 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4655906 | |||
}} | |||
==ID2== | |||
* {{medline-title | |||
|title=Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31254144 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733812 | |||
}} | |||
* {{medline-title | |||
|title=Ablation of the [[ID2]] gene results in altered circadian feeding behavior, and sex-specific enhancement of insulin sensitivity and elevated glucose uptake in skeletal muscle and brown adipose tissue. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24023810 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759459 | |||
}} | |||
==ID3== | |||
* {{medline-title | |||
|title=Transcription factor networks in aged naïve [[CD4]] T cells bias lineage differentiation. | |||
|date=08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31264370 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612640 | |||
}} | |||
* {{medline-title | |||
|title=Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. | |||
|date=02.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29196338 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795392 | |||
}} | |||
==IDO1== | |||
* {{medline-title | |||
|title=Different expression of Defensin-B gene in the endometrium of mares of different age during the breeding season. | |||
|date=21.12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31864349 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925900 | |||
}} | |||
* {{medline-title | |||
|title=Advanced age negatively impacts survival in an experimental brain tumor model. | |||
|date=06.09.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27493076 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5006183 | |||
}} | |||
==IFIT1== | |||
* {{medline-title | |||
|title=Sirtuin 1-Chromatin-Binding Dynamics Points to a Common Mechanism Regulating Inflammatory Targets in SIV Infection and in the Aging Brain. | |||
|date=06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29280055 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5930062 | |||
}} | |||
* {{medline-title | |||
|title=Progression of pathology in [[PINK1]]-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation. | |||
|date=02.08.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28768533 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5541666 | |||
}} | |||
==IFIT3== | |||
* {{medline-title | |||
|title=Progression of pathology in [[PINK1]]-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation. | |||
|date=02.08.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28768533 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5541666 | |||
}} | |||
* {{medline-title | |||
|title=Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. | |||
|date=05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28325852 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827 | |||
}} | |||
==IFITM1== | |||
* {{medline-title | |||
|title=White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy. | |||
|date=02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31691183 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035207 | |||
}} | |||
* {{medline-title | |||
|title=Age-Associated Changes in the Respiratory Epithelial Response to Influenza Infection. | |||
|date=10.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29878083 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6230210 | |||
}} | |||
==IFITM3== | |||
* {{medline-title | |||
|title=Blood DNA methylation sites predict death risk in a longitudinal study of 12, 300 individuals. | |||
|date=22.07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32697766 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7425458 | |||
}} | |||
* {{medline-title | |||
|title=Small Extracellular Vesicles Are Key Regulators of Non-cell Autonomous Intercellular Communication in Senescence via the Interferon Protein [[IFITM3]]. | |||
|date=25.06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31242426 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613042 | |||
}} | |||
==IFNAR1== | |||
* {{medline-title | |||
|title=Suppression of Type I Interferon Signaling Overcomes Oncogene-Induced Senescence and Mediates Melanoma Development and Progression. | |||
|date=05.04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27052162 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4826807 | |||
}} | |||
* {{medline-title | |||
|title=Type 1 interferons contribute to the clearance of senescent cell. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26046815 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4622626 | |||
}} | |||
==IGFBP4== | |||
* {{medline-title | |||
|title=Quantitative iTRAQ-based proteomic analysis of differentially expressed proteins in aging in human and monkey. | |||
|date=11.10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31601169 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6788010 | |||
}} | |||
* {{medline-title | |||
|title=Age-Related Insulin-Like Growth Factor Binding Protein-4 Overexpression Inhibits Osteogenic Differentiation of Rat Mesenchymal Stem Cells. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28595186 | |||
|full-text-url=https://sci-hub.do/10.1159/000477873 | |||
}} | |||
==IGHD== | |||
* {{medline-title | |||
|title=Growth Hormone Deficiency: Health and Longevity. | |||
|date=01.04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30576428 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416709 | |||
}} | |||
* {{medline-title | |||
|title=Lifetime, untreated isolated GH deficiency due to a GH-releasing hormone receptor mutation has beneficial consequences on bone status in older individuals, and does not influence their abdominal aorta calcification. | |||
|date=09.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24272598 | |||
|full-text-url=https://sci-hub.do/10.1007/s12020-013-0118-5 | |||
}} | |||
==IGSF1== | |||
* {{medline-title | |||
|title=Age-related gene and miRNA expression changes in airways of healthy individuals. | |||
|date=06.03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30842487 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403379 | |||
}} | |||
* {{medline-title | |||
|title=The [[IGSF1]] deficiency syndrome: characteristics of male and female patients. | |||
|date=12.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24108313 | |||
|full-text-url=https://sci-hub.do/10.1210/jc.2013-2743 | |||
}} | |||
==IHH== | |||
* {{medline-title | |||
|title=Indian Hedgehog regulates senescence in bone marrow-derived mesenchymal stem cell through modulation of ROS/mTOR/4EBP1, p70S6K1/2 pathway. | |||
|date=01.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32235006 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7185126 | |||
}} | |||
* {{medline-title | |||
|title=Transfection of the [[IHH]] gene into rabbit BMSCs in a simulated microgravity environment promotes chondrogenic differentiation and inhibits cartilage aging. | |||
|date=27.09.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27802423 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5325333 | |||
}} | |||
==IL18== | |||
* {{medline-title | |||
|title=p53 and p53-related mediators PAI-1 and IGFBP-3 are downregulated in peripheral blood mononuclear cells of HIV-patients exposed to non-nucleoside reverse transcriptase inhibitors. | |||
|date=06.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32272174 | |||
|full-text-url=https://sci-hub.do/10.1016/j.antiviral.2020.104784 | |||
}} | |||
* {{medline-title | |||
|title=Aging and the Inflammasomes. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30536177 | |||
|full-text-url=https://sci-hub.do/10.1007/978-3-319-89390-7_13 | |||
}} | |||
==IL9== | |||
* {{medline-title | |||
|title=A novel multi-marker discovery approach identifies new serum biomarkers for Parkinson's disease in older people: an EXosomes in PArkiNson Disease (EXPAND) ancillary study. | |||
|date=10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32458283 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7525911 | |||
}} | |||
* {{medline-title | |||
|title=Transcription factor networks in aged naïve [[CD4]] T cells bias lineage differentiation. | |||
|date=08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31264370 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612640 | |||
}} | |||
==ILDR1== | |||
* {{medline-title | |||
|title=Genome-wide association meta-analysis identifies five novel loci for age-related hearing impairment. | |||
|date=23.10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31645637 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6811684 | |||
}} | |||
* {{medline-title | |||
|title=A Large Genome-Wide Association Study of Age-Related Hearing Impairment Using Electronic Health Records. | |||
|date=10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27764096 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072625 | |||
}} | |||
==ING1== | |||
* {{medline-title | |||
|title=Impaired DNA demethylation of C/EBP sites causes premature aging. | |||
|date=01.06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29884649 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6049513 | |||
}} | |||
* {{medline-title | |||
|title=The tumor suppressor [[ING1]]b is a novel corepressor for the androgen receptor and induces cellular senescence in prostate cancer cells. | |||
|date=06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26993046 | |||
|full-text-url=https://sci-hub.do/10.1093/jmcb/mjw007 | |||
}} | |||
==INPP5A== | |||
* {{medline-title | |||
|title=DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. | |||
|date=25.07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30045751 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058387 | |||
}} | |||
* {{medline-title | |||
|title=Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26168237 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567 | |||
}} | |||
==INSR== | |||
* {{medline-title | |||
|title=Proteomics of Long-Lived Mammals. | |||
|date=03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31737995 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7117992 | |||
}} | |||
* {{medline-title | |||
|title=The Ubiquitin Ligase CHIP Integrates Proteostasis and Aging by Regulation of Insulin Receptor Turnover. | |||
|date=20.04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28431247 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5406386 | |||
}} | |||
==IRF4== | |||
* {{medline-title | |||
|title=Transcription factor networks in aged naïve [[CD4]] T cells bias lineage differentiation. | |||
|date=08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31264370 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612640 | |||
}} | |||
* {{medline-title | |||
|title=Age-related differences in interferon regulatory factor-4 and -5 signaling in ischemic brains of mice. | |||
|date=11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28905935 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5672072 | |||
}} | |||
==IRGM== | |||
* {{medline-title | |||
|title=[[SIRT6]] histone deacetylase functions as a potential oncogene in human melanoma. | |||
|date=09.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29234488 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724804 | |||
}} | |||
* {{medline-title | |||
|title=Bt Cry1Ie Toxin Does Not Impact the Survival and Pollen Consumption of Chinese Honey Bees, Apis cerana cerana (Hymenoptera, Apidae). | |||
|date=01.12.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27670271 | |||
|full-text-url=https://sci-hub.do/10.1093/jee/tow204 | |||
}} | |||
==ISG15== | |||
* {{medline-title | |||
|title=White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy. | |||
|date=02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31691183 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035207 | |||
}} | |||
* {{medline-title | |||
|title=Transcriptome analysis reveals immune-related gene expression changes with age in giant panda ([i]Ailuropoda melanoleuca[/i]) blood. | |||
|date=14.01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30641486 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339791 | |||
}} | |||
==ISL1== | |||
* {{medline-title | |||
|title=Aging-relevant human basal forebrain cholinergic neurons as a cell model for Alzheimer's disease. | |||
|date=21.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33087140 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579825 | |||
}} | |||
* {{medline-title | |||
|title=Deterioration of the Medial Olivocochlear Efferent System Accelerates Age-Related Hearing Loss in Pax2-Isl1 Transgenic Mice. | |||
|date=05.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25990412 | |||
|full-text-url=https://sci-hub.do/10.1007/s12035-015-9215-1 | |||
}} | |||
==ITGAM== | |||
* {{medline-title | |||
|title=Comparative Analysis of Gene Expression Patterns for Oral Epithelium-Related Functions with Aging. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31732940 | |||
|full-text-url=https://sci-hub.do/10.1007/978-3-030-28524-1_11 | |||
}} | |||
* {{medline-title | |||
|title=Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. | |||
|date=08.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28671693 | |||
|full-text-url=https://sci-hub.do/10.1038/nn.4597 | |||
}} | |||
==ITGB2== | |||
* {{medline-title | |||
|title=Comparative Analysis of Gene Expression Patterns for Oral Epithelium-Related Functions with Aging. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31732940 | |||
|full-text-url=https://sci-hub.do/10.1007/978-3-030-28524-1_11 | |||
}} | |||
* {{medline-title | |||
|title=A Microglial Signature Directing Human Aging and Neurodegeneration-Related Gene Networks. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30733664 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6353788 | |||
}} | |||
==ITK== | |||
* {{medline-title | |||
|title=Does Tetralogy of Fallot affect brain aging? A proof-of-concept study. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30130369 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6103512 | |||
}} | |||
* {{medline-title | |||
|title=Phenotypic characteristics of aged [[CD4]] [[CD28]] T lymphocytes are determined by changes in the whole-genome DNA methylation pattern. | |||
|date=04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28026094 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5334526 | |||
}} | |||
==JAK3== | |||
* {{medline-title | |||
|title=Immunologic effects of chronic administration of tofacitinib, a Janus kinase inhibitor, in cynomolgus monkeys and rats - Comparison of juvenile and adult responses. | |||
|date=04.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29454012 | |||
|full-text-url=https://sci-hub.do/10.1016/j.yrtph.2018.02.006 | |||
}} | |||
* {{medline-title | |||
|title=IL-15 enhances the antitumor effect of human antigen-specific CD8 T cells by cellular senescence delay. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28123872 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5215241 | |||
}} | |||
==KDM2B== | |||
* {{medline-title | |||
|title=Identification of Structural Elements of the Lysine Specific Demethylase 2B CxxC Domain Associated with Replicative Senescence Bypass in Primary Mouse Cells. | |||
|date=06.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32270414 | |||
|full-text-url=https://sci-hub.do/10.1007/s10930-020-09895-z | |||
}} | |||
* {{medline-title | |||
|title=Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases. | |||
|date=03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27114850 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809609 | |||
}} | |||
==KDM4B== | |||
* {{medline-title | |||
|title=Inhibition of microRNA-27b-3p relieves osteoarthritis pain via regulation of [[KDM4B]]-dependent [[DLX5]]. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32856377 | |||
|full-text-url=https://sci-hub.do/10.1002/biof.1670 | |||
}} | |||
* {{medline-title | |||
|title=Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases. | |||
|date=03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27114850 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809609 | |||
}} | |||
==KDM4C== | |||
* {{medline-title | |||
|title=[[KDM3A]] and [[KDM4C]] Regulate Mesenchymal Stromal Cell Senescence and Bone Aging via Condensin-mediated Heterochromatin Reorganization. | |||
|date=22.11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31704649 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888768 | |||
}} | |||
* {{medline-title | |||
|title=Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases. | |||
|date=03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27114850 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809609 | |||
}} | |||
==KDM6B== | |||
* {{medline-title | |||
|title=Histone demethylase [[KDM6B]] regulates 1,25-dihydroxyvitamin D3-induced senescence in glioma cells. | |||
|date=08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30825201 | |||
|full-text-url=https://sci-hub.do/10.1002/jcp.28431 | |||
}} | |||
* {{medline-title | |||
|title=Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases. | |||
|date=03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27114850 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809609 | |||
}} | |||
==KIFC3== | |||
* {{medline-title | |||
|title=Defective recruitment of motor proteins to autophagic compartments contributes to autophagic failure in aging. | |||
|date=08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29845728 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052466 | |||
}} | |||
* {{medline-title | |||
|title=Alteration of Motor Protein Expression Involved in Bidirectional Transport in Peripheral Blood Mononuclear Cells of Patients with Amyotrophic Lateral Sclerosis. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26954557 | |||
|full-text-url=https://sci-hub.do/10.1159/000443664 | |||
}} | |||
==KIR2DS5== | |||
* {{medline-title | |||
|title=[The relationship between the polymorphism of immunity genes and both aging and age-related diseases]. | |||
|date=07.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23853351 | |||
|full-text-url=https://sci-hub.do/10.3724/sp.j.1005.2013.00813 | |||
}} | |||
* {{medline-title | |||
|title=16(th) IHIW: immunogenetics of aging. | |||
|date=02.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23302099 | |||
|full-text-url=https://sci-hub.do/10.1111/iji.12027 | |||
}} | |||
==KISS1R== | |||
* {{medline-title | |||
|title=Kisspeptin across the human lifespan:evidence from animal studies and beyond. | |||
|date=06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27340201 | |||
|full-text-url=https://sci-hub.do/10.1530/JOE-15-0538 | |||
}} | |||
* {{medline-title | |||
|title=Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25765287 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475460 | |||
}} | |||
==KPNA2== | |||
* {{medline-title | |||
|title=Karyopherin Alpha 2-Expressing Pancreatic Duct Glands and Intra-Islet Ducts in Aged Diabetic C414A-Mutant-[[CRY1]] Transgenic Mice. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31179341 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6507265 | |||
}} | |||
* {{medline-title | |||
|title=Upregulated Expression of Karyopherin α2 is Involved in Neuronal Apoptosis Following Intracerebral Hemorrhage in Adult Rats. | |||
|date=07.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26340948 | |||
|full-text-url=https://sci-hub.do/10.1007/s10571-015-0258-7 | |||
}} | |||
==LAMA5== | |||
* {{medline-title | |||
|title=The correlation of copy number variations with longevity in a genome-wide association study of Han Chinese. | |||
|date=05.06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29883365 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6046244 | |||
}} | |||
* {{medline-title | |||
|title=Association of the Laminin, Alpha 5 ([[LAMA5]]) rs4925386 with height and longevity in an elderly population from Southern Italy. | |||
|date=04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26968355 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2016.03.003 | |||
}} | |||
==LAMC1== | |||
* {{medline-title | |||
|title=Relation of size of seminal vesicles on ultrasound to premature ejaculation. | |||
|date=09-10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27538475 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566849 | |||
}} | |||
* {{medline-title | |||
|title=Discovery and characterization of miRNA during cellular senescence in bone marrow-derived human mesenchymal stem cells. | |||
|date=10.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25087724 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2014.07.020 | |||
}} | |||
==LAT== | |||
* {{medline-title | |||
|title=Is the combined auriculotherapy approach superior to magneto-auriculotherapy alone in aging males with lower urinary tract symptoms? A randomized controlled trial. | |||
|date=16.01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30651007 | |||
|full-text-url=https://sci-hub.do/10.1080/13685538.2018.1542673 | |||
}} | |||
* {{medline-title | |||
|title=Intra-couple Caregiving of Older Adults Living Apart Together: Commitment and Independence. | |||
|date=09.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26300191 | |||
|full-text-url=https://sci-hub.do/10.1017/S0714980815000264 | |||
}} | |||
==LATS2== | |||
* {{medline-title | |||
|title=[Expression relationship of Hippo signaling molecules and ovarian germline stem cell markers in the ovarian aging process of women and mice]. | |||
|date=25.06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31218331 | |||
}} | |||
* {{medline-title | |||
|title=[[YAP1]]-[[LATS2]] feedback loop dictates senescent or malignant cell fate to maintain tissue homeostasis. | |||
|date=03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30755404 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6399607 | |||
}} | |||
==LDHA== | |||
* {{medline-title | |||
|title=Upregulation of lactate-inducible snail protein suppresses oncogene-mediated senescence through p16 inactivation. | |||
|date=26.02.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29482580 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5828408 | |||
}} | |||
* {{medline-title | |||
|title=Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. | |||
|date=05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29476819 | |||
|full-text-url=https://sci-hub.do/10.1016/j.arr.2018.02.004 | |||
}} | |||
==LDLR== | |||
* {{medline-title | |||
|title=Inactivation of the E3 Ubiquitin Ligase IDOL Attenuates Diet-Induced Obesity and Metabolic Dysfunction in Mice. | |||
|date=08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29903737 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6092113 | |||
}} | |||
* {{medline-title | |||
|title=Impact of age and sex on the development of atherosclerosis and expression of the related genes in apoE deficient mice. | |||
|date=15.01.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26592663 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2015.11.064 | |||
}} | |||
==LEPR== | |||
* {{medline-title | |||
|title=Age-related changes of leptin and leptin receptor variants in healthy elderly and long-lived adults. | |||
|date=03.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24612398 | |||
|full-text-url=https://sci-hub.do/10.1111/ggi.12267 | |||
}} | |||
* {{medline-title | |||
|title=Functional polymorphisms of the leptin and leptin receptor genes are associated with longevity and with the risk of myocardial infarction and of type 2 diabetes mellitus. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24549597 | |||
|full-text-url=https://sci-hub.do/10.5603/EP.2014.0002 | |||
}} | |||
==LGI1== | |||
* {{medline-title | |||
|title=Antibody-associated CNS syndromes without signs of inflammation in the elderly. | |||
|date=03.10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28878050 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5631166 | |||
}} | |||
* {{medline-title | |||
|title=Expression of NgR1-antagonizing proteins decreases with aging and cognitive decline in rat hippocampus. | |||
|date=05.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23525710 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651369 | |||
}} | |||
==LGR5== | |||
* {{medline-title | |||
|title=Thyroid hormone activates Wnt/β-catenin signaling involved in adult epithelial development during intestinal remodeling in Xenopus laevis. | |||
|date=08.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27068920 | |||
|full-text-url=https://sci-hub.do/10.1007/s00441-016-2396-8 | |||
}} | |||
* {{medline-title | |||
|title=Cancer stem cells in Helicobacter pylori infection and aging: Implications for gastric carcinogenesis. | |||
|date=15.08.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25133037 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4133534 | |||
}} | |||
==LHCGR== | |||
* {{medline-title | |||
|title=Comparative Study of the Steroidogenic Effects of Human Chorionic Gonadotropin and Thieno[2,3-D]pyrimidine-Based Allosteric Agonist of Luteinizing Hormone Receptor in Young Adult, Aging and Diabetic Male Rats. | |||
|date=11.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33050653 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7590010 | |||
}} | |||
* {{medline-title | |||
|title=Association between the luteinizing hormone/chorionic gonadotropin receptor ([[LHCGR]]) rs4073366 polymorphism and ovarian hyperstimulation syndrome during controlled ovarian hyperstimulation. | |||
|date=25.07.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23883350 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3727944 | |||
}} | |||
==LIFR== | |||
* {{medline-title | |||
|title=Efficacy of leukemia inhibitory factor as a therapeutic for permanent large vessel stroke differs among aged male and female rats. | |||
|date=15.03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30445025 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814304 | |||
}} | |||
* {{medline-title | |||
|title=Characterization of Nestin-positive stem Leydig cells as a potential source for the treatment of testicular Leydig cell dysfunction. | |||
|date=12.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25418539 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260348 | |||
}} | |||
==LIPA== | |||
* {{medline-title | |||
|title=Modeling the cardiometabolic benefits of sleep in older women: exploring the 24-hour day. | |||
|date=13.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31553045 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955642 | |||
}} | |||
* {{medline-title | |||
|title=Influence of Habitual Physical Behavior - Sleeping, Sedentarism, Physical Activity - On Bone Health in Community-Dwelling Older People. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31037056 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6476278 | |||
}} | |||
==LOXL1== | |||
* {{medline-title | |||
|title=A blackberry-dill extract combination synergistically increases skin elasticity. | |||
|date=10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32583541 | |||
|full-text-url=https://sci-hub.do/10.1111/ics.12644 | |||
}} | |||
* {{medline-title | |||
|title=Methylation of [[LOXL1]] Promoter by [[DNMT3A]] in Aged Human Skin Fibroblasts. | |||
|date=04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27396912 | |||
|full-text-url=https://sci-hub.do/10.1089/rej.2016.1832 | |||
}} | |||
==LRP4== | |||
* {{medline-title | |||
|title=Multiple MuSK signaling pathways and the aging neuromuscular junction. | |||
|date=13.07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32353380 | |||
|full-text-url=https://sci-hub.do/10.1016/j.neulet.2020.135014 | |||
}} | |||
* {{medline-title | |||
|title=Sarcoglycan Alpha Mitigates Neuromuscular Junction Decline in Aged Mice by Stabilizing [[LRP4]]. | |||
|date=10.10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30171091 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6181315 | |||
}} | |||
==LRPPRC== | |||
* {{medline-title | |||
|title=The loss of [[LRPPRC]] function induces the mitochondrial unfolded protein response. | |||
|date=09.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26412102 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600627 | |||
}} | |||
* {{medline-title | |||
|title=Drosophila melanogaster [[LRPPRC]]2 is involved in coordination of mitochondrial translation. | |||
|date=16.12.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25428350 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267620 | |||
}} | |||
==LRRN3== | |||
* {{medline-title | |||
|title=Accelerated aging in HIV/AIDS: novel biomarkers of senescent human CD8 T cells. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23717651 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3661524 | |||
}} | |||
* {{medline-title | |||
|title=Transcriptomics of cortical gray matter thickness decline during normal aging. | |||
|date=15.11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23707588 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759649 | |||
}} | |||
==LTB== | |||
* {{medline-title | |||
|title=Aging and Hyperglycemia Intensify Dyslipidemia-Induced Oxidative Stress and Inflammation in Rats: Assessment of Restorative Potentials of ALA and EPA DHA. | |||
|date=06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30535619 | |||
|full-text-url=https://sci-hub.do/10.1007/s10753-018-0949-6 | |||
}} | |||
* {{medline-title | |||
|title=Advanced age in mares affects endometrial secretion of arachidonic acid metabolites during equine subclinical endometritis. | |||
|date=11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28803166 | |||
|full-text-url=https://sci-hub.do/10.1016/j.theriogenology.2017.07.043 | |||
}} | |||
==LTF== | |||
* {{medline-title | |||
|title=Uncovering genetic mechanisms of kidney aging through transcriptomics, genomics, and epigenomics. | |||
|date=03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30784661 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390171 | |||
}} | |||
* {{medline-title | |||
|title=Effect of age on long-term facilitation and chemosensitivity during NREM sleep. | |||
|date=15.11.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26316510 | |||
|full-text-url=https://sci-hub.do/10.1152/japplphysiol.00030.2015 | |||
}} | |||
==MALT1== | |||
* {{medline-title | |||
|title=MALT-1 mediates IL-17 neural signaling to regulate C. elegans behavior, immunity and longevity. | |||
|date=29.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32350248 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190641 | |||
}} | |||
* {{medline-title | |||
|title=[[MALT1]]-Deficient Mice Develop Atopic-Like Dermatitis Upon Aging. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31632405 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779721 | |||
}} | |||
==MAP1A== | |||
* {{medline-title | |||
|title=SerThr-PhosphoProteome of Brain from Aged [[PINK1]]-KO A53T-[[SNCA]] Mice Reveals pT1928-[[MAP1B]] and pS3781-[[ANK2]] Deficits, as Hub between Autophagy and Synapse Changes. | |||
|date=04.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31277379 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651490 | |||
}} | |||
* {{medline-title | |||
|title=Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging. | |||
|date=21.05.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24849348 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4028492 | |||
}} | |||
==MAP1LC3B== | |||
* {{medline-title | |||
|title=The effect of aging on the autophagic and heat shock response in human peripheral blood mononuclear cells. | |||
|date=01.09.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30269563 | |||
|full-text-url=https://sci-hub.do/10.1556/2060.105.2018.3.20 | |||
}} | |||
* {{medline-title | |||
|title=Inhibition of glioma growth by flavokawain B is mediated through endoplasmic reticulum stress induced autophagy. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30025493 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152528 | |||
}} | |||
==MAVS== | |||
* {{medline-title | |||
|title=Spontaneous activation of a [[MAVS]]-dependent antiviral signaling pathway determines high basal interferon-β expression in cardiac myocytes. | |||
|date=10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28822807 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5600710 | |||
}} | |||
* {{medline-title | |||
|title=Progression of pathology in [[PINK1]]-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation. | |||
|date=02.08.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28768533 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5541666 | |||
}} | |||
==MBNL1== | |||
* {{medline-title | |||
|title=Compound loss of muscleblind-like function in myotonic dystrophy. | |||
|date=12.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24293317 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3914532 | |||
}} | |||
* {{medline-title | |||
|title=Dysfunction of protein homeostasis in myotonic dystrophies. | |||
|date=09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23536431 | |||
|full-text-url=https://sci-hub.do/10.14670/HH-28.1089 | |||
}} | |||
==MC4R== | |||
* {{medline-title | |||
|title=Melanocortin-4 receptor rs17782313 polymorphisms are associated with serum triglycerides in older Chinese women. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26965781 | |||
|full-text-url=https://sci-hub.do/10.6133/apjcn.2016.25.1.18 | |||
}} | |||
* {{medline-title | |||
|title=Polymorphic variants of neurotransmitter receptor genes may affect sexual function in aging males: data from the HALS study. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23485949 | |||
|full-text-url=https://sci-hub.do/10.1159/000350324 | |||
}} | |||
==MCM3== | |||
* {{medline-title | |||
|title=Changes in [[MCM2]]-7 proteins at senescence. | |||
|date=27.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31092751 | |||
|full-text-url=https://sci-hub.do/10.1266/ggs.18-00062 | |||
}} | |||
* {{medline-title | |||
|title=Up-regulation of [[MCM3]] Relates to Neuronal Apoptosis After Traumatic Brain Injury in Adult Rats. | |||
|date=05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27401074 | |||
|full-text-url=https://sci-hub.do/10.1007/s10571-016-0404-x | |||
}} | |||
==MCM4== | |||
* {{medline-title | |||
|title=Hepatoprotective effects of hydroxysafflor yellow A in D-galactose-treated aging mice. | |||
|date=15.08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32454116 | |||
|full-text-url=https://sci-hub.do/10.1016/j.ejphar.2020.173214 | |||
}} | |||
* {{medline-title | |||
|title=Changes in [[MCM2]]-7 proteins at senescence. | |||
|date=27.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31092751 | |||
|full-text-url=https://sci-hub.do/10.1266/ggs.18-00062 | |||
}} | |||
==MCM8== | |||
* {{medline-title | |||
|title=Genetic variations, reproductive aging, and breast cancer risk in African American and European American women: The Women's Circle of Health Study. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29073238 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5658184 | |||
}} | |||
* {{medline-title | |||
|title=[[MCM8]] and [[MCM9]] Nucleotide Variants in Women With Primary Ovarian Insufficiency. | |||
|date=01.02.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27802094 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413161 | |||
}} | |||
==MCM9== | |||
* {{medline-title | |||
|title=MCM8- and [[MCM9]] Deficiencies Cause Lifelong Increased Hematopoietic DNA Damage Driving p53-Dependent Myeloid Tumors. | |||
|date=10.09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31509747 | |||
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2019.07.095 | |||
}} | |||
* {{medline-title | |||
|title=[[MCM8]] and [[MCM9]] Nucleotide Variants in Women With Primary Ovarian Insufficiency. | |||
|date=01.02.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27802094 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413161 | |||
}} | |||
==MDH1== | |||
* {{medline-title | |||
|title=Oxidative Damage to the TCA Cycle Enzyme [[MDH1]] Dysregulates Bioenergetic Enzymatic Activity in the Aged Murine Brain. | |||
|date=03.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32175745 | |||
|full-text-url=https://sci-hub.do/10.1021/acs.jproteome.9b00861 | |||
}} | |||
* {{medline-title | |||
|title=Low-Dose Pesticide Mixture Induces Accelerated Mesenchymal Stem Cell Aging In Vitro. | |||
|date=08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30977188 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850038 | |||
}} | |||
==MDM4== | |||
* {{medline-title | |||
|title=In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31520345 | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-019-09834-1 | |||
}} | |||
* {{medline-title | |||
|title=Germline genetics of the p53 pathway affect longevity in a gender specific manner. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24654968 | |||
|full-text-url=https://sci-hub.do/10.2174/1874609807666140321150751 | |||
}} | |||
==ME1== | |||
* {{medline-title | |||
|title=NADP-MALIC ENZYME 1 Affects Germination after Seed Storage in Arabidopsis thaliana. | |||
|date=01.02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30388244 | |||
|full-text-url=https://sci-hub.do/10.1093/pcp/pcy213 | |||
}} | |||
* {{medline-title | |||
|title=Down-regulation of malic enzyme 1 and 2: Sensitizing head and neck squamous cell carcinoma cells to therapy-induced senescence. | |||
|date=04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25994759 | |||
|full-text-url=https://sci-hub.do/10.1002/hed.24129 | |||
}} | |||
==ME2== | |||
* {{medline-title | |||
|title=A small-molecule inhibitor suppresses the tumor-associated mitochondrial NAD(P) -dependent malic enzyme ([[ME2]]) and induces cellular senescence. | |||
|date=21.08.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26008970 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4652989 | |||
}} | |||
* {{medline-title | |||
|title=Down-regulation of malic enzyme 1 and 2: Sensitizing head and neck squamous cell carcinoma cells to therapy-induced senescence. | |||
|date=04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25994759 | |||
|full-text-url=https://sci-hub.do/10.1002/hed.24129 | |||
}} | |||
==MEF2D== | |||
* {{medline-title | |||
|title=Molecular Pathway to Protection From Age-Dependent Photoreceptor Degeneration in Mef2 Deficiency. | |||
|date=01.07.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28738418 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5525556 | |||
}} | |||
* {{medline-title | |||
|title=Epigenome-wide DNA methylation in hearing ability: new mechanisms for an old problem. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25184702 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4153547 | |||
}} | |||
==MEFV== | |||
* {{medline-title | |||
|title=The grandfather's fever. | |||
|date=02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31401792 | |||
|full-text-url=https://sci-hub.do/10.1007/s10067-019-04741-9 | |||
}} | |||
* {{medline-title | |||
|title=E148Q [[MEFV]] mutation carriage and longevity in individuals of Ashkenazi origin. | |||
|date=07.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23592051 | |||
|full-text-url=https://sci-hub.do/10.1007/s12026-013-8414-y | |||
}} | |||
==MEIS1== | |||
* {{medline-title | |||
|title=Down-regulation of [[MEIS1]] promotes the maturation of oxidative phosphorylation in perinatal cardiomyocytes. | |||
|date=06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30884246 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6529342 | |||
}} | |||
* {{medline-title | |||
|title=Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. | |||
|date=11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28841467 | |||
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.07.015 | |||
}} | |||
==MELK== | |||
* {{medline-title | |||
|title=[[MELK]]-T1, a small-molecule inhibitor of protein kinase [[MELK]], decreases DNA-damage tolerance in proliferating cancer cells. | |||
|date=02.10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26431963 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643329 | |||
}} | |||
* {{medline-title | |||
|title=Maternal embryonic leucine zipper kinase ([[MELK]]) reduces replication stress in glioblastoma cells. | |||
|date=16.08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23836907 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3745365 | |||
}} | |||
==MEOX2== | |||
* {{medline-title | |||
|title=Reduced expression of microRNA-130a promotes endothelial cell senescence and age-dependent impairment of neovascularization. | |||
|date=26.05.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32457253 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7346016 | |||
}} | |||
* {{medline-title | |||
|title=Meox2 haploinsufficiency increases neuronal cell loss in a mouse model of Alzheimer's disease. | |||
|date=06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27143421 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4878023 | |||
}} | |||
==MGAT1== | |||
* {{medline-title | |||
|title=Pathways of aging: comparative analysis of gene signatures in replicative senescence and stress induced premature senescence. | |||
|date=28.12.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28105936 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5249001 | |||
}} | |||
* {{medline-title | |||
|title=Transcriptional and biochemical responses of monoacylglycerol acyltransferase-mediated oil synthesis and associated senescence-like responses in Nicotiana benthamiana. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24904604 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4033622 | |||
}} | |||
==MIB1== | |||
* {{medline-title | |||
|title=[[MIB1]]-mediated degradation of [[WRN]] promotes cellular senescence in response to camptothecin treatment. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32652764 | |||
|full-text-url=https://sci-hub.do/10.1096/fj.202000268RRR | |||
}} | |||
* {{medline-title | |||
|title=Immunohistochemical detection of senescence markers in human sarcomas. | |||
|date=02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31899047 | |||
|full-text-url=https://sci-hub.do/10.1016/j.prp.2019.152800 | |||
}} | |||
==MICA== | |||
* {{medline-title | |||
|title=Derivation and Validation of a Geriatric-Sensitive Perioperative Cardiac Risk Index. | |||
|date=16.11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29146612 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5721761 | |||
}} | |||
* {{medline-title | |||
|title=NKG2D ligands mediate immunosurveillance of senescent cells. | |||
|date=02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26878797 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4789586 | |||
}} | |||
==MLH1== | |||
* {{medline-title | |||
|title=The somatic mutation landscape of the human body. | |||
|date=24.12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31874648 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6930685 | |||
}} | |||
* {{medline-title | |||
|title=RNA-Seq analysis of differentially expressed genes relevant to mismatch repair in aging hematopoietic stem-progenitor cells. | |||
|date=25.02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30805972 | |||
|full-text-url=https://sci-hub.do/10.1002/jcb.28417 | |||
}} | |||
==MMP10== | |||
* {{medline-title | |||
|title=Astrocyte senescence may drive alterations in GFAPα, [[[[CDKN2A]]]] p14 , and TAU3 transcript expression and contribute to cognitive decline. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31654269 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6885035 | |||
}} | |||
* {{medline-title | |||
|title=Bone biology-related gingival transcriptome in ageing and periodontitis in non-human primates. | |||
|date=05.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26859687 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844783 | |||
}} | |||
==MMP14== | |||
* {{medline-title | |||
|title=Overexpression of microRNA-1470 promotes proliferation and migration, and inhibits senescence of esophageal squamous carcinoma cells. | |||
|date=12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29344220 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5755030 | |||
}} | |||
* {{medline-title | |||
|title=Enhanced tissue regeneration potential of juvenile articular cartilage. | |||
|date=11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24043472 | |||
|full-text-url=https://sci-hub.do/10.1177/0363546513502945 | |||
}} | |||
==MMP8== | |||
* {{medline-title | |||
|title=[Investigation of signal molecules in saliva: prospects of application for diagnostics of myocardial infarction and the aging rate of different age people.] | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31512422 | |||
}} | |||
* {{medline-title | |||
|title=Bone biology-related gingival transcriptome in ageing and periodontitis in non-human primates. | |||
|date=05.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26859687 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844783 | |||
}} | |||
==MS4A6E== | |||
* {{medline-title | |||
|title=Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. | |||
|date=11.04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28199971 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421828 | |||
}} | |||
* {{medline-title | |||
|title=Gene-based aggregate SNP associations between candidate AD genes and cognitive decline. | |||
|date=04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27005436 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5005889 | |||
}} | |||
==MSH6== | |||
* {{medline-title | |||
|title=RNA-Seq analysis of differentially expressed genes relevant to mismatch repair in aging hematopoietic stem-progenitor cells. | |||
|date=25.02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30805972 | |||
|full-text-url=https://sci-hub.do/10.1002/jcb.28417 | |||
}} | |||
* {{medline-title | |||
|title=DNA mismatch repair system: repercussions in cellular homeostasis and relationship with aging. | |||
|date=2012 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23213348 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3504481 | |||
}} | |||
==MT2A== | |||
* {{medline-title | |||
|title=Metallothionein Prevents Age-Associated Cardiomyopathy via Inhibiting NF-κB Pathway Activation and Associated Nitrative Damage to 2-OGD. | |||
|date=10.12.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27477335 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5144888 | |||
}} | |||
* {{medline-title | |||
|title=Metallothioneins and renal ageing. | |||
|date=09.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26908771 | |||
|full-text-url=https://sci-hub.do/10.1093/ndt/gfv451 | |||
}} | |||
==MTM1== | |||
* {{medline-title | |||
|title=Amphiphysin 2 modulation rescues myotubular myopathy and prevents focal adhesion defects in mice. | |||
|date=20.03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30894500 | |||
|full-text-url=https://sci-hub.do/10.1126/scitranslmed.aav1866 | |||
}} | |||
* {{medline-title | |||
|title=Tamoxifen prolongs survival and alleviates symptoms in mice with fatal X-linked myotubular myopathy. | |||
|date=19.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30451843 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6243013 | |||
}} | |||
==MTRR== | |||
* {{medline-title | |||
|title=One-carbon metabolism gene polymorphisms are associated with cognitive trajectory among African-American adults. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31208817 | |||
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2019.05.013 | |||
}} | |||
* {{medline-title | |||
|title=[Clinical and genetic characteristics of long-livers in Moscow region]. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24640693 | |||
}} | |||
==MUC1== | |||
* {{medline-title | |||
|title=Sensitivity of neoplastic cells to senescence unveiled under standard cell culture conditions. | |||
|date=05.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25964555 | |||
}} | |||
* {{medline-title | |||
|title=Serum [[KL]]-6 concentrations are associated with molecular sizes and efflux behavior of [[KL]]-6/[[MUC1]] in healthy subjects. | |||
|date=23.09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23778023 | |||
|full-text-url=https://sci-hub.do/10.1016/j.cca.2013.06.002 | |||
}} | |||
==MUC2== | |||
* {{medline-title | |||
|title=[[KLF4]] deletion alters gastric cell lineage and induces [[MUC2]] expression. | |||
|date=09.06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27277677 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5143387 | |||
}} | |||
* {{medline-title | |||
|title=Early intestinal development and mucin transcription in the young poult with probiotic and mannan oligosaccharide prebiotic supplementation. | |||
|date=05.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26944966 | |||
|full-text-url=https://sci-hub.do/10.3382/ps/pew019 | |||
}} | |||
==MX1== | |||
* {{medline-title | |||
|title=White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy. | |||
|date=02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31691183 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035207 | |||
}} | |||
* {{medline-title | |||
|title=Age-Associated Changes in the Respiratory Epithelial Response to Influenza Infection. | |||
|date=10.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29878083 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6230210 | |||
}} | |||
==MYBL2== | |||
* {{medline-title | |||
|title=A multidimensional systems biology analysis of cellular senescence in aging and disease. | |||
|date=07.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264951 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333371 | |||
}} | |||
* {{medline-title | |||
|title=Molecular mechanism of G arrest and cellular senescence induced by LEE011, a novel [[CDK4]]/CDK6 inhibitor, in leukemia cells. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28286417 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5340031 | |||
}} | |||
==MYBPC3== | |||
* {{medline-title | |||
|title=Compound heterozygosity deteriorates phenotypes of hypertrophic cardiomyopathy with founder [[MYBPC3]] mutation: evidence from patients and zebrafish models. | |||
|date=01.12.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25281569 | |||
|full-text-url=https://sci-hub.do/10.1152/ajpheart.00637.2013 | |||
}} | |||
* {{medline-title | |||
|title=Association of levels of fasting glucose and insulin with rare variants at the chromosome 11p11.2-[[MADD]] locus: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. | |||
|date=06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24951664 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066205 | |||
}} | |||
==MYOCD== | |||
* {{medline-title | |||
|title=Aging-associated changes in microRNA expression profile of internal anal sphincter smooth muscle: Role of microRNA-133a. | |||
|date=01.11.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27634012 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5130548 | |||
}} | |||
* {{medline-title | |||
|title=Transplantation of mesenchymal cells rejuvenated by the overexpression of telomerase and myocardin promotes revascularization and tissue repair in a murine model of hindlimb ischemia. | |||
|date=13.09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23780385 | |||
|full-text-url=https://sci-hub.do/10.1161/CIRCRESAHA.113.301690 | |||
}} | |||
==MYOD1== | |||
* {{medline-title | |||
|title=Low Six4 and Six5 gene dosage improves dystrophic phenotype and prolongs life span of mdx mice. | |||
|date=08.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27224259 | |||
|full-text-url=https://sci-hub.do/10.1111/dgd.12290 | |||
}} | |||
* {{medline-title | |||
|title=Age-associated changes in DNA methylation across multiple tissues in an inbred mouse model. | |||
|date=03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26861500 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4798846 | |||
}} | |||
==NAT2== | |||
* {{medline-title | |||
|title=Lifestyle and clinical determinants of skin autofluorescence in a population-based cohort study. | |||
|date=05.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27002914 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5111733 | |||
}} | |||
* {{medline-title | |||
|title=The ultra-slow [[NAT2]]*6A haplotype is associated with reduced higher cognitive functions in an elderly study group. | |||
|date=12.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26615528 | |||
|full-text-url=https://sci-hub.do/10.1007/s00204-015-1635-1 | |||
}} | |||
==NAV2== | |||
* {{medline-title | |||
|title=Genetic associations with age of menopause in familial longevity. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31188284 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7008937 | |||
}} | |||
* {{medline-title | |||
|title=Low expression of aging-related [[[[NRXN3]]]] is associated with Alzheimer disease: A systematic review and meta-analysis. | |||
|date=07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29995770 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076205 | |||
}} | |||
==NCAM1== | |||
* {{medline-title | |||
|title=Resistance Training Enhances Skeletal Muscle Innervation Without Modifying the Number of Satellite Cells or their Myofiber Association in Obese Older Adults. | |||
|date=10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26447161 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5018557 | |||
}} | |||
* {{medline-title | |||
|title=Human skin keratinocytes can be reprogrammed to express neuronal genes and proteins after a single treatment with decitabine. | |||
|date=06.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23741634 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3666219 | |||
}} | |||
==NDNF== | |||
* {{medline-title | |||
|title=Effect of neuron-derived neurotrophic factor on rejuvenation of human adipose-derived stem cells for cardiac repair after myocardial infarction. | |||
|date=09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31287219 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6714174 | |||
}} | |||
* {{medline-title | |||
|title=Aged Human Multipotent Mesenchymal Stromal Cells Can Be Rejuvenated by Neuron-Derived Neurotrophic Factor and Improve Heart Function After Injury. | |||
|date=12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30062183 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6059002 | |||
}} | |||
==NDUFS1== | |||
* {{medline-title | |||
|title=Mapping the protein phosphorylation sites in human mitochondrial complex I (NADH: Ubiquinone oxidoreductase): A bioinformatics study with implications for brain aging and neurodegeneration. | |||
|date=01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29499254 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jchemneu.2018.02.004 | |||
}} | |||
* {{medline-title | |||
|title=Contribution of genetic polymorphisms on functional status at very old age: a gene-based analysis of 38 genes (311 SNPs) in the oxidative stress pathway. | |||
|date=04.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24462499 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050201 | |||
}} | |||
==NECTIN2== | |||
* {{medline-title | |||
|title=Genetics of Human Longevity From Incomplete Data: New Findings From the Long Life Family Study. | |||
|date=08.10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30299504 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6175028 | |||
}} | |||
* {{medline-title | |||
|title=Apolipoprotein E region molecular signatures of Alzheimer's disease. | |||
|date=08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29797398 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052488 | |||
}} | |||
==NEDD4== | |||
* {{medline-title | |||
|title=Mechanism of [[PRL]]2 phosphatase-mediated [[PTEN]] degradation and tumorigenesis. | |||
|date=25.08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32788364 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456095 | |||
}} | |||
* {{medline-title | |||
|title=Estrogen receptor β, a regulator of androgen receptor signaling in the mouse ventral prostate. | |||
|date=09.05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28439009 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441728 | |||
}} | |||
==NEFM== | |||
* {{medline-title | |||
|title=Changes in mechanoreceptors in rabbits' anterior cruciate ligaments with age. | |||
|date=06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30927131 | |||
|full-text-url=https://sci-hub.do/10.1007/s10735-019-09820-4 | |||
}} | |||
* {{medline-title | |||
|title=The Alzheimer's disease transcriptome mimics the neuroprotective signature of IGF-1 receptor-deficient neurons. | |||
|date=01.07.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28595357 | |||
|full-text-url=https://sci-hub.do/10.1093/brain/awx132 | |||
}} | |||
==NEIL1== | |||
* {{medline-title | |||
|title=[[NEIL1]] stimulates neurogenesis and suppresses neuroinflammation after stress. | |||
|date=09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31175982 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7526462 | |||
}} | |||
* {{medline-title | |||
|title=Neil2-null Mice Accumulate Oxidized DNA Bases in the Transcriptionally Active Sequences of the Genome and Are Susceptible to Innate Inflammation. | |||
|date=09.10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26245904 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598976 | |||
}} | |||
==NEIL2== | |||
* {{medline-title | |||
|title=Mitochondrial base excision repair positively correlates with longevity in the liver and heart of mammals. | |||
|date=04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31970600 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7205949 | |||
}} | |||
* {{medline-title | |||
|title=Neil2-null Mice Accumulate Oxidized DNA Bases in the Transcriptionally Active Sequences of the Genome and Are Susceptible to Innate Inflammation. | |||
|date=09.10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26245904 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598976 | |||
}} | |||
==NEK2== | |||
* {{medline-title | |||
|title=A multidimensional systems biology analysis of cellular senescence in aging and disease. | |||
|date=07.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264951 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333371 | |||
}} | |||
* {{medline-title | |||
|title=Upregulation of [[FOXM1]] leads to diminished drug sensitivity in myeloma. | |||
|date=21.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30463534 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6249818 | |||
}} | |||
==NEO1== | |||
* {{medline-title | |||
|title=Neogenin-1 distinguishes between myeloid-biased and balanced [i]Hoxb5[/i] mouse long-term hematopoietic stem cells. | |||
|date=10.12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31754028 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6911217 | |||
}} | |||
* {{medline-title | |||
|title=Ionizing radiation reduces [[ADAM10]] expression in brain microvascular endothelial cells undergoing stress-induced senescence. | |||
|date=04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28437250 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5425125 | |||
}} | |||
==NFATC1== | |||
* {{medline-title | |||
|title=Age-dependent human β cell proliferation induced by glucagon-like peptide 1 and calcineurin signaling. | |||
|date=02.10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28920919 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617654 | |||
}} | |||
* {{medline-title | |||
|title=Genome-wide methylation analysis reveals differentially methylated loci that are associated with an age-dependent increase in bovine fibroblast response to LPS. | |||
|date=25.05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28545453 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445414 | |||
}} | |||
==NFIB== | |||
* {{medline-title | |||
|title=Cell-type-specific expression of [[NFIX]] in the developing and adult cerebellum. | |||
|date=07.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27878595 | |||
|full-text-url=https://sci-hub.do/10.1007/s00429-016-1340-8 | |||
}} | |||
* {{medline-title | |||
|title=Multipotency of Adult Hippocampal NSCs In Vivo Is Restricted by Drosha/[[NFIB]]. | |||
|date=03.11.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27545503 | |||
|full-text-url=https://sci-hub.do/10.1016/j.stem.2016.07.003 | |||
}} | |||
==NHLRC1== | |||
* {{medline-title | |||
|title=DNA methylation-based forensic age prediction using artificial neural networks and next generation sequencing. | |||
|date=05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28254385 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5392537 | |||
}} | |||
* {{medline-title | |||
|title=Loss of GABAergic cortical neurons underlies the neuropathology of Lafora disease. | |||
|date=28.01.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24472629 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917365 | |||
}} | |||
==NLRP1== | |||
* {{medline-title | |||
|title=NADPH oxidase 2-mediated [[NLRP1]] inflammasome activation involves in neuronal senescence in hippocampal neurons in vitro. | |||
|date=04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30677569 | |||
|full-text-url=https://sci-hub.do/10.1016/j.intimp.2019.01.025 | |||
}} | |||
* {{medline-title | |||
|title=Genetic analysis of long-lived families reveals novel variants influencing high density-lipoprotein cholesterol. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24917880 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4042684 | |||
}} | |||
==NLRP12== | |||
* {{medline-title | |||
|title=Persistent DNA damage-induced [[NLRP12]] improves hematopoietic stem cell function. | |||
|date=21.05.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32434992 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259522 | |||
}} | |||
* {{medline-title | |||
|title=Effects of aging in the expression of NOD-like receptors and inflammasome-related genes in oral mucosa. | |||
|date=02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26197995 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4712099 | |||
}} | |||
==NLRX1== | |||
* {{medline-title | |||
|title=NOD-like receptor X1 functions as a tumor suppressor by inhibiting epithelial-mesenchymal transition and inducing aging in hepatocellular carcinoma cells. | |||
|date=26.02.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29482578 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5828065 | |||
}} | |||
* {{medline-title | |||
|title=The expression of [[NLRX1]] in C57BL/6 mice cochlear hair cells: Possible relation to aging- and neomycin-induced deafness. | |||
|date=11.03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26836140 | |||
|full-text-url=https://sci-hub.do/10.1016/j.neulet.2015.11.053 | |||
}} | |||
==NMB== | |||
* {{medline-title | |||
|title=Deceased donor kidney allocation: an economic evaluation of contemporary longevity matching practices. | |||
|date=09.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33036621 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547436 | |||
}} | |||
* {{medline-title | |||
|title=Asleep versus awake: does it matter?: Pediatric regional block complications by patient state: a report from the Pediatric Regional Anesthesia Network. | |||
|date=07-08.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24918334 | |||
|full-text-url=https://sci-hub.do/10.1097/AAP.0000000000000102 | |||
}} | |||
==NME8== | |||
* {{medline-title | |||
|title=Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. | |||
|date=11.04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28199971 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421828 | |||
}} | |||
* {{medline-title | |||
|title=Gene-based aggregate SNP associations between candidate AD genes and cognitive decline. | |||
|date=04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27005436 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5005889 | |||
}} | |||
==NMNAT1== | |||
* {{medline-title | |||
|title=[[ADNP]] differentially interact with genes/proteins in correlation with aging: a novel marker for muscle aging. | |||
|date=06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31264075 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6702513 | |||
}} | |||
* {{medline-title | |||
|title=Genome-wide association study and annotating candidate gene networks affecting age at first calving in Nellore cattle. | |||
|date=12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28994157 | |||
|full-text-url=https://sci-hub.do/10.1111/jbg.12299 | |||
}} | |||
==NMNAT2== | |||
* {{medline-title | |||
|title=[[NMNAT2]]-mediated NAD generation is essential for quality control of aged oocytes. | |||
|date=06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30909324 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6516161 | |||
}} | |||
* {{medline-title | |||
|title=Sarm1 Deletion, but Not Wld , Confers Lifelong Rescue in a Mouse Model of Severe Axonopathy. | |||
|date=03.10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28978465 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5640801 | |||
}} | |||
==NMS== | |||
* {{medline-title | |||
|title=Uncontrolled Diabetes as an Associated Factor with Dynapenia in Adults Aged 50 Years or Older: Sex Differences. | |||
|date=22.05.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31665234 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7243578 | |||
}} | |||
* {{medline-title | |||
|title=Neonatal stress affects the aging trajectory of female rats on the endocrine, temperature, and ventilatory responses to hypoxia. | |||
|date=01.04.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25652536 | |||
|full-text-url=https://sci-hub.do/10.1152/ajpregu.00418.2014 | |||
}} | |||
==NNMT== | |||
* {{medline-title | |||
|title=Small molecule nicotinamide N-methyltransferase inhibitor activates senescent muscle stem cells and improves regenerative capacity of aged skeletal muscle. | |||
|date=05.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30753815 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6469996 | |||
}} | |||
* {{medline-title | |||
|title=Nicotinamide-N-methyltransferase controls behavior, neurodegeneration and lifespan by regulating neuronal autophagy. | |||
|date=09.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30192747 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191153 | |||
}} | |||
==NONO== | |||
* {{medline-title | |||
|title=Physiological levels of thrombospondin-1 decrease NO-dependent vasodilation in coronary microvessels from aged rats. | |||
|date=01.06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27199114 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345213 | |||
}} | |||
* {{medline-title | |||
|title=The effects of aging on the functional and structural properties of the rat basilar artery. | |||
|date=01.06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24907295 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4208653 | |||
}} | |||
==NOP10== | |||
* {{medline-title | |||
|title=Pseudouridylation defect due to [i]DKC1[/i] and [i][[NOP10]][/i] mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis. | |||
|date=30.06.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32554502 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334496 | |||
}} | |||
* {{medline-title | |||
|title=Acute telomerase components depletion triggers oxidative stress as an early event previous to telomeric shortening. | |||
|date=04.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29055871 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5650655 | |||
}} | |||
==NPTX2== | |||
* {{medline-title | |||
|title=Evaluation of DNA methylation markers and their potential to predict human aging. | |||
|date=08.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26010003 | |||
|full-text-url=https://sci-hub.do/10.1002/elps.201500137 | |||
}} | |||
* {{medline-title | |||
|title=Developing a DNA methylation assay for human age prediction in blood and bloodstain. | |||
|date=07.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25979242 | |||
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2015.05.007 | |||
}} | |||
==NPW== | |||
* {{medline-title | |||
|title=Novel information processing at work across time is associated with cognitive change in later life: A 14-year longitudinal study. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32309980 | |||
|full-text-url=https://sci-hub.do/10.1037/pag0000468 | |||
}} | |||
* {{medline-title | |||
|title=Neuropeptide W modulation of gastric vagal afferent mechanosensitivity: Impact of age and sex. | |||
|date=09.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26209028 | |||
|full-text-url=https://sci-hub.do/10.1016/j.peptides.2015.07.011 | |||
}} | |||
==NPY1R== | |||
* {{medline-title | |||
|title=[[NPY]]/neuropeptide Y enhances autophagy in the hypothalamus: a mechanism to delay aging? | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26086271 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4590601 | |||
}} | |||
* {{medline-title | |||
|title=Vulnerability imposed by diet and brain trauma for anxiety-like phenotype: implications for post-traumatic stress disorders. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23483949 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3590222 | |||
}} | |||
==NPY5R== | |||
* {{medline-title | |||
|title=Effects of age on feeding response: Focus on the rostral C1 neuron and its glucoregulatory proteins. | |||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31705967 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2019.110779 | |||
}} | |||
* {{medline-title | |||
|title=[[NPY]]/neuropeptide Y enhances autophagy in the hypothalamus: a mechanism to delay aging? | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26086271 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4590601 | |||
}} | |||
==NR3C1== | |||
* {{medline-title | |||
|title=Glucocorticoid receptor ([[NR3C1]]) gene polymorphisms are associated with age and blood parameters in Polish Caucasian nonagenarians and centenarians. | |||
|date=02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30553025 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2018.12.006 | |||
}} | |||
* {{medline-title | |||
|title=Inter-Regional Variations in Gene Expression and Age-Related Cortical Thinning in the Adolescent Brain. | |||
|date=01.04.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28334178 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6093352 | |||
}} | |||
==NRL== | |||
* {{medline-title | |||
|title=Development of a cyclophosphamide stress test to predict resilience to aging in mice. | |||
|date=12.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32613492 | |||
|full-text-url=https://sci-hub.do/10.1007/s11357-020-00222-z | |||
}} | |||
* {{medline-title | |||
|title=A Spontaneous Aggressive ERα Mammary Tumor Model Is Driven by Kras Activation. | |||
|date=06.08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31390566 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713291 | |||
}} | |||
==NRM== | |||
* {{medline-title | |||
|title=Association between Clonal Hematopoiesis and Late Nonrelapse Mortality after Autologous Hematopoietic Cell Transplantation. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31445185 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7192097 | |||
}} | |||
* {{medline-title | |||
|title=Who is the better donor for older hematopoietic transplant recipients: an older-aged sibling or a young, matched unrelated volunteer? | |||
|date=28.03.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23361908 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612864 | |||
}} | |||
==NRP1== | |||
* {{medline-title | |||
|title=[[APOE]] ε4-specific associations of VEGF gene family expression with cognitive aging and Alzheimer's disease. | |||
|date=03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31791659 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064375 | |||
}} | |||
* {{medline-title | |||
|title=Neuropilin 1 is essential for gastrointestinal smooth muscle contractility and motility in aged mice. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25659123 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319892 | |||
}} | |||
==NRXN1== | |||
* {{medline-title | |||
|title=Neurexins 1-3 Each Have a Distinct Pattern of Expression in the Early Developing Human Cerebral Cortex. | |||
|date=01.01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28013231 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5654756 | |||
}} | |||
* {{medline-title | |||
|title=Neurexin 1 ([[[[NRXN1]]]]) splice isoform expression during human neocortical development and aging. | |||
|date=05.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26216298 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731316 | |||
}} | |||
==NRXN3== | |||
* {{medline-title | |||
|title=Low expression of aging-related [[[[NRXN3]]]] is associated with Alzheimer disease: A systematic review and meta-analysis. | |||
|date=07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29995770 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076205 | |||
}} | |||
* {{medline-title | |||
|title=Neurexins 1-3 Each Have a Distinct Pattern of Expression in the Early Developing Human Cerebral Cortex. | |||
|date=01.01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28013231 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5654756 | |||
}} | |||
==NTF4== | |||
* {{medline-title | |||
|title=Subcutaneous Neurotrophin 4 Infusion Using Osmotic Pumps or Direct Muscular Injection Enhances Aging Rat Laryngeal Muscles. | |||
|date=13.06.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28654072 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5608439 | |||
}} | |||
* {{medline-title | |||
|title=Enhancement of aging rat laryngeal muscles with endogenous growth factor treatment. | |||
|date=05.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27207784 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4886166 | |||
}} | |||
==NTRK2== | |||
* {{medline-title | |||
|title=The Role of [[BDNF]] in Age-Dependent Changes of Excitatory and Inhibitory Synaptic Markers in the Human Prefrontal Cortex. | |||
|date=12.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27417517 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5101556 | |||
}} | |||
* {{medline-title | |||
|title=Nodes and biological processes identified on the basis of network analysis in the brain of the senescence accelerated mice as an Alzheimer's disease animal model. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24194717 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810591 | |||
}} | |||
==OAT== | |||
* {{medline-title | |||
|title=Opioid agonist treatment reduces losses in quality of life and quality-adjusted life expectancy in heroin users: Evidence from real world data. | |||
|date=01.08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31247504 | |||
|full-text-url=https://sci-hub.do/10.1016/j.drugalcdep.2019.05.003 | |||
}} | |||
* {{medline-title | |||
|title=Strength training and aerobic exercise alter mitochondrial parameters in brown adipose tissue and equally reduce body adiposity in aged rats. | |||
|date=02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30712161 | |||
|full-text-url=https://sci-hub.do/10.1007/s13105-019-00663-x | |||
}} | |||
==OMD== | |||
* {{medline-title | |||
|title=Genome-wide associations and detection of potential candidate genes for direct genetic and maternal genetic effects influencing dairy cattle body weight at different ages. | |||
|date=06.02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30727969 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6366057 | |||
}} | |||
* {{medline-title | |||
|title=Digestive capacity in weanling and mature horses. | |||
|date=05.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23463556 | |||
|full-text-url=https://sci-hub.do/10.2527/jas.2012-5789 | |||
}} | |||
==OPTN== | |||
* {{medline-title | |||
|title=Autophagy receptor [[OPTN]] (optineurin) regulates mesenchymal stem cell fate and bone-fat balance during aging by clearing [[FABP3]]. | |||
|date=04.11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33143524 | |||
|full-text-url=https://sci-hub.do/10.1080/15548627.2020.1839286 | |||
}} | |||
* {{medline-title | |||
|title=Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis. | |||
|date=24.02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26912063 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765225 | |||
}} | |||
==ORAI1== | |||
* {{medline-title | |||
|title=Progerin in muscle leads to thermogenic and metabolic defects via impaired calcium homeostasis. | |||
|date=02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31833196 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996945 | |||
}} | |||
* {{medline-title | |||
|title=Calcium Dynamics of Ex Vivo Long-Term Cultured CD8 T Cells Are Regulated by Changes in Redox Metabolism. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27526200 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4985122 | |||
}} | |||
==P2RX7== | |||
* {{medline-title | |||
|title=The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. | |||
|date=29.07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32727592 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392710 | |||
}} | |||
* {{medline-title | |||
|title=A rare functional haplotype of the [[P2RX4]] and [[P2RX7]] genes leads to loss of innate phagocytosis and confers increased risk of age-related macular degeneration. | |||
|date=04.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23303206 | |||
|full-text-url=https://sci-hub.do/10.1096/fj.12-215368 | |||
}} | |||
==PALB2== | |||
* {{medline-title | |||
|title=53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination. | |||
|date=02.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31653568 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993210 | |||
}} | |||
* {{medline-title | |||
|title=A Multigene Test Could Cost-Effectively Help Extend Life Expectancy for Women at Risk of Hereditary Breast Cancer. | |||
|date=04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28407996 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jval.2017.01.006 | |||
}} | |||
==PAX5== | |||
* {{medline-title | |||
|title=Diminished antibody response to influenza vaccination is characterized by expansion of an age-associated B-cell population with low [[PAX5]]. | |||
|date=08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29425852 | |||
|full-text-url=https://sci-hub.do/10.1016/j.clim.2018.02.003 | |||
}} | |||
* {{medline-title | |||
|title=Developmental expression of B cell molecules in equine lymphoid tissues. | |||
|date=01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28063478 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5267323 | |||
}} | |||
==PAX6== | |||
* {{medline-title | |||
|title=Pbx1 is required for adult subventricular zone neurogenesis. | |||
|date=01.07.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27226325 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4958316 | |||
}} | |||
* {{medline-title | |||
|title=Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. | |||
|date=03.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25761685 | |||
|full-text-url=https://sci-hub.do/10.1134/S0006297915030062 | |||
}} | |||
==PBX1== | |||
* {{medline-title | |||
|title=Internalization of the [[TAT]]-[[PBX1]] fusion protein significantly enhances the proliferation of human hair follicle-derived mesenchymal stem cells and delays their senescence. | |||
|date=10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32436118 | |||
|full-text-url=https://sci-hub.do/10.1007/s10529-020-02909-x | |||
}} | |||
* {{medline-title | |||
|title=Pbx1 is required for adult subventricular zone neurogenesis. | |||
|date=01.07.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27226325 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4958316 | |||
}} | |||
==PCDH10== | |||
* {{medline-title | |||
|title=Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. | |||
|date=12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27878761 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441979 | |||
}} | |||
* {{medline-title | |||
|title=[[PCDH10]], a novel p53 transcriptional target in regulating cell migration. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25590240 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4615063 | |||
}} | |||
==PDCD4== | |||
* {{medline-title | |||
|title=Petal abscission in roses is associated with the activation of a truncated version of the animal [[PDCD4]] homologue, RbPCD1. | |||
|date=11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31521226 | |||
|full-text-url=https://sci-hub.do/10.1016/j.plantsci.2019.110242 | |||
}} | |||
* {{medline-title | |||
|title=[[PDCD4]] Knockdown Induces Senescence in Hepatoma Cells by Up-Regulating the p21 Expression. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30687637 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334536 | |||
}} | |||
==PDE2A== | |||
* {{medline-title | |||
|title=TAK-915, a phosphodiesterase 2A inhibitor, ameliorates the cognitive impairment associated with aging in rodent models. | |||
|date=30.12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31521738 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbr.2019.112192 | |||
}} | |||
* {{medline-title | |||
|title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653 | |||
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007 | |||
}} | |||
==PDE3A== | |||
* {{medline-title | |||
|title=Effects of aging on gene expression and mitochondrial DNA in the equine oocyte and follicle cells. | |||
|date=07.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25786490 | |||
|full-text-url=https://sci-hub.do/10.1071/RD14472 | |||
}} | |||
* {{medline-title | |||
|title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653 | |||
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007 | |||
}} | |||
==PDE5A== | |||
* {{medline-title | |||
|title=Repurposing erectile dysfunction drugs tadalafil and vardenafil to increase bone mass. | |||
|date=23.06.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32513693 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7321982 | |||
}} | |||
* {{medline-title | |||
|title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653 | |||
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007 | |||
}} | |||
==PDE9A== | |||
* {{medline-title | |||
|title=Identification of new [[PDE9A]] isoforms and how their expression and subcellular compartmentalization in the brain change across the life span. | |||
|date=05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29505961 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5871571 | |||
}} | |||
* {{medline-title | |||
|title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653 | |||
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007 | |||
}} | |||
==PDGFB== | |||
* {{medline-title | |||
|title=Skin-resident stem cells and wound healing. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28539548 | |||
|full-text-url=https://sci-hub.do/10.2177/jsci.40.1 | |||
}} | |||
* {{medline-title | |||
|title=The choroid plexus transcriptome reveals changes in type I and II interferon responses in a mouse model of Alzheimer's disease. | |||
|date=10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26092102 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbi.2015.06.008 | |||
}} | |||
==PDHB== | |||
* {{medline-title | |||
|title=Oxidative Damage to the TCA Cycle Enzyme [[MDH1]] Dysregulates Bioenergetic Enzymatic Activity in the Aged Murine Brain. | |||
|date=03.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32175745 | |||
|full-text-url=https://sci-hub.do/10.1021/acs.jproteome.9b00861 | |||
}} | |||
* {{medline-title | |||
|title=Neuron-specific knockdown of Drosophila [[PDHB]] induces reduction of lifespan, deficient locomotive ability, abnormal morphology of motor neuron terminals and photoreceptor axon targeting. | |||
|date=15.05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29501567 | |||
|full-text-url=https://sci-hub.do/10.1016/j.yexcr.2018.02.035 | |||
}} | |||
==PDK2== | |||
* {{medline-title | |||
|title=Age-related impairments in skeletal muscle PDH phosphorylation and plasma lactate are indicative of metabolic inflexibility and the effects of exercise training. | |||
|date=01.07.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27221120 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967149 | |||
}} | |||
* {{medline-title | |||
|title=Effects of Exercise Training on Regulation of Skeletal Muscle Glucose Metabolism in Elderly Men. | |||
|date=07.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25991826 | |||
|full-text-url=https://sci-hub.do/10.1093/gerona/glv012 | |||
}} | |||
==PDK4== | |||
* {{medline-title | |||
|title=Putrescine delays postovulatory aging of mouse oocytes by upregulating [[PDK4]] expression and improving mitochondrial activity. | |||
|date=16.12.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30554191 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326651 | |||
}} | |||
* {{medline-title | |||
|title=Age-related impairments in skeletal muscle PDH phosphorylation and plasma lactate are indicative of metabolic inflexibility and the effects of exercise training. | |||
|date=01.07.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27221120 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967149 | |||
}} | |||
==PENK== | |||
* {{medline-title | |||
|title=Aging-associated DNA methylation changes in middle-aged individuals: the Young Finns study. | |||
|date=09.02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26861258 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746895 | |||
}} | |||
* {{medline-title | |||
|title=Genome-wide age-related changes in DNA methylation and gene expression in human PBMCs. | |||
|date=06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24789080 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082572 | |||
}} | |||
==PES1== | |||
* {{medline-title | |||
|title=Transcription factor RD26 is a key regulator of metabolic reprogramming during dark-induced senescence. | |||
|date=06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29659022 | |||
|full-text-url=https://sci-hub.do/10.1111/nph.15127 | |||
}} | |||
* {{medline-title | |||
|title=The Plastoglobule-Localized Metallopeptidase PGM48 Is a Positive Regulator of Senescence in Arabidopsis thaliana. | |||
|date=12.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27895226 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5240743 | |||
}} | |||
==PFKFB3== | |||
* {{medline-title | |||
|title=DNA damage, metabolism and aging in pro-inflammatory T cells: Rheumatoid arthritis as a model system. | |||
|date=05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29101015 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5871568 | |||
}} | |||
* {{medline-title | |||
|title=Bioenergetic mechanisms in astrocytes may contribute to amyloid plaque deposition and toxicity. | |||
|date=15.05.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25814669 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432272 | |||
}} | |||
==PGAM1== | |||
* {{medline-title | |||
|title=Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31733664 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939615 | |||
}} | |||
* {{medline-title | |||
|title=The aged testis. A good model to find proteins involved in age-related changes of testis by proteomic analysis. | |||
|date=01-02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24597284 | |||
}} | |||
==PGR== | |||
* {{medline-title | |||
|title=Inter-Regional Variations in Gene Expression and Age-Related Cortical Thinning in the Adolescent Brain. | |||
|date=01.04.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28334178 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6093352 | |||
}} | |||
* {{medline-title | |||
|title=Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25765287 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475460 | |||
}} | |||
==PHB2== | |||
* {{medline-title | |||
|title=Prohibitin-2 is a novel regulator of p21 induced by depletion of γ-glutamylcyclotransferase. | |||
|date=29.01.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29307834 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2018.01.029 | |||
}} | |||
* {{medline-title | |||
|title=Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor. | |||
|date=12.01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28017329 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5235968 | |||
}} | |||
==PI4KB== | |||
* {{medline-title | |||
|title=Differential DNA Methylation in Relation to Age and Health Risks of Obesity. | |||
|date=24.07.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26213922 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581172 | |||
}} | |||
* {{medline-title | |||
|title=Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26168237 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567 | |||
}} | |||
==PIEZO1== | |||
* {{medline-title | |||
|title=Niche stiffness underlies the ageing of central nervous system progenitor cells. | |||
|date=09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31413369 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7025879 | |||
}} | |||
* {{medline-title | |||
|title=On the Mechanism of Human Red Blood Cell Longevity: Roles of Calcium, the Sodium Pump, [[PIEZO1]], and Gardos Channels. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29311949 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5732905 | |||
}} | |||
==PIK3R2== | |||
* {{medline-title | |||
|title=The senescent status of endothelial cells affects proliferation, inflammatory profile and [[SOX2]] expression in bone marrow-derived mesenchymal stem cells. | |||
|date=06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30822486 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2019.02.014 | |||
}} | |||
* {{medline-title | |||
|title=Gene transcripts associated with muscle strength: a CHARGE meta-analysis of 7,781 persons. | |||
|date=01.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26487704 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4757025 | |||
}} | |||
==PKP2== | |||
* {{medline-title | |||
|title=Molecular disturbance underlies to arrhythmogenic cardiomyopathy induced by transgene content, age and exercise in a truncated [[PKP2]] mouse model. | |||
|date=01.09.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27412010 | |||
|full-text-url=https://sci-hub.do/10.1093/hmg/ddw213 | |||
}} | |||
* {{medline-title | |||
|title=Age-dependent clinical and genetic characteristics in Japanese patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23514727 | |||
|full-text-url=https://sci-hub.do/10.1253/circj.cj-12-1446 | |||
}} | |||
==PLA2G6== | |||
* {{medline-title | |||
|title=Mutations in the Drosophila homolog of human [[PLA2G6]] give rise to age-dependent loss of psychomotor activity and neurodegeneration. | |||
|date=13.02.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29440694 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5811537 | |||
}} | |||
* {{medline-title | |||
|title=iPLA2β knockout mouse, a genetic model for progressive human motor disorders, develops age-related neuropathology. | |||
|date=08.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24919816 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4364003 | |||
}} | |||
==PLD3== | |||
* {{medline-title | |||
|title=Whole-Exome Sequencing of an Exceptional Longevity Cohort. | |||
|date=16.08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29750252 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696723 | |||
}} | |||
* {{medline-title | |||
|title=Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. | |||
|date=11.04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28199971 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421828 | |||
}} | |||
==PLK1== | |||
* {{medline-title | |||
|title=Dynactin pathway-related gene expression is altered by aging, but not by vitrification. | |||
|date=09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31260804 | |||
|full-text-url=https://sci-hub.do/10.1016/j.reprotox.2019.06.011 | |||
}} | |||
* {{medline-title | |||
|title=Downregulation of Polo-like kinase 1 induces cellular senescence in human primary cells through a p53-dependent pathway. | |||
|date=10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23525475 | |||
|full-text-url=https://sci-hub.do/10.1093/gerona/glt017 | |||
}} | |||
==PLK4== | |||
* {{medline-title | |||
|title=A novel lncRNA [[PLK4]] up-regulated by talazoparib represses hepatocellular carcinoma progression by promoting YAP-mediated cell senescence. | |||
|date=05.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32243714 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7205816 | |||
}} | |||
* {{medline-title | |||
|title=Differential expression of [[AURKA]]/[[PLK4]] in quiescence and senescence of osteosarcoma U2OS cells. | |||
|date=04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32200684 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217361 | |||
}} | |||
==PMP22== | |||
* {{medline-title | |||
|title=Role of microRNAs in senescence and its contribution to peripheral neuropathy in the arsenic exposed population of West Bengal, India. | |||
|date=02.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29107899 | |||
|full-text-url=https://sci-hub.do/10.1016/j.envpol.2017.09.063 | |||
}} | |||
* {{medline-title | |||
|title=A molecular signature predictive of indolent prostate cancer. | |||
|date=11.09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24027026 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3943244 | |||
}} | |||
==POLD3== | |||
* {{medline-title | |||
|title=[[POLD3]] Is Haploinsufficient for DNA Replication in Mice. | |||
|date=01.09.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27524497 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5029548 | |||
}} | |||
* {{medline-title | |||
|title=[[POLD1]]: Central mediator of DNA replication and repair, and implication in cancer and other pathologies. | |||
|date=15.09.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27320729 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4969162 | |||
}} | |||
==POLG2== | |||
* {{medline-title | |||
|title=An N-Ethyl-N-Nitrosourea (ENU)-Induced Tyr265Stop Mutation of the DNA Polymerase Accessory Subunit Gamma 2 (Polg2) Is Associated With Renal Calcification in Mice. | |||
|date=03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30395686 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446808 | |||
}} | |||
* {{medline-title | |||
|title=Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24478790 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894567 | |||
}} | |||
==PPARD== | |||
* {{medline-title | |||
|title=[[PPARD]] 294C overrepresentation in general and long-lived population in China Bama longevity area and unique relationships between [[PPARD]] 294T/C polymorphism and serum lipid profiles. | |||
|date=07.03.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25873088 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356147 | |||
}} | |||
* {{medline-title | |||
|title=[Genotype and allele frequencies of UCP and PPAR gene families in residents of besieged Leningrad and in the control group]. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25826986 | |||
}} | |||
==PPM1D== | |||
* {{medline-title | |||
|title=Detectible mosaic truncating [[PPM1D]] mutations, age and breast cancer risk. | |||
|date=06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30850729 | |||
|full-text-url=https://sci-hub.do/10.1038/s10038-019-0589-1 | |||
}} | |||
* {{medline-title | |||
|title=Age-related remodelling of oesophageal epithelia by mutated cancer drivers. | |||
|date=01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30602793 | |||
|full-text-url=https://sci-hub.do/10.1038/s41586-018-0811-x | |||
}} | |||
==PPP3CB== | |||
* {{medline-title | |||
|title=The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. | |||
|date=29.07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32727592 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392710 | |||
}} | |||
* {{medline-title | |||
|title=Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30210331 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6119720 | |||
}} | |||
==PPY== | |||
* {{medline-title | |||
|title=Delta Cell Hyperplasia in Adult Goto-Kakizaki ([[GK]]/MolTac) Diabetic Rats. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26236746 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506919 | |||
}} | |||
* {{medline-title | |||
|title=Blood Protein Markers of Neocortical Amyloid-β Burden: A Candidate Study Using SOMAscan Technology. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25881911 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4923714 | |||
}} | |||
==PRF1== | |||
* {{medline-title | |||
|title=Gene transcripts associated with muscle strength: a CHARGE meta-analysis of 7,781 persons. | |||
|date=01.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26487704 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4757025 | |||
}} | |||
* {{medline-title | |||
|title=Gene expression markers of age-related inflammation in two human cohorts. | |||
|date=10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26087330 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600657 | |||
}} | |||
==PRG4== | |||
* {{medline-title | |||
|title=Inhibition of Wnt/β-catenin signaling ameliorates osteoarthritis in a murine model of experimental osteoarthritis. | |||
|date=08.02.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29415892 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821202 | |||
}} | |||
* {{medline-title | |||
|title=Age-related changes in structure and extracellular matrix protein expression levels in rat tendons. | |||
|date=12.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23354684 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3824999 | |||
}} | |||
==PRKAA2== | |||
* {{medline-title | |||
|title=Study on the effect of CaMKKβ-mediated AMPK activation on the glycolysis and the quality of different altitude postmortem bovines longissimus muscle. | |||
|date=11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31456257 | |||
|full-text-url=https://sci-hub.do/10.1111/jfbc.13023 | |||
}} | |||
* {{medline-title | |||
|title=Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone. | |||
|date=07.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24760536 | |||
|full-text-url=https://sci-hub.do/10.1530/EJE-14-0006 | |||
}} | |||
==PRMT7== | |||
* {{medline-title | |||
|title=Regenerating muscle with arginine methylation. | |||
|date=27.05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28301308 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501374 | |||
}} | |||
* {{medline-title | |||
|title=[[PRMT7]] Preserves Satellite Cell Regenerative Capacity. | |||
|date=16.02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26854227 | |||
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2016.01.022 | |||
}} | |||
==PRMT8== | |||
* {{medline-title | |||
|title=Arginine Methyltransferase [[PRMT8]] Provides Cellular Stress Tolerance in Aging Motoneurons. | |||
|date=29.08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30054395 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6113905 | |||
}} | |||
* {{medline-title | |||
|title=Novel Protein Arginine Methyltransferase 8 Isoform Is Essential for Cell Proliferation. | |||
|date=09.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26851891 | |||
|full-text-url=https://sci-hub.do/10.1002/jcb.25508 | |||
}} | |||
==PROX1== | |||
* {{medline-title | |||
|title=Molecular control of two novel migratory paths for CGE-derived interneurons in the developing mouse brain. | |||
|date=15.05.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27034423 | |||
|full-text-url=https://sci-hub.do/10.1242/dev.131102 | |||
}} | |||
* {{medline-title | |||
|title=[[PROX1]]: a lineage tracer for cortical interneurons originating in the lateral/caudal ganglionic eminence and preoptic area. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24155945 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3796451 | |||
}} | |||
==PSMB8== | |||
* {{medline-title | |||
|title=[Target protein candidates of hypothalamus in aging rats with intervention by Qiongyugao]. | |||
|date=04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28879748 | |||
|full-text-url=https://sci-hub.do/10.4268/cjcmm20160724 | |||
}} | |||
* {{medline-title | |||
|title=Assessment of the risk of blastomere biopsy during preimplantation genetic diagnosis in a mouse model: reducing female ovary function with an increase in age by proteomics method. | |||
|date=06.12.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24156634 | |||
|full-text-url=https://sci-hub.do/10.1021/pr400366j | |||
}} | |||
==PTH1R== | |||
* {{medline-title | |||
|title=Bone-remodeling transcript levels are independent of perching in end-of-lay white leghorn chickens. | |||
|date=23.01.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25625518 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4346857 | |||
}} | |||
* {{medline-title | |||
|title=Variation in the [[[[PTH]]2R]] gene is associated with age-related degenerative changes in the lumbar spine. | |||
|date=01.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24378925 | |||
|full-text-url=https://sci-hub.do/10.1007/s00774-013-0550-x | |||
}} | |||
==PTK7== | |||
* {{medline-title | |||
|title=Innate and adaptive immune dysregulation in critically ill ICU patients. | |||
|date=05.07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29976949 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6033948 | |||
}} | |||
* {{medline-title | |||
|title=Heterogeneity in thymic emigrants: implications for thymectomy and immunosenescence. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23468830 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3584139 | |||
}} | |||
==PTPN1== | |||
* {{medline-title | |||
|title=The genetic component of human longevity: New insights from the analysis of pathway-based SNP-SNP interactions. | |||
|date=06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29577582 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946073 | |||
}} | |||
* {{medline-title | |||
|title=Leptin and leptin-related gene polymorphisms, obesity, and influenza A/H1N1 vaccine-induced immune responses in older individuals. | |||
|date=07.02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24360890 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922536 | |||
}} | |||
==PTTG1== | |||
* {{medline-title | |||
|title=[Down-regulated [[PTTG1]] expression promotes the senescence of human prostate cancer LNCaP-AI]. | |||
|date=03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32216239 | |||
}} | |||
* {{medline-title | |||
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335 | |||
}} | |||
==PUM2== | |||
* {{medline-title | |||
|title=PUMILIO hyperactivity drives premature aging of [i]Norad[/i]-deficient mice. | |||
|date=08.02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30735131 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6407921 | |||
}} | |||
* {{medline-title | |||
|title=The RNA-Binding Protein [[PUM2]] Impairs Mitochondrial Dynamics and Mitophagy During Aging. | |||
|date=21.02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30642763 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396316 | |||
}} | |||
==PYCR1== | |||
* {{medline-title | |||
|title=A Transcriptome Study of Progeroid Neurocutaneous Syndrome Reveals [[POSTN]] As a New Element in Proline Metabolic Disorder. | |||
|date=12.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30574417 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6284769 | |||
}} | |||
* {{medline-title | |||
|title=Sublethal endoplasmic reticulum stress caused by the mutation of immunoglobulin heavy chain-binding protein induces the synthesis of a mitochondrial protein, pyrroline-5-carboxylate reductase 1. | |||
|date=01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27796797 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5225059 | |||
}} | |||
==RAD51B== | |||
* {{medline-title | |||
|title=Increased age-adjusted hazard of death associated with a common single nucleotide polymorphism of the human [[RAD52]] gene in a cardiovascular cohort. | |||
|date=10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29024686 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2017.10.003 | |||
}} | |||
* {{medline-title | |||
|title=[What's new in dermatological research?]. | |||
|date=12.2012 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23522705 | |||
|full-text-url=https://sci-hub.do/10.1016/S0151-9638(12)70133-3 | |||
}} | |||
==RAG1== | |||
* {{medline-title | |||
|title=T cell senescence accelerates Angiotensin II-induced target organ damage. | |||
|date=12.02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32049355 | |||
|full-text-url=https://sci-hub.do/10.1093/cvr/cvaa032 | |||
}} | |||
* {{medline-title | |||
|title=Aged murine hematopoietic stem cells drive aging-associated immune remodeling. | |||
|date=09.08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29891535 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6137572 | |||
}} | |||
==RAG2== | |||
* {{medline-title | |||
|title=Phosphate Transporter Profiles in Murine and Human Thymi Identify Thymocytes at Distinct Stages of Differentiation. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32793218 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7387685 | |||
}} | |||
* {{medline-title | |||
|title=Both retention and recirculation contribute to long-lived regulatory T-cell accumulation in the thymus. | |||
|date=09.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24894919 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4177035 | |||
}} | |||
==RASGRP1== | |||
* {{medline-title | |||
|title=Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. | |||
|date=12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27878761 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441979 | |||
}} | |||
* {{medline-title | |||
|title=PPARβ/δ promotes [[HRAS]]-induced senescence and tumor suppression by potentiating p-ERK and repressing p-AKT signaling. | |||
|date=13.11.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24213576 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4017002 | |||
}} | |||
==RECQL5== | |||
* {{medline-title | |||
|title=[[RECQL5]] has unique strand annealing properties relative to the other human RecQ helicase proteins. | |||
|date=01.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26717024 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5903426 | |||
}} | |||
* {{medline-title | |||
|title=Senescence induced by [[RECQL4]] dysfunction contributes to Rothmund-Thomson syndrome features in mice. | |||
|date=15.05.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24832598 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047874 | |||
}} | |||
==RNF168== | |||
* {{medline-title | |||
|title=53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination. | |||
|date=02.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31653568 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993210 | |||
}} | |||
* {{medline-title | |||
|title=[[PML]] nuclear bodies are recruited to persistent DNA damage lesions in an [[RNF168]]-53BP1 dependent manner and contribute to DNA repair. | |||
|date=06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31009828 | |||
|full-text-url=https://sci-hub.do/10.1016/j.dnarep.2019.04.001 | |||
}} | |||
==RPIA== | |||
* {{medline-title | |||
|title=Suppression of p16 Induces mTORC1-Mediated Nucleotide Metabolic Reprogramming. | |||
|date=20.08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31433975 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6716532 | |||
}} | |||
* {{medline-title | |||
|title=Ribose-5-phosphate isomerase A regulates hepatocarcinogenesis via PP2A and ERK signaling. | |||
|date=01.07.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25429733 | |||
|full-text-url=https://sci-hub.do/10.1002/ijc.29361 | |||
}} | |||
==RRM1== | |||
* {{medline-title | |||
|title=α-Synuclein toxicity in yeast and human cells is caused by cell cycle re-entry and autophagy degradation of ribonucleotide reductase 1. | |||
|date=08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30977294 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612645 | |||
}} | |||
* {{medline-title | |||
|title=GBM-associated mutations and altered protein expression are more common in young patients. | |||
|date=25.10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27579614 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342491 | |||
}} | |||
==RXRG== | |||
* {{medline-title | |||
|title=Genetic variations, reproductive aging, and breast cancer risk in African American and European American women: The Women's Circle of Health Study. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29073238 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5658184 | |||
}} | |||
* {{medline-title | |||
|title=Genome wide association study of age at menarche in the Japanese population. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23667675 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646805 | |||
}} | |||
==S100A12== | |||
* {{medline-title | |||
|title=Fetal articular cartilage regeneration versus adult fibrocartilaginous repair: secretome proteomics unravels molecular mechanisms in an ovine model. | |||
|date=06.07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29991479 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6078409 | |||
}} | |||
* {{medline-title | |||
|title=Evaluation of serum biochemical marker concentrations and survival time in dogs with protein-losing enteropathy. | |||
|date=01.01.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25517330 | |||
|full-text-url=https://sci-hub.do/10.2460/javma.246.1.91 | |||
}} | |||
==S100A6== | |||
* {{medline-title | |||
|title=Sex differences in distribution of cannabinoid receptors (CB1 and CB2), [[S100A6]] and CacyBP/SIP in human ageing hearts. | |||
|date=27.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30482253 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6258148 | |||
}} | |||
* {{medline-title | |||
|title=[[S100A6]] (calcyclin) is a novel marker of neural stem cells and astrocyte precursors in the subgranular zone of the adult mouse hippocampus. | |||
|date=01.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24115312 | |||
|full-text-url=https://sci-hub.do/10.1002/hipo.22207 | |||
}} | |||
==S1PR3== | |||
* {{medline-title | |||
|title=Sexual dimorphism of metabolic and vascular dysfunction in aged mice and those lacking the sphingosine 1-phosphate receptor 3. | |||
|date=01.12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28943478 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2017.09.013 | |||
}} | |||
* {{medline-title | |||
|title=Impact of Age and Polytherapy on Fingolimod Induced Bradycardia: a Preclinical Study. | |||
|date=03.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28150133 | |||
|full-text-url=https://sci-hub.do/10.1007/s11481-017-9727-8 | |||
}} | |||
==SAA1== | |||
* {{medline-title | |||
|title=Naturally occurring antibodies against serum amyloid A reduce IL-6 release from peripheral blood mononuclear cells. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29617422 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884545 | |||
}} | |||
* {{medline-title | |||
|title=Association between local inflammation and breast tissue age-related lobular involution among premenopausal and postmenopausal breast cancer patients. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28846716 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5573208 | |||
}} | |||
==SALL1== | |||
* {{medline-title | |||
|title=[[SALL1]] functions as a tumor suppressor in breast cancer by regulating cancer cell senescence and metastasis through the NuRD complex. | |||
|date=06.04.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29625565 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5889587 | |||
}} | |||
* {{medline-title | |||
|title=Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. | |||
|date=12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27878761 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441979 | |||
}} | |||
==SCGN== | |||
* {{medline-title | |||
|title=Detection and evaluation of DNA methylation markers found at [[SCGN]] and [[KLF14]] loci to estimate human age. | |||
|date=11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28854399 | |||
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.07.011 | |||
}} | |||
* {{medline-title | |||
|title=DNA methylation-based forensic age prediction using artificial neural networks and next generation sequencing. | |||
|date=05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28254385 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5392537 | |||
}} | |||
==SCN2B== | |||
* {{medline-title | |||
|title=MicroRNA‑449a regulates the progression of brain aging by targeting [[SCN2B]] in SAMP8 mice. | |||
|date=04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32124967 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7053848 | |||
}} | |||
* {{medline-title | |||
|title=Sodium Channel Voltage-Gated Beta 2 Plays a Vital Role in Brain Aging Associated with Synaptic Plasticity and Expression of COX5A and FGF-2. | |||
|date=03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25575679 | |||
|full-text-url=https://sci-hub.do/10.1007/s12035-014-9048-3 | |||
}} | |||
==SCN5A== | |||
* {{medline-title | |||
|title=[Use of Pharmacogenetic Information for Therapeutic Drug Monitoring of an Antiarrhythmic Drug]. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30175758 | |||
|full-text-url=https://sci-hub.do/10.1248/yakushi.18-00114 | |||
}} | |||
* {{medline-title | |||
|title=Sequencing of [[SCN5A]] identifies rare and common variants associated with cardiac conduction: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. | |||
|date=06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24951663 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4177904 | |||
}} | |||
==SCO2== | |||
* {{medline-title | |||
|title=Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients. | |||
|date=03.09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31560770 | |||
|full-text-url=https://sci-hub.do/10.1167/iovs.19-27921 | |||
}} | |||
* {{medline-title | |||
|title=Role of SCOX in determination of Drosophila melanogaster lifespan. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25057436 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4106651 | |||
}} | |||
==SDC4== | |||
* {{medline-title | |||
|title=Alterations in Corneal Sensory Nerves During Homeostasis, Aging, and After Injury in Mice Lacking the Heparan Sulfate Proteoglycan Syndecan-1. | |||
|date=01.10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28973369 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627677 | |||
}} | |||
* {{medline-title | |||
|title=Metabolism and successful aging: Polymorphic variation of syndecan-4 ([[SDC4]]) gene associate with longevity and lipid profile in healthy elderly Italian subjects. | |||
|date=09.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26254886 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2015.08.003 | |||
}} | |||
==SDHC== | |||
* {{medline-title | |||
|title=Endogenous reactive oxygen species cause astrocyte defects and neuronal dysfunctions in the hippocampus: a new model for aging brain. | |||
|date=02.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27623715 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5242301 | |||
}} | |||
* {{medline-title | |||
|title=Long-term prognosis of patients with pediatric pheochromocytoma. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24169644 | |||
|full-text-url=https://sci-hub.do/10.1530/ERC-13-0415 | |||
}} | |||
==SERPINB2== | |||
* {{medline-title | |||
|title=Elevated circulating HtrA4 in preeclampsia may alter endothelial expression of senescence genes. | |||
|date=15.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32056555 | |||
|full-text-url=https://sci-hub.do/10.1016/j.placenta.2019.12.012 | |||
}} | |||
* {{medline-title | |||
|title=An Endogenous Anti-aging Factor, Sonic Hedgehog, Suppresses Endometrial Stem Cell Aging through [[SERPINB2]]. | |||
|date=03.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31080015 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612665 | |||
}} | |||
==SESN2== | |||
* {{medline-title | |||
|title=Copy Number Alterations in Papillary Thyroid Carcinomas: Does Loss of [i][[SESN2]][/i] Have a Role in Age-related Different Prognoses? | |||
|date=09-10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32859642 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472442 | |||
}} | |||
* {{medline-title | |||
|title=Loss of sestrin 2 potentiates the early onset of age-related sensory cell degeneration in the cochlea. | |||
|date=11.10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28818524 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5605466 | |||
}} | |||
==SESN3== | |||
* {{medline-title | |||
|title=Autophagy mediators ([[FOXO1]], [[SESN3]] and [[TSC2]]) in Lewy body disease and aging. | |||
|date=25.09.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29966750 | |||
|full-text-url=https://sci-hub.do/10.1016/j.neulet.2018.06.052 | |||
}} | |||
* {{medline-title | |||
|title=Age-related reduction in the expression of FOXO transcription factors and correlations with intervertebral disc degeneration. | |||
|date=12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28430387 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5650945 | |||
}} | |||
==SFRP2== | |||
* {{medline-title | |||
|title=[Role and alterations of DNA methylation during the aging and cancer]. | |||
|date=01.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29291647 | |||
|full-text-url=https://sci-hub.do/10.1556/650.2018.30927 | |||
}} | |||
* {{medline-title | |||
|title=Thyroid hormone activates Wnt/β-catenin signaling involved in adult epithelial development during intestinal remodeling in Xenopus laevis. | |||
|date=08.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27068920 | |||
|full-text-url=https://sci-hub.do/10.1007/s00441-016-2396-8 | |||
}} | |||
==SGK1== | |||
* {{medline-title | |||
|title=Epigenetic Regulation of [[KL]] (Klotho) via H3K27me3 (Histone 3 Lysine [K] 27 Trimethylation) in Renal Tubule Cells. | |||
|date=05.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32223380 | |||
|full-text-url=https://sci-hub.do/10.1161/HYPERTENSIONAHA.120.14642 | |||
}} | |||
* {{medline-title | |||
|title=The cell survival kinase [[SGK1]] and its targets FOXO3a and [[NDRG1]] in aged human brain. | |||
|date=10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23363009 | |||
|full-text-url=https://sci-hub.do/10.1111/nan.12023 | |||
}} | |||
==SIX3== | |||
* {{medline-title | |||
|title=CellBIC: bimodality-based top-down clustering of single-cell RNA sequencing data reveals hierarchical structure of the cell type. | |||
|date=30.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30102368 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6265269 | |||
}} | |||
* {{medline-title | |||
|title=Age-Dependent Pancreatic Gene Regulation Reveals Mechanisms Governing Human β Cell Function. | |||
|date=10.05.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27133132 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4864151 | |||
}} | |||
==SLC13A5== | |||
* {{medline-title | |||
|title=INDY-A New Link to Metabolic Regulation in Animals and Humans. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28596784 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5442177 | |||
}} | |||
* {{medline-title | |||
|title=The role of INDY in metabolism, health and longevity. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26106407 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4460575 | |||
}} | |||
==SLC16A7== | |||
* {{medline-title | |||
|title=Genetics of facial telangiectasia in the Rotterdam Study: a genome-wide association study and candidate gene approach. | |||
|date=23.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33095951 | |||
|full-text-url=https://sci-hub.do/10.1111/jdv.17014 | |||
}} | |||
* {{medline-title | |||
|title=The SLC16 gene family - structure, role and regulation in health and disease. | |||
|date=04-06.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23506875 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mam.2012.05.003 | |||
}} | |||
==SLC19A1== | |||
* {{medline-title | |||
|title=Novel drug-resistance mechanisms of pemetrexed-treated non-small cell lung cancer. | |||
|date=30.03.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29682186 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5908287 | |||
}} | |||
* {{medline-title | |||
|title=Association of [[MTHFR]], [[SLC19A1]] Genetic Polymorphism, Serum Folate, Vitamin B and Hcy Status with Cognitive Functions in Chinese Adults. | |||
|date=24.10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27783031 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5084051 | |||
}} | |||
==SLC24A4== | |||
* {{medline-title | |||
|title=Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. | |||
|date=11.04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28199971 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421828 | |||
}} | |||
* {{medline-title | |||
|title=Gene-based aggregate SNP associations between candidate AD genes and cognitive decline. | |||
|date=04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27005436 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5005889 | |||
}} | |||
==SLC25A24== | |||
* {{medline-title | |||
|title=De Novo Mutations in [[SLC25A24]] Cause a Disorder Characterized by Early Aging, Bone Dysplasia, Characteristic Face, and Early Demise. | |||
|date=02.11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29100094 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5673633 | |||
}} | |||
* {{medline-title | |||
|title=De Novo Mutations in [[SLC25A24]] Cause a Craniosynostosis Syndrome with Hypertrichosis, Progeroid Appearance, and Mitochondrial Dysfunction. | |||
|date=02.11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29100093 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5673623 | |||
}} | |||
==SLC26A2== | |||
* {{medline-title | |||
|title=Phenotypic characterization of Slc26a2 mutant mice reveals a multifactorial etiology of spondylolysis. | |||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31914611 | |||
|full-text-url=https://sci-hub.do/10.1096/fj.201901040RR | |||
}} | |||
* {{medline-title | |||
|title=Alteration of proteoglycan sulfation affects bone growth and remodeling. | |||
|date=05.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23369989 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3607217 | |||
}} | |||
==SLC2A4== | |||
* {{medline-title | |||
|title=Permanent cystathionine-β-Synthase gene knockdown promotes inflammation and oxidative stress in immortalized human adipose-derived mesenchymal stem cells, enhancing their adipogenic capacity. | |||
|date=02.08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32800520 | |||
|full-text-url=https://sci-hub.do/10.1016/j.redox.2020.101668 | |||
}} | |||
* {{medline-title | |||
|title=Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats. | |||
|date=02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30661688 | |||
|full-text-url=https://sci-hub.do/10.1016/j.clnesp.2018.10.003 | |||
}} | |||
==SLC2A9== | |||
* {{medline-title | |||
|title=[[ABCG2]] rs2231142 variant in hyperuricemia is modified by [[SLC2A9]] and [[SLC22A12]] polymorphisms and cardiovascular risk factors in an elderly community-dwelling population. | |||
|date=17.03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32183743 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7077001 | |||
}} | |||
* {{medline-title | |||
|title=MicroRNA-Based Linkage between Aging and Cancer: from Epigenetics View Point. | |||
|date=07-09.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27540517 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4988411 | |||
}} | |||
==SLC6A3== | |||
* {{medline-title | |||
|title=A variable number of tandem repeats in the 3'-untranslated region of the dopamine transporter modulates striatal function during working memory updating across the adult age span. | |||
|date=08.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25997640 | |||
|full-text-url=https://sci-hub.do/10.1111/ejn.12956 | |||
}} | |||
* {{medline-title | |||
|title=Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25765287 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475460 | |||
}} | |||
==SLC7A11== | |||
* {{medline-title | |||
|title=[[SOCS1]] regulates senescence and ferroptosis by modulating the expression of p53 target genes. | |||
|date=28.10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29081404 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5680560 | |||
}} | |||
* {{medline-title | |||
|title=Comprehensive Analysis of Interaction Networks of Telomerase Reverse Transcriptase with Multiple Bioinformatic Approaches: Deep Mining the Potential Functions of Telomere and Telomerase. | |||
|date=08.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28281877 | |||
|full-text-url=https://sci-hub.do/10.1089/rej.2016.1909 | |||
}} | |||
==SLN== | |||
* {{medline-title | |||
|title=Completion Lymph Node Dissection or Observation for Melanoma Sentinel Lymph Node Metastases: A Decision Analysis. | |||
|date=09.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27194553 | |||
|full-text-url=https://sci-hub.do/10.1245/s10434-016-5273-5 | |||
}} | |||
* {{medline-title | |||
|title=Age differences in brain activity related to unsuccessful declarative memory retrieval. | |||
|date=01.07.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25541365 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4898958 | |||
}} | |||
==SMAD1== | |||
* {{medline-title | |||
|title=[[TGFB1]]-Mediated Gliosis in Multiple Sclerosis Spinal Cords Is Favored by the Regionalized Expression of [[HOXA5]] and the Age-Dependent Decline in Androgen Receptor Ligands. | |||
|date=26.11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31779094 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928867 | |||
}} | |||
* {{medline-title | |||
|title=BMP-SMAD-ID promotes reprogramming to pluripotency by inhibiting p16/INK4A-dependent senescence. | |||
|date=15.11.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27794120 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5135304 | |||
}} | |||
==SMAD7== | |||
* {{medline-title | |||
|title=Forkhead Box Protein 1 (FoxO1) Inhibits Accelerated β Cell Aging in Pancreas-specific [[SMAD7]] Mutant Mice. | |||
|date=24.02.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28057752 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5336177 | |||
}} | |||
* {{medline-title | |||
|title=Granulosa cell function and oocyte competence: Super-follicles, super-moms and super-stimulation in cattle. | |||
|date=09.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25107564 | |||
|full-text-url=https://sci-hub.do/10.1016/j.anireprosci.2014.07.016 | |||
}} | |||
==SMARCA4== | |||
* {{medline-title | |||
|title=Attenuation of epigenetic regulator [[SMARCA4]] and ERK-ETS signaling suppresses aging-related dopaminergic degeneration. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32749068 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511865 | |||
}} | |||
* {{medline-title | |||
|title=GBM-associated mutations and altered protein expression are more common in young patients. | |||
|date=25.10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27579614 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342491 | |||
}} | |||
==SMO== | |||
* {{medline-title | |||
|title=Sonic hedgehog regulation of cavernous nerve regeneration and neurite formation in aged pelvic plexus. | |||
|date=02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30391523 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6342483 | |||
}} | |||
* {{medline-title | |||
|title=Silybum marianum oil attenuates oxidative stress and ameliorates mitochondrial dysfunction in mice treated with D-galactose. | |||
|date=01.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24914315 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047594 | |||
}} | |||
==SMOX== | |||
* {{medline-title | |||
|title=Skeletal Muscle Pathophysiology: The Emerging Role of Spermine Oxidase and Spermidine. | |||
|date=14.02.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29443878 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5872171 | |||
}} | |||
* {{medline-title | |||
|title=Haemocytes control stem cell activity in the Drosophila intestine. | |||
|date=06.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26005834 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449816 | |||
}} | |||
==SMPD1== | |||
* {{medline-title | |||
|title=Alterations in Lipid Profile of the Aging Kidney Identified by MALDI Imaging Mass Spectrometry. | |||
|date=05.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31244212 | |||
|full-text-url=https://sci-hub.do/10.1021/acs.jproteome.9b00108 | |||
}} | |||
* {{medline-title | |||
|title=Rare lysosomal enzyme gene [[SMPD1]] variant (p.R591C) associates with Parkinson's disease. | |||
|date=12.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23871123 | |||
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2013.06.010 | |||
}} | |||
==SNCB== | |||
* {{medline-title | |||
|title=Age-related distribution and potential role of [[SNCB]] in topographically different retinal areas of the common marmoset Callithrix jacchus, including the macula. | |||
|date=08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31128101 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exer.2019.05.016 | |||
}} | |||
* {{medline-title | |||
|title=Age-related Beta-synuclein Alters the p53/Mdm2 Pathway and Induces the Apoptosis of Brain Microvascular Endothelial Cells In Vitro. | |||
|date=05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29808713 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6047277 | |||
}} | |||
==SOCS2== | |||
* {{medline-title | |||
|title=Suppressor of Cytokine Signalling 2 ([[SOCS2]]) Regulates Numbers of Mature Newborn Adult Hippocampal Neurons and Their Dendritic Spine Maturation. | |||
|date=07.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27655030 | |||
|full-text-url=https://sci-hub.do/10.1007/s10571-016-0427-3 | |||
}} | |||
* {{medline-title | |||
|title=Age-independent effects of hyaluronan amide derivative and growth hormone on human osteoarthritic chondrocytes. | |||
|date=11.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26075645 | |||
|full-text-url=https://sci-hub.do/10.3109/03008207.2015.1047928 | |||
}} | |||
==SPARCL1== | |||
* {{medline-title | |||
|title=Specific factors in blood from young but not old mice directly promote synapse formation and NMDA-receptor recruitment. | |||
|date=18.06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31160442 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589664 | |||
}} | |||
* {{medline-title | |||
|title=[[SPARCL1]] Accelerates Symptom Onset in Alzheimer's Disease and Influences Brain Structure and Function During Aging. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29154276 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5934753 | |||
}} | |||
==SPN== | |||
* {{medline-title | |||
|title=Parkinson's disease-related Leucine-rich repeat kinase 2 modulates nuclear morphology and genomic stability in striatal projection neurons during aging. | |||
|date=19.02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32075681 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031993 | |||
}} | |||
* {{medline-title | |||
|title=[Identification of single nucleotide polymorphisms in centenarians]. | |||
|date=05-06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26541311 | |||
|full-text-url=https://sci-hub.do/10.1016/j.regg.2015.09.006 | |||
}} | |||
==SPON1== | |||
* {{medline-title | |||
|title=[[APOE]] influences working memory in non-demented elderly through an interaction with [[SPON1]] rs2618516. | |||
|date=07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29573041 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6866309 | |||
}} | |||
* {{medline-title | |||
|title=HYDRA: Revealing heterogeneity of imaging and genetic patterns through a multiple max-margin discriminative analysis framework. | |||
|date=15.01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26923371 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408358 | |||
}} | |||
==SREBF2== | |||
* {{medline-title | |||
|title=The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. | |||
|date=29.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32997995 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527782 | |||
}} | |||
* {{medline-title | |||
|title=White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy. | |||
|date=02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31691183 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035207 | |||
}} | |||
==SRR== | |||
* {{medline-title | |||
|title=Mediterranean diet and its components in relation to all-cause mortality: meta-analysis. | |||
|date=11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30401007 | |||
|full-text-url=https://sci-hub.do/10.1017/S0007114518002593 | |||
}} | |||
* {{medline-title | |||
|title=Genetic Biomarkers on Age-Related Cognitive Decline. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29209239 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702307 | |||
}} | |||
==SSTR1== | |||
* {{medline-title | |||
|title=Expression and localization of somatostatin receptor types 3, 4 and 5 in the wild-type, [[SSTR1]] and [[SSTR1]]/SSTR2 knockout mouse cochlea. | |||
|date=12.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25149275 | |||
|full-text-url=https://sci-hub.do/10.1007/s00441-014-1977-7 | |||
}} | |||
* {{medline-title | |||
|title=Upregulated expression of [[SSTR1]] is involved in neuronal apoptosis and is coupled to the reduction of bcl-2 following intracerebral hemorrhage in adult rats. | |||
|date=10.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25035058 | |||
|full-text-url=https://sci-hub.do/10.1007/s10571-014-0081-6 | |||
}} | |||
==ST6GAL1== | |||
* {{medline-title | |||
|title=Glycobiology of Aging. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30779020 | |||
|full-text-url=https://sci-hub.do/10.1007/978-981-13-2835-0_17 | |||
}} | |||
* {{medline-title | |||
|title=Identification of novel plasma glycosylation-associated markers of aging. | |||
|date=16.02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26840264 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4884931 | |||
}} | |||
==STAR== | |||
* {{medline-title | |||
|title=Testicular gene expression of steroidogenesis-related factors in prepubertal, postpubertal, and aging dogs. | |||
|date=01.03.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28166986 | |||
|full-text-url=https://sci-hub.do/10.1016/j.theriogenology.2016.11.007 | |||
}} | |||
* {{medline-title | |||
|title=Role of the steroidogenic acute regulatory protein in health and disease. | |||
|date=01.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26271515 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4707056 | |||
}} | |||
==STAT4== | |||
* {{medline-title | |||
|title=Neonatal T Follicular Helper Cells Are Lodged in a Pre-T Follicular Helper Stage Favoring Innate Over Adaptive Germinal Center Responses. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31456798 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700230 | |||
}} | |||
* {{medline-title | |||
|title=RNA-Seq analysis reveals new evidence for inflammation-related changes in aged kidney. | |||
|date=24.05.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27153548 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5058662 | |||
}} | |||
==STAT5A== | |||
* {{medline-title | |||
|title=Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. | |||
|date=15.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |||
}} | |||
* {{medline-title | |||
|title=[[SOCS1]] regulates senescence and ferroptosis by modulating the expression of p53 target genes. | |||
|date=28.10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29081404 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5680560 | |||
}} | |||
==STK3== | |||
* {{medline-title | |||
|title=Dual functions for OVAAL in initiation of RAF/MEK/ERK prosurvival signals and evasion of p27-mediated cellular senescence. | |||
|date=11.12.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30478051 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294934 | |||
}} | |||
* {{medline-title | |||
|title=Organ-specific alteration in caspase expression and [[STK3]] proteolysis during the aging process. | |||
|date=11.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27552481 | |||
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2016.07.003 | |||
}} | |||
==SURF1== | |||
* {{medline-title | |||
|title=Lifelong reduction in complex IV induces tissue-specific metabolic effects but does not reduce lifespan or healthspan in mice. | |||
|date=08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29696791 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052393 | |||
}} | |||
* {{medline-title | |||
|title=Complex IV-deficient Surf1(-/-) mice initiate mitochondrial stress responses. | |||
|date=01.09.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24911525 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4145821 | |||
}} | |||
==SV2A== | |||
* {{medline-title | |||
|title=Assessing Synaptic Density in Alzheimer Disease With Synaptic Vesicle Glycoprotein 2A Positron Emission Tomographic Imaging. | |||
|date=01.10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30014145 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6233853 | |||
}} | |||
* {{medline-title | |||
|title=Mutant Huntingtin Causes a Selective Decrease in the Expression of Synaptic Vesicle Protein 2C. | |||
|date=10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29713895 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6129247 | |||
}} | |||
==SYNC== | |||
* {{medline-title | |||
|title=Alpha-synuclein expression patterns in the colonic submucosal plexus of the aging Fischer 344 rat: implications for biopsies in aging and neurodegenerative disorders? | |||
|date=09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23809578 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3735646 | |||
}} | |||
* {{medline-title | |||
|title=Macrophages are unsuccessful in clearing aggregated alpha-synuclein from the gastrointestinal tract of healthy aged Fischer 344 rats. | |||
|date=04.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23441091 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3851024 | |||
}} | |||
==SYNJ1== | |||
* {{medline-title | |||
|title=Excess Synaptojanin 1 Contributes to Place Cell Dysfunction and Memory Deficits in the Aging Hippocampus in Three Types of Alzheimer's Disease. | |||
|date=05.06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29874583 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6040810 | |||
}} | |||
* {{medline-title | |||
|title=Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26168237 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567 | |||
}} | |||
==TACR3== | |||
* {{medline-title | |||
|title=Association of a neurokinin 3 receptor polymorphism with the anterior basal forebrain. | |||
|date=06.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25976010 | |||
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2014.12.031 | |||
}} | |||
* {{medline-title | |||
|title=Neurokinin3 receptor as a target to predict and improve learning and memory in the aged organism. | |||
|date=10.09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23983264 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773732 | |||
}} | |||
==TAS2R16== | |||
* {{medline-title | |||
|title=Taste receptor polymorphisms and longevity: a systematic review and meta-analysis. | |||
|date=10.11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33170488 | |||
|full-text-url=https://sci-hub.do/10.1007/s40520-020-01745-3 | |||
}} | |||
* {{medline-title | |||
|title=Taste receptors, innate immunity and longevity: the case of [[TAS2R16]] gene. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30833980 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387736 | |||
}} | |||
==TBC1D4== | |||
* {{medline-title | |||
|title=Effects of Exercise Training on Regulation of Skeletal Muscle Glucose Metabolism in Elderly Men. | |||
|date=07.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25991826 | |||
|full-text-url=https://sci-hub.do/10.1093/gerona/glv012 | |||
}} | |||
* {{medline-title | |||
|title=AMPK and insulin action--responses to ageing and high fat diet. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23671593 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3645997 | |||
}} | |||
==TBC1D5== | |||
* {{medline-title | |||
|title=[[TBC1D5]]-Catalyzed Cycling of Rab7 Is Required for Retromer-Mediated Human Papillomavirus Trafficking during Virus Entry. | |||
|date=09.06.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32521275 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7339955 | |||
}} | |||
* {{medline-title | |||
|title=Retromer and [[TBC1D5]] maintain late endosomal RAB7 domains to enable amino acid-induced mTORC1 signaling. | |||
|date=02.09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31431476 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719456 | |||
}} | |||
==TBX21== | |||
* {{medline-title | |||
|title=Association of Epigenetic Age and p16INK4a With Markers of T-Cell Composition in a Healthy Cohort. | |||
|date=13.11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32361724 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662168 | |||
}} | |||
* {{medline-title | |||
|title=[Study of gene expression of transcription factors T cells during aging]. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28509479 | |||
}} | |||
==TCF7== | |||
* {{medline-title | |||
|title=Osteoprotection Through the Deletion of the Transcription Factor Rorβ in Mice. | |||
|date=04.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29206307 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5925424 | |||
}} | |||
* {{medline-title | |||
|title=Age-related profiling of DNA methylation in CD8 T cells reveals changes in immune response and transcriptional regulator genes. | |||
|date=19.08.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26286994 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541364 | |||
}} | |||
==TDP1== | |||
* {{medline-title | |||
|title=[[UCHL3]] Regulates Topoisomerase-Induced Chromosomal Break Repair by Controlling [[TDP1]] Proteostasis. | |||
|date=12.06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29898404 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019701 | |||
}} | |||
* {{medline-title | |||
|title=Neuroprotection and repair of 3'-blocking DNA ends by glaikit (gkt) encoding Drosophila tyrosyl-DNA phosphodiesterase 1 ([[TDP1]]). | |||
|date=04.11.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25331878 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226126 | |||
}} | |||
==TDRD7== | |||
* {{medline-title | |||
|title=Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice. | |||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31472347 | |||
|full-text-url=https://sci-hub.do/10.1016/j.chemosphere.2019.124650 | |||
}} | |||
* {{medline-title | |||
|title=RNA granule component [[TDRD7]] gene polymorphisms in a Han Chinese population with age-related cataract. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24435515 | |||
|full-text-url=https://sci-hub.do/10.1177/0300060513504702 | |||
}} | |||
==TEAD1== | |||
* {{medline-title | |||
|title=[Role of [[PLAT]], [[PKHD1L1]], [[STK38L]] and [[TEAD1]] genes Alu-polymorphism for longevity]. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28556638 | |||
}} | |||
* {{medline-title | |||
|title=Acetylation of [[VGLL4]] Regulates Hippo-YAP Signaling and Postnatal Cardiac Growth. | |||
|date=21.11.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27720608 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121000 | |||
}} | |||
==TEF== | |||
* {{medline-title | |||
|title=Expression of human HSP27 in yeast extends replicative lifespan and uncovers a hormetic response. | |||
|date=10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32189112 | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-020-09869-9 | |||
}} | |||
* {{medline-title | |||
|title=Relationship Between the Dose Administered, Target Tissue Dose, and Toxicity Level After Acute Oral Exposure to Bifenthrin and Tefluthrin in Young Adult Rats. | |||
|date=01.12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31573616 | |||
|full-text-url=https://sci-hub.do/10.1093/toxsci/kfz204 | |||
}} | |||
==TEN1== | |||
* {{medline-title | |||
|title=Stimulation of cell proliferation by glutathione monoethyl ester in aged bone marrow stromal cells is associated with the assistance of [[TERT]] gene expression and telomerase activity. | |||
|date=08.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27251157 | |||
|full-text-url=https://sci-hub.do/10.1007/s11626-016-0021-5 | |||
}} | |||
* {{medline-title | |||
|title=Functional characterization of human [[CTC1]] mutations reveals novel mechanisms responsible for the pathogenesis of the telomere disease Coats plus. | |||
|date=12.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23869908 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4083614 | |||
}} | |||
==TERF1== | |||
* {{medline-title | |||
|title=Telomere protein RAP1 levels are affected by cellular aging and oxidative stress. | |||
|date=08.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27446538 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4950791 | |||
}} | |||
* {{medline-title | |||
|title=Population-specific association of genes for telomere-associated proteins with longevity in an Italian population. | |||
|date=06.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25631672 | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-015-9551-6 | |||
}} | |||
==TERF2== | |||
* {{medline-title | |||
|title=Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. | |||
|date=05.03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109421 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058826 | |||
}} | |||
* {{medline-title | |||
|title=Endothelial senescence-associated secretory phenotype (SASP) is regulated by Makorin-1 ubiquitin E3 ligase. | |||
|date=11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31476350 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059097 | |||
}} | |||
==TES== | |||
* {{medline-title | |||
|title=The Effects of Electrical Stimulation Pulse Duration on Lingual Palatal Pressure Measures During Swallowing in Healthy Older Adults. | |||
|date=08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30820657 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456514 | |||
}} | |||
* {{medline-title | |||
|title=Comparison of different extenders on the recovery and longevity of epididymal sperm from Spix's yellow-toothed cavies (Galea spixii Wagler, 1831). | |||
|date=04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28245889 | |||
|full-text-url=https://sci-hub.do/10.1017/S0967199417000016 | |||
}} | |||
==TFRC== | |||
* {{medline-title | |||
|title=Identification of reference genes for RT-qPCR data normalisation in aging studies. | |||
|date=27.09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31562345 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764958 | |||
}} | |||
* {{medline-title | |||
|title=[[SQSTM1]]/p62 and [[PPARGC1A]]/PGC-1alpha at the interface of autophagy and vascular senescence. | |||
|date=06.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31441382 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469683 | |||
}} | |||
==TGFBR2== | |||
* {{medline-title | |||
|title=TGF-β type 2 receptor-mediated modulation of the IL-36 family can be therapeutically targeted in osteoarthritis. | |||
|date=08.05.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31068441 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7102613 | |||
}} | |||
* {{medline-title | |||
|title=Serum levels of matrix metalloproteinases 2 and 9 and [[TGFBR2]] gene screening in patients with ascending aortic dilatation. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24093773 | |||
}} | |||
==TMEM119== | |||
* {{medline-title | |||
|title=Dexamethasone Induces a Specific Form of Ramified Dysfunctional Microglia. | |||
|date=02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29948944 | |||
|full-text-url=https://sci-hub.do/10.1007/s12035-018-1156-z | |||
}} | |||
* {{medline-title | |||
|title=Loss of 'homeostatic' microglia and patterns of their activation in active multiple sclerosis. | |||
|date=01.07.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28541408 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6057548 | |||
}} | |||
==TMEM18== | |||
* {{medline-title | |||
|title=Sequence variation in [[TMEM18]] in association with body mass index: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. | |||
|date=06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24951660 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4135723 | |||
}} | |||
* {{medline-title | |||
|title=The influence of obesity-related single nucleotide polymorphisms on BMI across the life course: the PAGE study. | |||
|date=05.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23300277 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636619 | |||
}} | |||
==TNFSF10== | |||
* {{medline-title | |||
|title=Role of mitochondrial function in cell death and body metabolism. | |||
|date=01.06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27100503 | |||
|full-text-url=https://sci-hub.do/10.2741/4453 | |||
}} | |||
* {{medline-title | |||
|title=Sporadic colorectal cancer development shows rejuvenescence regarding epithelial proliferation and apoptosis. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24098334 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3789736 | |||
}} | |||
==TNNT1== | |||
* {{medline-title | |||
|title=Improved knee extensor strength with resistance training associates with muscle specific miRNAs in older adults. | |||
|date=02.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25560803 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314447 | |||
}} | |||
* {{medline-title | |||
|title=Human slow troponin T ([[TNNT1]]) pre-mRNA alternative splicing is an indicator of skeletal muscle response to resistance exercise in older adults. | |||
|date=12.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24368775 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4296115 | |||
}} | |||
==TNR== | |||
* {{medline-title | |||
|title=Estimation of effectiveness of three methods of feral cat population control by use of a simulation model. | |||
|date=15.08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23902443 | |||
|full-text-url=https://sci-hub.do/10.2460/javma.243.4.502 | |||
}} | |||
* {{medline-title | |||
|title=The extracellular matrix glycoprotein tenascin-R affects adult but not developmental neurogenesis in the olfactory bulb. | |||
|date=19.06.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23785146 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618594 | |||
}} | |||
==TOMM20== | |||
* {{medline-title | |||
|title=Effect of aging on mitochondria and metabolism of bovine granulosa cells. | |||
|date=13.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32921645 | |||
|full-text-url=https://sci-hub.do/10.1262/jrd.2020-071 | |||
}} | |||
* {{medline-title | |||
|title=PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25714760 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4502689 | |||
}} | |||
==TOP1== | |||
* {{medline-title | |||
|title=[[UCHL3]] Regulates Topoisomerase-Induced Chromosomal Break Repair by Controlling [[TDP1]] Proteostasis. | |||
|date=12.06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29898404 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019701 | |||
}} | |||
* {{medline-title | |||
|title=mir-24 activity propagates stress-induced senescence by down regulating DNA topoisomerase 1. | |||
|date=03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26748253 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2015.12.012 | |||
}} | |||
==TOP2A== | |||
* {{medline-title | |||
|title=Proteomics of Long-Lived Mammals. | |||
|date=03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31737995 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7117992 | |||
}} | |||
* {{medline-title | |||
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335 | |||
}} | |||
==TOX== | |||
* {{medline-title | |||
|title=Temporal Cognitive Decline Associated With Exposure to Infectious Agents in a Population-based, Aging Cohort. | |||
|date=07-09.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26710257 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4919236 | |||
}} | |||
* {{medline-title | |||
|title=Incidence rate of modifying or discontinuing first combined antiretroviral therapy regimen due to toxicity during the first year of treatment stratified by age. | |||
|date=01-02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24029435 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bjid.2013.04.005 | |||
}} | |||
==TPX2== | |||
* {{medline-title | |||
|title=Targeting [[DTL]] induces cell cycle arrest and senescence and suppresses cell growth and colony formation through [[TPX2]] inhibition in human hepatocellular carcinoma cells. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29606879 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5868578 | |||
}} | |||
* {{medline-title | |||
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335 | |||
}} | |||
==TREX1== | |||
* {{medline-title | |||
|title=Mechanistic link between DNA damage sensing, repairing and signaling factors and immune signaling. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30798935 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7043287 | |||
}} | |||
* {{medline-title | |||
|title=Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of [[CSF1R]] and [[NOTCH3]]. | |||
|date=06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29544907 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5937905 | |||
}} | |||
==TRIM21== | |||
* {{medline-title | |||
|title=[[TRIM21]] overexpression promotes tumor progression by regulating cell proliferation, cell migration and cell senescence in human glioma. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32064156 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7017742 | |||
}} | |||
* {{medline-title | |||
|title=[[PRMT5]]-[[TRIM21]] interaction regulates the senescence of osteosarcoma cells by targeting the [[TXNIP]]/p21 axis. | |||
|date=05.02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32023548 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7041745 | |||
}} | |||
==TRIM28== | |||
* {{medline-title | |||
|title=Depleting Trim28 in adult mice is well tolerated and reduces levels of α-synuclein and tau. | |||
|date=04.06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29863470 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993537 | |||
}} | |||
* {{medline-title | |||
|title=Polyphenic trait promotes liver cancer in a model of epigenetic instability in mice. | |||
|date=07.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28370258 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5518198 | |||
}} | |||
==TRIP13== | |||
* {{medline-title | |||
|title=BubR1 allelic effects drive phenotypic heterogeneity in mosaic-variegated aneuploidy progeria syndrome. | |||
|date=02.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31738183 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934189 | |||
}} | |||
* {{medline-title | |||
|title=PCH-2 regulates Caenorhabditis elegans lifespan. | |||
|date=01.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25635513 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4350321 | |||
}} | |||
==TRPC3== | |||
* {{medline-title | |||
|title=Age-dependent alpha-synuclein accumulation is correlated with elevation of mitochondrial [[TRPC3]] in the brains of monkeys and mice. | |||
|date=04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27904950 | |||
|full-text-url=https://sci-hub.do/10.1007/s00702-016-1654-y | |||
}} | |||
* {{medline-title | |||
|title=[[TRPC3]] channels critically regulate hippocampal excitability and contextual fear memory. | |||
|date=15.03.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25513972 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4677051 | |||
}} | |||
==TRPC5== | |||
* {{medline-title | |||
|title=[[TRPC5]] channel modulates endothelial cells senescence. | |||
|date=05.05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28237267 | |||
|full-text-url=https://sci-hub.do/10.1016/j.ejphar.2017.02.037 | |||
}} | |||
* {{medline-title | |||
|title=Benzimidazole derivative M084 extends the lifespan of Caenorhabditis elegans in a DAF-16/FOXO-dependent way. | |||
|date=02.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27854075 | |||
|full-text-url=https://sci-hub.do/10.1007/s11010-016-2884-x | |||
}} | |||
==TRPC6== | |||
* {{medline-title | |||
|title=Redox and mTOR-dependent regulation of plasma lamellar calcium influx controls the senescence-associated secretory phenotype. | |||
|date=11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32686475 | |||
|full-text-url=https://sci-hub.do/10.1177/1535370220943122 | |||
}} | |||
* {{medline-title | |||
|title=[[TRPC6]] in simulated microgravity of intervertebral disc cells. | |||
|date=10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29968164 | |||
|full-text-url=https://sci-hub.do/10.1007/s00586-018-5688-8 | |||
}} | |||
==TRPM6== | |||
* {{medline-title | |||
|title=Role of kinase-coupled TRP channels in mineral homeostasis. | |||
|date=04.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29129644 | |||
|full-text-url=https://sci-hub.do/10.1016/j.pharmthera.2017.11.003 | |||
}} | |||
* {{medline-title | |||
|title=Epithelial magnesium transport by [[TRPM6]] is essential for prenatal development and adult survival. | |||
|date=19.12.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27991852 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5218537 | |||
}} | |||
==TRPM7== | |||
* {{medline-title | |||
|title=mRNA expression of transient receptor potential melastatin (TRPM) channels 2 and 7 in perinatal brain development. | |||
|date=10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29842890 | |||
|full-text-url=https://sci-hub.do/10.1016/j.ijdevneu.2018.05.008 | |||
}} | |||
* {{medline-title | |||
|title=Role of kinase-coupled TRP channels in mineral homeostasis. | |||
|date=04.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29129644 | |||
|full-text-url=https://sci-hub.do/10.1016/j.pharmthera.2017.11.003 | |||
}} | |||
==TRPV6== | |||
* {{medline-title | |||
|title=Changes in expression of klotho affect physiological processes, diseases, and cancer. | |||
|date=01.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29372030 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5776433 | |||
}} | |||
* {{medline-title | |||
|title=Molecular aspects of intestinal calcium absorption. | |||
|date=21.06.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26109800 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476875 | |||
}} | |||
==TSHB== | |||
* {{medline-title | |||
|title=Adipose [[TSHB]] in Humans and Serum TSH in Hypothyroid Rats Inform About Cellular Senescence. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30448824 | |||
|full-text-url=https://sci-hub.do/10.1159/000495170 | |||
}} | |||
* {{medline-title | |||
|title=Loss of basal and TRH-stimulated Tshb expression in dispersed pituitary cells. | |||
|date=01.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25356823 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4272397 | |||
}} | |||
==TSLP== | |||
* {{medline-title | |||
|title=Cloning and expression of recombinant equine interleukin-3 and its effect on sulfidoleukotriene and cytokine production by equine peripheral blood leukocytes. | |||
|date=15.02.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25530476 | |||
|full-text-url=https://sci-hub.do/10.1016/j.vetimm.2014.11.012 | |||
}} | |||
* {{medline-title | |||
|title=Accumulation of prelamin A compromises NF-κB-regulated B-lymphopoiesis in a progeria mouse model. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24764515 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922919 | |||
}} | |||
==TTN== | |||
* {{medline-title | |||
|title=LncRNA [[TTN]]-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/[[MBTD1]] axis. | |||
|date=10.10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31600142 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814585 | |||
}} | |||
* {{medline-title | |||
|title=Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. | |||
|date=15.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |||
}} | |||
==UBB== | |||
* {{medline-title | |||
|title=Different Expression Levels of Human Mutant Ubiquitin B ([[UBB]] ) Can Modify Chronological Lifespan or Stress Resistance of [i]Saccharomyces cerevisiae[/i]. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29950972 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008557 | |||
}} | |||
* {{medline-title | |||
|title=Modeling non-hereditary mechanisms of Alzheimer disease during apoptosis in yeast. | |||
|date=20.03.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28357285 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5348975 | |||
}} | |||
==UGT1A1== | |||
* {{medline-title | |||
|title=Expression of UDP-Glucuronosyltransferase 1 (UGT1) and Glucuronidation Activity toward Endogenous Substances in Humanized UGT1 Mouse Brain. | |||
|date=07.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25953521 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4468441 | |||
}} | |||
* {{medline-title | |||
|title=Age-related changes in mRNA levels of hepatic transporters, cytochrome P450 and UDP-glucuronosyltransferase in female rats. | |||
|date=06.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24899460 | |||
|full-text-url=https://sci-hub.do/10.1007/s13318-014-0208-7 | |||
}} | |||
==ULBP2== | |||
* {{medline-title | |||
|title=NKG2D ligands mediate immunosurveillance of senescent cells. | |||
|date=02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26878797 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4789586 | |||
}} | |||
* {{medline-title | |||
|title=Type 1 interferons contribute to the clearance of senescent cell. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26046815 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4622626 | |||
}} | |||
==UMOD== | |||
* {{medline-title | |||
|title=The relationships between markers of tubular injury and intrarenal haemodynamic function in adults with and without type 1 diabetes: Results from the Canadian Study of Longevity in Type 1 Diabetes. | |||
|date=03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30311395 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6368468 | |||
}} | |||
* {{medline-title | |||
|title=A roadmap for the genetic analysis of renal aging. | |||
|date=10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26219736 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568960 | |||
}} | |||
==UNG== | |||
* {{medline-title | |||
|title=[[UNG]]-1 and APN-1 are the major enzymes to efficiently repair 5-hydroxymethyluracil DNA lesions in C. elegans. | |||
|date=01.05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29717169 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5931555 | |||
}} | |||
* {{medline-title | |||
|title=Caenorhabditis elegans EXO-3 contributes to longevity and reproduction: differential roles in somatic cells and germ cells. | |||
|date=02.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25772110 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mrfmmm.2015.01.001 | |||
}} | |||
==USP10== | |||
* {{medline-title | |||
|title=The GID ubiquitin ligase complex is a regulator of AMPK activity and organismal lifespan. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31795790 | |||
|full-text-url=https://sci-hub.do/10.1080/15548627.2019.1695399 | |||
}} | |||
* {{medline-title | |||
|title=Long noncoding RNA H19 mediates melatonin inhibition of premature senescence of c-kit( ) cardiac progenitor cells by promoting miR-675. | |||
|date=08.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27062045 | |||
|full-text-url=https://sci-hub.do/10.1111/jpi.12331 | |||
}} | |||
==USP14== | |||
* {{medline-title | |||
|title=Low expression of aging-related [[[[NRXN3]]]] is associated with Alzheimer disease: A systematic review and meta-analysis. | |||
|date=07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29995770 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076205 | |||
}} | |||
* {{medline-title | |||
|title=Compensatory increase in [[USP14]] activity accompanies impaired proteasomal proteolysis during aging. | |||
|date=01-02.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23291607 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3558606 | |||
}} | |||
==VASH1== | |||
* {{medline-title | |||
|title=Double-Face of Vasohibin-1 for the Maintenance of Vascular Homeostasis and Healthy Longevity. | |||
|date=01.06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29398681 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6005230 | |||
}} | |||
* {{medline-title | |||
|title=Age-associated downregulation of vasohibin-1 in vascular endothelial cells. | |||
|date=10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27325558 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013028 | |||
}} | |||
==VASP== | |||
* {{medline-title | |||
|title=Reversal of Aging-Induced Increases in Aortic Stiffness by Targeting Cytoskeletal Protein-Protein Interfaces. | |||
|date=18.07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30021807 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6201469 | |||
}} | |||
* {{medline-title | |||
|title=In vitro anti-platelet potency of ticagrelor in blood samples from infants and children. | |||
|date=09.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26210892 | |||
|full-text-url=https://sci-hub.do/10.1016/j.thromres.2015.07.013 | |||
}} | |||
==VCAN== | |||
* {{medline-title | |||
|title=Deletion of miR-126a Promotes Hepatic Aging and Inflammation in a Mouse Model of Cholestasis. | |||
|date=07.06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31051334 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6495079 | |||
}} | |||
* {{medline-title | |||
|title=Exosomes from hyperglycemia-stimulated vascular endothelial cells contain versican that regulate calcification/senescence in vascular smooth muscle cells. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30622695 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317223 | |||
}} | |||
==VGF== | |||
* {{medline-title | |||
|title=Voluntary Running Triggers [[VGF]]-Mediated Oligodendrogenesis to Prolong the Lifespan of Snf2h-Null Ataxic Mice. | |||
|date=11.10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27732860 | |||
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2016.09.030 | |||
}} | |||
* {{medline-title | |||
|title=Age-related obesity and type 2 diabetes dysregulate neuronal associated genes and proteins in humans. | |||
|date=06.10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26337083 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745765 | |||
}} | |||
==VGLL3== | |||
* {{medline-title | |||
|title=The vgll3 Locus Controls Age at Maturity in Wild and Domesticated Atlantic Salmon (Salmo salar L.) Males. | |||
|date=11.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26551894 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4638356 | |||
}} | |||
* {{medline-title | |||
|title=Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon. | |||
|date=17.12.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26536110 | |||
|full-text-url=https://sci-hub.do/10.1038/nature16062 | |||
}} | |||
==VGLL4== | |||
* {{medline-title | |||
|title=The lncRNA MEG3/miR-16-5p/[[VGLL4]] regulatory axis is involved in etoposide-induced senescence of tumor cells. | |||
|date=03.11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33141998 | |||
|full-text-url=https://sci-hub.do/10.1002/jgm.3291 | |||
}} | |||
* {{medline-title | |||
|title=Acetylation of [[VGLL4]] Regulates Hippo-YAP Signaling and Postnatal Cardiac Growth. | |||
|date=21.11.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27720608 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121000 | |||
}} | |||
==VIPR2== | |||
* {{medline-title | |||
|title=Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. | |||
|date=15.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |||
}} | |||
* {{medline-title | |||
|title=Chromatin remodeling of human subtelomeres and TERRA promoters upon cellular senescence: commonalities and differences between chromosomes. | |||
|date=05.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23644601 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3741221 | |||
}} | |||
==VPS29== | |||
* {{medline-title | |||
|title=Combined Proteomic and Metabolomic Profiling of the [i]Arabidopsis thaliana vps29[/i] Mutant Reveals Pleiotropic Functions of the Retromer in Seed Development. | |||
|date=16.01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30654520 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359594 | |||
}} | |||
* {{medline-title | |||
|title=The retromer complex system in a transgenic mouse model of AD: influence of age. | |||
|date=04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28110103 | |||
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2016.12.025 | |||
}} | |||
==VPS35== | |||
* {{medline-title | |||
|title=Combined Proteomic and Metabolomic Profiling of the [i]Arabidopsis thaliana vps29[/i] Mutant Reveals Pleiotropic Functions of the Retromer in Seed Development. | |||
|date=16.01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30654520 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359594 | |||
}} | |||
* {{medline-title | |||
|title=Vps35 haploinsufficiency results in degenerative-like deficit in mouse retinal ganglion neurons and impairment of optic nerve injury-induced gliosis. | |||
|date=11.02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24512632 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4016418 | |||
}} | |||
==WFIKKN1== | |||
* {{medline-title | |||
|title=Relationship of Circulating Growth and Differentiation Factors 8 and 11 and Their Antagonists as Measured Using Liquid Chromatography-Tandem Mass Spectrometry With Age and Skeletal Muscle Strength in Healthy Adults. | |||
|date=01.01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30380014 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6298188 | |||
}} | |||
* {{medline-title | |||
|title=A targeted proteomic assay for the measurement of plasma proteoforms related to human aging phenotypes. | |||
|date=08.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28508553 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5863538 | |||
}} | |||
==WFIKKN2== | |||
* {{medline-title | |||
|title=Relationship of Circulating Growth and Differentiation Factors 8 and 11 and Their Antagonists as Measured Using Liquid Chromatography-Tandem Mass Spectrometry With Age and Skeletal Muscle Strength in Healthy Adults. | |||
|date=01.01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30380014 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6298188 | |||
}} | |||
* {{medline-title | |||
|title=A targeted proteomic assay for the measurement of plasma proteoforms related to human aging phenotypes. | |||
|date=08.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28508553 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5863538 | |||
}} | |||
==WFS1== | |||
* {{medline-title | |||
|title=Knockdown of wfs1, a fly homolog of Wolfram syndrome 1, in the nervous system increases susceptibility to age- and stress-induced neuronal dysfunction and degeneration in Drosophila. | |||
|date=01.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29357349 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5794194 | |||
}} | |||
* {{medline-title | |||
|title=A nonsynonymous mutation in the [[WFS1]] gene in a Finnish family with age-related hearing impairment. | |||
|date=11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28974383 | |||
|full-text-url=https://sci-hub.do/10.1016/j.heares.2017.09.013 | |||
}} | |||
==WIPI2== | |||
* {{medline-title | |||
|title=Neuronal autophagy declines substantially with age and is rescued by overexpression of [[WIPI2]]. | |||
|date=02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31794336 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6984449 | |||
}} | |||
* {{medline-title | |||
|title=The [[ATG5]]-binding and coiled coil domains of [[ATG16L1]] maintain autophagy and tissue homeostasis in mice independently of the WD domain required for LC3-associated phagocytosis. | |||
|date=04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30403914 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526875 | |||
}} | |||
==WWP1== | |||
* {{medline-title | |||
|title=The ubiquitin ligase [[WWP1]] contributes to shifts in matrix proteolytic profiles and a myocardial aging phenotype with diastolic heart. | |||
|date=01.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32822210 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7717125 | |||
}} | |||
* {{medline-title | |||
|title=Overexpression of miR-584-5p inhibits proliferation and induces apoptosis by targeting WW domain-containing E3 ubiquitin protein ligase 1 in gastric cancer. | |||
|date=21.04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28431583 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5401563 | |||
}} | |||
==YY1== | |||
* {{medline-title | |||
|title=Distinct Age-Related Epigenetic Signatures in [[CD4]] and CD8 T Cells. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33262764 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7686576 | |||
}} | |||
* {{medline-title | |||
|title=Low mitochondrial DNA content associates with familial longevity: the Leiden Longevity Study. | |||
|date=06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24554339 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082602 | |||
}} | |||
==ZC3H12A== | |||
* {{medline-title | |||
|title=Keratinocyte-specific ablation of Mcpip1 impairs skin integrity and promotes local and systemic inflammation. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31786670 | |||
|full-text-url=https://sci-hub.do/10.1007/s00109-019-01853-2 | |||
}} | |||
* {{medline-title | |||
|title=Prediction and characterization of human ageing-related proteins by using machine learning. | |||
|date=06.03.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29511309 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840292 | |||
}} | |||
==ZEB2== | |||
* {{medline-title | |||
|title=miR-200b regulates cellular senescence and inflammatory responses by targeting [[ZEB2]] in pulmonary emphysema. | |||
|date=12.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32070140 | |||
|full-text-url=https://sci-hub.do/10.1080/21691401.2020.1725029 | |||
}} | |||
* {{medline-title | |||
|title=MicroRNA-145 induces the senescence of activated hepatic stellate cells through the activation of p53 pathway by [[ZEB2]]. | |||
|date=05.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30479019 | |||
|full-text-url=https://sci-hub.do/10.1002/jcp.27521 | |||
}} | |||
==ZFX== | |||
* {{medline-title | |||
|title=[[ZFX]] knockdown inhibits growth and migration of non-small cell lung carcinoma cell line H1299. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24228108 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816815 | |||
}} | |||
* {{medline-title | |||
|title=[[ZFX]] regulates glioma cell proliferation and survival in vitro and in vivo. | |||
|date=03.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23322077 | |||
|full-text-url=https://sci-hub.do/10.1007/s11060-012-1032-z | |||
}} | |||
==ZNF521== | |||
* {{medline-title | |||
|title=Reduced subcutaneous adipogenesis in human hypertrophic obesity is linked to senescent precursor cells. | |||
|date=21.06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31227697 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588633 | |||
}} | |||
* {{medline-title | |||
|title=Zinc finger factor 521 enhances adipogenic differentiation of mouse multipotent cells and human bone marrow mesenchymal stem cells. | |||
|date=20.06.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26008984 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4558122 | |||
}} | |||
==ZP2== | |||
* {{medline-title | |||
|title=Coenzyme Q10 ameliorates the quality of postovulatory aged oocytes by suppressing DNA damage and apoptosis. | |||
|date=01.11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31398498 | |||
|full-text-url=https://sci-hub.do/10.1016/j.freeradbiomed.2019.08.002 | |||
}} | |||
* {{medline-title | |||
|title=Melatonin improves the fertilization ability of post-ovulatory aged mouse oocytes by stabilizing ovastacin and Juno to promote sperm binding and fusion. | |||
|date=01.03.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28137755 | |||
|full-text-url=https://sci-hub.do/10.1093/humrep/dew362 | |||
}} | |||
==ZSCAN10== | |||
* {{medline-title | |||
|title=RNA Exosome Complex-Mediated Control of Redox Status in Pluripotent Stem Cells. | |||
|date=10.10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29020613 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5639470 | |||
}} | |||
* {{medline-title | |||
|title=[[ZSCAN10]] expression corrects the genomic instability of iPSCs from aged donors. | |||
|date=09.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28846095 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5843481 | |||
}} | |||
==ABCC1== | |||
* {{medline-title | |||
|title=Dual pathways mediate β-amyloid stimulated glutathione release from astrocytes. | |||
|date=12.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26200696 | |||
|full-text-url=https://sci-hub.do/10.1002/glia.22886 | |||
}} | |||
==ABCC3== | |||
* {{medline-title | |||
|title=Proteomic Analysis of the Developmental Trajectory of Human Hepatic Membrane Transporter Proteins in the First Three Months of Life. | |||
|date=07.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27103634 | |||
|full-text-url=https://sci-hub.do/10.1124/dmd.115.068577 | |||
}} | |||
==ABCC8== | |||
* {{medline-title | |||
|title=A mouse model of human hyperinsulinism produced by the E1506K mutation in the sulphonylurea receptor SUR1. | |||
|date=11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23903354 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3806602 | |||
}} | |||
==ABCE1== | |||
* {{medline-title | |||
|title=Widespread Accumulation of Ribosome-Associated Isolated 3' UTRs in Neuronal Cell Populations of the Aging Brain. | |||
|date=27.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30485811 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6354779 | |||
}} | |||
==ABHD12== | |||
* {{medline-title | |||
|title=Elevated Levels of Arachidonic Acid-Derived Lipids Including Prostaglandins and Endocannabinoids Are Present Throughout [[ABHD12]] Knockout Brains: Novel Insights Into the Neurodegenerative Phenotype. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31213981 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555221 | |||
}} | |||
==ABI3BP== | |||
* {{medline-title | |||
|title=Long noncoding RNA MALAT1 potentiates growth and inhibits senescence by antagonizing [[ABI3BP]] in gallbladder cancer cells. | |||
|date=07.06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31174563 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555920 | |||
}} | |||
==ABL1== | |||
* {{medline-title | |||
|title=European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. | |||
|date=04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32127639 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214240 | |||
}} | |||
==ABLIM3== | |||
* {{medline-title | |||
|title=Dentate granule cell recruitment of feedforward inhibition governs engram maintenance and remote memory generalization. | |||
|date=05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29529016 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5893385 | |||
}} | |||
==ABRA== | |||
* {{medline-title | |||
|title=[[LMX1B]] is essential for the maintenance of differentiated podocytes in adult kidneys. | |||
|date=11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23990680 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810075 | |||
}} | |||
==ACAA2== | |||
* {{medline-title | |||
|title=p46Shc Inhibits Thiolase and Lipid Oxidation in Mitochondria. | |||
|date=10.06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27059956 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933453 | |||
}} | |||
==ACAD9== | |||
* {{medline-title | |||
|title=Identification of a novel mitochondrial complex I assembly factor ACDH-12 in Caenorhabditis elegans. | |||
|date=05.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29540318 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mito.2018.02.010 | |||
}} | |||
==ACADM== | |||
* {{medline-title | |||
|title=High fat diet aggravates atrial and ventricular remodeling of hypertensive heart disease in aging rats. | |||
|date=07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28888352 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jfma.2017.08.008 | |||
}} | |||
==ACER2== | |||
* {{medline-title | |||
|title=Alkaline ceramidase family: The first two decades. | |||
|date=01.12.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33271224 | |||
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2020.109860 | |||
}} | |||
==ACKR2== | |||
* {{medline-title | |||
|title=Atypical chemokine receptor [[ACKR2]] mediates chemokine scavenging by primary human trophoblasts and can regulate fetal growth, placental structure, and neonatal mortality in mice. | |||
|date=15.11.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25297873 | |||
|full-text-url=https://sci-hub.do/10.4049/jimmunol.1401096 | |||
}} | |||
==ACMSD== | |||
* {{medline-title | |||
|title=De novo NAD synthesis enhances mitochondrial function and improves health. | |||
|date=11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30356218 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448761 | |||
}} | |||
==ACO2== | |||
* {{medline-title | |||
|title=Thioredoxin protects mitochondrial structure, function and biogenesis in myocardial ischemia-reperfusion via redox-dependent activation of AKT-CREB- PGC1α pathway in aged mice. | |||
|date=13.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33049718 | |||
|full-text-url=https://sci-hub.do/10.18632/aging.104071 | |||
}} | |||
==ACP2== | |||
* {{medline-title | |||
|title=Association of levels of fasting glucose and insulin with rare variants at the chromosome 11p11.2-[[MADD]] locus: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. | |||
|date=06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24951664 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066205 | |||
}} | |||
==ACSL1== | |||
* {{medline-title | |||
|title=The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32729662 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511879 | |||
}} | |||
==ACSL5== | |||
* {{medline-title | |||
|title=Ageing sensitized by iPLA β deficiency induces liver fibrosis and intestinal atrophy involving suppression of homeostatic genes and alteration of intestinal lipids and bile acids. | |||
|date=12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28888832 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbalip.2017.09.001 | |||
}} | |||
==ACTA2== | |||
* {{medline-title | |||
|title=Tissue Taurine Depletion Induces Profibrotic Pattern of Gene Expression and Causes Aging-Related Cardiac Fibrosis in Heart in Mice. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30270325 | |||
|full-text-url=https://sci-hub.do/10.1248/bpb.b18-00217 | |||
}} | |||
==ACTL7B== | |||
* {{medline-title | |||
|title=Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. | |||
|date=12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27878761 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441979 | |||
}} | |||
==ACTR3B== | |||
* {{medline-title | |||
|title=Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30210331 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6119720 | |||
}} | |||
==ADA2== | |||
* {{medline-title | |||
|title=Manganese(II) Chloride Alters Nucleotide and Nucleoside Catabolism in Zebrafish (Danio rerio) Adult Brain. | |||
|date=05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28547528 | |||
|full-text-url=https://sci-hub.do/10.1007/s12035-017-0601-8 | |||
}} | |||
==ADAM19== | |||
* {{medline-title | |||
|title=[[ADAM19]] and [[HTR4]] variants and pulmonary function: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. | |||
|date=06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24951661 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136502 | |||
}} | |||
==ADAM22== | |||
* {{medline-title | |||
|title=Expression of NgR1-antagonizing proteins decreases with aging and cognitive decline in rat hippocampus. | |||
|date=05.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23525710 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651369 | |||
}} | |||
==ADAM9== | |||
* {{medline-title | |||
|title=[The effect of PNS on the content and activity of alpha-secretase in the brains of SAMP8 mice with alzheimer's disease]. | |||
|date=11.2012 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23627094 | |||
}} | |||
==ADAMTS1== | |||
* {{medline-title | |||
|title=Increased [[ADAMTS1]] mediates [[SPARC]]-dependent collagen deposition in the aging myocardium. | |||
|date=01.06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27143554 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4935141 | |||
}} | |||
==ADAMTS10== | |||
* {{medline-title | |||
|title=Influence of Age on Ocular Biomechanical Properties in a Canine Glaucoma Model with [[ADAMTS10]] Mutation. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27271467 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4894564 | |||
}} | |||
==ADAMTS3== | |||
* {{medline-title | |||
|title=Explorative results from multistep screening for potential genetic risk loci of Alzheimer's disease in the longitudinal VITA study cohort. | |||
|date=01.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29027019 | |||
|full-text-url=https://sci-hub.do/10.1007/s00702-017-1796-6 | |||
}} | |||
==ADAMTS5== | |||
* {{medline-title | |||
|title=Endoplasmic reticulum stress participates in the progress of senescence and apoptosis of osteoarthritis chondrocytes. | |||
|date=16.09.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28728848 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2017.07.094 | |||
}} | |||
==ADAMTS7== | |||
* {{medline-title | |||
|title=Identification of cardiovascular health gene variants related to longevity in a Chinese population. | |||
|date=07.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32897244 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521493 | |||
}} | |||
==ADAR== | |||
* {{medline-title | |||
|title=Enoxacin extends lifespan of C. elegans by inhibiting miR-34-5p and promoting mitohormesis. | |||
|date=09.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29986212 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6037660 | |||
}} | |||
==ADCK1== | |||
* {{medline-title | |||
|title=Functional analysis of Aarf domain-containing kinase 1 in Drosophila melanogaster. | |||
|date=09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31175694 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7271681 | |||
}} | |||
==ADD2== | |||
* {{medline-title | |||
|title=SerThr-PhosphoProteome of Brain from Aged [[PINK1]]-KO A53T-[[SNCA]] Mice Reveals pT1928-[[MAP1B]] and pS3781-[[ANK2]] Deficits, as Hub between Autophagy and Synapse Changes. | |||
|date=04.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31277379 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651490 | |||
}} | |||
==ADK== | |||
* {{medline-title | |||
|title=Deletion of pancreatic β-cell adenosine kinase improves glucose homeostasis in young mice and ameliorates streptozotocin-induced hyperglycaemia. | |||
|date=07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31044530 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6584724 | |||
}} | |||
==ADNP2== | |||
* {{medline-title | |||
|title=[[ADNP]] differentially interact with genes/proteins in correlation with aging: a novel marker for muscle aging. | |||
|date=06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31264075 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6702513 | |||
}} | |||
==ADORA2B== | |||
* {{medline-title | |||
|title=Adenosine A2B receptor: A pathogenic factor and a therapeutic target for sensorineural hearing loss. | |||
|date=12.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33131093 | |||
|full-text-url=https://sci-hub.do/10.1096/fj.202000939R | |||
}} | |||
==ADRA2A== | |||
* {{medline-title | |||
|title=α2A-Adrenergic Receptor Inhibits the Progression of Cervical Cancer Through Blocking PI3K/AKT/mTOR Pathway. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33116632 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574911 | |||
}} | |||
==ADRM1== | |||
* {{medline-title | |||
|title=Androgen receptor polyglutamine expansion drives age-dependent quality control defects and muscle dysfunction. | |||
|date=01.08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29809168 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063498 | |||
}} | |||
==AGAP2== | |||
* {{medline-title | |||
|title=Exosomes derived from microRNA-199a-overexpressing mesenchymal stem cells inhibit glioma progression by down-regulating [[AGAP2]]. | |||
|date=05.08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31386624 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710058 | |||
}} | |||
==AGO1== | |||
* {{medline-title | |||
|title=A transcriptome-wide study on the microRNA- and the Argonaute 1-enriched small RNA-mediated regulatory networks involved in plant leaf senescence. | |||
|date=03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26206233 | |||
|full-text-url=https://sci-hub.do/10.1111/plb.12373 | |||
}} | |||
==AGRP== | |||
* {{medline-title | |||
|title=Influence of Aging and Gender Differences on Feeding Behavior and Ghrelin-Related Factors during Social Isolation in Mice. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26448274 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598162 | |||
}} | |||
==AHNAK== | |||
* {{medline-title | |||
|title=A novel atlas of gene expression in human skeletal muscle reveals molecular changes associated with aging. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26457177 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600214 | |||
}} | |||
==AHSP== | |||
* {{medline-title | |||
|title=Relationship between Sensory Perception and Frailty in a Community-Dwelling Elderly Population. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28537337 | |||
|full-text-url=https://sci-hub.do/10.1007/s12603-016-0836-5 | |||
}} | |||
==AIF1== | |||
* {{medline-title | |||
|title=Sirtuin 1-Chromatin-Binding Dynamics Points to a Common Mechanism Regulating Inflammatory Targets in SIV Infection and in the Aging Brain. | |||
|date=06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29280055 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5930062 | |||
}} | |||
==AK1== | |||
* {{medline-title | |||
|title=Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31733664 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939615 | |||
}} | |||
==AKAP11== | |||
* {{medline-title | |||
|title=Genetic Burden Analyses of Phenotypes Relevant to Aging in the Berlin Aging Study II (BASE-II). | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26821332 | |||
|full-text-url=https://sci-hub.do/10.1159/000438900 | |||
}} | |||
==AKAP12== | |||
* {{medline-title | |||
|title=A-Kinase Anchor Protein 12 Is Required for Oligodendrocyte Differentiation in Adult White Matter. | |||
|date=05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29314444 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5918158 | |||
}} | |||
==AKAP17A== | |||
* {{medline-title | |||
|title=The transcript expression levels of [[HNRNPM]], [[HNRNPA0]] and [[AKAP17A]] splicing factors may be predictively associated with ageing phenotypes in human peripheral blood. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31292793 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733819 | |||
}} | |||
==AKIP1== | |||
* {{medline-title | |||
|title=Expression of potato RNA-binding proteins StUBA2a/b and StUBA2c induces hypersensitive-like cell death and early leaf senescence in Arabidopsis. | |||
|date=07.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25944928 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4473998 | |||
}} | |||
==AKR1B1== | |||
* {{medline-title | |||
|title=Bioinformatics analysis of proteomics profiles in senescent human primary proximal tubule epithelial cells. | |||
|date=01.04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27036204 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4818421 | |||
}} | |||
==AKR1C2== | |||
* {{medline-title | |||
|title=Identification of a gene signature of a pre-transformation process by senescence evasion in normal human epidermal keratinocytes. | |||
|date=14.06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24929818 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4065601 | |||
}} | |||
==AKR1C3== | |||
* {{medline-title | |||
|title=Identification of a gene signature of a pre-transformation process by senescence evasion in normal human epidermal keratinocytes. | |||
|date=14.06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24929818 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4065601 | |||
}} | |||
==AKR7A3== | |||
* {{medline-title | |||
|title=The aged testis. A good model to find proteins involved in age-related changes of testis by proteomic analysis. | |||
|date=01-02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24597284 | |||
}} | |||
==ALAD== | |||
* {{medline-title | |||
|title=Lead-Related Genetic Loci, Cumulative Lead Exposure and Incident Coronary Heart Disease: The Normative Aging Study. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27584680 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5008632 | |||
}} | |||
==ALAS1== | |||
* {{medline-title | |||
|title=Heterozygous disruption of [[ALAS1]] in mice causes an accelerated age-dependent reduction in free heme, but not total heme, in skeletal muscle and liver. | |||
|date=08.12.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33307066 | |||
|full-text-url=https://sci-hub.do/10.1016/j.abb.2020.108721 | |||
}} | |||
==ALAS2== | |||
* {{medline-title | |||
|title=Gene transcripts associated with muscle strength: a CHARGE meta-analysis of 7,781 persons. | |||
|date=01.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26487704 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4757025 | |||
}} | |||
==ALCAM== | |||
* {{medline-title | |||
|title=Zebrafish brain RNA sequencing reveals that cell adhesion molecules are critical in brain aging. | |||
|date=10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32629311 | |||
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2020.04.017 | |||
}} | |||
==ALDH1L1== | |||
* {{medline-title | |||
|title=Review: Astrocytes in Alzheimer's disease and other age-associated dementias: a supporting player with a central role. | |||
|date=06.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27442752 | |||
|full-text-url=https://sci-hub.do/10.1111/nan.12338 | |||
}} | |||
==ALDH3A1== | |||
* {{medline-title | |||
|title=Hallmarks of the cancer cell of origin: Comparisons with "energetic" cancer stem cells (e-CSCs). | |||
|date=13.02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30760648 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382415 | |||
}} | |||
==ALDH4A1== | |||
* {{medline-title | |||
|title=An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31531781 | |||
|full-text-url=https://sci-hub.do/10.1007/s00425-019-03272-6 | |||
}} | |||
==ALKBH1== | |||
* {{medline-title | |||
|title=ALKB-8, a 2-Oxoglutarate-Dependent Dioxygenase and S-Adenosine Methionine-Dependent Methyltransferase Modulates Metabolic Events Linked to Lysosome-Related Organelles and Aging in C. elegans. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30338756 | |||
}} | |||
==ALKBH2== | |||
* {{medline-title | |||
|title=ALKB-8, a 2-Oxoglutarate-Dependent Dioxygenase and S-Adenosine Methionine-Dependent Methyltransferase Modulates Metabolic Events Linked to Lysosome-Related Organelles and Aging in C. elegans. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30338756 | |||
}} | |||
==ALOX12== | |||
* {{medline-title | |||
|title=Arachidonate 12-lipoxygenase and 12-hydroxyeicosatetraenoic acid contribute to stromal aging-induced progression of pancreatic cancer. | |||
|date=15.05.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32265301 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242692 | |||
}} | |||
==ALOX15B== | |||
* {{medline-title | |||
|title=Monocytes present age-related changes in phospholipid concentration and decreased energy metabolism. | |||
|date=04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32107839 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189998 | |||
}} | |||
==ALPL== | |||
* {{medline-title | |||
|title=Physiological blood-brain transport is impaired with age by a shift in transcytosis. | |||
|date=07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32612231 | |||
|full-text-url=https://sci-hub.do/10.1038/s41586-020-2453-z | |||
}} | |||
==ALS2== | |||
* {{medline-title | |||
|title=Age-dependent deterioration of locomotion in Drosophila melanogaster deficient in the homologue of amyotrophic lateral sclerosis 2. | |||
|date=06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24702731 | |||
|full-text-url=https://sci-hub.do/10.1111/gtc.12146 | |||
}} | |||
==ALX4== | |||
* {{medline-title | |||
|title=Age-associated genes in human mammary gland drive human breast cancer progression. | |||
|date=15.06.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32539762 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7294649 | |||
}} | |||
==AMBRA1== | |||
* {{medline-title | |||
|title=MiR-23a-depressed autophagy is a participant in PUVA- and UVB-induced premature senescence. | |||
|date=21.06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27191270 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5122322 | |||
}} | |||
==AMFR== | |||
* {{medline-title | |||
|title=Mice heterozygous for the Cdh23/Ahl1 mutation show age-related deficits in auditory temporal processing. | |||
|date=09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31247458 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6732241 | |||
}} | |||
==ANGPT1== | |||
* {{medline-title | |||
|title=Altered microRNA expression in bovine skeletal muscle with age. | |||
|date=06.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25703017 | |||
|full-text-url=https://sci-hub.do/10.1111/age.12272 | |||
}} | |||
==ANGPT2== | |||
* {{medline-title | |||
|title=Systemic analysis of gene expression profiles in porcine granulosa cells during aging. | |||
|date=14.11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29228554 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5722506 | |||
}} | |||
==ANGPTL4== | |||
* {{medline-title | |||
|title=Involvement of ERK1/2 activation in the gene expression of senescence-associated secretory factors in human hepatic stellate cells. | |||
|date=05.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30426301 | |||
|full-text-url=https://sci-hub.do/10.1007/s11010-018-3466-x | |||
}} | |||
==ANGPTL8== | |||
* {{medline-title | |||
|title=Angiopoietin-like protein 8 ([[ANGPTL8]])/betatrophin overexpression does not increase beta cell proliferation in mice. | |||
|date=07.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25917759 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4473078 | |||
}} | |||
==ANK2== | |||
* {{medline-title | |||
|title=SerThr-PhosphoProteome of Brain from Aged [[PINK1]]-KO A53T-[[SNCA]] Mice Reveals pT1928-[[MAP1B]] and pS3781-[[ANK2]] Deficits, as Hub between Autophagy and Synapse Changes. | |||
|date=04.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31277379 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651490 | |||
}} | |||
==ANKS1B== | |||
* {{medline-title | |||
|title=Explorative results from multistep screening for potential genetic risk loci of Alzheimer's disease in the longitudinal VITA study cohort. | |||
|date=01.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29027019 | |||
|full-text-url=https://sci-hub.do/10.1007/s00702-017-1796-6 | |||
}} | |||
==ANPEP== | |||
* {{medline-title | |||
|title=Aminopeptidase N expression in the endometrium could affect endometrial receptivity. | |||
|date=25.06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31056265 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2019.04.174 | |||
}} | |||
==ANXA1== | |||
* {{medline-title | |||
|title=Assessment of Human Skin Gene Expression by Different Blends of Plant Extracts with Implications to Periorbital Skin Aging. | |||
|date=26.10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30373163 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274848 | |||
}} | |||
==ANXA2== | |||
* {{medline-title | |||
|title=Quantitative proteomic profiling of tumor cell response to telomere dysfunction using isotope-coded protein labeling (ICPL) reveals interaction network of candidate senescence markers. | |||
|date=08.10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23969227 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jprot.2013.08.007 | |||
}} | |||
==AOC1== | |||
* {{medline-title | |||
|title=Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence. | |||
|date=12.09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24028154 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847160 | |||
}} | |||
==AOX1== | |||
* {{medline-title | |||
|title=N1-Methylnicotinamide: An Anti-Ovarian Aging Hormetin? | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32711159 | |||
|full-text-url=https://sci-hub.do/10.1016/j.arr.2020.101131 | |||
}} | |||
==APAF1== | |||
* {{medline-title | |||
|title=Sperm-associated antigen 9 ([[SPAG9]]) promotes the survival and tumor growth of triple-negative breast cancer cells. | |||
|date=10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27449044 | |||
|full-text-url=https://sci-hub.do/10.1007/s13277-016-5240-6 | |||
}} | |||
==APBB2== | |||
* {{medline-title | |||
|title=GSK3β Interactions with Amyloid Genes: An Autopsy Verification and Extension. | |||
|date=10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26194614 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4625986 | |||
}} | |||
==APLN== | |||
* {{medline-title | |||
|title=Relationship of age and body mass index to the expression of obesity and osteoarthritis-related genes in human meniscus. | |||
|date=09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23318714 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3751987 | |||
}} | |||
==APLNR== | |||
* {{medline-title | |||
|title=Endothelial [[APLNR]] regulates tissue fatty acid uptake and is essential for apelin's glucose-lowering effects. | |||
|date=13.09.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28904225 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5703224 | |||
}} | |||
==APOA4== | |||
* {{medline-title | |||
|title=No Association between Variation in Longevity Candidate Genes and Aging-related Phenotypes in Oldest-old Danes. | |||
|date=06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26946122 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841709 | |||
}} | |||
==APOBEC1== | |||
* {{medline-title | |||
|title=Loss of [[APOBEC1]] RNA-editing function in microglia exacerbates age-related CNS pathophysiology. | |||
|date=12.12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29167375 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5740644 | |||
}} | |||
==APOC1== | |||
* {{medline-title | |||
|title=Genetics of Human Longevity From Incomplete Data: New Findings From the Long Life Family Study. | |||
|date=08.10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30299504 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6175028 | |||
}} | |||
==APOC2== | |||
* {{medline-title | |||
|title=Apoc2 loss-of-function zebrafish mutant as a genetic model of hyperlipidemia. | |||
|date=01.08.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26044956 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4527288 | |||
}} | |||
==APOH== | |||
* {{medline-title | |||
|title=Genome-wide significant results identified for plasma apolipoprotein H levels in middle-aged and older adults. | |||
|date=31.03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27030319 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814826 | |||
}} | |||
==APPL1== | |||
* {{medline-title | |||
|title=Insulin and adipokine signaling and their cross-regulation in postmortem human brain. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31539648 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960343 | |||
}} | |||
==AQP9== | |||
* {{medline-title | |||
|title=Seasonal and Ageing-Depending Changes of Aquaporins 1 and 9 Expression in the Genital Tract of Buffalo Bulls (Bubalus bubalis). | |||
|date=08.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27260501 | |||
|full-text-url=https://sci-hub.do/10.1111/rda.12713 | |||
}} | |||
==AQR== | |||
* {{medline-title | |||
|title=Synergism between soluble guanylate cyclase signaling and neuropeptides extends lifespan in the nematode Caenorhabditis elegans. | |||
|date=04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28054425 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5334569 | |||
}} | |||
==ARG1== | |||
* {{medline-title | |||
|title=Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. | |||
|date=05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28325852 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827 | |||
}} | |||
==ARG2== | |||
* {{medline-title | |||
|title=Arginase-2, a miR-1299 target, enhances pigmentation in melasma by reducing melanosome degradation via senescence-induced autophagy inhibition. | |||
|date=01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28627081 | |||
|full-text-url=https://sci-hub.do/10.1111/pcmr.12605 | |||
}} | |||
==ARHGAP1== | |||
* {{medline-title | |||
|title=Targeted sequencing of genome wide significant loci associated with bone mineral density (BMD) reveals significant novel and rare variants: the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) targeted sequencing study. | |||
|date=01.12.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27616567 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5837042 | |||
}} | |||
==ARID5A== | |||
* {{medline-title | |||
|title=Differentially regulated gene expression in quiescence versus senescence and identification of [[ARID5A]] as a quiescence associated marker. | |||
|date=05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29044508 | |||
|full-text-url=https://sci-hub.do/10.1002/jcp.26227 | |||
}} | |||
==ARID5B== | |||
* {{medline-title | |||
|title=Monocytes present age-related changes in phospholipid concentration and decreased energy metabolism. | |||
|date=04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32107839 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189998 | |||
}} | |||
==ARIH2== | |||
* {{medline-title | |||
|title=A novel feed-forward loop between [[ARIH2]] E3-ligase and [[PABPN1]] regulates aging-associated muscle degeneration. | |||
|date=04.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24486325 | |||
|full-text-url=https://sci-hub.do/10.1016/j.ajpath.2013.12.011 | |||
}} | |||
==ARL13B== | |||
* {{medline-title | |||
|title=[[ARL13B]], a Joubert Syndrome-Associated Protein, Is Critical for Retinogenesis and Elaboration of Mouse Photoreceptor Outer Segments. | |||
|date=20.02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30573647 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6381253 | |||
}} | |||
==ARL4C== | |||
* {{medline-title | |||
|title=[[LMX1B]] is essential for the maintenance of differentiated podocytes in adult kidneys. | |||
|date=11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23990680 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810075 | |||
}} | |||
==ARNTL2== | |||
* {{medline-title | |||
|title=Is the aging human ovary still ticking?: Expression of clock-genes in luteinized granulosa cells of young and older women. | |||
|date=21.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30463623 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6247686 | |||
}} | |||
==ARRB2== | |||
* {{medline-title | |||
|title=Age-dependent effects of dopamine receptor inactivation on cocaine-induced behaviors in male rats: Evidence of dorsal striatal D2 receptor supersensitivity. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31304635 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6801044 | |||
}} | |||
==ARSA== | |||
* {{medline-title | |||
|title=Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of [[CSF1R]] and [[NOTCH3]]. | |||
|date=06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29544907 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5937905 | |||
}} | |||
==ASB3== | |||
* {{medline-title | |||
|title=Longitudinal analysis of bronchodilator response in asthmatics and effect modification of age-related trends by genotype. | |||
|date=02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30585438 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6818258 | |||
}} | |||
==ASB7== | |||
* {{medline-title | |||
|title=[[ASB7]] Is a Novel Regulator of Cytoskeletal Organization During Oocyte Maturation. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33251222 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7674779 | |||
}} | |||
==ASF1A== | |||
* {{medline-title | |||
|title=Meta-analysis on blood transcriptomic studies identifies consistently coexpressed protein-protein interaction modules as robust markers of human aging. | |||
|date=04.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24119000 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331790 | |||
}} | |||
==ASIC2== | |||
* {{medline-title | |||
|title=Acidotoxicity and acid-sensing ion channels contribute to motoneuron degeneration. | |||
|date=04.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23306556 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3595486 | |||
}} | |||
==ASIP== | |||
* {{medline-title | |||
|title=Efficacy of an agonist of α-MSH, the palmitoyl tetrapeptide-20, in hair pigmentation. | |||
|date=10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30222197 | |||
|full-text-url=https://sci-hub.do/10.1111/ics.12494 | |||
}} | |||
==ASMT== | |||
* {{medline-title | |||
|title=The influence of ageing on the extrapineal melatonin synthetic pathway. | |||
|date=09.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29906492 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2018.06.010 | |||
}} | |||
==ASPN== | |||
* {{medline-title | |||
|title=The association between higher social support and lower depressive symptoms among aging services clients is attenuated at higher levels of functional impairment. | |||
|date=10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25663607 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4527957 | |||
}} | |||
==ATG10== | |||
* {{medline-title | |||
|title=Genetic associations with age of menopause in familial longevity. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31188284 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7008937 | |||
}} | |||
==ATG13== | |||
* {{medline-title | |||
|title=Rapamycin reverses age-related increases in mitochondrial ROS production at complex I, oxidative stress, accumulation of mtDNA fragments inside nuclear DNA, and lipofuscin level, and increases autophagy, in the liver of middle-aged mice. | |||
|date=10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27498120 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2016.08.002 | |||
}} | |||
==ATG16L1== | |||
* {{medline-title | |||
|title=The [[ATG5]]-binding and coiled coil domains of [[ATG16L1]] maintain autophagy and tissue homeostasis in mice independently of the WD domain required for LC3-associated phagocytosis. | |||
|date=04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30403914 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526875 | |||
}} | |||
==ATG16L2== | |||
* {{medline-title | |||
|title=Epigallocatechin-3-gallate increases autophagy signaling in resting and unloaded plantaris muscles but selectively suppresses autophagy protein abundance in reloaded muscles of aged rats. | |||
|date=06.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28286171 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501279 | |||
}} | |||
==ATG4B== | |||
* {{medline-title | |||
|title=Impaired autophagic activity and [[ATG4B]] deficiency are associated with increased endoplasmic reticulum stress-induced lung injury. | |||
|date=27.08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30147026 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6128419 | |||
}} | |||
==ATG4D== | |||
* {{medline-title | |||
|title=Reduction of Aging-Induced Oxidative Stress and Activation of Autophagy by Bilberry Anthocyanin Supplementation via the AMPK-mTOR Signaling Pathway in Aged Female Rats. | |||
|date=17.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31242723 | |||
|full-text-url=https://sci-hub.do/10.1021/acs.jafc.9b02567 | |||
}} | |||
==ATMIN== | |||
* {{medline-title | |||
|title=Perturbed hematopoiesis in mice lacking [[ATM]]IN. | |||
|date=20.10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27581360 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5147016 | |||
}} | |||
==ATP13A2== | |||
* {{medline-title | |||
|title=Atp13a2-deficient mice exhibit neuronal ceroid lipofuscinosis, limited α-synuclein accumulation and age-dependent sensorimotor deficits. | |||
|date=15.05.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23393156 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633373 | |||
}} | |||
==ATP1A3== | |||
* {{medline-title | |||
|title=The Influence of Na( ), K( )-ATPase on Glutamate Signaling in Neurodegenerative Diseases and Senescence. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27313535 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890531 | |||
}} | |||
==ATP2B1== | |||
* {{medline-title | |||
|title=Reduced expression of PMCA1 is associated with increased blood pressure with age which is preceded by remodelling of resistance arteries. | |||
|date=10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28795531 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5595685 | |||
}} | |||
==ATP6V0C== | |||
* {{medline-title | |||
|title=A pH probe inhibits senescence in mesenchymal stem cells. | |||
|date=07.12.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30526663 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6286523 | |||
}} | |||
==ATP6V1G1== | |||
* {{medline-title | |||
|title=Chemical screening identifies [[ATM]] as a target for alleviating senescence. | |||
|date=06.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28346404 | |||
|full-text-url=https://sci-hub.do/10.1038/nchembio.2342 | |||
}} | |||
==ATP7B== | |||
* {{medline-title | |||
|title=[Copper intoxication decreases lifespan and induces neurologic alterations in Drosophila melanogaster]. | |||
|date=03.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23781712 | |||
}} | |||
==ATXN1== | |||
* {{medline-title | |||
|title=Integrative Analysis of Hippocampus Gene Expression Profiles Identifies Network Alterations in Aging and Alzheimer's Disease. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29875655 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974201 | |||
}} | |||
==AURKB== | |||
* {{medline-title | |||
|title=Aurora kinase mRNA expression is reduced with increasing gestational age and in severe early onset fetal growth restriction. | |||
|date=06.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32452402 | |||
|full-text-url=https://sci-hub.do/10.1016/j.placenta.2020.04.012 | |||
}} | |||
==AURKC== | |||
* {{medline-title | |||
|title=Aurora kinase mRNA expression is reduced with increasing gestational age and in severe early onset fetal growth restriction. | |||
|date=06.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32452402 | |||
|full-text-url=https://sci-hub.do/10.1016/j.placenta.2020.04.012 | |||
}} | |||
==AVPR1A== | |||
* {{medline-title | |||
|title=Introduction of the human [[AVPR1A]] gene substantially alters brain receptor expression patterns and enhances aspects of social behavior in transgenic mice. | |||
|date=08.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24924430 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107330 | |||
}} | |||
==BAALC== | |||
* {{medline-title | |||
|title=Relation of [[BAALC]] and [[ERG]] Gene Expression with Overall Survival in Acute Myeloid Leukemia Cases. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26625814 | |||
|full-text-url=https://sci-hub.do/10.7314/apjcp.2015.16.17.7875 | |||
}} | |||
==BAAT== | |||
* {{medline-title | |||
|title=Prevalence and associated metabolic factors of fatty liver disease in the elderly. | |||
|date=08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23721951 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2013.05.059 | |||
}} | |||
==BACE2== | |||
* {{medline-title | |||
|title=Lessons from a [[BACE1]] inhibitor trial: off-site but not off base. | |||
|date=10.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24530026 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4205206 | |||
}} | |||
==BAG2== | |||
* {{medline-title | |||
|title=[[BAG2]] Interferes with CHIP-Mediated Ubiquitination of HSP72. | |||
|date=30.12.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28042827 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5297704 | |||
}} | |||
==BAG5== | |||
* {{medline-title | |||
|title=miR-155 inhibits mitophagy through suppression of [[BAG5]], a partner protein of [[PINK1]]. | |||
|date=12.03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31948758 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2020.01.022 | |||
}} | |||
==BAP1== | |||
* {{medline-title | |||
|title=The [[BAP1]]/[[ASXL2]] Histone H2A Deubiquitinase Complex Regulates Cell Proliferation and Is Disrupted in Cancer. | |||
|date=27.11.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26416890 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4661380 | |||
}} | |||
==BAZ1A== | |||
* {{medline-title | |||
|title=Chromatin remodeling factor [[BAZ1A]] regulates cellular senescence in both cancer and normal cells. | |||
|date=15.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31085244 | |||
|full-text-url=https://sci-hub.do/10.1016/j.lfs.2019.05.023 | |||
}} | |||
==BAZ2B== | |||
* {{medline-title | |||
|title=Two conserved epigenetic regulators prevent healthy ageing. | |||
|date=03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32103178 | |||
|full-text-url=https://sci-hub.do/10.1038/s41586-020-2037-y | |||
}} | |||
==BBC3== | |||
* {{medline-title | |||
|title=The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. | |||
|date=29.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32997995 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527782 | |||
}} | |||
==BBS5== | |||
* {{medline-title | |||
|title=Progressive Characterization of Visual Phenotype in Bardet-Biedl Syndrome Mutant Mice. | |||
|date=01.03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30901771 | |||
|full-text-url=https://sci-hub.do/10.1167/iovs.18-25210 | |||
}} | |||
==BCAS1== | |||
* {{medline-title | |||
|title=Hallmarks of the cancer cell of origin: Comparisons with "energetic" cancer stem cells (e-CSCs). | |||
|date=13.02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30760648 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382415 | |||
}} | |||
==BCL2L11== | |||
* {{medline-title | |||
|title=miRNA expression profiling uncovers a role of miR-302b-3p in regulating skin fibroblasts senescence. | |||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31074095 | |||
|full-text-url=https://sci-hub.do/10.1002/jcb.28862 | |||
}} | |||
==BCORL1== | |||
* {{medline-title | |||
|title=Age-related mutations associated with clonal hematopoietic expansion and malignancies. | |||
|date=12.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25326804 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4313872 | |||
}} | |||
==BFSP1== | |||
* {{medline-title | |||
|title=The oxidized thiol proteome in aging and cataractous mouse and human lens revealed by ICAT labeling. | |||
|date=04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28177569 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5334568 | |||
}} | |||
==BHLHE40== | |||
* {{medline-title | |||
|title=Thyroid hormone induces cellular senescence in prostate cancer cells through induction of DEC1. | |||
|date=07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32360904 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jsbmb.2020.105689 | |||
}} | |||
==BICD1== | |||
* {{medline-title | |||
|title=Kidney Allograft Telomere Length Is Not Associated with Sex, Recipient Comorbid Conditions, Post-Transplant Infections, or CMV Reactivation. | |||
|date=28.06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27350315 | |||
|full-text-url=https://sci-hub.do/10.12659/aot.898007 | |||
}} | |||
==BIRC5== | |||
* {{medline-title | |||
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335 | |||
}} | |||
==BLVRA== | |||
* {{medline-title | |||
|title=Attenuation of epigenetic regulator [[SMARCA4]] and ERK-ETS signaling suppresses aging-related dopaminergic degeneration. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32749068 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511865 | |||
}} | |||
==BMP5== | |||
* {{medline-title | |||
|title=[[BMP5]] expression in the adult rat brain. | |||
|date=22.01.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25110111 | |||
|full-text-url=https://sci-hub.do/10.1016/j.neuroscience.2014.07.057 | |||
}} | |||
==BNC1== | |||
* {{medline-title | |||
|title=Basonuclin 1 deficiency causes testicular premature aging: [[BNC1]] cooperates with [[TAF7]]L to regulate spermatogenesis. | |||
|date=22.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31065688 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052986 | |||
}} | |||
==BNC2== | |||
* {{medline-title | |||
|title=Genetic variants associated with skin aging in the Chinese Han population. | |||
|date=04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28057405 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jdermsci.2016.12.017 | |||
}} | |||
==BOC== | |||
* {{medline-title | |||
|title=Protein Requirements of Elderly Chinese Adults Are Higher than Current Recommendations. | |||
|date=01.05.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32140711 | |||
|full-text-url=https://sci-hub.do/10.1093/jn/nxaa031 | |||
}} | |||
==BOK== | |||
* {{medline-title | |||
|title=Comparative proteomic analysis of primordial follicles from ovaries of immature and aged rats. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26391928 | |||
|full-text-url=https://sci-hub.do/10.3109/19396368.2015.1077903 | |||
}} | |||
==BRD3== | |||
* {{medline-title | |||
|title=Neuroprotective effects of targeting BET proteins for degradation with dBET1 in aged mice subjected to ischemic stroke. | |||
|date=07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30872008 | |||
|full-text-url=https://sci-hub.do/10.1016/j.neuint.2019.03.004 | |||
}} | |||
==BRD7== | |||
* {{medline-title | |||
|title=[[XIAP]]-associating factor 1, a transcriptional target of [[BRD7]], contributes to endothelial cell senescence. | |||
|date=02.02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26802028 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4868675 | |||
}} | |||
==BRINP1== | |||
* {{medline-title | |||
|title=Absence of [[BRINP1]] in mice causes increase of hippocampal neurogenesis and behavioral alterations relevant to human psychiatric disorders. | |||
|date=14.02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24528488 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3928644 | |||
}} | |||
==BSG== | |||
* {{medline-title | |||
|title=Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients. | |||
|date=03.09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31560770 | |||
|full-text-url=https://sci-hub.do/10.1167/iovs.19-27921 | |||
}} | |||
==BTG3== | |||
* {{medline-title | |||
|title=Investigating the specific core genetic-and-epigenetic networks of cellular mechanisms involved in human aging in peripheral blood mononuclear cells. | |||
|date=23.02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26895224 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890987 | |||
}} | |||
==BTG4== | |||
* {{medline-title | |||
|title=Age-related decrease of IF5/[[BTG4]] in oral and respiratory cavities in mice. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25660503 | |||
|full-text-url=https://sci-hub.do/10.1080/09168451.2015.1008976 | |||
}} | |||
==BUB1== | |||
* {{medline-title | |||
|title=Links between nucleolar activity, rDNA stability, aneuploidy and chronological aging in the yeast Saccharomyces cerevisiae. | |||
|date=06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24711086 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019837 | |||
}} | |||
==C1QA== | |||
* {{medline-title | |||
|title=[[APOE]] Stabilization by Exercise Prevents Aging Neurovascular Dysfunction and Complement Induction. | |||
|date=10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26512759 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4626092 | |||
}} | |||
==C2CD2== | |||
* {{medline-title | |||
|title=Genetic variants associated with physical performance and anthropometry in old age: a genome-wide association study in the ilSIRENTE cohort. | |||
|date=20.11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29158487 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5696534 | |||
}} | |||
==C4A== | |||
* {{medline-title | |||
|title=Investigation of complement component C4 copy number variation in human longevity. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24465950 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899116 | |||
}} | |||
==C4B== | |||
* {{medline-title | |||
|title=Investigation of complement component C4 copy number variation in human longevity. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24465950 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899116 | |||
}} | |||
==C8orf48== | |||
* {{medline-title | |||
|title=Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. | |||
|date=07.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24496748 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209016 | |||
}} | |||
==CA10== | |||
* {{medline-title | |||
|title=Genome wide association study of age at menarche in the Japanese population. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23667675 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646805 | |||
}} | |||
==CABLES1== | |||
* {{medline-title | |||
|title=[[CABLES1]] Deficiency Impairs Quiescence and Stress Responses of Hematopoietic Stem Cells in Intrinsic and Extrinsic Manners. | |||
|date=13.08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31327733 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700604 | |||
}} | |||
==CACNA1B== | |||
* {{medline-title | |||
|title=Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31254144 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733812 | |||
}} | |||
==CACNA1F== | |||
* {{medline-title | |||
|title=Amyloid Precursor-Like Protein 2 deletion-induced retinal synaptopathy related to congenital stationary night blindness: structural, functional and molecular characteristics. | |||
|date=08.06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27267879 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897877 | |||
}} | |||
==CACNA1S== | |||
* {{medline-title | |||
|title=Increased calcium channel in the lamina propria of aging rat. | |||
|date=31.10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31682233 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834399 | |||
}} | |||
==CACNA2D1== | |||
* {{medline-title | |||
|title=Pregabalin can prevent, but not treat, cognitive dysfunction following abdominal surgery in aged rats. | |||
|date=01.03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26872983 | |||
|full-text-url=https://sci-hub.do/10.1016/j.lfs.2016.02.021 | |||
}} | |||
==CADM2== | |||
* {{medline-title | |||
|title=GWAS of longevity in CHARGE consortium confirms APOE and FOXO3 candidacy. | |||
|date=01.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25199915 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4296168 | |||
}} | |||
==CALHM1== | |||
* {{medline-title | |||
|title=[[CALHM1]] Deletion in Mice Affects Glossopharyngeal Taste Responses, Food Intake, Body Weight, and Life Span. | |||
|date=07.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25855639 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4542651 | |||
}} | |||
==CAMK2A== | |||
* {{medline-title | |||
|title=Nodes and biological processes identified on the basis of network analysis in the brain of the senescence accelerated mice as an Alzheimer's disease animal model. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24194717 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810591 | |||
}} | |||
==CAMKK2== | |||
* {{medline-title | |||
|title=The GID ubiquitin ligase complex is a regulator of AMPK activity and organismal lifespan. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31795790 | |||
|full-text-url=https://sci-hub.do/10.1080/15548627.2019.1695399 | |||
}} | |||
==CAMP== | |||
* {{medline-title | |||
|title=[Study on effect of astragali radix polysaccharides in improving learning and memory functions in aged rats and its mechanism]. | |||
|date=06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25272845 | |||
}} | |||
==CAMSAP1== | |||
* {{medline-title | |||
|title=Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30210331 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6119720 | |||
}} | |||
==CAP1== | |||
* {{medline-title | |||
|title=Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31733664 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939615 | |||
}} | |||
==CAP2== | |||
* {{medline-title | |||
|title=Targeting MRTF/[[SRF]] in [[CAP2]]-dependent dilated cardiomyopathy delays disease onset. | |||
|date=21.03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30762586 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6483011 | |||
}} | |||
==CAPN1== | |||
* {{medline-title | |||
|title=Defects in the [[CAPN1]] Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans. | |||
|date=28.06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27320912 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4927383 | |||
}} | |||
==CAPRIN1== | |||
* {{medline-title | |||
|title=Reduced Levels of the Synaptic Functional Regulator FMRP in Dentate Gyrus of the Aging Sprague-Dawley Rat. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29218006 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5703695 | |||
}} | |||
==CARD14== | |||
* {{medline-title | |||
|title=Elderly-Onset Generalized Pustular Psoriasis without a Previous History of Psoriasis Vulgaris. | |||
|date=05-08.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26351429 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4560317 | |||
}} | |||
==CARMIL1== | |||
* {{medline-title | |||
|title=Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. | |||
|date=05.03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109421 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058826 | |||
}} | |||
==CASP2== | |||
* {{medline-title | |||
|title=Dual role of the caspase enzymes in satellite cells from aged and young subjects. | |||
|date=12.12.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24336075 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877545 | |||
}} | |||
==CASP5== | |||
* {{medline-title | |||
|title=Gene expression of inflammasome components in peripheral blood mononuclear cells (PBMC) of vascular patients increases with age. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26448778 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596365 | |||
}} | |||
==CASP6== | |||
* {{medline-title | |||
|title=Dual role of the caspase enzymes in satellite cells from aged and young subjects. | |||
|date=12.12.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24336075 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877545 | |||
}} | |||
==CASP9== | |||
* {{medline-title | |||
|title=Dual role of the caspase enzymes in satellite cells from aged and young subjects. | |||
|date=12.12.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24336075 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877545 | |||
}} | |||
==CBR1== | |||
* {{medline-title | |||
|title=Age-related changes in hepatic activity and expression of detoxification enzymes in male rats. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23971034 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736498 | |||
}} | |||
==CBSL== | |||
* {{medline-title | |||
|title=Effect of a Community-Based Service Learning Experience in Geriatrics on Internal Medicine Residents and Community Participants. | |||
|date=09.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28734046 | |||
|full-text-url=https://sci-hub.do/10.1111/jgs.14968 | |||
}} | |||
==CBX1== | |||
* {{medline-title | |||
|title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. | |||
|date=24.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659 | |||
}} | |||
==CBX2== | |||
* {{medline-title | |||
|title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. | |||
|date=24.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659 | |||
}} | |||
==CBX3== | |||
* {{medline-title | |||
|title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. | |||
|date=24.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659 | |||
}} | |||
==CBX5== | |||
* {{medline-title | |||
|title=The Ubiquitin-like with PHD and Ring Finger Domains 1 ([[UHRF1]])/DNA Methyltransferase 1 ([[DNMT1]]) Axis Is a Primary Regulator of Cell Senescence. | |||
|date=03.03.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28100769 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5339756 | |||
}} | |||
==CBX6== | |||
* {{medline-title | |||
|title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. | |||
|date=24.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659 | |||
}} | |||
==CCAR2== | |||
* {{medline-title | |||
|title=CCAR-1 is a negative regulator of the heat-shock response in Caenorhabditis elegans. | |||
|date=10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30003683 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156500 | |||
}} | |||
==CCDC102B== | |||
* {{medline-title | |||
|title=Development of a methylation marker set for forensic age estimation using analysis of public methylation data and the Agena Bioscience EpiTYPER system. | |||
|date=09.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27337627 | |||
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2016.06.005 | |||
}} | |||
==CCDC17== | |||
* {{medline-title | |||
|title=Aberrant DNA Methylation in Keratoacanthoma. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27788211 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5082942 | |||
}} | |||
==CCDC71L== | |||
* {{medline-title | |||
|title=Sequencing of 2 subclinical atherosclerosis candidate regions in 3669 individuals: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. | |||
|date=06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24951662 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112104 | |||
}} | |||
==CCDC85A== | |||
* {{medline-title | |||
|title=Genome wide association study of age at menarche in the Japanese population. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23667675 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646805 | |||
}} | |||
==CCDC88A== | |||
* {{medline-title | |||
|title=Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. | |||
|date=02.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29196338 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795392 | |||
}} | |||
==CCL18== | |||
* {{medline-title | |||
|title=Age-specific changes in the molecular phenotype of patients with moderate-to-severe atopic dermatitis. | |||
|date=07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30685456 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jaci.2019.01.015 | |||
}} | |||
==CCL23== | |||
* {{medline-title | |||
|title=Systemic Inflammation and the Increased Risk of Inflamm-Aging and Age-Associated Diseases in People Living With HIV on Long Term Suppressive Antiretroviral Therapy. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31507593 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718454 | |||
}} | |||
==CCL25== | |||
* {{medline-title | |||
|title=Age-related chemokine alterations affect IgA secretion and gut immunity in female mice. | |||
|date=10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32277312 | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-020-09877-9 | |||
}} | |||
==CCL26== | |||
* {{medline-title | |||
|title=Dendritic cells from aged subjects contribute to chronic airway inflammation by activating bronchial epithelial cells under steady state. | |||
|date=11.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24759206 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4205198 | |||
}} | |||
==CCL28== | |||
* {{medline-title | |||
|title=Age-related chemokine alterations affect IgA secretion and gut immunity in female mice. | |||
|date=10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32277312 | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-020-09877-9 | |||
}} | |||
==CCL8== | |||
* {{medline-title | |||
|title=Human Monocyte Subsets Are Transcriptionally and Functionally Altered in Aging in Response to Pattern Recognition Receptor Agonists. | |||
|date=15.08.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28696254 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548610 | |||
}} | |||
==CCM2== | |||
* {{medline-title | |||
|title=Vascular permeability in cerebral cavernous malformations. | |||
|date=10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25966944 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4640319 | |||
}} | |||
==CCN4== | |||
* {{medline-title | |||
|title=CCN proteins as potential actionable targets in scleroderma. | |||
|date=01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30329180 | |||
|full-text-url=https://sci-hub.do/10.1111/exd.13806 | |||
}} | |||
==CCNA1== | |||
* {{medline-title | |||
|title=Age-dependent human β cell proliferation induced by glucagon-like peptide 1 and calcineurin signaling. | |||
|date=02.10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28920919 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617654 | |||
}} | |||
==CCNB2== | |||
* {{medline-title | |||
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335 | |||
}} | |||
==CCND2== | |||
* {{medline-title | |||
|title=Oxidative stress-induced miRNAs modulate AKT signaling and promote cellular senescence in uterine leiomyoma. | |||
|date=10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30097674 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6135677 | |||
}} | |||
==CCND3== | |||
* {{medline-title | |||
|title=The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. | |||
|date=29.07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32727592 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392710 | |||
}} | |||
==CCNE1== | |||
* {{medline-title | |||
|title=Hepatoprotective effects of hydroxysafflor yellow A in D-galactose-treated aging mice. | |||
|date=15.08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32454116 | |||
|full-text-url=https://sci-hub.do/10.1016/j.ejphar.2020.173214 | |||
}} | |||
==CCNE2== | |||
* {{medline-title | |||
|title=Circular RNA CircCCNB1 sponges micro RNA-449a to inhibit cellular senescence by targeting [[CCNE2]]. | |||
|date=25.11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31767812 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6914408 | |||
}} | |||
==CCNI== | |||
* {{medline-title | |||
|title=Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. | |||
|date=15.08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23707792 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mce.2013.05.003 | |||
}} | |||
==CCNI2== | |||
* {{medline-title | |||
|title=Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. | |||
|date=15.08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23707792 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mce.2013.05.003 | |||
}} | |||
==CCR1== | |||
* {{medline-title | |||
|title=Myocardial Infarction Superimposed on Aging: MMP-9 Deletion Promotes M2 Macrophage Polarization. | |||
|date=04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25878031 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5175450 | |||
}} | |||
==CCR10== | |||
* {{medline-title | |||
|title=Cardiac aging is initiated by matrix metalloproteinase-9-mediated endothelial dysfunction. | |||
|date=15.05.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24658018 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4024719 | |||
}} | |||
==CCR9== | |||
* {{medline-title | |||
|title=Attenuation of migration properties of CD4 T cells from aged mice correlates with decrease in chemokine receptor expression, response to retinoic acid, and RALDH expression compared to young mice. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25036122 | |||
|full-text-url=https://sci-hub.do/10.1080/09168451.2014.910099 | |||
}} | |||
==CCT8== | |||
* {{medline-title | |||
|title=Somatic increase of [[CCT8]] mimics proteostasis of human pluripotent stem cells and extends C. elegans lifespan. | |||
|date=28.11.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27892468 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133698 | |||
}} | |||
==CD207== | |||
* {{medline-title | |||
|title=Neurogenic factor-induced Langerhans cell activation in diabetic mice with mechanical allodynia. | |||
|date=14.05.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23672639 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685572 | |||
}} | |||
==CD226== | |||
* {{medline-title | |||
|title=T-cell Immunoglobulin and ITIM Domain Contributes to CD8 T-cell Immunosenescence. | |||
|date=04.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29349889 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5847879 | |||
}} | |||
==CD244== | |||
* {{medline-title | |||
|title=Association of Epigenetic Age and p16INK4a With Markers of T-Cell Composition in a Healthy Cohort. | |||
|date=13.11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32361724 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662168 | |||
}} | |||
==CD3G== | |||
* {{medline-title | |||
|title=Phenotypic characteristics of aged [[CD4]] [[CD28]] T lymphocytes are determined by changes in the whole-genome DNA methylation pattern. | |||
|date=04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28026094 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5334526 | |||
}} | |||
==CD48== | |||
* {{medline-title | |||
|title=Genetic overexpression of [[COMP]]-Ang1 impairs BM microenvironment and induces senescence of BM HSCs. | |||
|date=15.05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29604278 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2018.03.210 | |||
}} | |||
==CD55== | |||
* {{medline-title | |||
|title=Loss of complement regulatory proteins on uninfected erythrocytes in vivax and falciparum malaria anemia. | |||
|date=15.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30429373 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6303009 | |||
}} | |||
==CD59== | |||
* {{medline-title | |||
|title=Red Blood Cell Homeostasis and Altered Vesicle Formation in Patients With Paroxysmal Nocturnal Hemoglobinuria. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31156458 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6529780 | |||
}} | |||
==CD6== | |||
* {{medline-title | |||
|title=Epigenetic age predictions based on buccal swabs are more precise in combination with cell type-specific DNA methylation signatures. | |||
|date=05.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27249102 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931852 | |||
}} | |||
==CD72== | |||
* {{medline-title | |||
|title=Crucial Role of Increased Arid3a at the Pre-B and Immature B Cell Stages for B1a Cell Generation. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30930899 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428705 | |||
}} | |||
==CD82== | |||
* {{medline-title | |||
|title=Cell-surface phenotyping identifies [[CD36]] and CD97 as novel markers of fibroblast quiescence in lung fibrosis. | |||
|date=01.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29952218 | |||
|full-text-url=https://sci-hub.do/10.1152/ajplung.00439.2017 | |||
}} | |||
==CD83== | |||
* {{medline-title | |||
|title=Human mesothelioma induces defects in dendritic cell numbers and antigen-processing function which predict survival outcomes. | |||
|date=02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27057464 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4801471 | |||
}} | |||
==CD8A== | |||
* {{medline-title | |||
|title=Systemic Inflammation and the Increased Risk of Inflamm-Aging and Age-Associated Diseases in People Living With HIV on Long Term Suppressive Antiretroviral Therapy. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31507593 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718454 | |||
}} | |||
==CD8B== | |||
* {{medline-title | |||
|title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. | |||
|date=31.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708 | |||
}} | |||
==CDC20== | |||
* {{medline-title | |||
|title=Premature aging syndrome showing random chromosome number instabilities with [[CDC20]] mutation. | |||
|date=11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33094908 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7681047 | |||
}} | |||
==CDC5L== | |||
* {{medline-title | |||
|title=Comparative transcriptome analysis of Parkinson's disease and Hutchinson-Gilford progeria syndrome reveals shared susceptible cellular network processes. | |||
|date=18.08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32811487 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7437934 | |||
}} | |||
==CDC6== | |||
* {{medline-title | |||
|title=A prototypical non-malignant epithelial model to study genome dynamics and concurrently monitor micro-RNAs and proteins in situ during oncogene-induced senescence. | |||
|date=10.01.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29321003 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763532 | |||
}} | |||
==CDC7== | |||
* {{medline-title | |||
|title=CHO cell culture longevity and recombinant protein yield are enhanced by depletion of miR-7 activity via sponge decoy vectors. | |||
|date=03.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24166820 | |||
|full-text-url=https://sci-hub.do/10.1002/biot.201300325 | |||
}} | |||
==CDC73== | |||
* {{medline-title | |||
|title=Down-regulation of cancer-associated gene [[CDC73]] contributes to cellular senescence. | |||
|date=23.05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29621547 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2018.03.228 | |||
}} | |||
==CDCA3== | |||
* {{medline-title | |||
|title=Expression of [[CDCA3]] Is a Prognostic Biomarker and Potential Therapeutic Target in Non-Small Cell Lung Cancer. | |||
|date=07.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28487093 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jtho.2017.04.018 | |||
}} | |||
==CDCA4== | |||
* {{medline-title | |||
|title=A multidimensional systems biology analysis of cellular senescence in aging and disease. | |||
|date=07.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264951 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333371 | |||
}} | |||
==CDH2== | |||
* {{medline-title | |||
|title=CellBIC: bimodality-based top-down clustering of single-cell RNA sequencing data reveals hierarchical structure of the cell type. | |||
|date=30.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30102368 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6265269 | |||
}} | |||
==CDH23== | |||
* {{medline-title | |||
|title=Compound heterozygosity of the functionally null Cdh23(v-ngt) and hypomorphic Cdh23(ahl) alleles leads to early-onset progressive hearing loss in mice. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24172198 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4160959 | |||
}} | |||
==CDK16== | |||
* {{medline-title | |||
|title=Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. | |||
|date=15.08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23707792 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mce.2013.05.003 | |||
}} | |||
==CDK18== | |||
* {{medline-title | |||
|title=Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. | |||
|date=15.08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23707792 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mce.2013.05.003 | |||
}} | |||
==CDK3== | |||
* {{medline-title | |||
|title=Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. | |||
|date=15.08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23707792 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mce.2013.05.003 | |||
}} | |||
==CDK8== | |||
* {{medline-title | |||
|title=Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. | |||
|date=15.08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23707792 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mce.2013.05.003 | |||
}} | |||
==CDK9== | |||
* {{medline-title | |||
|title=Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. | |||
|date=15.08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23707792 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mce.2013.05.003 | |||
}} | |||
==CDKN2C== | |||
* {{medline-title | |||
|title=Elevated circulating HtrA4 in preeclampsia may alter endothelial expression of senescence genes. | |||
|date=15.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32056555 | |||
|full-text-url=https://sci-hub.do/10.1016/j.placenta.2019.12.012 | |||
}} | |||
==CDO1== | |||
* {{medline-title | |||
|title=The intervention effect of licorice in d-galactose induced aging rats by regulating the taurine metabolic pathway. | |||
|date=19.09.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30131986 | |||
|full-text-url=https://sci-hub.do/10.1039/c8fo00740c | |||
}} | |||
==CDR2== | |||
* {{medline-title | |||
|title=Neuro-degeneration profile of Alzheimer's patients: A brain morphometry study. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28459000 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5397580 | |||
}} | |||
==CEACAM1== | |||
* {{medline-title | |||
|title=Aging-related carcinoembryonic antigen-related cell adhesion molecule 1 signaling promotes vascular dysfunction. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31389127 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826129 | |||
}} | |||
==CEBPA== | |||
* {{medline-title | |||
|title=Permanent cystathionine-β-Synthase gene knockdown promotes inflammation and oxidative stress in immortalized human adipose-derived mesenchymal stem cells, enhancing their adipogenic capacity. | |||
|date=02.08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32800520 | |||
|full-text-url=https://sci-hub.do/10.1016/j.redox.2020.101668 | |||
}} | |||
==CEBPD== | |||
* {{medline-title | |||
|title=Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31254144 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733812 | |||
}} | |||
==CEBPE== | |||
* {{medline-title | |||
|title=Identification and genomic analysis of pedigrees with exceptional longevity identifies candidate rare variants. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32574725 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7461696 | |||
}} | |||
==CELSR2== | |||
* {{medline-title | |||
|title=Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. | |||
|date=10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27329260 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013013 | |||
}} | |||
==CEP55== | |||
* {{medline-title | |||
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335 | |||
}} | |||
==CEP57== | |||
* {{medline-title | |||
|title=BubR1 allelic effects drive phenotypic heterogeneity in mosaic-variegated aneuploidy progeria syndrome. | |||
|date=02.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31738183 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934189 | |||
}} | |||
==CEP95== | |||
* {{medline-title | |||
|title=Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24478790 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894567 | |||
}} | |||
==CERK== | |||
* {{medline-title | |||
|title=MicroRNA-34a causes ceramide accumulation and effects insulin signaling pathway by targeting ceramide kinase ([[CERK]]) in aging skeletal muscle. | |||
|date=06.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32056304 | |||
|full-text-url=https://sci-hub.do/10.1002/jcb.29312 | |||
}} | |||
==CFL2== | |||
* {{medline-title | |||
|title=Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31733664 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939615 | |||
}} | |||
==CFLAR== | |||
* {{medline-title | |||
|title=Senescence-secreted factors activate Myc and sensitize pretransformed cells to TRAIL-induced apoptosis. | |||
|date=06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24589226 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326894 | |||
}} | |||
==CH25H== | |||
* {{medline-title | |||
|title=Atherosclerosis and Alzheimer--diseases with a common cause? Inflammation, oxysterols, vasculature. | |||
|date=21.03.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24656052 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3994432 | |||
}} | |||
==CHMP1B== | |||
* {{medline-title | |||
|title=Overexpression of [[CHMP7]] from rapeseed and Arabidopsis causes dwarfism and premature senescence in Arabidopsis. | |||
|date=01.10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27497741 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jplph.2016.06.023 | |||
}} | |||
==CHMP2B== | |||
* {{medline-title | |||
|title=Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis. | |||
|date=24.02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26912063 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765225 | |||
}} | |||
==CHMP4C== | |||
* {{medline-title | |||
|title=Silencing of human papillomavirus (HPV) E6/E7 oncogene expression affects both the contents and the amounts of extracellular microvesicles released from HPV-positive cancer cells. | |||
|date=01.10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23526637 | |||
|full-text-url=https://sci-hub.do/10.1002/ijc.28164 | |||
}} | |||
==CHMP7== | |||
* {{medline-title | |||
|title=Overexpression of [[CHMP7]] from rapeseed and Arabidopsis causes dwarfism and premature senescence in Arabidopsis. | |||
|date=01.10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27497741 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jplph.2016.06.023 | |||
}} | |||
==CHRDL1== | |||
* {{medline-title | |||
|title=Identification of Human Juvenile Chondrocyte-Specific Factors that Stimulate Stem Cell Growth. | |||
|date=04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26955889 | |||
|full-text-url=https://sci-hub.do/10.1089/ten.TEA.2015.0366 | |||
}} | |||
==CHRFAM7A== | |||
* {{medline-title | |||
|title=Acetylcholinesterase inhibitors targeting the cholinergic anti-inflammatory pathway: a new therapeutic perspective in aging-related disorders. | |||
|date=03.10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31583530 | |||
|full-text-url=https://sci-hub.do/10.1007/s40520-019-01359-4 | |||
}} | |||
==CHRM2== | |||
* {{medline-title | |||
|title=Aging-related changes in the gene expression profile of human lungs. | |||
|date=09.11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33168785 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695411 | |||
}} | |||
==CHRM4== | |||
* {{medline-title | |||
|title=Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. | |||
|date=15.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |||
}} | |||
==CHRNA7== | |||
* {{medline-title | |||
|title=Associations between genetic variations and global motion perception. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31432227 | |||
|full-text-url=https://sci-hub.do/10.1007/s00221-019-05627-7 | |||
}} | |||
==CHRNE== | |||
* {{medline-title | |||
|title=Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. | |||
|date=15.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |||
}} | |||
==CHSY1== | |||
* {{medline-title | |||
|title=Loss of Chondroitin Sulfate Modification Causes Inflammation and Neurodegeneration in [i]skt[/i] Mice. | |||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31754016 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6944401 | |||
}} | |||
==CIC== | |||
* {{medline-title | |||
|title=Cell-in-cell structures are more potent predictors of outcome than senescence or apoptosis in head and neck squamous cell carcinomas. | |||
|date=18.01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28100275 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5241920 | |||
}} | |||
==CILP== | |||
* {{medline-title | |||
|title=Fibrotic-like changes in degenerate human intervertebral discs revealed by quantitative proteomic analysis. | |||
|date=03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26463451 | |||
|full-text-url=https://sci-hub.do/10.1016/j.joca.2015.09.020 | |||
}} | |||
==CILP2== | |||
* {{medline-title | |||
|title=Fibrotic-like changes in degenerate human intervertebral discs revealed by quantitative proteomic analysis. | |||
|date=03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26463451 | |||
|full-text-url=https://sci-hub.do/10.1016/j.joca.2015.09.020 | |||
}} | |||
==CINP== | |||
* {{medline-title | |||
|title=Neuropathology-driven Whole-genome Sequencing Study Points to Novel Candidate Genes for Healthy Brain Aging. | |||
|date=01-03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30681437 | |||
|full-text-url=https://sci-hub.do/10.1097/WAD.0000000000000294 | |||
}} | |||
==CITED2== | |||
* {{medline-title | |||
|title=Downregulation of [[CITED2]] contributes to TGFβ-mediated senescence of tendon-derived stem cells. | |||
|date=04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28084522 | |||
|full-text-url=https://sci-hub.do/10.1007/s00441-016-2552-1 | |||
}} | |||
==CIZ1== | |||
* {{medline-title | |||
|title=DNA damage and neurodegenerative phenotypes in aged Ciz1 null mice. | |||
|date=02.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29154038 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5877805 | |||
}} | |||
==CKAP2== | |||
* {{medline-title | |||
|title=A multidimensional systems biology analysis of cellular senescence in aging and disease. | |||
|date=07.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264951 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333371 | |||
}} | |||
==CLCN6== | |||
* {{medline-title | |||
|title=DNA methylation levels at individual age-associated CpG sites can be indicative for life expectancy. | |||
|date=02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26928272 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4789590 | |||
}} | |||
==CLEC4E== | |||
* {{medline-title | |||
|title=Comparative analysis of microbial sensing molecules in mucosal tissues with aging. | |||
|date=03.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29066255 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821569 | |||
}} | |||
==CLPTM1== | |||
* {{medline-title | |||
|title=Two-stage Bayesian GWAS of 9576 individuals identifies SNP regions that are targeted by miRNAs inversely expressed in Alzheimer's and cancer. | |||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31914222 | |||
|full-text-url=https://sci-hub.do/10.1002/alz.12003 | |||
}} | |||
==CMA1== | |||
* {{medline-title | |||
|title=Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. | |||
|date=05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28325852 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827 | |||
}} | |||
==CMKLR1== | |||
* {{medline-title | |||
|title=Chemerin facilitates intervertebral disc degeneration via [[TLR4]] and [[CMKLR1]] and activation of NF-kB signaling pathway. | |||
|date=11.06.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32526705 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343479 | |||
}} | |||
==CNGA3== | |||
* {{medline-title | |||
|title=DNA methylation-based age prediction from saliva: High age predictability by combination of 7 CpG markers. | |||
|date=07.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28419903 | |||
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.04.006 | |||
}} | |||
==CNKSR3== | |||
* {{medline-title | |||
|title=Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31508907 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6903450 | |||
}} | |||
==CNOT6== | |||
* {{medline-title | |||
|title=miR-29c-3p promotes senescence of human mesenchymal stem cells by targeting [[CNOT6]] through p53-p21 and p16-pRB pathways. | |||
|date=04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26792405 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbamcr.2016.01.005 | |||
}} | |||
==CNTNAP4== | |||
* {{medline-title | |||
|title=A common copy number variation (CNV) polymorphism in the [[CNTNAP4]] gene: association with aging in females. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24223195 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819343 | |||
}} | |||
==CNTRL== | |||
* {{medline-title | |||
|title=Antioxidant status, lipid and color stability of aged beef from grazing steers supplemented with corn grain and increasing levels of flaxseed. | |||
|date=01.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26318758 | |||
|full-text-url=https://sci-hub.do/10.1016/j.meatsci.2015.07.026 | |||
}} | |||
==COG1== | |||
* {{medline-title | |||
|title=PRX2 and PRX25, peroxidases regulated by [[COG1]], are involved in seed longevity in Arabidopsis. | |||
|date=02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31600827 | |||
|full-text-url=https://sci-hub.do/10.1111/pce.13656 | |||
}} | |||
==COL12A1== | |||
* {{medline-title | |||
|title=Genetic associations with age of menopause in familial longevity. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31188284 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7008937 | |||
}} | |||
==COL13A1== | |||
* {{medline-title | |||
|title=[Alu insertion-deletion polymorphism of [[COL13A1]] and [[LAMA2]] genes: The analysis of association with longevity]. | |||
|date=10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29369589 | |||
}} | |||
==COL15A1== | |||
* {{medline-title | |||
|title=Smooth muscle cell-specific deletion of [i]Col15a1[/i] unexpectedly leads to impaired development of advanced atherosclerotic lesions. | |||
|date=01.05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28283548 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451587 | |||
}} | |||
==COL17A1== | |||
* {{medline-title | |||
|title=Hair follicle aging is driven by transepidermal elimination of stem cells via [[COL17A1]] proteolysis. | |||
|date=05.02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26912707 | |||
|full-text-url=https://sci-hub.do/10.1126/science.aad4395 | |||
}} | |||
==COL4A3== | |||
* {{medline-title | |||
|title=Frequency of [[COL4A3]]/COL4A4 mutations amongst families segregating glomerular microscopic hematuria and evidence for activation of the unfolded protein response. Focal and segmental glomerulosclerosis is a frequent development during ageing. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25514610 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267773 | |||
}} | |||
==COL7A1== | |||
* {{medline-title | |||
|title=Biological Effects Induced by Specific Advanced Glycation End Products in the Reconstructed Skin Model of Aging. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26309782 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4497626 | |||
}} | |||
==COL9A1== | |||
* {{medline-title | |||
|title=Enhanced tissue regeneration potential of juvenile articular cartilage. | |||
|date=11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24043472 | |||
|full-text-url=https://sci-hub.do/10.1177/0363546513502945 | |||
}} | |||
==COQ5== | |||
* {{medline-title | |||
|title=Reduction in the levels of CoQ biosynthetic proteins is related to an increase in lifespan without evidence of hepatic mitohormesis. | |||
|date=18.09.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30228311 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143522 | |||
}} | |||
==COQ6== | |||
* {{medline-title | |||
|title=Reduction in the levels of CoQ biosynthetic proteins is related to an increase in lifespan without evidence of hepatic mitohormesis. | |||
|date=18.09.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30228311 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143522 | |||
}} | |||
==COQ9== | |||
* {{medline-title | |||
|title=Reduction in the levels of CoQ biosynthetic proteins is related to an increase in lifespan without evidence of hepatic mitohormesis. | |||
|date=18.09.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30228311 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143522 | |||
}} | |||
==COX5A== | |||
* {{medline-title | |||
|title=[[COX5A]] Plays a Vital Role in Memory Impairment Associated With Brain Aging [i]via[/i] the [[BDNF]]/ERK1/2 Signaling Pathway. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32754029 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7365906 | |||
}} | |||
==COX7A2== | |||
* {{medline-title | |||
|title=Proteomics Analysis to Identify and Characterize the Biomarkers and Physical Activities of Non-Frail and Frail Older Adults. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28367083 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5370285 | |||
}} | |||
==CPA3== | |||
* {{medline-title | |||
|title=Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. | |||
|date=05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28325852 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827 | |||
}} | |||
==CPB2== | |||
* {{medline-title | |||
|title=Characterization of Clostridium perfringens in the feces of adult horses and foals with acute enterocolitis. | |||
|date=01.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24396174 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878003 | |||
}} | |||
==CPSF1== | |||
* {{medline-title | |||
|title=Genome-wide association study for lactation persistency, female fertility, longevity, and lifetime profit index traits in Holstein dairy cattle. | |||
|date=02.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27889128 | |||
|full-text-url=https://sci-hub.do/10.3168/jds.2016-11770 | |||
}} | |||
==CPT1A== | |||
* {{medline-title | |||
|title=Alteration of fatty acid oxidation by increased [[CPT1A]] on replicative senescence of placenta-derived mesenchymal stem cells. | |||
|date=03.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31900237 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941254 | |||
}} | |||
==CR2== | |||
* {{medline-title | |||
|title=Age-related but not longevity-related genes are found by weighted gene co-expression network analysis in the peripheral blood cells of humans. | |||
|date=19.01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30541985 | |||
|full-text-url=https://sci-hub.do/10.1266/ggs.17-00052 | |||
}} | |||
==CRB1== | |||
* {{medline-title | |||
|title=[[MPP3]] regulates levels of PALS1 and adhesion between photoreceptors and Müller cells. | |||
|date=10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23893895 | |||
|full-text-url=https://sci-hub.do/10.1002/glia.22545 | |||
}} | |||
==CRBN== | |||
* {{medline-title | |||
|title=Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity. | |||
|date=24.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32332723 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181703 | |||
}} | |||
==CREB1== | |||
* {{medline-title | |||
|title=Arginine Methyltransferase [[PRMT8]] Provides Cellular Stress Tolerance in Aging Motoneurons. | |||
|date=29.08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30054395 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6113905 | |||
}} | |||
==CREBL2== | |||
* {{medline-title | |||
|title=Global Characteristics of CSIG-Associated Gene Expression Changes in Human HEK293 Cells and the Implications for CSIG Regulating Cell Proliferation and Senescence. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26029164 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432801 | |||
}} | |||
==CREG1== | |||
* {{medline-title | |||
|title=[[CREG1]] ameliorates myocardial fibrosis associated with autophagy activation and Rab7 expression. | |||
|date=02.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25774384 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbadis.2014.05.027 | |||
}} | |||
==CRIP2== | |||
* {{medline-title | |||
|title=Transcriptomics of cortical gray matter thickness decline during normal aging. | |||
|date=15.11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23707588 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759649 | |||
}} | |||
==CRISPLD2== | |||
* {{medline-title | |||
|title=A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass. | |||
|date=20.06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31219803 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628988 | |||
}} | |||
==CRK== | |||
* {{medline-title | |||
|title=Crack-cocaine dependence and aging: effects on working memory. | |||
|date=03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27111700 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7115470 | |||
}} | |||
==CRTC1== | |||
* {{medline-title | |||
|title=[[TRPV1]] pain receptors regulate longevity and metabolism by neuropeptide signaling. | |||
|date=22.05.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24855942 | |||
|full-text-url=https://sci-hub.do/10.1016/j.cell.2014.03.051 | |||
}} | |||
==CRTC3== | |||
* {{medline-title | |||
|title=A nutrigenomics approach for the study of anti-aging interventions: olive oil phenols and the modulation of gene and microRNA expression profiles in mouse brain. | |||
|date=03.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26695409 | |||
|full-text-url=https://sci-hub.do/10.1007/s00394-015-1134-4 | |||
}} | |||
==CRX== | |||
* {{medline-title | |||
|title=Transcription coactivators p300 and CBP are necessary for photoreceptor-specific chromatin organization and gene expression. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23922782 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724885 | |||
}} | |||
==CRYAA== | |||
* {{medline-title | |||
|title=Polymorphism rs7278468 is associated with Age-related cataract through decreasing transcriptional activity of the [[CRYAA]] promoter. | |||
|date=17.03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26984531 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4794711 | |||
}} | |||
==CRYL1== | |||
* {{medline-title | |||
|title=Lipid and Alzheimer's disease genes associated with healthy aging and longevity in healthy oldest-old. | |||
|date=28.03.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28206976 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5400530 | |||
}} | |||
==CSAD== | |||
* {{medline-title | |||
|title=The intervention effect of licorice in d-galactose induced aging rats by regulating the taurine metabolic pathway. | |||
|date=19.09.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30131986 | |||
|full-text-url=https://sci-hub.do/10.1039/c8fo00740c | |||
}} | |||
==CSF1== | |||
* {{medline-title | |||
|title=Pleiotropic effects of extended blockade of [[CSF1]]R signaling in adult mice. | |||
|date=08.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24652541 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378363 | |||
}} | |||
==CSF3R== | |||
* {{medline-title | |||
|title=Both Granulocytic and Non-Granulocytic Blood Cells Are Affected in Patients with Severe Congenital Neutropenia and Their Non-Neutropenic Family Members: An Evaluation of Morphology, Function, and Cell Death | |||
|date=13.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30040071 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6256814 | |||
}} | |||
==CSGALNACT1== | |||
* {{medline-title | |||
|title=Alterations in the chondroitin sulfate chain in human osteoarthritic cartilage of the knee. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24280246 | |||
|full-text-url=https://sci-hub.do/10.1016/j.joca.2013.11.010 | |||
}} | |||
==CSN2== | |||
* {{medline-title | |||
|title=Autophagic homeostasis is required for the pluripotency of cancer stem cells. | |||
|date=02.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27929731 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5324853 | |||
}} | |||
==CSNK1D== | |||
* {{medline-title | |||
|title=DNA methylation-based forensic age prediction using artificial neural networks and next generation sequencing. | |||
|date=05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28254385 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5392537 | |||
}} | |||
==CSNK1G2== | |||
* {{medline-title | |||
|title=Casein kinase 1G2 suppresses necroptosis-promoted testis aging by inhibiting receptor-interacting kinase 3. | |||
|date=18.11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33206046 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673785 | |||
}} | |||
==CST3== | |||
* {{medline-title | |||
|title=Improved lipids, diastolic pressure and kidney function are potential contributors to familial longevity: a study on 60 Chinese centenarian families. | |||
|date=25.02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26911903 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766395 | |||
}} | |||
==CST5== | |||
* {{medline-title | |||
|title=Systemic Inflammation and the Increased Risk of Inflamm-Aging and Age-Associated Diseases in People Living With HIV on Long Term Suppressive Antiretroviral Therapy. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31507593 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718454 | |||
}} | |||
==CSTF2T== | |||
* {{medline-title | |||
|title=Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24478790 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894567 | |||
}} | |||
==CTNS== | |||
* {{medline-title | |||
|title=Reducing [[INS]]-[[IGF1]] signaling protects against non-cell autonomous vesicle rupture caused by [[SNCA]] spreading. | |||
|date=05.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31354022 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7144869 | |||
}} | |||
==CTSA== | |||
* {{medline-title | |||
|title=A [[CTSA]]-based consultation service to advance research on special and underserved populations. | |||
|date=16.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33244406 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7681147 | |||
}} | |||
==CTSC== | |||
* {{medline-title | |||
|title=Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis. | |||
|date=24.02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26912063 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765225 | |||
}} | |||
==CTSK== | |||
* {{medline-title | |||
|title=Transcriptome Analysis of B Cell Immune Functions in Periodontitis: Mucosal Tissue Responses to the Oral Microbiome in Aging. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27486459 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4947588 | |||
}} | |||
==CTSS== | |||
* {{medline-title | |||
|title=[[SIRT6]] histone deacetylase functions as a potential oncogene in human melanoma. | |||
|date=09.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29234488 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724804 | |||
}} | |||
==CTU2== | |||
* {{medline-title | |||
|title=Chromosomal alterations among age-related haematopoietic clones in Japan. | |||
|date=08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32581364 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7489641 | |||
}} | |||
==CTXND1== | |||
* {{medline-title | |||
|title=Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. | |||
|date=03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109663 | |||
|full-text-url=https://sci-hub.do/10.1016/j.atherosclerosis.2020.02.005 | |||
}} | |||
==CUBN== | |||
* {{medline-title | |||
|title=A roadmap for the genetic analysis of renal aging. | |||
|date=10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26219736 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568960 | |||
}} | |||
==CUL3== | |||
* {{medline-title | |||
|title=[[KLHL22]] activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing. | |||
|date=05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29769719 | |||
|full-text-url=https://sci-hub.do/10.1038/s41586-018-0128-9 | |||
}} | |||
==CUL4B== | |||
* {{medline-title | |||
|title=[[CUL4B]] impedes stress-induced cellular senescence by dampening a p53-reactive oxygen species positive feedback loop. | |||
|date=02.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25464270 | |||
|full-text-url=https://sci-hub.do/10.1016/j.freeradbiomed.2014.11.010 | |||
}} | |||
==CUX1== | |||
* {{medline-title | |||
|title=Identification of key genes and transcription factors in aging mesenchymal stem cells by DNA microarray data. | |||
|date=15.04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30641220 | |||
|full-text-url=https://sci-hub.do/10.1016/j.gene.2018.12.063 | |||
}} | |||
==CXCL14== | |||
* {{medline-title | |||
|title=Identification of genes associated with endometrial cell aging. | |||
|date=01.12.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33258951 | |||
|full-text-url=https://sci-hub.do/10.1093/molehr/gaaa078 | |||
}} | |||
==CXCL17== | |||
* {{medline-title | |||
|title=[Age-related aspects of the involvement of heat shock proteins in the pathogenesis of osteoarthritis]. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28849876 | |||
}} | |||
==CXCR6== | |||
* {{medline-title | |||
|title=[[CXCR6]] Inhibits Hepatocarcinogenesis by Promoting Natural Killer T- and [[CD4]] T-Cell-Dependent Control of Senescence. | |||
|date=05.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30710528 | |||
|full-text-url=https://sci-hub.do/10.1053/j.gastro.2019.01.247 | |||
}} | |||
==CXXC1== | |||
* {{medline-title | |||
|title=The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. | |||
|date=29.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32997995 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527782 | |||
}} | |||
==CXXC5== | |||
* {{medline-title | |||
|title=Length of paternal lifespan is manifested in the DNA methylome of their nonagenarian progeny. | |||
|date=13.10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26436701 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4741551 | |||
}} | |||
==CYB5R3== | |||
* {{medline-title | |||
|title=Overexpression of [[CYB5R3]] and [[NQO1]], two NAD -producing enzymes, mimics aspects of caloric restriction. | |||
|date=08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29706024 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052403 | |||
}} | |||
==CYBA== | |||
* {{medline-title | |||
|title=[Association between 242C > T polymorphism of NADPH oxidase p22phox gene ([[CYBA]]) and longevity in Russian population]. | |||
|date=03.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23755540 | |||
|full-text-url=https://sci-hub.do/10.7868/s0016675813020136 | |||
}} | |||
==CYCS== | |||
* {{medline-title | |||
|title=The Impact of Age and Sex in DLBCL: Systems Biology Analyses Identify Distinct Molecular Changes and Signaling Networks. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26691437 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4676434 | |||
}} | |||
==CYP11B1== | |||
* {{medline-title | |||
|title=Intratumoral heterogeneity of the tumor cells based on in situ cortisol excess in cortisol-producing adenomas; ∼An association among morphometry, genotype and cellular senescence∼. | |||
|date=11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33002589 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jsbmb.2020.105764 | |||
}} | |||
==CYP26A1== | |||
* {{medline-title | |||
|title=Genetics of Human Longevity From Incomplete Data: New Findings From the Long Life Family Study. | |||
|date=08.10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30299504 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6175028 | |||
}} | |||
==CYP26B1== | |||
* {{medline-title | |||
|title=Increased Retinoic Acid Catabolism in Olfactory Sensory Neurons Activates Dormant Tissue-Specific Stem Cells and Accelerates Age-Related Metaplasia. | |||
|date=20.05.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32385093 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244205 | |||
}} | |||
==CYP2B6== | |||
* {{medline-title | |||
|title=Developmental Expression of [[CYP2B6]]: A Comprehensive Analysis of mRNA Expression, Protein Content and Bupropion Hydroxylase Activity and the Impact of Genetic Variation. | |||
|date=07.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26608082 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931886 | |||
}} | |||
==CYP2U1== | |||
* {{medline-title | |||
|title=Genetic variants associated with lung function: the long life family study. | |||
|date=01.11.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25409777 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228089 | |||
}} | |||
==CYP4X1== | |||
* {{medline-title | |||
|title=Sex- and age-dependent gene expression in human liver: An implication for drug-metabolizing enzymes. | |||
|date=02.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28153492 | |||
|full-text-url=https://sci-hub.do/10.1016/j.dmpk.2016.10.409 | |||
}} | |||
==CYP8B1== | |||
* {{medline-title | |||
|title=Synergic hypocholesterolaemic effect of n-3 PUFA and oestrogen by modulation of hepatic cholesterol metabolism in female rats. | |||
|date=14.12.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26388416 | |||
|full-text-url=https://sci-hub.do/10.1017/S0007114515003517 | |||
}} | |||
==CYSLTR2== | |||
* {{medline-title | |||
|title=Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. | |||
|date=03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109663 | |||
|full-text-url=https://sci-hub.do/10.1016/j.atherosclerosis.2020.02.005 | |||
}} | |||
==DAPK2== | |||
* {{medline-title | |||
|title=SerThr-PhosphoProteome of Brain from Aged [[PINK1]]-KO A53T-[[SNCA]] Mice Reveals pT1928-[[MAP1B]] and pS3781-[[ANK2]] Deficits, as Hub between Autophagy and Synapse Changes. | |||
|date=04.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31277379 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651490 | |||
}} | |||
==DCAF17== | |||
* {{medline-title | |||
|title=Deletion of [[DDB1]]- and CUL4- associated factor-17 (Dcaf17) gene causes spermatogenesis defects and male infertility in mice. | |||
|date=15.06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29907856 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6003934 | |||
}} | |||
==DCAF7== | |||
* {{medline-title | |||
|title=Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24478790 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894567 | |||
}} | |||
==DCHS1== | |||
* {{medline-title | |||
|title=The atypical cadherin Dachsous1 localizes to the base of the ciliary apparatus in airway epithelia. | |||
|date=13.05.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27074579 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2016.04.036 | |||
}} | |||
==DCLRE1C== | |||
* {{medline-title | |||
|title=Polymorphisms of the DNA repair gene [[EXO1]] modulate cognitive aging in old adults in a Taiwanese population. | |||
|date=06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30928815 | |||
|full-text-url=https://sci-hub.do/10.1016/j.dnarep.2019.03.013 | |||
}} | |||
==DCTN1== | |||
* {{medline-title | |||
|title=Alteration of Motor Protein Expression Involved in Bidirectional Transport in Peripheral Blood Mononuclear Cells of Patients with Amyotrophic Lateral Sclerosis. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26954557 | |||
|full-text-url=https://sci-hub.do/10.1159/000443664 | |||
}} | |||
==DCTN2== | |||
* {{medline-title | |||
|title=Dynactin pathway-related gene expression is altered by aging, but not by vitrification. | |||
|date=09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31260804 | |||
|full-text-url=https://sci-hub.do/10.1016/j.reprotox.2019.06.011 | |||
}} | |||
==DCTN6== | |||
* {{medline-title | |||
|title=Dynactin pathway-related gene expression is altered by aging, but not by vitrification. | |||
|date=09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31260804 | |||
|full-text-url=https://sci-hub.do/10.1016/j.reprotox.2019.06.011 | |||
}} | |||
==DCXR== | |||
* {{medline-title | |||
|title=Dicarbonyl/l-xylulose reductase ([[DCXR]]): The multifunctional pentosuria enzyme. | |||
|date=11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23988570 | |||
|full-text-url=https://sci-hub.do/10.1016/j.biocel.2013.08.010 | |||
}} | |||
==DDI2== | |||
* {{medline-title | |||
|title=Androgen receptor polyglutamine expansion drives age-dependent quality control defects and muscle dysfunction. | |||
|date=01.08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29809168 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063498 | |||
}} | |||
==DDIT3== | |||
* {{medline-title | |||
|title=Inhibition of glioma growth by flavokawain B is mediated through endoplasmic reticulum stress induced autophagy. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30025493 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152528 | |||
}} | |||
==DDR1== | |||
* {{medline-title | |||
|title=Age-related modifications of type I collagen impair [[DDR1]]-induced apoptosis in non-invasive breast carcinoma cells. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29733741 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6363044 | |||
}} | |||
==DDX25== | |||
* {{medline-title | |||
|title=Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice. | |||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31472347 | |||
|full-text-url=https://sci-hub.do/10.1016/j.chemosphere.2019.124650 | |||
}} | |||
==DEFB1== | |||
* {{medline-title | |||
|title=Association of Polymorphisms in Innate Immunity Genes [[TLR9]] and [[DEFB1]] with Human Longevity. | |||
|date=05.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26028230 | |||
|full-text-url=https://sci-hub.do/10.1007/s10517-015-2894-9 | |||
}} | |||
==DEFB4B== | |||
* {{medline-title | |||
|title=Different expression of Defensin-B gene in the endometrium of mares of different age during the breeding season. | |||
|date=21.12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31864349 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925900 | |||
}} | |||
==DEK== | |||
* {{medline-title | |||
|title=Altered miRNA and mRNA Expression in Sika Deer Skeletal Muscle with Age. | |||
|date=06.02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32041309 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073773 | |||
}} | |||
==DEPDC1== | |||
* {{medline-title | |||
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335 | |||
}} | |||
==DEPDC5== | |||
* {{medline-title | |||
|title=[[KLHL22]] activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing. | |||
|date=05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29769719 | |||
|full-text-url=https://sci-hub.do/10.1038/s41586-018-0128-9 | |||
}} | |||
==DEPTOR== | |||
* {{medline-title | |||
|title=[[DEPTOR]] at the Nexus of Cancer, Metabolism, and Immunity. | |||
|date=01.07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29897294 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6335100 | |||
}} | |||
==DGAT2== | |||
* {{medline-title | |||
|title=Expression of lipogenic markers is decreased in subcutaneous adipose tissue and adipocytes of older women and is negatively linked to [[GDF15]] expression. | |||
|date=08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30912009 | |||
|full-text-url=https://sci-hub.do/10.1007/s13105-019-00676-6 | |||
}} | |||
==DHCR7== | |||
* {{medline-title | |||
|title=Environmental and genetic determinants of vitamin D status among older adults in London, UK. | |||
|date=11.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26776442 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jsbmb.2016.01.005 | |||
}} | |||
==DHRS2== | |||
* {{medline-title | |||
|title=Acute [[HSF1]] depletion induces cellular senescence through the [[MDM2]]-p53-p21 pathway in human diploid fibroblasts. | |||
|date=08.05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29632240 | |||
|full-text-url=https://sci-hub.do/10.1242/jcs.210724 | |||
}} | |||
==DHX57== | |||
* {{medline-title | |||
|title=Genetic variants near [[MLST8]] and [[DHX57]] affect the epigenetic age of the cerebellum. | |||
|date=02.02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26830004 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4740877 | |||
}} | |||
==DIP2A== | |||
* {{medline-title | |||
|title=Blocking the [[FSTL1]]-[[DIP2A]] Axis Improves Anti-tumor Immunity. | |||
|date=14.08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30110636 | |||
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2018.07.043 | |||
}} | |||
==DKK3== | |||
* {{medline-title | |||
|title=Phosphatase WIP1 regulates adult neurogenesis and WNT signaling during aging. | |||
|date=07.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24911145 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4071391 | |||
}} | |||
==DLAT== | |||
* {{medline-title | |||
|title=Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. | |||
|date=02.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29196338 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795392 | |||
}} | |||
==DLG1== | |||
* {{medline-title | |||
|title=Altered expression of genes for Kir ion channels in dilated cardiomyopathy. | |||
|date=08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23889090 | |||
|full-text-url=https://sci-hub.do/10.1139/cjpp-2012-0413 | |||
}} | |||
==DLGAP2== | |||
* {{medline-title | |||
|title=Cross-Species Analyses Identify Dlgap2 as a Regulator of Age-Related Cognitive Decline and Alzheimer's Dementia. | |||
|date=01.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32877673 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7502175 | |||
}} | |||
==DLK1== | |||
* {{medline-title | |||
|title=Dual role of delta-like 1 homolog ([[DLK1]]) in skeletal muscle development and adult muscle regeneration. | |||
|date=09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23946446 | |||
|full-text-url=https://sci-hub.do/10.1242/dev.095810 | |||
}} | |||
==DLL1== | |||
* {{medline-title | |||
|title=MiR-34a Enhances Chondrocyte Apoptosis, Senescence and Facilitates Development of Osteoarthritis by Targeting [[DLL1]] and Regulating PI3K/AKT Pathway. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30048987 | |||
|full-text-url=https://sci-hub.do/10.1159/000492090 | |||
}} | |||
==DLL4== | |||
* {{medline-title | |||
|title=Dynamic regulation of [[NOTCH1]] activation and Notch ligand expression in human thymus development. | |||
|date=13.08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30042180 | |||
|full-text-url=https://sci-hub.do/10.1242/dev.165597 | |||
}} | |||
==DLX2== | |||
* {{medline-title | |||
|title=A gain-of-function senescence bypass screen identifies the homeobox transcription factor [[DLX2]] as a regulator of [[ATM]]-p53 signaling. | |||
|date=01.02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26833729 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4743059 | |||
}} | |||
==DMPK== | |||
* {{medline-title | |||
|title=Expanded CUG Repeats Trigger Disease Phenotype and Expression Changes through the RNAi Machinery in C. elegans. | |||
|date=19.04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30878478 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jmb.2019.03.003 | |||
}} | |||
==DMRT1== | |||
* {{medline-title | |||
|title=The Jak-STAT target Chinmo prevents sex transformation of adult stem cells in the Drosophila testis niche. | |||
|date=24.11.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25453558 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4254588 | |||
}} | |||
==DNAJB9== | |||
* {{medline-title | |||
|title=[[DNAJB9]] Inhibits p53-Dependent Oncogene-Induced Senescence and Induces Cell Transformation. | |||
|date=30.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264658 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191047 | |||
}} | |||
==DNAJC2== | |||
* {{medline-title | |||
|title=ZRF1 is a novel S6 kinase substrate that drives the senescence programme. | |||
|date=15.03.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28242756 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5350561 | |||
}} | |||
==DNM1== | |||
* {{medline-title | |||
|title=Increased Degradation Rates in the Components of the Mitochondrial Oxidative Phosphorylation Chain in the Cerebellum of Old Mice. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29503614 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5820363 | |||
}} | |||
==DNM1L== | |||
* {{medline-title | |||
|title=Aberrant mitochondrial morphology and function associated with impaired mitophagy and [[DNM1L]]-MAPK/ERK signaling are found in aged mutant Parkinsonian [[LRRK2]] mice. | |||
|date=10.12.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33300446 | |||
|full-text-url=https://sci-hub.do/10.1080/15548627.2020.1850008 | |||
}} | |||
==DNM2== | |||
* {{medline-title | |||
|title=Tamoxifen prolongs survival and alleviates symptoms in mice with fatal X-linked myotubular myopathy. | |||
|date=19.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30451843 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6243013 | |||
}} | |||
==DNMT3L== | |||
* {{medline-title | |||
|title=Transient [[DNMT3L]] Expression Reinforces Chromatin Surveillance to Halt Senescence Progression in Mouse Embryonic Fibroblast. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32195249 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064442 | |||
}} | |||
==DOCK7== | |||
* {{medline-title | |||
|title=Altered thermogenesis and impaired bone remodeling in Misty mice. | |||
|date=09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23553822 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3743939 | |||
}} | |||
==DPP6== | |||
* {{medline-title | |||
|title=A novel structure associated with aging is augmented in the [[DPP6]]-KO mouse brain. | |||
|date=23.11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33225987 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7682109 | |||
}} | |||
==DPYSL2== | |||
* {{medline-title | |||
|title=Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31733664 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939615 | |||
}} | |||
==DRAM2== | |||
* {{medline-title | |||
|title=[[SIRT6]] histone deacetylase functions as a potential oncogene in human melanoma. | |||
|date=09.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29234488 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724804 | |||
}} | |||
==DSC1== | |||
* {{medline-title | |||
|title=HDLs and the pathogenesis of atherosclerosis. | |||
|date=05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29561322 | |||
|full-text-url=https://sci-hub.do/10.1097/HCO.0000000000000508 | |||
}} | |||
==DSC2== | |||
* {{medline-title | |||
|title=Age-dependent clinical and genetic characteristics in Japanese patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23514727 | |||
|full-text-url=https://sci-hub.do/10.1253/circj.cj-12-1446 | |||
}} | |||
==DSG1== | |||
* {{medline-title | |||
|title=Genetic effects on information processing speed are moderated by age--converging results from three samples. | |||
|date=06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24629169 | |||
|full-text-url=https://sci-hub.do/10.1111/gbb.12132 | |||
}} | |||
==DTL== | |||
* {{medline-title | |||
|title=Targeting [[DTL]] induces cell cycle arrest and senescence and suppresses cell growth and colony formation through [[TPX2]] inhibition in human hepatocellular carcinoma cells. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29606879 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5868578 | |||
}} | |||
==DTNBP1== | |||
* {{medline-title | |||
|title=Genetic Biomarkers on Age-Related Cognitive Decline. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29209239 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702307 | |||
}} | |||
==DTX1== | |||
* {{medline-title | |||
|title=Analysis of diarrhetic shellfish poisoning toxins and pectenotoxin-2 in the bottlenose dolphin (Tursiops truncatus) by liquid chromatography-tandem mass spectrometry. | |||
|date=16.10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26381568 | |||
|full-text-url=https://sci-hub.do/10.1016/j.chroma.2015.08.066 | |||
}} | |||
==DTX2== | |||
* {{medline-title | |||
|title=Analysis of diarrhetic shellfish poisoning toxins and pectenotoxin-2 in the bottlenose dolphin (Tursiops truncatus) by liquid chromatography-tandem mass spectrometry. | |||
|date=16.10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26381568 | |||
|full-text-url=https://sci-hub.do/10.1016/j.chroma.2015.08.066 | |||
}} | |||
==DUOX1== | |||
* {{medline-title | |||
|title=Lifespan extension by peroxidase and dual oxidase-mediated ROS signaling through pyrroloquinoline quinone in [i]C. elegans[/i]. | |||
|date=01.08.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28676501 | |||
|full-text-url=https://sci-hub.do/10.1242/jcs.202119 | |||
}} | |||
==DUOX2== | |||
* {{medline-title | |||
|title=Lifespan extension by peroxidase and dual oxidase-mediated ROS signaling through pyrroloquinoline quinone in [i]C. elegans[/i]. | |||
|date=01.08.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28676501 | |||
|full-text-url=https://sci-hub.do/10.1242/jcs.202119 | |||
}} | |||
==DUSP1== | |||
* {{medline-title | |||
|title=miR-1468-3p Promotes Aging-Related Cardiac Fibrosis. | |||
|date=05.06.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32348937 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191129 | |||
}} | |||
==DUSP6== | |||
* {{medline-title | |||
|title=Protection of [[CD4]] T cells from hepatitis C virus infection-associated senescence via ΔNp63-miR-181a-Sirt1 pathway. | |||
|date=11.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27354409 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069086 | |||
}} | |||
==DUSP8== | |||
* {{medline-title | |||
|title=MiR-21-5p/dual-specificity phosphatase 8 signalling mediates the anti-inflammatory effect of haem oxygenase-1 in aged intracerebral haemorrhage rats. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31400088 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826124 | |||
}} | |||
==DUT== | |||
* {{medline-title | |||
|title=Simultaneous liquefaction, saccharification, and fermentation of L-lactic acid using aging paddy rice with hull by an isolated thermotolerant Enterococcus faecalis [[DUT]]1805. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32388689 | |||
|full-text-url=https://sci-hub.do/10.1007/s00449-020-02364-y | |||
}} | |||
==DVL1== | |||
* {{medline-title | |||
|title=DNA methylation patterns associated with oxidative stress in an ageing population. | |||
|date=25.11.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27884142 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5123374 | |||
}} | |||
==DYNC1H1== | |||
* {{medline-title | |||
|title=Dynein mutations associated with hereditary motor neuropathies impair mitochondrial morphology and function with age. | |||
|date=10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23742762 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3748180 | |||
}} | |||
==DYNC2H1== | |||
* {{medline-title | |||
|title=Role for intraflagellar transport in building a functional transition zone. | |||
|date=12.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30429209 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6280794 | |||
}} | |||
==DYNLT3== | |||
* {{medline-title | |||
|title=Age-associated genes in human mammary gland drive human breast cancer progression. | |||
|date=15.06.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32539762 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7294649 | |||
}} | |||
==ECE1== | |||
* {{medline-title | |||
|title=Ferulic Acid Suppresses Amyloid [i]β[/i] Production in the Human Lens Epithelial Cell Stimulated with Hydrogen Peroxide. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28409157 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376927 | |||
}} | |||
==ECRG4== | |||
* {{medline-title | |||
|title=[[ECRG4]]: a new potential target in precision medicine. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30003403 | |||
|full-text-url=https://sci-hub.do/10.1007/s11684-018-0637-9 | |||
}} | |||
==ECSIT== | |||
* {{medline-title | |||
|title=Longevity-related molecular pathways are subject to midlife "switch" in humans. | |||
|date=08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31168962 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612641 | |||
}} | |||
==EDAR== | |||
* {{medline-title | |||
|title=Pharmacological stimulation of Edar signaling in the adult enhances sebaceous gland size and function. | |||
|date=02.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25207818 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4269545 | |||
}} | |||
==EDEM1== | |||
* {{medline-title | |||
|title=Expression of lipogenic markers is decreased in subcutaneous adipose tissue and adipocytes of older women and is negatively linked to [[GDF15]] expression. | |||
|date=08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30912009 | |||
|full-text-url=https://sci-hub.do/10.1007/s13105-019-00676-6 | |||
}} | |||
==EDF1== | |||
* {{medline-title | |||
|title=Silencing of FOREVER YOUNG FLOWER Like Genes from Phalaenopsis Orchids Promotes Flower Senescence and Abscission. | |||
|date=25.11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33237274 | |||
|full-text-url=https://sci-hub.do/10.1093/pcp/pcaa145 | |||
}} | |||
==EDNRA== | |||
* {{medline-title | |||
|title=Variation in genes in the endothelin pathway and endothelium-dependent and endothelium-independent vasodilation in an elderly population. | |||
|date=05.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23336501 | |||
|full-text-url=https://sci-hub.do/10.1111/apha.12068 | |||
}} | |||
==EEA1== | |||
* {{medline-title | |||
|title=Quantitative Immunoblotting Analyses Reveal that the Abundance of Actin, Tubulin, Synaptophysin and [[EEA1]] Proteins is Altered in the Brains of Aged Mice. | |||
|date=21.08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32652177 | |||
|full-text-url=https://sci-hub.do/10.1016/j.neuroscience.2020.06.044 | |||
}} | |||
==EEF1A1== | |||
* {{medline-title | |||
|title=Bioinformatics analysis of proteomics profiles in senescent human primary proximal tubule epithelial cells. | |||
|date=01.04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27036204 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4818421 | |||
}} | |||
==EEF2== | |||
* {{medline-title | |||
|title=Bioinformatics analysis of proteomics profiles in senescent human primary proximal tubule epithelial cells. | |||
|date=01.04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27036204 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4818421 | |||
}} | |||
==EFCAB5== | |||
* {{medline-title | |||
|title=Genetic architecture of epigenetic and neuronal ageing rates in human brain regions. | |||
|date=18.05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28516910 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5454371 | |||
}} | |||
==EFNB1== | |||
* {{medline-title | |||
|title=Activation of EphA4 and EphB2 Reverse Signaling Restores the Age-Associated Reduction of Self-Renewal, Migration, and Actin Turnover in Human Tendon Stem/Progenitor Cells. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26779014 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701947 | |||
}} | |||
==EFNB2== | |||
* {{medline-title | |||
|title=Cartilage-specific deletion of ephrin-B2 in mice results in early developmental defects and an osteoarthritis-like phenotype during aging in vivo. | |||
|date=15.03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26980243 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791873 | |||
}} | |||
==EGFEM1P== | |||
* {{medline-title | |||
|title=Identifying blood-specific age-related DNA methylation markers on the Illumina MethylationEPIC® BeadChip. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31546163 | |||
|full-text-url=https://sci-hub.do/10.1016/j.forsciint.2019.109944 | |||
}} | |||
==EGR2== | |||
* {{medline-title | |||
|title=Age-related impairment of bones' adaptive response to loading in mice is associated with sex-related deficiencies in osteoblasts but no change in osteocytes. | |||
|date=08.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24644060 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4258100 | |||
}} | |||
==EHMT1== | |||
* {{medline-title | |||
|title=Two conserved epigenetic regulators prevent healthy ageing. | |||
|date=03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32103178 | |||
|full-text-url=https://sci-hub.do/10.1038/s41586-020-2037-y | |||
}} | |||
==EID3== | |||
* {{medline-title | |||
|title=Upregulation of [[EID3]] sensitizes breast cancer cells to ionizing radiation-induced cellular senescence. | |||
|date=11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30114644 | |||
|full-text-url=https://sci-hub.do/10.1016/j.biopha.2018.08.022 | |||
}} | |||
==EIF2AK3== | |||
* {{medline-title | |||
|title=The unfolded protein response is activated in disease-affected brain regions in progressive supranuclear palsy and Alzheimer's disease. | |||
|date=06.07.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24252572 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893579 | |||
}} | |||
==EIF2B2== | |||
* {{medline-title | |||
|title=Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of [[CSF1R]] and [[NOTCH3]]. | |||
|date=06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29544907 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5937905 | |||
}} | |||
==EIF2B3== | |||
* {{medline-title | |||
|title=Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of [[CSF1R]] and [[NOTCH3]]. | |||
|date=06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29544907 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5937905 | |||
}} | |||
==EIF2B4== | |||
* {{medline-title | |||
|title=Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of [[CSF1R]] and [[NOTCH3]]. | |||
|date=06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29544907 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5937905 | |||
}} | |||
==EIF4E== | |||
* {{medline-title | |||
|title=Transcriptomic evidence that insulin signalling pathway regulates the ageing of subterranean termite castes. | |||
|date=18.05.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32424344 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235038 | |||
}} | |||
==EIF4EBP1== | |||
* {{medline-title | |||
|title=Peripheral Circulating Exosomal miRNAs Potentially Contribute to the Regulation of Molecular Signaling Networks in Aging. | |||
|date=11.03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32168775 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139634 | |||
}} | |||
==ELANE== | |||
* {{medline-title | |||
|title=Both Granulocytic and Non-Granulocytic Blood Cells Are Affected in Patients with Severe Congenital Neutropenia and Their Non-Neutropenic Family Members: An Evaluation of Morphology, Function, and Cell Death | |||
|date=13.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30040071 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6256814 | |||
}} | |||
==ELK1== | |||
* {{medline-title | |||
|title=Tocotrienol-rich fraction prevents cellular aging by modulating cell proliferation signaling pathways. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25945449 | |||
|full-text-url=https://sci-hub.do/10.7417/CT.2015.1825 | |||
}} | |||
==ELL== | |||
* {{medline-title | |||
|title=Exceptional Longevity and Polygenic Risk for Cardiovascular Health. | |||
|date=18.03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30889929 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471529 | |||
}} | |||
==ELN== | |||
* {{medline-title | |||
|title=Curcumin enhances the production of major structural components of elastic fibers, elastin, and fibrillin-1, in normal human fibroblast cells. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25333322 | |||
|full-text-url=https://sci-hub.do/10.1080/09168451.2014.972324 | |||
}} | |||
==ELOVL6== | |||
* {{medline-title | |||
|title=An Adult Drosophila Glioma Model for Studying Pathometabolic Pathways of Gliomagenesis. | |||
|date=06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30357574 | |||
|full-text-url=https://sci-hub.do/10.1007/s12035-018-1392-2 | |||
}} | |||
==EMILIN2== | |||
* {{medline-title | |||
|title=Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. | |||
|date=05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28325852 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827 | |||
}} | |||
==EML6== | |||
* {{medline-title | |||
|title=Cell fate regulation by reticulon-4 in human prostate cancers. | |||
|date=07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30480803 | |||
|full-text-url=https://sci-hub.do/10.1002/jcp.27704 | |||
}} | |||
==ENPEP== | |||
* {{medline-title | |||
|title=Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. | |||
|date=05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28325852 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827 | |||
}} | |||
==ENTPD1== | |||
* {{medline-title | |||
|title=Ecto-NTPDase CD39 is a negative checkpoint that inhibits follicular helper cell generation. | |||
|date=01.07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32452837 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324201 | |||
}} | |||
==EPG5== | |||
* {{medline-title | |||
|title=Genome-wide scan of depressive symptomatology in two representative cohorts in the United States and the United Kingdom. | |||
|date=05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29486404 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882010 | |||
}} | |||
==EPHA3== | |||
* {{medline-title | |||
|title=A high-content cellular senescence screen identifies candidate tumor suppressors, including [[EPHA3]]. | |||
|date=15.02.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23324396 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3594263 | |||
}} | |||
==EPHA7== | |||
* {{medline-title | |||
|title=Impact of host ageing on the metastatic phenotype. | |||
|date=03.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23403123 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2013.02.001 | |||
}} | |||
==ERAP1== | |||
* {{medline-title | |||
|title=Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31254144 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733812 | |||
}} | |||
==ERBB3== | |||
* {{medline-title | |||
|title=[The expression of differential and matrix remodelling factors in human buccal epithelium in aging]. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24640689 | |||
}} | |||
==ERBB4== | |||
* {{medline-title | |||
|title=Overexpression of [[ERBB4]] rejuvenates aged mesenchymal stem cells and enhances angiogenesis via PI3K/AKT and MAPK/ERK pathways. | |||
|date=03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30566395 | |||
|full-text-url=https://sci-hub.do/10.1096/fj.201801690R | |||
}} | |||
==ERCC2== | |||
* {{medline-title | |||
|title=The genetic component of human longevity: New insights from the analysis of pathway-based SNP-SNP interactions. | |||
|date=06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29577582 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946073 | |||
}} | |||
==ERCC5== | |||
* {{medline-title | |||
|title=Identification of a [[ERCC5]] c.2333T>C (L778P) Variant in Two Tunisian Siblings With Mild Xeroderma Pigmentosum Phenotype. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30838033 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383105 | |||
}} | |||
==ERCC8== | |||
* {{medline-title | |||
|title=Analysis of somatic mutations identifies signs of selection during in vitro aging of primary dermal fibroblasts. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31385397 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826141 | |||
}} | |||
==EREG== | |||
* {{medline-title | |||
|title=Effects of aging on gene expression and mitochondrial DNA in the equine oocyte and follicle cells. | |||
|date=07.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25786490 | |||
|full-text-url=https://sci-hub.do/10.1071/RD14472 | |||
}} | |||
==ERVK-7== | |||
* {{medline-title | |||
|title=Effect of aging on the transcriptomic changes associated with the expression of the HERV-K (HML-2) provirus at 1q22. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32435269 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218820 | |||
}} | |||
==ESCO1== | |||
* {{medline-title | |||
|title=Global Characteristics of CSIG-Associated Gene Expression Changes in Human HEK293 Cells and the Implications for CSIG Regulating Cell Proliferation and Senescence. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26029164 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432801 | |||
}} | |||
==ESPL1== | |||
* {{medline-title | |||
|title=Identification and genomic analysis of pedigrees with exceptional longevity identifies candidate rare variants. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32574725 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7461696 | |||
}} | |||
==ESRG== | |||
* {{medline-title | |||
|title=[[MYC]] Releases Early Reprogrammed Human Cells from Proliferation Pause via Retinoblastoma Protein Inhibition. | |||
|date=10.04.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29641997 | |||
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2018.03.057 | |||
}} | |||
==ETFA== | |||
* {{medline-title | |||
|title=Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone. | |||
|date=07.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24760536 | |||
|full-text-url=https://sci-hub.do/10.1530/EJE-14-0006 | |||
}} | |||
==ETNK2== | |||
* {{medline-title | |||
|title=In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31520345 | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-019-09834-1 | |||
}} | |||
==ETV1== | |||
* {{medline-title | |||
|title=Survival analyses in Holstein cows considering direct disease diagnoses and specific SNP marker effects. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32684467 | |||
|full-text-url=https://sci-hub.do/10.3168/jds.2020-18174 | |||
}} | |||
==ETV5== | |||
* {{medline-title | |||
|title=miR-19b-3p induces cell proliferation and reduces heterochromatin-mediated senescence through PLZF in goat male germline stem cells. | |||
|date=06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29171024 | |||
|full-text-url=https://sci-hub.do/10.1002/jcp.26231 | |||
}} | |||
==ETV6== | |||
* {{medline-title | |||
|title=[[FOXO1]] and [[ETV6]] genes may represent novel regulators of splicing factor expression in cellular senescence. | |||
|date=01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30088951 | |||
|full-text-url=https://sci-hub.do/10.1096/fj.201801154R | |||
}} | |||
==EVC== | |||
* {{medline-title | |||
|title=Decreased centrality of subcortical regions during the transition to adolescence: a functional connectivity study. | |||
|date=01.01.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25290886 | |||
|full-text-url=https://sci-hub.do/10.1016/j.neuroimage.2014.09.063 | |||
}} | |||
==EVL== | |||
* {{medline-title | |||
|title=Health Years in Total: A New Health Objective Function for Cost-Effectiveness Analysis. | |||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31952678 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jval.2019.10.014 | |||
}} | |||
==EXD2== | |||
* {{medline-title | |||
|title=[[EXD2]] governs germ stem cell homeostasis and lifespan by promoting mitoribosome integrity and translation. | |||
|date=02.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29335528 | |||
|full-text-url=https://sci-hub.do/10.1038/s41556-017-0016-9 | |||
}} | |||
==EXOC3L2== | |||
* {{medline-title | |||
|title=Gene-based aggregate SNP associations between candidate AD genes and cognitive decline. | |||
|date=04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27005436 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5005889 | |||
}} | |||
==EXOC7== | |||
* {{medline-title | |||
|title=[[PTBP1]]-Mediated Alternative Splicing Regulates the Inflammatory Secretome and the Pro-tumorigenic Effects of Senescent Cells. | |||
|date=09.07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29990503 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6048363 | |||
}} | |||
==EYA4== | |||
* {{medline-title | |||
|title=A Large Genome-Wide Association Study of Age-Related Hearing Impairment Using Electronic Health Records. | |||
|date=10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27764096 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072625 | |||
}} | |||
==EYS== | |||
* {{medline-title | |||
|title=Ablation of [[EYS]] in zebrafish causes mislocalisation of outer segment proteins, F-actin disruption and cone-rod dystrophy. | |||
|date=05.04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28378834 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5380955 | |||
}} | |||
==EZH1== | |||
* {{medline-title | |||
|title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. | |||
|date=24.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659 | |||
}} | |||
==F10== | |||
* {{medline-title | |||
|title=Hydroalcoholic extract of Spartium junceum L. flowers inhibits growth and melanogenesis in B16-[[F10]] cells by inducing senescence. | |||
|date=15.07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30097108 | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.06.008 | |||
}} | |||
==F11== | |||
* {{medline-title | |||
|title=A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. | |||
|date=07.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23650146 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990406 | |||
}} | |||
==F11R== | |||
* {{medline-title | |||
|title=[Adhesion molecule JAM-A, its function and mechanism of epigenetic regulation]. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28509452 | |||
}} | |||
==F12== | |||
* {{medline-title | |||
|title=Multigenerational effects of carbendazim in Daphnia magna: From a subcellular to a population level. | |||
|date=02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30508263 | |||
|full-text-url=https://sci-hub.do/10.1002/etc.4307 | |||
}} | |||
==FA2H== | |||
* {{medline-title | |||
|title=C. Elegans Fatty Acid Two-Hydroxylase Regulates Intestinal Homeostasis by Affecting Heptadecenoic Acid Production. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30184537 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428043 | |||
}} | |||
==FADS2== | |||
* {{medline-title | |||
|title=Genetic determinants of P wave duration and PR segment. | |||
|date=08.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24850809 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4141024 | |||
}} | |||
==FAM13A== | |||
* {{medline-title | |||
|title=Trade-offs in aging lung diseases: a review on shared but opposite genetic risk variants in idiopathic pulmonary fibrosis, lung cancer and chronic obstructive pulmonary disease. | |||
|date=05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29517586 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5895171 | |||
}} | |||
==FANCC== | |||
* {{medline-title | |||
|title=Fanconi Anemia complementation group C protein in metabolic disorders. | |||
|date=21.06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29930218 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6046246 | |||
}} | |||
==FAT4== | |||
* {{medline-title | |||
|title=Neuron-specific knockdown of the Drosophila fat induces reduction of life span, deficient locomotive ability, shortening of motoneuron terminal branches and defects in axonal targeting. | |||
|date=07.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28488382 | |||
|full-text-url=https://sci-hub.do/10.1111/gtc.12500 | |||
}} | |||
==FBXO28== | |||
* {{medline-title | |||
|title=[[MYC]] Modulation around the CDK2/p27/SKP2 Axis. | |||
|date=30.06.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28665315 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5541307 | |||
}} | |||
==FBXO32== | |||
* {{medline-title | |||
|title=Endophilin-A Deficiency Induces the Foxo3a-Fbxo32 Network in the Brain and Causes Dysregulation of Autophagy and the Ubiquitin-Proteasome System. | |||
|date=18.10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27720640 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5080600 | |||
}} | |||
==FBXO33== | |||
* {{medline-title | |||
|title=Quantitative and Qualitative Role of Antagonistic Heterogeneity in Genetics of Blood Lipids. | |||
|date=25.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31566214 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518561 | |||
}} | |||
==FBXO46== | |||
* {{medline-title | |||
|title=The SCF ubiquitin ligase complex mediates degradation of the tumor suppressor [[FBXO31]] and thereby prevents premature cellular senescence. | |||
|date=19.10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30171069 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6200945 | |||
}} | |||
==FBXO7== | |||
* {{medline-title | |||
|title=The [[FBXO7]] homologue nutcracker and binding partner PI31 in Drosophila melanogaster models of Parkinson's disease. | |||
|date=01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27936908 | |||
|full-text-url=https://sci-hub.do/10.1139/gen-2016-0087 | |||
}} | |||
==FBXW7== | |||
* {{medline-title | |||
|title=[[MYC]] Modulation around the CDK2/p27/SKP2 Axis. | |||
|date=30.06.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28665315 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5541307 | |||
}} | |||
==FCER1G== | |||
* {{medline-title | |||
|title=A Microglial Signature Directing Human Aging and Neurodegeneration-Related Gene Networks. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30733664 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6353788 | |||
}} | |||
==FCGR2A== | |||
* {{medline-title | |||
|title=Impact of C-reactive protein on osteo-/chondrogenic transdifferentiation and calcification of vascular smooth muscle cells. | |||
|date=03.08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31377747 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710049 | |||
}} | |||
==FCGR3A== | |||
* {{medline-title | |||
|title=Genomic regulation of senescence and innate immunity signaling in the retinal pigment epithelium. | |||
|date=06.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25963977 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450138 | |||
}} | |||
==FDPS== | |||
* {{medline-title | |||
|title=Targeting the phospholipase A2 receptor ameliorates premature aging phenotypes. | |||
|date=12.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30216637 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6260922 | |||
}} | |||
==FDXR== | |||
* {{medline-title | |||
|title=The aged testis. A good model to find proteins involved in age-related changes of testis by proteomic analysis. | |||
|date=01-02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24597284 | |||
}} | |||
==FER== | |||
* {{medline-title | |||
|title=Tracking the recognition of static and dynamic facial expressions of emotion across the life span. | |||
|date=04.09.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30208425 | |||
|full-text-url=https://sci-hub.do/10.1167/18.9.5 | |||
}} | |||
==FER1L6== | |||
* {{medline-title | |||
|title=Genome-wide association study and annotating candidate gene networks affecting age at first calving in Nellore cattle. | |||
|date=12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28994157 | |||
|full-text-url=https://sci-hub.do/10.1111/jbg.12299 | |||
}} | |||
==FEZ1== | |||
* {{medline-title | |||
|title=Disruption to schizophrenia-associated gene Fez1 in the hippocampus of [[HDAC11]] knockout mice. | |||
|date=19.09.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28928414 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5605701 | |||
}} | |||
==FGB== | |||
* {{medline-title | |||
|title=[Clinical and genetic characteristics of long-livers in Moscow region]. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24640693 | |||
}} | |||
==FGF14== | |||
* {{medline-title | |||
|title=Fibroblast Growth Factor 14 Modulates the Neurogenesis of Granule Neurons in the Adult Dentate Gyrus. | |||
|date=12.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26687232 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916041 | |||
}} | |||
==FGF7== | |||
* {{medline-title | |||
|title=Prostatic microenvironment in senescence: fibroblastic growth factors × hormonal imbalance. | |||
|date=05.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24362909 | |||
|full-text-url=https://sci-hub.do/10.1007/s00418-013-1173-y | |||
}} | |||
==FGF8== | |||
* {{medline-title | |||
|title=Prostatic microenvironment in senescence: fibroblastic growth factors × hormonal imbalance. | |||
|date=05.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24362909 | |||
|full-text-url=https://sci-hub.do/10.1007/s00418-013-1173-y | |||
}} | |||
==FGFBP1== | |||
* {{medline-title | |||
|title=Muscle Fibers Secrete [[FGFBP1]] to Slow Degeneration of Neuromuscular Synapses during Aging and Progression of ALS. | |||
|date=04.01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28053031 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5214636 | |||
}} | |||
==FGFR3== | |||
* {{medline-title | |||
|title=New evidence for positive selection helps explain the paternal age effect observed in achondroplasia. | |||
|date=15.10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23740942 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781639 | |||
}} | |||
==FGL2== | |||
* {{medline-title | |||
|title=Developmental expression of B cell molecules in equine lymphoid tissues. | |||
|date=01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28063478 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5267323 | |||
}} | |||
==FICD== | |||
* {{medline-title | |||
|title=Defining the limits of normal conjunctival fornix anatomy in a healthy South Asian population. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24314841 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991394 | |||
}} | |||
==FIG4== | |||
* {{medline-title | |||
|title=Knockdown of the Drosophila [[FIG4]] induces deficient locomotive behavior, shortening of motor neuron, axonal targeting aberration, reduction of life span and defects in eye development. | |||
|date=03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26708557 | |||
|full-text-url=https://sci-hub.do/10.1016/j.expneurol.2015.12.011 | |||
}} | |||
==FIGNL1== | |||
* {{medline-title | |||
|title=Comparative proteomic analysis of primordial follicles from ovaries of immature and aged rats. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26391928 | |||
|full-text-url=https://sci-hub.do/10.3109/19396368.2015.1077903 | |||
}} | |||
==FKBP1A== | |||
* {{medline-title | |||
|title=The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. | |||
|date=29.07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32727592 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392710 | |||
}} | |||
==FKBP1B== | |||
* {{medline-title | |||
|title=The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. | |||
|date=29.07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32727592 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392710 | |||
}} | |||
==FKRP== | |||
* {{medline-title | |||
|title=Progressive Dystrophic Pathology in Diaphragm and Impairment of Cardiac Function in [[FKRP]] P448L Mutant Mice. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27711214 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053477 | |||
}} | |||
==FLCN== | |||
* {{medline-title | |||
|title=Loss of the Birt-Hogg-Dubé gene product folliculin induces longevity in a hypoxia-inducible factor-dependent manner. | |||
|date=08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23566034 | |||
|full-text-url=https://sci-hub.do/10.1111/acel.12081 | |||
}} | |||
==FLNA== | |||
* {{medline-title | |||
|title=[[SQSTM1]]/p62 mediates crosstalk between autophagy and the UPS in DNA repair. | |||
|date=02.10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27391408 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391493 | |||
}} | |||
==FLT3== | |||
* {{medline-title | |||
|title=Sequential acquisition of mutations in myelodysplastic syndromes. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28978821 | |||
|full-text-url=https://sci-hub.do/10.11406/rinketsu.58.1828 | |||
}} | |||
==FLT4== | |||
* {{medline-title | |||
|title=Impact of Aging on the Phenotype of Invariant Natural Killer T Cells in Mouse Thymus. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33193368 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662090 | |||
}} | |||
==FMN2== | |||
* {{medline-title | |||
|title=Genomic regulation of senescence and innate immunity signaling in the retinal pigment epithelium. | |||
|date=06.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25963977 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450138 | |||
}} | |||
==FMO1== | |||
* {{medline-title | |||
|title=Functional analysis and transcriptional output of the Göttingen minipig genome. | |||
|date=14.11.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26573612 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4647470 | |||
}} | |||
==FMO3== | |||
* {{medline-title | |||
|title=Genetic and Nongenetic Factors Associated with Protein Abundance of Flavin-Containing Monooxygenase 3 in Human Liver. | |||
|date=11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28819071 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5697103 | |||
}} | |||
==FNTA== | |||
* {{medline-title | |||
|title=The Hip Morphology Changes with Ageing in Asian Population. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30363710 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6180959 | |||
}} | |||
==FOSL1== | |||
* {{medline-title | |||
|title=RNA-Seq analysis reveals new evidence for inflammation-related changes in aged kidney. | |||
|date=24.05.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27153548 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5058662 | |||
}} | |||
==FOSL2== | |||
* {{medline-title | |||
|title=LncRNA GUARDIN suppresses cellular senescence through a LRP130-PGC1α-[[FOXO4]]-p21-dependent signaling axis. | |||
|date=03.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32149459 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132339 | |||
}} | |||
==FOXA3== | |||
* {{medline-title | |||
|title=Glucose restriction delays senescence and promotes proliferation of HUVECs via the AMPK/[[SIRT1]]-[[FOXA3]]-Beclin1 pathway. | |||
|date=01.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32768436 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2020.111053 | |||
}} | |||
==FOXD1== | |||
* {{medline-title | |||
|title=MicroRNA-338-5p plays a tumor suppressor role in glioma through inhibition of the MAPK-signaling pathway by binding to [[FOXD1]]. | |||
|date=12.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30225541 | |||
|full-text-url=https://sci-hub.do/10.1007/s00432-018-2745-y | |||
}} | |||
==FOXP4== | |||
* {{medline-title | |||
|title=Identification of the neurotransmitter profile of AmFoxP expressing neurons in the honeybee brain using double-label in situ hybridization. | |||
|date=06.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30400853 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219247 | |||
}} | |||
==FRAS1== | |||
* {{medline-title | |||
|title=[[FRAS1]]-related extracellular matrix 3 ([[FREM3]]) single-nucleotide polymorphism effects on gene expression, amygdala reactivity and perceptual processing speed: An accelerated aging pathway of depression risk. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26441752 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4584966 | |||
}} | |||
==FREM3== | |||
* {{medline-title | |||
|title=[[FRAS1]]-related extracellular matrix 3 ([[FREM3]]) single-nucleotide polymorphism effects on gene expression, amygdala reactivity and perceptual processing speed: An accelerated aging pathway of depression risk. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26441752 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4584966 | |||
}} | |||
==FRG1== | |||
* {{medline-title | |||
|title=Intergenerational response of steroidogenesis-related genes to maternal malnutrition. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30789120 | |||
|full-text-url=https://sci-hub.do/10.1017/S2040174419000060 | |||
}} | |||
==FRG2== | |||
* {{medline-title | |||
|title=Intergenerational response of steroidogenesis-related genes to maternal malnutrition. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30789120 | |||
|full-text-url=https://sci-hub.do/10.1017/S2040174419000060 | |||
}} | |||
==FSHB== | |||
* {{medline-title | |||
|title=Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. | |||
|date=29.09.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26416764 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598835 | |||
}} | |||
==FSTL5== | |||
* {{medline-title | |||
|title=Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. | |||
|date=12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27878761 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441979 | |||
}} | |||
==FTL== | |||
* {{medline-title | |||
|title=Noncoding variation of the gene for ferritin light chain in hereditary and age-related cataract. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23592921 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3626299 | |||
}} | |||
==FZD1== | |||
* {{medline-title | |||
|title=Frizzled-1 receptor regulates adult hippocampal neurogenesis. | |||
|date=15.03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26980182 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791773 | |||
}} | |||
==FZD4== | |||
* {{medline-title | |||
|title=MiR-1292 Targets [[FZD4]] to Regulate Senescence and Osteogenic Differentiation of Stem Cells in TE/SJ/Mesenchymal Tissue System via the Wnt/β-catenin Pathway. | |||
|date=12.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30574422 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6284756 | |||
}} | |||
==G0S2== | |||
* {{medline-title | |||
|title=Investigating the specific core genetic-and-epigenetic networks of cellular mechanisms involved in human aging in peripheral blood mononuclear cells. | |||
|date=23.02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26895224 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890987 | |||
}} | |||
==G3BP1== | |||
* {{medline-title | |||
|title=Dissecting the molecular mechanisms that impair stress granule formation in aging cells. | |||
|date=03.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27965113 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbamcr.2016.12.008 | |||
}} | |||
==G6PC== | |||
* {{medline-title | |||
|title=Detection of a novel, primate-specific 'kill switch' tumor suppression mechanism that may fundamentally control cancer risk in humans: an unexpected twist in the basic biology of [[TP53]]. | |||
|date=11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29941676 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6106910 | |||
}} | |||
==G6PC2== | |||
* {{medline-title | |||
|title=Genome-wide association study identifies common loci influencing circulating glycated hemoglobin (HbA1c) levels in non-diabetic subjects: the Long Life Family Study (LLFS). | |||
|date=04.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24405752 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965585 | |||
}} | |||
==G6PC3== | |||
* {{medline-title | |||
|title=Both Granulocytic and Non-Granulocytic Blood Cells Are Affected in Patients with Severe Congenital Neutropenia and Their Non-Neutropenic Family Members: An Evaluation of Morphology, Function, and Cell Death | |||
|date=13.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30040071 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6256814 | |||
}} | |||
==GAB2== | |||
* {{medline-title | |||
|title=Age-related gene expression changes, and transcriptome wide association study of physical and cognitive aging traits, in the Lothian Birth Cohort 1936. | |||
|date=01.12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29207374 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5764388 | |||
}} | |||
==GABRR3== | |||
* {{medline-title | |||
|title=Discovery of novel non-synonymous SNP variants in 988 candidate genes from 6 centenarians by target capture and next-generation sequencing. | |||
|date=10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23376243 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787996 | |||
}} | |||
==GADD45B== | |||
* {{medline-title | |||
|title=Are There Common Mechanisms Between the Hutchinson-Gilford Progeria Syndrome and Natural Aging? | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31156709 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6529819 | |||
}} | |||
==GADD45G== | |||
* {{medline-title | |||
|title=SIP1 is a downstream effector of [[GADD45G]] in senescence induction and growth inhibition of liver tumor cells. | |||
|date=20.10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26378039 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4741791 | |||
}} | |||
==GADD45GIP1== | |||
* {{medline-title | |||
|title=Nucleus accumbens-1/[[GADD45GIP1]] axis mediates cisplatin resistance through cellular senescence in ovarian cancer. | |||
|date=06.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28599472 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5453174 | |||
}} | |||
==GAGE10== | |||
* {{medline-title | |||
|title=An epigenome-wide association study of sex-specific chronological ageing. | |||
|date=31.12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31892350 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938636 | |||
}} | |||
==GALNT18== | |||
* {{medline-title | |||
|title=Genome-wide association study identifies [i]SIAH3[/i] locus influencing the rate of ventricular enlargement in non-demented elders. | |||
|date=11.11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31711042 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874439 | |||
}} | |||
==GAR1== | |||
* {{medline-title | |||
|title=Pseudouridylation defect due to [i]DKC1[/i] and [i][[NOP10]][/i] mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis. | |||
|date=30.06.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32554502 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334496 | |||
}} | |||
==GART== | |||
* {{medline-title | |||
|title=Maintaining the continuity of HIV-care records for patients transferring care between centers: challenges, workloads, needs and risks. | |||
|date=08.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26829326 | |||
|full-text-url=https://sci-hub.do/10.1080/09540121.2016.1139042 | |||
}} | |||
==GAS2== | |||
* {{medline-title | |||
|title=Truncated HBx-dependent silencing of [[GAS2]] promotes hepatocarcinogenesis through deregulation of cell cycle, senescence and p53-mediated apoptosis. | |||
|date=09.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25925944 | |||
|full-text-url=https://sci-hub.do/10.1002/path.4554 | |||
}} | |||
==GAST== | |||
* {{medline-title | |||
|title=The effects of age and muscle contraction on AMPK activity and heterotrimer composition. | |||
|date=07.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24747582 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4081450 | |||
}} | |||
==GATA1== | |||
* {{medline-title | |||
|title=Aging negatively impacts the ability of megakaryocytes to stimulate osteoblast proliferation and bone mass. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31299382 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6708771 | |||
}} | |||
==GBA2== | |||
* {{medline-title | |||
|title=Reduced sphingolipid hydrolase activities, substrate accumulation and ganglioside decline in Parkinson's disease. | |||
|date=08.11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31703585 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842240 | |||
}} | |||
==GBF1== | |||
* {{medline-title | |||
|title=Phosphorylation Affects DNA-Binding of the Senescence-Regulating bZIP Transcription Factor [[GBF1]]. | |||
|date=16.09.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27135347 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844403 | |||
}} | |||
==GCGR== | |||
* {{medline-title | |||
|title=Population pharmacokinetics and pharmacodynamics of IONIS-[[GCGR]] , an antisense oligonucleotide for type 2 diabetes mellitus: a red blood cell lifespan model. | |||
|date=06.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28132162 | |||
|full-text-url=https://sci-hub.do/10.1007/s10928-017-9505-5 | |||
}} | |||
==GCH1== | |||
* {{medline-title | |||
|title=Aging modifies the effect of [[GCH1]] RS11158026 on DAT uptake and Parkinson's disease clinical severity. | |||
|date=02.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27871051 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209269 | |||
}} | |||
==GCNT2== | |||
* {{medline-title | |||
|title=Human iPSC-derived [[MSC]]s (i[[MSC]]s) from aged individuals acquire a rejuvenation signature. | |||
|date=18.03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30885246 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423778 | |||
}} | |||
==GDA== | |||
* {{medline-title | |||
|title=Comparison of the Shear Bond Strength of Metal Orthodontic Brackets Bonded to Long-term Water-aged and Fresh Porcelain and Composite Surfaces. | |||
|date=03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30944897 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6436911 | |||
}} | |||
==GDF5== | |||
* {{medline-title | |||
|title=An embryonic CaVβ1 isoform promotes muscle mass maintenance via [[GDF5]] signaling in adult mouse. | |||
|date=06.11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31694926 | |||
|full-text-url=https://sci-hub.do/10.1126/scitranslmed.aaw1131 | |||
}} | |||
==GEN1== | |||
* {{medline-title | |||
|title=US acculturation and poor sleep among an intergenerational cohort of adult Latinos in Sacramento, California. | |||
|date=01.03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30544165 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6424080 | |||
}} | |||
==GFRA1== | |||
* {{medline-title | |||
|title=Determination phase at transition of gonocytes to spermatogonial stem cells improves establishment efficiency of spermatogonial stem cells in domestic cats. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26411537 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4685225 | |||
}} | |||
==GFRAL== | |||
* {{medline-title | |||
|title=Growth differentiation factor 15 ([[GDF15]]): A survival protein with therapeutic potential in metabolic diseases. | |||
|date=06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30790643 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7196666 | |||
}} | |||
==GGA3== | |||
* {{medline-title | |||
|title=The pathological roles of [[NDRG2]] in Alzheimer's disease, a study using animal models and APPwt-overexpressed cells. | |||
|date=08.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28670853 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6492714 | |||
}} | |||
==GGCX== | |||
* {{medline-title | |||
|title=Multiple Modes of Vitamin K Actions in Aging-Related Musculoskeletal Disorders. | |||
|date=11.06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31212662 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6600274 | |||
}} | |||
==GGT1== | |||
* {{medline-title | |||
|title=Relation of size of seminal vesicles on ultrasound to premature ejaculation. | |||
|date=09-10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27538475 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566849 | |||
}} | |||
==GIGYF1== | |||
* {{medline-title | |||
|title=Drosophila Gyf/GRB10 interacting GYF protein is an autophagy regulator that controls neuron and muscle homeostasis. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26086452 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4590642 | |||
}} | |||
==GIGYF2== | |||
* {{medline-title | |||
|title=Drosophila Gyf/GRB10 interacting GYF protein is an autophagy regulator that controls neuron and muscle homeostasis. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26086452 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4590642 | |||
}} | |||
==GJA3== | |||
* {{medline-title | |||
|title=Down-regulation of [[GJA3]] is associated with lens epithelial cell apoptosis and age-related cataract. | |||
|date=26.02.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28088522 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2017.01.050 | |||
}} | |||
==GJA8== | |||
* {{medline-title | |||
|title=The impact of [[GJA8]] SNPs on susceptibility to age-related cataract. | |||
|date=12.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30349978 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267713 | |||
}} | |||
==GJB2== | |||
* {{medline-title | |||
|title=Reduced expression of Connexin26 and its DNA promoter hypermethylation in the inner ear of mimetic aging rats induced by d-galactose. | |||
|date=26.09.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25159847 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2014.08.063 | |||
}} | |||
==GJC2== | |||
* {{medline-title | |||
|title=Zebrafish brain RNA sequencing reveals that cell adhesion molecules are critical in brain aging. | |||
|date=10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32629311 | |||
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2020.04.017 | |||
}} | |||
==GLP1R== | |||
* {{medline-title | |||
|title=A nutrigenomics approach for the study of anti-aging interventions: olive oil phenols and the modulation of gene and microRNA expression profiles in mouse brain. | |||
|date=03.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26695409 | |||
|full-text-url=https://sci-hub.do/10.1007/s00394-015-1134-4 | |||
}} | |||
==GLRA1== | |||
* {{medline-title | |||
|title=Age-associated changes in DNA methylation across multiple tissues in an inbred mouse model. | |||
|date=03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26861500 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4798846 | |||
}} | |||
==GLRA2== | |||
* {{medline-title | |||
|title=Gene Expression Switching of Receptor Subunits in Human Brain Development. | |||
|date=12.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26636753 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4670163 | |||
}} | |||
==GLRA3== | |||
* {{medline-title | |||
|title=Gene Expression Switching of Receptor Subunits in Human Brain Development. | |||
|date=12.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26636753 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4670163 | |||
}} | |||
==GMDS== | |||
* {{medline-title | |||
|title=Validity and clinical utilization of the Chinese version of the Gotland Male Depression Scale at a men's health polyclinic. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25246791 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4166311 | |||
}} | |||
==GML== | |||
* {{medline-title | |||
|title=Age independently affects myelin integrity as detected by magnetization transfer magnetic resonance imaging in multiple sclerosis. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24936415 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053639 | |||
}} | |||
==GNA11== | |||
* {{medline-title | |||
|title=[[GNAQ]] expression initiated in multipotent neural crest cells drives aggressive melanoma of the central nervous system. | |||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31680437 | |||
|full-text-url=https://sci-hub.do/10.1111/pcmr.12843 | |||
}} | |||
==GNA14== | |||
* {{medline-title | |||
|title=Genetic correlation and genome-wide association study (GWAS) of the length of productive life, days open, and 305-days milk yield in crossbred Holstein dairy cattle. | |||
|date=29.06.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28671246 | |||
|full-text-url=https://sci-hub.do/10.4238/gmr16029091 | |||
}} | |||
==GNG11== | |||
* {{medline-title | |||
|title=[[GNG11]] (G-protein subunit γ 11) suppresses cell growth with induction of reactive oxygen species and abnormal nuclear morphology in human SUSM-1 cells. | |||
|date=08.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28380310 | |||
|full-text-url=https://sci-hub.do/10.1139/bcb-2016-0248 | |||
}} | |||
==GNG4== | |||
* {{medline-title | |||
|title=Neurotransmitter Pathway Genes in Cognitive Decline During Aging: Evidence for [[GNG4]] and [[KCNQ2]] Genes. | |||
|date=05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29338302 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6209098 | |||
}} | |||
==GNPAT== | |||
* {{medline-title | |||
|title=Plasmalogens Inhibit Endocytosis of Toll-like Receptor 4 to Attenuate the Inflammatory Signal in Microglial Cells. | |||
|date=05.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30128650 | |||
|full-text-url=https://sci-hub.do/10.1007/s12035-018-1307-2 | |||
}} | |||
==GNPDA2== | |||
* {{medline-title | |||
|title=The influence of obesity-related single nucleotide polymorphisms on BMI across the life course: the PAGE study. | |||
|date=05.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23300277 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636619 | |||
}} | |||
==GNRH2== | |||
* {{medline-title | |||
|title=Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25765287 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475460 | |||
}} | |||
==GORAB== | |||
* {{medline-title | |||
|title=Examining tissue composition, whole-bone morphology and mechanical behavior of Gorab mice tibiae: A mouse model of premature aging. | |||
|date=08.12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29108851 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5695220 | |||
}} | |||
==GOT1== | |||
* {{medline-title | |||
|title=Low expression of aging-related [[[[NRXN3]]]] is associated with Alzheimer disease: A systematic review and meta-analysis. | |||
|date=07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29995770 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076205 | |||
}} | |||
==GOT2== | |||
* {{medline-title | |||
|title=An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31531781 | |||
|full-text-url=https://sci-hub.do/10.1007/s00425-019-03272-6 | |||
}} | |||
==GP1BA== | |||
* {{medline-title | |||
|title=Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. | |||
|date=15.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |||
}} | |||
==GP9== | |||
* {{medline-title | |||
|title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. | |||
|date=31.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708 | |||
}} | |||
==GPBAR1== | |||
* {{medline-title | |||
|title=Activation of the bile acid receptor [[GPBAR1]] (TGR5) ameliorates interleukin-1β (IL-1β)- induced chondrocytes senescence. | |||
|date=10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30119246 | |||
|full-text-url=https://sci-hub.do/10.1016/j.biopha.2018.06.154 | |||
}} | |||
==GPC1== | |||
* {{medline-title | |||
|title=Decreased expression of [[GPC1]] in human skin keratinocytes and epidermis during ageing. | |||
|date=15.10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31430521 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2019.110693 | |||
}} | |||
==GPD1== | |||
* {{medline-title | |||
|title=The phenotype of a knockout mouse identifies flavin-containing monooxygenase 5 (FMO5) as a regulator of metabolic ageing. | |||
|date=01.08.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26049045 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4509511 | |||
}} | |||
==GPD2== | |||
* {{medline-title | |||
|title=Switching off [[IMMP2L]] signaling drives senescence via simultaneous metabolic alteration and blockage of cell death. | |||
|date=06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29808012 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993829 | |||
}} | |||
==GPR1== | |||
* {{medline-title | |||
|title=The Arabidopsis [[GPR1]] Gene Negatively Affects Pollen Germination, Pollen Tube Growth, and Gametophyte Senescence. | |||
|date=21.06.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28635622 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5486124 | |||
}} | |||
==GPR101== | |||
* {{medline-title | |||
|title=Regulation of Gonadotropin-Releasing Hormone-(1-5) Signaling Genes by Estradiol Is Age Dependent. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29163355 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5663685 | |||
}} | |||
==GPR173== | |||
* {{medline-title | |||
|title=Regulation of Gonadotropin-Releasing Hormone-(1-5) Signaling Genes by Estradiol Is Age Dependent. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29163355 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5663685 | |||
}} | |||
==GPR19== | |||
* {{medline-title | |||
|title=Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. | |||
|date=15.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |||
}} | |||
==GPR37== | |||
* {{medline-title | |||
|title=Prosaposin and its receptors are differentially expressed in the salivary glands of male and female rats. | |||
|date=08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29656342 | |||
|full-text-url=https://sci-hub.do/10.1007/s00441-018-2835-9 | |||
}} | |||
==GPR37L1== | |||
* {{medline-title | |||
|title=Prosaposin and its receptors are differentially expressed in the salivary glands of male and female rats. | |||
|date=08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29656342 | |||
|full-text-url=https://sci-hub.do/10.1007/s00441-018-2835-9 | |||
}} | |||
==GPR4== | |||
* {{medline-title | |||
|title=The proton-activated receptor [[GPR4]] modulates glucose homeostasis by increasing insulin sensitivity. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24296356 | |||
|full-text-url=https://sci-hub.do/10.1159/000356578 | |||
}} | |||
==GPR6== | |||
* {{medline-title | |||
|title=Accelerated Epigenetic Aging and Methylation Disruptions Occur in Human Immunodeficiency Virus Infection Prior to Antiretroviral Therapy. | |||
|date=22.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32959881 | |||
|full-text-url=https://sci-hub.do/10.1093/infdis/jiaa599 | |||
}} | |||
==GPR78== | |||
* {{medline-title | |||
|title=A meta-analysis of genome-wide association studies identifies multiple longevity genes. | |||
|date=14.08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31413261 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6694136 | |||
}} | |||
==GPRC5C== | |||
* {{medline-title | |||
|title=Anti-diabetic action of all-trans retinoic acid and the orphan G protein coupled receptor [[GPRC5C]] in pancreatic β-cells. | |||
|date=31.03.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28228611 | |||
|full-text-url=https://sci-hub.do/10.1507/endocrj.EJ16-0338 | |||
}} | |||
==GPX3== | |||
* {{medline-title | |||
|title=Long noncoding RNA glutathione peroxidase 3-antisense inhibits lens epithelial cell apoptosis by upregulating glutathione peroxidase 3 expression in age-related cataract. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31814699 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6857780 | |||
}} | |||
==GPX7== | |||
* {{medline-title | |||
|title=Metformin alleviates human cellular aging by upregulating the endoplasmic reticulum glutathione peroxidase 7. | |||
|date=08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29659168 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052468 | |||
}} | |||
==GREM1== | |||
* {{medline-title | |||
|title=[[GREM1]] inhibits osteogenic differentiation, senescence and BMP transcription of adipose-derived stem cells. | |||
|date=09.03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32151168 | |||
|full-text-url=https://sci-hub.do/10.1080/03008207.2020.1736054 | |||
}} | |||
==GREM2== | |||
* {{medline-title | |||
|title=Increase of gremlin 2 with age in human adipose-derived stromal/stem cells and its inhibitory effect on adipogenesis. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31709279 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6831850 | |||
}} | |||
==GRIA1== | |||
* {{medline-title | |||
|title=Hippocampal proteomics defines pathways associated with memory decline and resilience in normal aging and Alzheimer's disease mouse models. | |||
|date=30.03.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27265785 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5135662 | |||
}} | |||
==GRID1== | |||
* {{medline-title | |||
|title=Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. | |||
|date=03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109663 | |||
|full-text-url=https://sci-hub.do/10.1016/j.atherosclerosis.2020.02.005 | |||
}} | |||
==GRIN2A== | |||
* {{medline-title | |||
|title=Gene Expression Switching of Receptor Subunits in Human Brain Development. | |||
|date=12.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26636753 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4670163 | |||
}} | |||
==GRINA== | |||
* {{medline-title | |||
|title=Genome-wide association study for lactation persistency, female fertility, longevity, and lifetime profit index traits in Holstein dairy cattle. | |||
|date=02.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27889128 | |||
|full-text-url=https://sci-hub.do/10.3168/jds.2016-11770 | |||
}} | |||
==GRK4== | |||
* {{medline-title | |||
|title=G protein-coupled receptor kinase 4-induced cellular senescence and its senescence-associated gene expression profiling. | |||
|date=15.11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28912086 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5944352 | |||
}} | |||
==GRK6== | |||
* {{medline-title | |||
|title=Age-dependent effects of dopamine receptor inactivation on cocaine-induced behaviors in male rats: Evidence of dorsal striatal D2 receptor supersensitivity. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31304635 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6801044 | |||
}} | |||
==GRM2== | |||
* {{medline-title | |||
|title=Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. | |||
|date=11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28841467 | |||
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.07.015 | |||
}} | |||
==GRM6== | |||
* {{medline-title | |||
|title=Amyloid Precursor-Like Protein 2 deletion-induced retinal synaptopathy related to congenital stationary night blindness: structural, functional and molecular characteristics. | |||
|date=08.06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27267879 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897877 | |||
}} | |||
==GRP== | |||
* {{medline-title | |||
|title=A new approach to quantifying the EEG during walking: Initial evidence of gait related potentials and their changes with aging and dual tasking. | |||
|date=15.10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31449852 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2019.110709 | |||
}} | |||
==GRPR== | |||
* {{medline-title | |||
|title=Gastrin-Releasing Peptide Receptor Knockdown Induces Senescence in Glioblastoma Cells. | |||
|date=03.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26780458 | |||
|full-text-url=https://sci-hub.do/10.1007/s12035-016-9696-6 | |||
}} | |||
==GSN== | |||
* {{medline-title | |||
|title=Oral administration of alcalase potato protein hydrolysate-APPH attenuates high fat diet-induced cardiac complications via TGF-β/[[GSN]] axis in aging rats. | |||
|date=01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30240538 | |||
|full-text-url=https://sci-hub.do/10.1002/tox.22651 | |||
}} | |||
==GSTA3== | |||
* {{medline-title | |||
|title=Effects of insulin-like growth factor 1 on glutathione S-transferases and thioredoxin in growth hormone receptor knockout mice. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25001375 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150915 | |||
}} | |||
==GSTM2== | |||
* {{medline-title | |||
|title=Small Extracellular Vesicles Have GST Activity and Ameliorate Senescence-Related Tissue Damage. | |||
|date=07.07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32574561 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7342013 | |||
}} | |||
==GSTO1== | |||
* {{medline-title | |||
|title=Age-associated changes in GSH S-transferase gene/proteins in livers of rats. | |||
|date=12.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30444463 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748684 | |||
}} | |||
==GSTT2== | |||
* {{medline-title | |||
|title=Age-associated changes in GSH S-transferase gene/proteins in livers of rats. | |||
|date=12.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30444463 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748684 | |||
}} | |||
==GTF3C4== | |||
* {{medline-title | |||
|title=A multidimensional systems biology analysis of cellular senescence in aging and disease. | |||
|date=07.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264951 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333371 | |||
}} | |||
==GTSF1== | |||
* {{medline-title | |||
|title=Postovulatory aging affects dynamics of mRNA, expression and localization of maternal effect proteins, spindle integrity and pericentromeric proteins in mouse oocytes. | |||
|date=01.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26577303 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5853592 | |||
}} | |||
==GUK1== | |||
* {{medline-title | |||
|title=Characterization of the impact of GMP/GDP synthesis inhibition on replicative lifespan extension in yeast. | |||
|date=08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32232569 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367712 | |||
}} | |||
==GUSB== | |||
* {{medline-title | |||
|title=Identification of reference genes for RT-qPCR data normalisation in aging studies. | |||
|date=27.09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31562345 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764958 | |||
}} | |||
==GYS2== | |||
* {{medline-title | |||
|title=In ovo feeding of creatine pyruvate modulates growth performance, energy reserves and mRNA expression levels of gluconeogenesis and glycogenesis enzymes in liver of embryos and neonatal broilers. | |||
|date=04.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28986936 | |||
|full-text-url=https://sci-hub.do/10.1111/jpn.12831 | |||
}} | |||
==GZMH== | |||
* {{medline-title | |||
|title=Age-related profiling of DNA methylation in CD8 T cells reveals changes in immune response and transcriptional regulator genes. | |||
|date=19.08.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26286994 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541364 | |||
}} | |||
==GZMK== | |||
* {{medline-title | |||
|title=Comprehensive Profiling of an Aging Immune System Reveals Clonal [[GZMK]] CD8 T Cells as Conserved Hallmark of Inflammaging. | |||
|date=21.11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33271118 | |||
|full-text-url=https://sci-hub.do/10.1016/j.immuni.2020.11.005 | |||
}} | |||
==HABP4== | |||
* {{medline-title | |||
|title=Microneedle fractional radiofrequency increases epidermal hyaluronan and reverses age-related epidermal dysfunction. | |||
|date=02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26415023 | |||
|full-text-url=https://sci-hub.do/10.1002/lsm.22420 | |||
}} | |||
==HACE1== | |||
* {{medline-title | |||
|title=[[HACE1]] reduces oxidative stress and mutant Huntingtin toxicity by promoting the NRF2 response. | |||
|date=25.02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24516159 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3939919 | |||
}} | |||
==HADH== | |||
* {{medline-title | |||
|title=Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone. | |||
|date=07.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24760536 | |||
|full-text-url=https://sci-hub.do/10.1530/EJE-14-0006 | |||
}} | |||
==HADHA== | |||
* {{medline-title | |||
|title=Exosomes from hyperglycemia-stimulated vascular endothelial cells contain versican that regulate calcification/senescence in vascular smooth muscle cells. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30622695 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317223 | |||
}} | |||
==HAMP== | |||
* {{medline-title | |||
|title=A potent tilapia secreted granulin peptide enhances the survival of transgenic zebrafish infected by Vibrio vulnificus via modulation of innate immunity. | |||
|date=04.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29408220 | |||
|full-text-url=https://sci-hub.do/10.1016/j.fsi.2018.01.044 | |||
}} | |||
==HAP1== | |||
* {{medline-title | |||
|title=The longevity SNP rs2802292 uncovered: [[HSF1]] activates stress-dependent expression of [[FOXO3]] through an intronic enhancer. | |||
|date=20.06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29733381 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6009585 | |||
}} | |||
==HAUS4== | |||
* {{medline-title | |||
|title=A multidimensional systems biology analysis of cellular senescence in aging and disease. | |||
|date=07.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264951 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333371 | |||
}} | |||
==HAX1== | |||
* {{medline-title | |||
|title=Both Granulocytic and Non-Granulocytic Blood Cells Are Affected in Patients with Severe Congenital Neutropenia and Their Non-Neutropenic Family Members: An Evaluation of Morphology, Function, and Cell Death | |||
|date=13.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30040071 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6256814 | |||
}} | |||
==HBM== | |||
* {{medline-title | |||
|title=The effects of dietary fatty acids on bone, hematopoietic marrow and marrow adipose tissue in a murine model of senile osteoporosis. | |||
|date=25.09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31553309 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6781972 | |||
}} | |||
==HBZ== | |||
* {{medline-title | |||
|title=HTLV-1 Infection and Adult T-Cell Leukemia/Lymphoma-A Tale of Two Proteins: Tax and [[HBZ]]. | |||
|date=16.06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27322308 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4926181 | |||
}} | |||
==HDAC10== | |||
* {{medline-title | |||
|title=Middle-aged female rats lack changes in histone H3 acetylation in the anterior hypothalamus observed in young females on the day of a luteinizing hormone surge. | |||
|date=17.09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31434815 | |||
|full-text-url=https://sci-hub.do/10.5582/bst.2019.01162 | |||
}} | |||
==HDAC11== | |||
* {{medline-title | |||
|title=Disruption to schizophrenia-associated gene Fez1 in the hippocampus of [[HDAC11]] knockout mice. | |||
|date=19.09.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28928414 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5605701 | |||
}} | |||
==HDAC8== | |||
* {{medline-title | |||
|title=Histone deacetylase 1 expression is inversely correlated with age in the short-lived fish Nothobranchius furzeri. | |||
|date=09.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29951776 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096771 | |||
}} | |||
==HDC== | |||
* {{medline-title | |||
|title=Induced pluripotency and spontaneous reversal of cellular aging in supercentenarian donor cells. | |||
|date=07.05.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32115145 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2020.02.092 | |||
}} | |||
==HDX== | |||
* {{medline-title | |||
|title=Pathways of aging: comparative analysis of gene signatures in replicative senescence and stress induced premature senescence. | |||
|date=28.12.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28105936 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5249001 | |||
}} | |||
==HEPN1== | |||
* {{medline-title | |||
|title=Functional analysis and transcriptional output of the Göttingen minipig genome. | |||
|date=14.11.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26573612 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4647470 | |||
}} | |||
==HERC2== | |||
* {{medline-title | |||
|title=Endothelial [[SIRT1]] prevents adverse arterial remodeling by facilitating [[HERC2]]-mediated degradation of acetylated LKB1. | |||
|date=28.06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27259994 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5129914 | |||
}} | |||
==HGSNAT== | |||
* {{medline-title | |||
|title=Progressive neurologic and somatic disease in a novel mouse model of human mucopolysaccharidosis type IIIC. | |||
|date=01.09.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27491071 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5047683 | |||
}} | |||
==HHIP== | |||
* {{medline-title | |||
|title=Hhip haploinsufficiency sensitizes mice to age-related emphysema. | |||
|date=09.08.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27444019 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4987811 | |||
}} | |||
==HHLA2== | |||
* {{medline-title | |||
|title=Impaired Cytolytic Activity and Loss of Clonal Neoantigens in Elderly Patients With Lung Adenocarcinoma. | |||
|date=05.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30768970 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jtho.2019.01.024 | |||
}} | |||
==HIF3A== | |||
* {{medline-title | |||
|title=Hypoxia-inducible transcription factors, [[HIF1A]] and HIF2A, increase in aging mucosal tissues. | |||
|date=07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29338076 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002220 | |||
}} | |||
==HIP1== | |||
* {{medline-title | |||
|title=Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. | |||
|date=05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28325852 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827 | |||
}} | |||
==HIPK2== | |||
* {{medline-title | |||
|title=Nore1a drives Ras to flick the P53 senescence switch. | |||
|date=05.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27314075 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4909421 | |||
}} | |||
==HJURP== | |||
* {{medline-title | |||
|title=[[HJURP]] regulates cellular senescence in human fibroblasts and endothelial cells via a p53-dependent pathway. | |||
|date=08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23292286 | |||
|full-text-url=https://sci-hub.do/10.1093/gerona/gls257 | |||
}} | |||
==HJV== | |||
* {{medline-title | |||
|title=Hemojuvelin is a novel suppressor for Duchenne muscular dystrophy and age-related muscle wasting. | |||
|date=06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30884219 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596404 | |||
}} | |||
==HLA-DMA== | |||
* {{medline-title | |||
|title=Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31254144 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733812 | |||
}} | |||
==HLA-DPA1== | |||
* {{medline-title | |||
|title=17th IHIW component "Immunogenetics of Ageing" - New NGS data. | |||
|date=09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31331679 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6773488 | |||
}} | |||
==HLA-DRA== | |||
* {{medline-title | |||
|title=Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis. | |||
|date=24.02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26912063 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765225 | |||
}} | |||
==HLA-DRB4== | |||
* {{medline-title | |||
|title=Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. | |||
|date=11.04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28199971 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421828 | |||
}} | |||
==HLA-DRB5== | |||
* {{medline-title | |||
|title=Late Onset Alzheimer's Disease Risk Variants in Cognitive Decline: The PATH Through Life Study. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28269768 | |||
|full-text-url=https://sci-hub.do/10.3233/JAD-160774 | |||
}} | |||
==HLA-E== | |||
* {{medline-title | |||
|title=Senescent cells evade immune clearance via [[HLA-E]]-mediated NK and CD8 T cell inhibition. | |||
|date=03.06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31160572 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6547655 | |||
}} | |||
==HLA-F== | |||
* {{medline-title | |||
|title=Extended lifespan and reduced adiposity in mice lacking the FAT10 gene. | |||
|date=08.04.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24706839 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3986194 | |||
}} | |||
==HLF== | |||
* {{medline-title | |||
|title=Healthy lifestyle and normal waist circumference are associated with a lower 5-year risk of type 2 diabetes in middle-aged and elderly individuals: Results from the healthy aging longitudinal study in Taiwan (HALST). | |||
|date=02.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28178143 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5313000 | |||
}} | |||
==HMGCS2== | |||
* {{medline-title | |||
|title=The aged testis. A good model to find proteins involved in age-related changes of testis by proteomic analysis. | |||
|date=01-02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24597284 | |||
}} | |||
==HMGN2== | |||
* {{medline-title | |||
|title=FAM96B inhibits the senescence of dental pulp stem cells. | |||
|date=05.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32039527 | |||
|full-text-url=https://sci-hub.do/10.1002/cbin.11319 | |||
}} | |||
==HMMR== | |||
* {{medline-title | |||
|title=The Naked Mole Rat Genome Resource: facilitating analyses of cancer and longevity-related adaptations. | |||
|date=15.12.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25172923 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4253829 | |||
}} | |||
==HMX1== | |||
* {{medline-title | |||
|title=Pathways of aging: comparative analysis of gene signatures in replicative senescence and stress induced premature senescence. | |||
|date=28.12.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28105936 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5249001 | |||
}} | |||
==HNF1A== | |||
* {{medline-title | |||
|title=The Impact of Biomarker Screening and Cascade Genetic Testing on the Cost-Effectiveness of MODY Genetic Testing. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31558549 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868460 | |||
}} | |||
==HNMT== | |||
* {{medline-title | |||
|title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. | |||
|date=31.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708 | |||
}} | |||
==HNRNPA0== | |||
* {{medline-title | |||
|title=The transcript expression levels of [[HNRNPM]], [[HNRNPA0]] and [[AKAP17A]] splicing factors may be predictively associated with ageing phenotypes in human peripheral blood. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31292793 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733819 | |||
}} | |||
==HNRNPA2B1== | |||
* {{medline-title | |||
|title=Changes in the expression of splicing factor transcripts and variations in alternative splicing are associated with lifespan in mice and humans. | |||
|date=10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27363602 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013025 | |||
}} | |||
==HNRNPF== | |||
* {{medline-title | |||
|title=Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24478790 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894567 | |||
}} | |||
==HNRNPM== | |||
* {{medline-title | |||
|title=The transcript expression levels of [[HNRNPM]], [[HNRNPA0]] and [[AKAP17A]] splicing factors may be predictively associated with ageing phenotypes in human peripheral blood. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31292793 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733819 | |||
}} | |||
==HOXA3== | |||
* {{medline-title | |||
|title=DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. | |||
|date=25.07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30045751 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058387 | |||
}} | |||
==HOXA4== | |||
* {{medline-title | |||
|title=Epigenetic signatures of Werner syndrome occur early in life and are distinct from normal epigenetic aging processes. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31259468 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718529 | |||
}} | |||
==HOXA9== | |||
* {{medline-title | |||
|title=Co-regulation of senescence-associated genes by oncogenic homeobox proteins and polycomb repressive complexes. | |||
|date=15.07.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24067365 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3755069 | |||
}} | |||
==HOXB7== | |||
* {{medline-title | |||
|title=Impact of [[HOXB7]] overexpression on human adipose-derived mesenchymal progenitors. | |||
|date=19.03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30890185 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423808 | |||
}} | |||
==HOXC13== | |||
* {{medline-title | |||
|title=Pathways of aging: comparative analysis of gene signatures in replicative senescence and stress induced premature senescence. | |||
|date=28.12.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28105936 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5249001 | |||
}} | |||
==HOXD8== | |||
* {{medline-title | |||
|title=Single-Cell Transcriptome Analysis Reveals Six Subpopulations Reflecting Distinct Cellular Fates in Senescent Mouse Embryonic Fibroblasts. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32849838 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431633 | |||
}} | |||
==HP1BP3== | |||
* {{medline-title | |||
|title=Systems genetics identifies Hp1bp3 as a novel modulator of cognitive aging. | |||
|date=10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27460150 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5018442 | |||
}} | |||
==HPDL== | |||
* {{medline-title | |||
|title=Characterization and cytological effects of a novel glycated gelatine substrate. | |||
|date=04.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24486986 | |||
|full-text-url=https://sci-hub.do/10.1088/1748-6041/9/2/025001 | |||
}} | |||
==HPSE== | |||
* {{medline-title | |||
|title=Distribution of heparan sulfate correlated with the expression of heparanase-1 and matrix metalloproteinase-9 in an ovariectomized rats skin. | |||
|date=07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32159248 | |||
|full-text-url=https://sci-hub.do/10.1002/cbin.11339 | |||
}} | |||
==HRC== | |||
* {{medline-title | |||
|title=Differences in false recollection according to the cognitive reserve of healthy older people. | |||
|date=09.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26982550 | |||
|full-text-url=https://sci-hub.do/10.1080/13825585.2016.1146221 | |||
}} | |||
==HRH4== | |||
* {{medline-title | |||
|title=Histamime Receptor H4 as a New Therapeutic Target for Age-related Macular Degeneration. | |||
|date=11.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30074739 | |||
}} | |||
==HS2ST1== | |||
* {{medline-title | |||
|title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. | |||
|date=31.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708 | |||
}} | |||
==HSD17B1== | |||
* {{medline-title | |||
|title=Genetic Basis of the Relationship Between Reproduction and Longevity: A Study on Common Variants of Three Genes in Steroid Hormone Metabolism--CYP17, [[HSD17B1]], and [[COMT]]. | |||
|date=10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25936248 | |||
|full-text-url=https://sci-hub.do/10.1089/rej.2015.1665 | |||
}} | |||
==HSD17B14== | |||
* {{medline-title | |||
|title=Bisphenol A induces DSB-[[ATM]]-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. | |||
|date=04.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29275510 | |||
|full-text-url=https://sci-hub.do/10.1007/s00204-017-2150-3 | |||
}} | |||
==HSD17B4== | |||
* {{medline-title | |||
|title=Autonomous Purkinje cell axonal dystrophy causes ataxia in peroxisomal multifunctional protein-2 deficiency. | |||
|date=09.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29341299 | |||
|full-text-url=https://sci-hub.do/10.1111/bpa.12586 | |||
}} | |||
==HSPA13== | |||
* {{medline-title | |||
|title=Genetic associations with age of menopause in familial longevity. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31188284 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7008937 | |||
}} | |||
==HSPA1L== | |||
* {{medline-title | |||
|title=Melatonin suppresses senescence-derived mitochondrial dysfunction in mesenchymal stem cells via the [[HSPA1L]]-mitophagy pathway. | |||
|date=03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31965731 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059143 | |||
}} | |||
==HSPA4== | |||
* {{medline-title | |||
|title=Assessment of the risk of blastomere biopsy during preimplantation genetic diagnosis in a mouse model: reducing female ovary function with an increase in age by proteomics method. | |||
|date=06.12.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24156634 | |||
|full-text-url=https://sci-hub.do/10.1021/pr400366j | |||
}} | |||
==HSPA5== | |||
* {{medline-title | |||
|title=Expression of lipogenic markers is decreased in subcutaneous adipose tissue and adipocytes of older women and is negatively linked to [[GDF15]] expression. | |||
|date=08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30912009 | |||
|full-text-url=https://sci-hub.do/10.1007/s13105-019-00676-6 | |||
}} | |||
==HSPBP1== | |||
* {{medline-title | |||
|title=[[BAG2]] Interferes with CHIP-Mediated Ubiquitination of HSP72. | |||
|date=30.12.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28042827 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5297704 | |||
}} | |||
==HSPG2== | |||
* {{medline-title | |||
|title=Proteomic profiling of follicle fluids after superstimulation in one-month-old lambs. | |||
|date=02.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29080277 | |||
|full-text-url=https://sci-hub.do/10.1111/rda.13091 | |||
}} | |||
==HTR1A== | |||
* {{medline-title | |||
|title=Gene Expression Switching of Receptor Subunits in Human Brain Development. | |||
|date=12.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26636753 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4670163 | |||
}} | |||
==HTR1B== | |||
* {{medline-title | |||
|title=Polymorphic variants of neurotransmitter receptor genes may affect sexual function in aging males: data from the HALS study. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23485949 | |||
|full-text-url=https://sci-hub.do/10.1159/000350324 | |||
}} | |||
==HTR2A== | |||
* {{medline-title | |||
|title=Region-specific regulation of the serotonin 2A receptor expression in development and ageing in post mortem human brain. | |||
|date=06.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25041420 | |||
|full-text-url=https://sci-hub.do/10.1111/nan.12167 | |||
}} | |||
==HTR2B== | |||
* {{medline-title | |||
|title=Up-regulation of serotonin receptor 2B mRNA and protein in the peri-infarcted area of aged rats and stroke patients. | |||
|date=05.04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27013593 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4951222 | |||
}} | |||
==HTR4== | |||
* {{medline-title | |||
|title=[[ADAM19]] and [[HTR4]] variants and pulmonary function: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. | |||
|date=06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24951661 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136502 | |||
}} | |||
==HTR5A== | |||
* {{medline-title | |||
|title=Gene Expression Switching of Receptor Subunits in Human Brain Development. | |||
|date=12.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26636753 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4670163 | |||
}} | |||
==HTRA2== | |||
* {{medline-title | |||
|title=A novel role for the mitochondrial [[HTRA2]]/OMI protease in aging. | |||
|date=03.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23242108 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3590264 | |||
}} | |||
==HYOU1== | |||
* {{medline-title | |||
|title=Expression of lipogenic markers is decreased in subcutaneous adipose tissue and adipocytes of older women and is negatively linked to [[GDF15]] expression. | |||
|date=08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30912009 | |||
|full-text-url=https://sci-hub.do/10.1007/s13105-019-00676-6 | |||
}} | |||
==IBSP== | |||
* {{medline-title | |||
|title=P4 medicine and osteoporosis: a systematic review. | |||
|date=12.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27873024 | |||
|full-text-url=https://sci-hub.do/10.1007/s00508-016-1125-3 | |||
}} | |||
==ICAM5== | |||
* {{medline-title | |||
|title=A reverse genetics cell-based evaluation of genes linked to healthy human tissue age. | |||
|date=01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27698205 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5161526 | |||
}} | |||
==ICE1== | |||
* {{medline-title | |||
|title=ATBS1-INTERACTING FACTOR 2 negatively regulates dark- and brassinosteroid-induced leaf senescence through interactions with INDUCER OF CBF EXPRESSION 1. | |||
|date=19.02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31783407 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031079 | |||
}} | |||
==IFI27== | |||
* {{medline-title | |||
|title=Ultraviolet B irradiation-induced keratinocyte senescence and impaired development of 3D epidermal reconstruct. | |||
|date=01.06.2021 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33151171 | |||
|full-text-url=https://sci-hub.do/10.2478/acph-2021-0011 | |||
}} | |||
==IFIH1== | |||
* {{medline-title | |||
|title=Comparative analysis of microbial sensing molecules in mucosal tissues with aging. | |||
|date=03.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29066255 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821569 | |||
}} | |||
==IFNAR2== | |||
* {{medline-title | |||
|title=Type I interferon receptors in goose: molecular cloning, structural identification, evolutionary analysis and age-related tissue expression profile. | |||
|date=25.04.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25617523 | |||
|full-text-url=https://sci-hub.do/10.1016/j.gene.2015.01.040 | |||
}} | |||
==IFNB1== | |||
* {{medline-title | |||
|title=Effects of aging in the expression of NOD-like receptors and inflammasome-related genes in oral mucosa. | |||
|date=02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26197995 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4712099 | |||
}} | |||
==IFNGR2== | |||
* {{medline-title | |||
|title=Lifespan of mice and primates correlates with immunoproteasome expression. | |||
|date=05.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25866968 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4463211 | |||
}} | |||
==IFT140== | |||
* {{medline-title | |||
|title=The Role of [[IFT140]] in Osteogenesis of Adult Mice Long Bone. | |||
|date=08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31034313 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6669857 | |||
}} | |||
==IGF2BP2== | |||
* {{medline-title | |||
|title=Gene transcripts associated with muscle strength: a CHARGE meta-analysis of 7,781 persons. | |||
|date=01.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26487704 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4757025 | |||
}} | |||
==IGF2BP3== | |||
* {{medline-title | |||
|title=Avenanthramide A Induces Cellular Senescence via miR-129-3p/Pirh2/p53 Signaling Pathway To Suppress Colon Cancer Growth. | |||
|date=01.05.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30888162 | |||
|full-text-url=https://sci-hub.do/10.1021/acs.jafc.9b00833 | |||
}} | |||
==IGFBP6== | |||
* {{medline-title | |||
|title=Proteomic profiling of follicle fluids after superstimulation in one-month-old lambs. | |||
|date=02.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29080277 | |||
|full-text-url=https://sci-hub.do/10.1111/rda.13091 | |||
}} | |||
==IGHG2== | |||
* {{medline-title | |||
|title=Human IgG2- and IgG4-expressing memory B cells display enhanced molecular and phenotypic signs of maturity and accumulate with age. | |||
|date=10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28546550 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5636940 | |||
}} | |||
==IGHM== | |||
* {{medline-title | |||
|title=Developmental expression of B cell molecules in equine lymphoid tissues. | |||
|date=01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28063478 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5267323 | |||
}} | |||
==IGLL5== | |||
* {{medline-title | |||
|title=Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution. | |||
|date=07.12.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26638776 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686820 | |||
}} | |||
==IKBKB== | |||
* {{medline-title | |||
|title=Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats. | |||
|date=02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30661688 | |||
|full-text-url=https://sci-hub.do/10.1016/j.clnesp.2018.10.003 | |||
}} | |||
==IL10RA== | |||
* {{medline-title | |||
|title=Exome sequencing analysis reveals variants in primary immunodeficiency genes in patients with very early onset inflammatory bowel disease. | |||
|date=11.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26193622 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4853027 | |||
}} | |||
==IL11== | |||
* {{medline-title | |||
|title=Myocardial Infarction Superimposed on Aging: MMP-9 Deletion Promotes M2 Macrophage Polarization. | |||
|date=04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25878031 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5175450 | |||
}} | |||
==IL12B== | |||
* {{medline-title | |||
|title=Association and Interaction Effects of Interleukin-12 Related Genes and Physical Activity on Cognitive Aging in Old Adults in the Taiwanese Population. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31649612 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6795278 | |||
}} | |||
==IL13RA1== | |||
* {{medline-title | |||
|title=Genetic correlation and genome-wide association study (GWAS) of the length of productive life, days open, and 305-days milk yield in crossbred Holstein dairy cattle. | |||
|date=29.06.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28671246 | |||
|full-text-url=https://sci-hub.do/10.4238/gmr16029091 | |||
}} | |||
==IL17C== | |||
* {{medline-title | |||
|title=Age-dependent changes in inflammation and extracellular matrix in bovine oviduct epithelial cells during the post-ovulatory phase. | |||
|date=09.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27580129 | |||
|full-text-url=https://sci-hub.do/10.1002/mrd.22693 | |||
}} | |||
==IL17D== | |||
* {{medline-title | |||
|title=Genetic determinants of P wave duration and PR segment. | |||
|date=08.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24850809 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4141024 | |||
}} | |||
==IL17RA== | |||
* {{medline-title | |||
|title=Chronic disruptions of circadian sleep regulation induce specific proinflammatory responses in the rat colon. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29039977 | |||
|full-text-url=https://sci-hub.do/10.1080/07420528.2017.1361436 | |||
}} | |||
==IL17RB== | |||
* {{medline-title | |||
|title=Identification of genes associated with endometrial cell aging. | |||
|date=01.12.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33258951 | |||
|full-text-url=https://sci-hub.do/10.1093/molehr/gaaa078 | |||
}} | |||
==IL17RC== | |||
* {{medline-title | |||
|title=Overstimulation can create health problems due to increases in PI3K/Akt/GSK3 insensitivity and GSK3 activity. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25089247 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117863 | |||
}} | |||
==IL18RAP== | |||
* {{medline-title | |||
|title=Age and pro-inflammatory gene polymorphisms influence adjacent segment disc degeneration more than fusion does in patients treated for chronic low back pain. | |||
|date=01.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26281980 | |||
|full-text-url=https://sci-hub.do/10.1007/s00586-015-4181-x | |||
}} | |||
==IL1R2== | |||
* {{medline-title | |||
|title=Lower levels of interleukin-1β gene expression are associated with impaired Langerhans' cell migration in aged human skin. | |||
|date=01.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28777886 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5721243 | |||
}} | |||
==IL1RN== | |||
* {{medline-title | |||
|title=Transcriptomic and epigenetic analyses reveal a gender difference in aging-associated inflammation: the Vitality 90 study. | |||
|date=08.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26188803 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506741 | |||
}} | |||
==IL21== | |||
* {{medline-title | |||
|title=The expression of [[IL6]] and 21 in crossbred calves upregulated by inactivated trivalent FMD vaccine. | |||
|date=03.04.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24555796 | |||
|full-text-url=https://sci-hub.do/10.1080/10495398.2013.834826 | |||
}} | |||
==IL22== | |||
* {{medline-title | |||
|title=Age-specific changes in the molecular phenotype of patients with moderate-to-severe atopic dermatitis. | |||
|date=07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30685456 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jaci.2019.01.015 | |||
}} | |||
==IL2RA== | |||
* {{medline-title | |||
|title=Dynamic demethylation of the [[IL2RA]] promoter during in vitro CD4 T cell activation in association with [[IL2RA]] expression. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30096258 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6140818 | |||
}} | |||
==IL2RG== | |||
* {{medline-title | |||
|title=Generation of a Nonhuman Primate Model of Severe Combined Immunodeficiency Using Highly Efficient Genome Editing. | |||
|date=07.07.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27374787 | |||
|full-text-url=https://sci-hub.do/10.1016/j.stem.2016.06.003 | |||
}} | |||
==IL33== | |||
* {{medline-title | |||
|title=Interleukin33 deficiency causes tau abnormality and neurodegeneration with Alzheimer-like symptoms in aged mice. | |||
|date=04.07.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28675392 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5538122 | |||
}} | |||
==IL36RN== | |||
* {{medline-title | |||
|title=Elderly-Onset Generalized Pustular Psoriasis without a Previous History of Psoriasis Vulgaris. | |||
|date=05-08.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26351429 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4560317 | |||
}} | |||
==IL5== | |||
* {{medline-title | |||
|title=Low Molecular Weight Hyaluronan Induces an Inflammatory Response in Ovarian Stromal Cells and Impairs Gamete Development In Vitro. | |||
|date=04.02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32033185 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036885 | |||
}} | |||
==IL6ST== | |||
* {{medline-title | |||
|title=The senescent status of endothelial cells affects proliferation, inflammatory profile and [[SOX2]] expression in bone marrow-derived mesenchymal stem cells. | |||
|date=06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30822486 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2019.02.014 | |||
}} | |||
==IMMP2L== | |||
* {{medline-title | |||
|title=Switching off [[IMMP2L]] signaling drives senescence via simultaneous metabolic alteration and blockage of cell death. | |||
|date=06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29808012 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993829 | |||
}} | |||
==IMMT== | |||
* {{medline-title | |||
|title=A multidimensional systems biology analysis of cellular senescence in aging and disease. | |||
|date=07.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264951 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333371 | |||
}} | |||
==IMPA1== | |||
* {{medline-title | |||
|title=Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26168237 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567 | |||
}} | |||
==IMPA2== | |||
* {{medline-title | |||
|title=Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26168237 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567 | |||
}} | |||
==INHBA== | |||
* {{medline-title | |||
|title=Proteomic profiling of follicle fluids after superstimulation in one-month-old lambs. | |||
|date=02.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29080277 | |||
|full-text-url=https://sci-hub.do/10.1111/rda.13091 | |||
}} | |||
==INHBE== | |||
* {{medline-title | |||
|title=Human iPSC-derived [[MSC]]s (i[[MSC]]s) from aged individuals acquire a rejuvenation signature. | |||
|date=18.03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30885246 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423778 | |||
}} | |||
==INO80D== | |||
* {{medline-title | |||
|title=Whole exome sequencing implicates an [[INO80D]] mutation in a syndrome of aortic hypoplasia, premature atherosclerosis, and arterial stiffness. | |||
|date=10.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25122053 | |||
|full-text-url=https://sci-hub.do/10.1161/CIRCGENETICS.113.000233 | |||
}} | |||
==INPP4B== | |||
* {{medline-title | |||
|title=[Target protein candidates of hypothalamus in aging rats with intervention by Qiongyugao]. | |||
|date=04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28879748 | |||
|full-text-url=https://sci-hub.do/10.4268/cjcmm20160724 | |||
}} | |||
==INPPL1== | |||
* {{medline-title | |||
|title=Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26168237 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567 | |||
}} | |||
==IP6K1== | |||
* {{medline-title | |||
|title=The Role of the IGF-1 Signaling Cascade in Muscle Protein Synthesis and Anabolic Resistance in Aging Skeletal Muscle. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31552262 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6746962 | |||
}} | |||
==IP6K3== | |||
* {{medline-title | |||
|title=Inositol Hexakisphosphate Kinase 3 Regulates Metabolism and Lifespan in Mice. | |||
|date=31.08.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27577108 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5006000 | |||
}} | |||
==IPMK== | |||
* {{medline-title | |||
|title=Inositol Polyphosphate Multikinase ([i][[IPMK]][/i]), a Gene Coding for a Potential Moonlighting Protein, Contributes to Human Female Longevity. | |||
|date=08.02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30744060 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410091 | |||
}} | |||
==IRAK1== | |||
* {{medline-title | |||
|title=Age-associated changes in microRNA expression in bone marrow derived dendritic cells. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23252865 | |||
|full-text-url=https://sci-hub.do/10.3109/08820139.2012.717328 | |||
}} | |||
==IRAK4== | |||
* {{medline-title | |||
|title=The Expression Changes of Inflammasomes in the Aging Rat Kidneys. | |||
|date=06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26219846 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4888379 | |||
}} | |||
==IRF1== | |||
* {{medline-title | |||
|title=Sirtuin 1-Chromatin-Binding Dynamics Points to a Common Mechanism Regulating Inflammatory Targets in SIV Infection and in the Aging Brain. | |||
|date=06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29280055 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5930062 | |||
}} | |||
==IRF5== | |||
* {{medline-title | |||
|title=Age-related differences in interferon regulatory factor-4 and -5 signaling in ischemic brains of mice. | |||
|date=11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28905935 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5672072 | |||
}} | |||
==IRF9== | |||
* {{medline-title | |||
|title=Bioinformatic characterization of angiotensin-converting enzyme 2, the entry receptor for SARS-CoV-2. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33112891 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7592753 | |||
}} | |||
==IRX2== | |||
* {{medline-title | |||
|title=Pathways of aging: comparative analysis of gene signatures in replicative senescence and stress induced premature senescence. | |||
|date=28.12.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28105936 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5249001 | |||
}} | |||
==ISG20== | |||
* {{medline-title | |||
|title=A Large Genome-Wide Association Study of Age-Related Hearing Impairment Using Electronic Health Records. | |||
|date=10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27764096 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072625 | |||
}} | |||
==ISYNA1== | |||
* {{medline-title | |||
|title=Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26168237 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567 | |||
}} | |||
==ITCH== | |||
* {{medline-title | |||
|title=Selective multifaceted E3 ubiquitin ligases barricade extreme defense: Potential therapeutic targets for neurodegeneration and ageing. | |||
|date=11.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26247845 | |||
|full-text-url=https://sci-hub.do/10.1016/j.arr.2015.07.009 | |||
}} | |||
==ITGA2== | |||
* {{medline-title | |||
|title=[Clinical and genetic characteristics of long-livers in Moscow region]. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24640693 | |||
}} | |||
==ITGA3== | |||
* {{medline-title | |||
|title=A transcriptomic analysis of serial-cultured, tonsil-derived mesenchymal stem cells reveals decreased integrin α3 protein as a potential biomarker of senescent cells. | |||
|date=17.08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32807231 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7430027 | |||
}} | |||
==ITGA5== | |||
* {{medline-title | |||
|title=Kaempferol alleviates the reduction of developmental competence during aging of porcine oocytes. | |||
|date=11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31486245 | |||
|full-text-url=https://sci-hub.do/10.1111/asj.13280 | |||
}} | |||
==ITGA6== | |||
* {{medline-title | |||
|title=Selective molecular biomarkers to predict biologic behavior in pituitary tumors. | |||
|date=05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30063456 | |||
|full-text-url=https://sci-hub.do/10.1080/17446651.2017.1312341 | |||
}} | |||
==ITGA8== | |||
* {{medline-title | |||
|title=Comparative Analysis of Gene Expression Patterns for Oral Epithelium-Related Functions with Aging. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31732940 | |||
|full-text-url=https://sci-hub.do/10.1007/978-3-030-28524-1_11 | |||
}} | |||
==ITGB1== | |||
* {{medline-title | |||
|title=Switch in Laminin β2 to Laminin β1 Isoforms During Aging Controls Endothelial Cell Functions-Brief Report. | |||
|date=05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29599141 | |||
|full-text-url=https://sci-hub.do/10.1161/ATVBAHA.117.310685 | |||
}} | |||
==ITGB4== | |||
* {{medline-title | |||
|title=[[ITGB4]] deficiency induces senescence of airway epithelial cells through p53 activation. | |||
|date=03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30636108 | |||
|full-text-url=https://sci-hub.do/10.1111/febs.14749 | |||
}} | |||
==ITGB5== | |||
* {{medline-title | |||
|title=Differential DNA Methylation in Relation to Age and Health Risks of Obesity. | |||
|date=24.07.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26213922 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581172 | |||
}} | |||
==ITM2B== | |||
* {{medline-title | |||
|title=Intramembrane proteolysis within lysosomes. | |||
|date=12.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27143694 | |||
|full-text-url=https://sci-hub.do/10.1016/j.arr.2016.04.012 | |||
}} | |||
==ITPKB== | |||
* {{medline-title | |||
|title=Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26168237 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567 | |||
}} | |||
==ITPR1== | |||
* {{medline-title | |||
|title=Age-associated repression of type 1 inositol 1, 4, 5-triphosphate receptor impairs muscle regeneration. | |||
|date=21.09.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27658230 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5076452 | |||
}} | |||
==ITPR2== | |||
* {{medline-title | |||
|title=The nuclear receptor [[RXRA]] controls cellular senescence by regulating calcium signaling. | |||
|date=12.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30216632 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6260923 | |||
}} | |||
==JAG1== | |||
* {{medline-title | |||
|title=Targeted sequencing of genome wide significant loci associated with bone mineral density (BMD) reveals significant novel and rare variants: the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) targeted sequencing study. | |||
|date=01.12.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27616567 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5837042 | |||
}} | |||
==JAGN1== | |||
* {{medline-title | |||
|title=Both Granulocytic and Non-Granulocytic Blood Cells Are Affected in Patients with Severe Congenital Neutropenia and Their Non-Neutropenic Family Members: An Evaluation of Morphology, Function, and Cell Death | |||
|date=13.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30040071 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6256814 | |||
}} | |||
==JAM3== | |||
* {{medline-title | |||
|title=Selective molecular biomarkers to predict biologic behavior in pituitary tumors. | |||
|date=05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30063456 | |||
|full-text-url=https://sci-hub.do/10.1080/17446651.2017.1312341 | |||
}} | |||
==JARID2== | |||
* {{medline-title | |||
|title=Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. | |||
|date=02.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29196338 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795392 | |||
}} | |||
==JDP2== | |||
* {{medline-title | |||
|title=Jun dimerization protein 2 controls hypoxia-induced replicative senescence via both the p16 -pRb and Arf-p53 pathways. | |||
|date=11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29123987 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666393 | |||
}} | |||
==JHY== | |||
* {{medline-title | |||
|title=Disruption of the mouse Jhy gene causes abnormal ciliary microtubule patterning and juvenile hydrocephalus. | |||
|date=01.10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23906841 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783533 | |||
}} | |||
==JMJD1C== | |||
* {{medline-title | |||
|title=[[JMJD1C]], a JmjC domain-containing protein, is required for long-term maintenance of male germ cells in mice. | |||
|date=10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24006281 | |||
|full-text-url=https://sci-hub.do/10.1095/biolreprod.113.108597 | |||
}} | |||
==JUNB== | |||
* {{medline-title | |||
|title=Promotion of cellular senescence by THG-1/TSC22D4 knockout through activation of [[JUNB]]. | |||
|date=19.02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31806366 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2019.11.145 | |||
}} | |||
==JUP== | |||
* {{medline-title | |||
|title=From comorbidities of chronic obstructive pulmonary disease to identification of shared molecular mechanisms by data integration. | |||
|date=22.11.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28185567 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133493 | |||
}} | |||
==KALRN== | |||
* {{medline-title | |||
|title=Age-dependent increase in Kalirin-9 and Kalirin-12 transcripts in human orbitofrontal cortex. | |||
|date=10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27471199 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5048532 | |||
}} | |||
==KANSL1== | |||
* {{medline-title | |||
|title=Koolen-de Vries Syndrome: Clinical Report of an Adult and Literature Review. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27852077 | |||
|full-text-url=https://sci-hub.do/10.1159/000452724 | |||
}} | |||
==KAT6B== | |||
* {{medline-title | |||
|title=Aging-associated decrease in the histone acetyltransferase [[KAT6B]] is linked to altered hematopoietic stem cell differentiation. | |||
|date=02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32014431 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179256 | |||
}} | |||
==KCNAB3== | |||
* {{medline-title | |||
|title=Tracking age-correlated DNA methylation markers in the young. | |||
|date=09.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29933125 | |||
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2018.06.011 | |||
}} | |||
==KCNC3== | |||
* {{medline-title | |||
|title=DNA methylation levels in candidate genes associated with chronological age in mammals are not conserved in a long-lived seabird. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29216256 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5720723 | |||
}} | |||
==KCNC4== | |||
* {{medline-title | |||
|title=Targeted deletion of [i]Kcne3[/i] impairs skeletal muscle function in mice. | |||
|date=07.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28356343 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472403 | |||
}} | |||
==KCND3== | |||
* {{medline-title | |||
|title=Genetic determinants of P wave duration and PR segment. | |||
|date=08.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24850809 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4141024 | |||
}} | |||
==KCNE1== | |||
* {{medline-title | |||
|title=Delayed pharyngeal repolarization promotes abnormal calcium buildup in aging muscle. | |||
|date=12.04.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23510998 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2013.03.011 | |||
}} | |||
==KCNE3== | |||
* {{medline-title | |||
|title=Targeted deletion of [i]Kcne3[/i] impairs skeletal muscle function in mice. | |||
|date=07.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28356343 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472403 | |||
}} | |||
==KCNE4== | |||
* {{medline-title | |||
|title=Kcne4 deletion sex-specifically predisposes to cardiac arrhythmia via testosterone-dependent impairment of RISK/SAFE pathway induction in aged mice. | |||
|date=29.05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29844497 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974354 | |||
}} | |||
==KCNH2== | |||
* {{medline-title | |||
|title=Targeted deletion of [i]Kcne3[/i] impairs skeletal muscle function in mice. | |||
|date=07.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28356343 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472403 | |||
}} | |||
==KCNJ10== | |||
* {{medline-title | |||
|title=Compromised potassium recycling in the cochlea contributes to conservation of endocochlear potential in a mouse model of age-related hearing loss. | |||
|date=25.10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24055606 | |||
|full-text-url=https://sci-hub.do/10.1016/j.neulet.2013.09.028 | |||
}} | |||
==KCNJ11== | |||
* {{medline-title | |||
|title=A mouse model of human hyperinsulinism produced by the E1506K mutation in the sulphonylurea receptor SUR1. | |||
|date=11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23903354 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3806602 | |||
}} | |||
==KCNJ12== | |||
* {{medline-title | |||
|title=Altered expression of genes for Kir ion channels in dilated cardiomyopathy. | |||
|date=08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23889090 | |||
|full-text-url=https://sci-hub.do/10.1139/cjpp-2012-0413 | |||
}} | |||
==KCNJ14== | |||
* {{medline-title | |||
|title=Altered expression of genes for Kir ion channels in dilated cardiomyopathy. | |||
|date=08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23889090 | |||
|full-text-url=https://sci-hub.do/10.1139/cjpp-2012-0413 | |||
}} | |||
==KCNJ2== | |||
* {{medline-title | |||
|title=Altered expression of genes for Kir ion channels in dilated cardiomyopathy. | |||
|date=08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23889090 | |||
|full-text-url=https://sci-hub.do/10.1139/cjpp-2012-0413 | |||
}} | |||
==KCNJ4== | |||
* {{medline-title | |||
|title=Altered expression of genes for Kir ion channels in dilated cardiomyopathy. | |||
|date=08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23889090 | |||
|full-text-url=https://sci-hub.do/10.1139/cjpp-2012-0413 | |||
}} | |||
==KCNJ6== | |||
* {{medline-title | |||
|title=Genetic correlates of the development of theta event related oscillations in adolescents and young adults. | |||
|date=05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27847216 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456461 | |||
}} | |||
==KCNK2== | |||
* {{medline-title | |||
|title=Brain age prediction using deep learning uncovers associated sequence variants. | |||
|date=27.11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31776335 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6881321 | |||
}} | |||
==KCNK4== | |||
* {{medline-title | |||
|title=Targeted deletion of [i]Kcne3[/i] impairs skeletal muscle function in mice. | |||
|date=07.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28356343 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472403 | |||
}} | |||
==KCNQ1== | |||
* {{medline-title | |||
|title=Compromised potassium recycling in the cochlea contributes to conservation of endocochlear potential in a mouse model of age-related hearing loss. | |||
|date=25.10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24055606 | |||
|full-text-url=https://sci-hub.do/10.1016/j.neulet.2013.09.028 | |||
}} | |||
==KCNQ1DN== | |||
* {{medline-title | |||
|title=The EpiTect Methyl qPCR Assay as novel age estimation method in forensic biology. | |||
|date=07.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27108355 | |||
|full-text-url=https://sci-hub.do/10.1016/j.forsciint.2016.03.047 | |||
}} | |||
==KCNQ2== | |||
* {{medline-title | |||
|title=Neurotransmitter Pathway Genes in Cognitive Decline During Aging: Evidence for [[GNG4]] and [[KCNQ2]] Genes. | |||
|date=05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29338302 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6209098 | |||
}} | |||
==KCNQ4== | |||
* {{medline-title | |||
|title=Guanylyl Cyclase A/cGMP Signaling Slows Hidden, Age- and Acoustic Trauma-Induced Hearing Loss. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32327991 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7160671 | |||
}} | |||
==KCNS3== | |||
* {{medline-title | |||
|title=Vitamin D-responsive [[SGPP2]] variants associated with lung cell expression and lung function. | |||
|date=25.11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24274704 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907038 | |||
}} | |||
==KCP== | |||
* {{medline-title | |||
|title=The kielin/chordin-like protein [[KCP]] attenuates nonalcoholic fatty liver disease in mice. | |||
|date=01.10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27514479 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5142198 | |||
}} | |||
==KCTD12== | |||
* {{medline-title | |||
|title=The association between poverty and gene expression within peripheral blood mononuclear cells in a diverse Baltimore City cohort. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32970748 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514036 | |||
}} | |||
==KDF1== | |||
* {{medline-title | |||
|title=The histological characteristics, age-related thickness change of skin, and expression of the HSPs in the skin during hair cycle in yak (Bos grunniens). | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28463974 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413005 | |||
}} | |||
==KDM1A== | |||
* {{medline-title | |||
|title=Modulation of [[KDM1A]] with vafidemstat rescues memory deficit and behavioral alterations. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32469975 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259601 | |||
}} | |||
==KDM2A== | |||
* {{medline-title | |||
|title=[[SIRT6]] mono-ADP ribosylates [[KDM2A]] to locally increase H3K36me2 at DNA damage sites to inhibit transcription and promote repair. | |||
|date=25.06.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32584788 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343504 | |||
}} | |||
==KDM4A== | |||
* {{medline-title | |||
|title=Structure-Based Discovery of a Selective [[KDM5A]] Inhibitor that Exhibits Anti-Cancer Activity via Inducing Cell Cycle Arrest and Senescence in Breast Cancer Cell Lines. | |||
|date=15.01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30650517 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6360022 | |||
}} | |||
==KDM5A== | |||
* {{medline-title | |||
|title=Structure-Based Discovery of a Selective [[KDM5A]] Inhibitor that Exhibits Anti-Cancer Activity via Inducing Cell Cycle Arrest and Senescence in Breast Cancer Cell Lines. | |||
|date=15.01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30650517 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6360022 | |||
}} | |||
==KDM5B== | |||
* {{medline-title | |||
|title=Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases. | |||
|date=03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27114850 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809609 | |||
}} | |||
==KDR== | |||
* {{medline-title | |||
|title=Regulation of endothelial progenitor cell differentiation and function by dimethylarginine dimethylaminohydrolase 2 in an asymmetric dimethylarginine-independent manner. | |||
|date=09.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24764313 | |||
|full-text-url=https://sci-hub.do/10.1002/cbin.10288 | |||
}} | |||
==KIAA0319== | |||
* {{medline-title | |||
|title=The Dyslexia-susceptibility Protein [[KIAA0319]] Inhibits Axon Growth Through Smad2 Signaling. | |||
|date=01.03.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28334068 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5905272 | |||
}} | |||
==KIAA0930== | |||
* {{medline-title | |||
|title=Genetics of facial telangiectasia in the Rotterdam Study: a genome-wide association study and candidate gene approach. | |||
|date=23.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33095951 | |||
|full-text-url=https://sci-hub.do/10.1111/jdv.17014 | |||
}} | |||
==KIAA1755== | |||
* {{medline-title | |||
|title=Identifying blood-specific age-related DNA methylation markers on the Illumina MethylationEPIC® BeadChip. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31546163 | |||
|full-text-url=https://sci-hub.do/10.1016/j.forsciint.2019.109944 | |||
}} | |||
==KIF11== | |||
* {{medline-title | |||
|title=Bmk-1 regulates lifespan in Caenorhabditis elegans by activating hsp-16. | |||
|date=07.08.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26299918 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4662456 | |||
}} | |||
==KIF1A== | |||
* {{medline-title | |||
|title=SerThr-PhosphoProteome of Brain from Aged [[PINK1]]-KO A53T-[[SNCA]] Mice Reveals pT1928-[[MAP1B]] and pS3781-[[ANK2]] Deficits, as Hub between Autophagy and Synapse Changes. | |||
|date=04.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31277379 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651490 | |||
}} | |||
==KIF3A== | |||
* {{medline-title | |||
|title=Progressive axonal transport and synaptic protein changes correlate with behavioral and neuropathological abnormalities in the heterozygous Q175 KI mouse model of Huntington's disease. | |||
|date=01.09.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24728190 | |||
|full-text-url=https://sci-hub.do/10.1093/hmg/ddu166 | |||
}} | |||
==KIF4A== | |||
* {{medline-title | |||
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335 | |||
}} | |||
==KIF5C== | |||
* {{medline-title | |||
|title=Alteration of Motor Protein Expression Involved in Bidirectional Transport in Peripheral Blood Mononuclear Cells of Patients with Amyotrophic Lateral Sclerosis. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26954557 | |||
|full-text-url=https://sci-hub.do/10.1159/000443664 | |||
}} | |||
==KIF6== | |||
* {{medline-title | |||
|title=Gene variants at [[FTO]], 9p21, and 2q36.3 are age-independently associated with myocardial infarction in Czech men. | |||
|date=15.02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26772723 | |||
|full-text-url=https://sci-hub.do/10.1016/j.cca.2016.01.005 | |||
}} | |||
==KIR3DL2== | |||
* {{medline-title | |||
|title=Expression of aberrant HLA-B27 molecules is dependent on B27 dosage and peptide supply. | |||
|date=04.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23625978 | |||
|full-text-url=https://sci-hub.do/10.1136/annrheumdis-2012-203080 | |||
}} | |||
==KLB== | |||
* {{medline-title | |||
|title=Infants Uniquely Express High Levels of [[RBM3]] and Other Cold-Adaptive Neuroprotectant Proteins in the Human Brain. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30399610 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311128 | |||
}} | |||
==KLF1== | |||
* {{medline-title | |||
|title=Mutant [[KLF1]] in Adult Anemic Nan Mice Leads to Profound Transcriptome Changes and Disordered Erythropoiesis. | |||
|date=24.08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30143664 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6109071 | |||
}} | |||
==KLF10== | |||
* {{medline-title | |||
|title=Polymorphism rs7278468 is associated with Age-related cataract through decreasing transcriptional activity of the [[CRYAA]] promoter. | |||
|date=17.03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26984531 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4794711 | |||
}} | |||
==KLF2== | |||
* {{medline-title | |||
|title=[[KLF2]] induces the senescence of pancreatic cancer cells by cooperating with [[FOXO4]] to upregulate p21. | |||
|date=01.03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31866399 | |||
|full-text-url=https://sci-hub.do/10.1016/j.yexcr.2019.111784 | |||
}} | |||
==KLHL13== | |||
* {{medline-title | |||
|title=Genetic correlation and genome-wide association study (GWAS) of the length of productive life, days open, and 305-days milk yield in crossbred Holstein dairy cattle. | |||
|date=29.06.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28671246 | |||
|full-text-url=https://sci-hub.do/10.4238/gmr16029091 | |||
}} | |||
==KLHL22== | |||
* {{medline-title | |||
|title=[[KLHL22]] activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing. | |||
|date=05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29769719 | |||
|full-text-url=https://sci-hub.do/10.1038/s41586-018-0128-9 | |||
}} | |||
==KPNA5== | |||
* {{medline-title | |||
|title=Global Characteristics of CSIG-Associated Gene Expression Changes in Human HEK293 Cells and the Implications for CSIG Regulating Cell Proliferation and Senescence. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26029164 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432801 | |||
}} | |||
==KRR1== | |||
* {{medline-title | |||
|title=Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. | |||
|date=29.09.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26416764 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598835 | |||
}} | |||
==KRT15== | |||
* {{medline-title | |||
|title=Extracellular proteoglycan decorin maintains human hair follicle stem cells. | |||
|date=12.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30320452 | |||
|full-text-url=https://sci-hub.do/10.1111/1346-8138.14678 | |||
}} | |||
==KRT18== | |||
* {{medline-title | |||
|title=Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. | |||
|date=11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30071357 | |||
|full-text-url=https://sci-hub.do/10.1016/j.arr.2018.07.004 | |||
}} | |||
==KRT19== | |||
* {{medline-title | |||
|title=Characterization of Krt19 allele for targeting the nucleus pulposus cells in the postnatal mouse intervertebral disc. | |||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31187500 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778700 | |||
}} | |||
==KRT5== | |||
* {{medline-title | |||
|title=Alternative Progenitor Lineages Regenerate the Adult Lung Depleted of Alveolar Epithelial Type 2 Cells. | |||
|date=04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27967234 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5449509 | |||
}} | |||
==KTN1== | |||
* {{medline-title | |||
|title=Common genetic variants influence human subcortical brain structures. | |||
|date=09.04.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25607358 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393366 | |||
}} | |||
==KY== | |||
* {{medline-title | |||
|title=Combination of acupuncture and Chinese herbal formula for elderly adults with mild cognitive impairment: protocol for a randomized controlled trial. | |||
|date=11.02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30744676 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6371495 | |||
}} | |||
==L3MBTL1== | |||
* {{medline-title | |||
|title=Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. | |||
|date=12.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25824446 | |||
|full-text-url=https://sci-hub.do/10.1136/bjsports-2014-094073 | |||
}} | |||
==LAGE3== | |||
* {{medline-title | |||
|title=Novel homozygous [[OSGEP]] gene pathogenic variants in two unrelated patients with Galloway-Mowat syndrome: case report and review of the literature. | |||
|date=11.04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30975089 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458604 | |||
}} | |||
==LAMA1== | |||
* {{medline-title | |||
|title=Laminin α1 regulates age-related mesangial cell proliferation and mesangial matrix accumulation through the TGF-β pathway. | |||
|date=06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24720953 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4044709 | |||
}} | |||
==LAMA2== | |||
* {{medline-title | |||
|title=[Alu insertion-deletion polymorphism of [[COL13A1]] and [[LAMA2]] genes: The analysis of association with longevity]. | |||
|date=10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29369589 | |||
}} | |||
==LATS1== | |||
* {{medline-title | |||
|title=Impaired liver regeneration in aged mice can be rescued by silencing Hippo core kinases [[MST1]] and MST2. | |||
|date=01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27940445 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5210079 | |||
}} | |||
==LDB2== | |||
* {{medline-title | |||
|title=Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. | |||
|date=11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28841467 | |||
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.07.015 | |||
}} | |||
==LDHC== | |||
* {{medline-title | |||
|title=The aged testis. A good model to find proteins involved in age-related changes of testis by proteomic analysis. | |||
|date=01-02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24597284 | |||
}} | |||
==LDLRAD4== | |||
* {{medline-title | |||
|title=Epigenetics of neuroinflammation: Immune response, inflammatory response and cholinergic synaptic involvement evidenced by genome-wide DNA methylation analysis of delirious inpatients. | |||
|date=10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32590150 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486988 | |||
}} | |||
==LEF1== | |||
* {{medline-title | |||
|title=LncRNA H19 targets miR-22 to modulate H O -induced deregulation in nucleus pulposus cell senescence, proliferation, and ECM synthesis through Wnt signaling. | |||
|date=06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29520849 | |||
|full-text-url=https://sci-hub.do/10.1002/jcb.26738 | |||
}} | |||
==LGALS1== | |||
* {{medline-title | |||
|title=Quantitative proteomic profiling of tumor cell response to telomere dysfunction using isotope-coded protein labeling (ICPL) reveals interaction network of candidate senescence markers. | |||
|date=08.10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23969227 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jprot.2013.08.007 | |||
}} | |||
==LGALS3== | |||
* {{medline-title | |||
|title=Tissue Taurine Depletion Induces Profibrotic Pattern of Gene Expression and Causes Aging-Related Cardiac Fibrosis in Heart in Mice. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30270325 | |||
|full-text-url=https://sci-hub.do/10.1248/bpb.b18-00217 | |||
}} | |||
==LGR6== | |||
* {{medline-title | |||
|title=Effect of defensins-containing eye cream on periocular rhytids and skin quality. | |||
|date=08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32614135 | |||
|full-text-url=https://sci-hub.do/10.1111/jocd.13424 | |||
}} | |||
==LIMK2== | |||
* {{medline-title | |||
|title=Reduced corporal fibrosis to protect erectile function by inhibiting the Rho-kinase/LIM-kinase/cofilin pathway in the aged transgenic rat harboring human tissue kallikrein 1. | |||
|date=01-02.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27678468 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5227678 | |||
}} | |||
==LINC00862== | |||
* {{medline-title | |||
|title=Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. | |||
|date=12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27878761 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441979 | |||
}} | |||
==LIPC== | |||
* {{medline-title | |||
|title=Quantitative and Qualitative Role of Antagonistic Heterogeneity in Genetics of Blood Lipids. | |||
|date=25.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31566214 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518561 | |||
}} | |||
==LIPG== | |||
* {{medline-title | |||
|title=Quantitative and Qualitative Role of Antagonistic Heterogeneity in Genetics of Blood Lipids. | |||
|date=25.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31566214 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518561 | |||
}} | |||
==LMNB2== | |||
* {{medline-title | |||
|title=Physiological and Pathological Aging Affects Chromatin Dynamics, Structure and Function at the Nuclear Edge. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27602048 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4993774 | |||
}} | |||
==LMO2== | |||
* {{medline-title | |||
|title=Aging-dependent DNA hypermethylation and gene expression of [[GSTM1]] involved in T cell differentiation. | |||
|date=25.07.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28596482 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5564710 | |||
}} | |||
==LMX1A== | |||
* {{medline-title | |||
|title=Phenotypic Reprogramming of Striatal Neurons into Dopaminergic Neuron-like Cells in the Adult Mouse Brain. | |||
|date=13.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30318292 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234859 | |||
}} | |||
==LMX1B== | |||
* {{medline-title | |||
|title=[[LMX1B]] is essential for the maintenance of differentiated podocytes in adult kidneys. | |||
|date=11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23990680 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810075 | |||
}} | |||
==LOXL4== | |||
* {{medline-title | |||
|title=Blood Vessel Basement Membrane Alterations in Human Retinal Microaneurysms During Aging. | |||
|date=01.02.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28196225 | |||
|full-text-url=https://sci-hub.do/10.1167/iovs.16-19998 | |||
}} | |||
==LPAR3== | |||
* {{medline-title | |||
|title=Upregulated microRNA-15b alleviates ovarian cancer through inhitbition of the PI3K/Akt pathway by targeting [[LPAR3]]. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31140597 | |||
|full-text-url=https://sci-hub.do/10.1002/jcp.28799 | |||
}} | |||
==LRAT== | |||
* {{medline-title | |||
|title=Oxidative stress induces mitochondrial dysfunction and a protective unfolded protein response in [[RPE]] cells. | |||
|date=04.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24434119 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3960355 | |||
}} | |||
==LRCH1== | |||
* {{medline-title | |||
|title=Genetic determinants of P wave duration and PR segment. | |||
|date=08.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24850809 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4141024 | |||
}} | |||
==LRP2== | |||
* {{medline-title | |||
|title=Single-Cell Transcriptomics Characterizes Cell Types in the Subventricular Zone and Uncovers Molecular Defects Impairing Adult Neurogenesis. | |||
|date=27.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30485812 | |||
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2018.11.003 | |||
}} | |||
==LRP8== | |||
* {{medline-title | |||
|title=SFRS11 Loss Leads to Aging-Associated Cognitive Decline by Modulating [[LRP8]] and ApoE. | |||
|date=02.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31269452 | |||
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2019.06.002 | |||
}} | |||
==LRRC23== | |||
* {{medline-title | |||
|title=Common genetic variants in [[ARNTL]] and [[NPAS2]] and at chromosome 12p13 are associated with objectively measured sleep traits in the elderly. | |||
|date=01.03.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23449886 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571755 | |||
}} | |||
==LRRC34== | |||
* {{medline-title | |||
|title=The polygenic nature of telomere length and the anti-ageing properties of lithium. | |||
|date=03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30559463 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6372618 | |||
}} | |||
==LRRC8B== | |||
* {{medline-title | |||
|title=DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. | |||
|date=25.07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30045751 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058387 | |||
}} | |||
==LRRK1== | |||
* {{medline-title | |||
|title=Age-Dependent Dopaminergic Neurodegeneration and Impairment of the Autophagy-Lysosomal Pathway in LRRK-Deficient Mice. | |||
|date=15.11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29056298 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5693787 | |||
}} | |||
==LTBP4== | |||
* {{medline-title | |||
|title=Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. | |||
|date=05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28325852 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827 | |||
}} | |||
==LY6D== | |||
* {{medline-title | |||
|title=[[LY6D]]-induced macropinocytosis as a survival mechanism of senescent cells. | |||
|date=09.11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33168631 | |||
|full-text-url=https://sci-hub.do/10.1074/jbc.RA120.013500 | |||
}} | |||
==LY86== | |||
* {{medline-title | |||
|title=Identification of age- and gender-associated long noncoding RNAs in the human brain with Alzheimer's disease. | |||
|date=09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31280115 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6732230 | |||
}} | |||
==LYG1== | |||
* {{medline-title | |||
|title=Uncovering genetic mechanisms of kidney aging through transcriptomics, genomics, and epigenomics. | |||
|date=03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30784661 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390171 | |||
}} | |||
==LYST== | |||
* {{medline-title | |||
|title=Whole-Exome Sequencing of an Exceptional Longevity Cohort. | |||
|date=16.08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29750252 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696723 | |||
}} | |||
==MACROD2== | |||
* {{medline-title | |||
|title=Survival analyses in Holstein cows considering direct disease diagnoses and specific SNP marker effects. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32684467 | |||
|full-text-url=https://sci-hub.do/10.3168/jds.2020-18174 | |||
}} | |||
==MADD== | |||
* {{medline-title | |||
|title=Association of levels of fasting glucose and insulin with rare variants at the chromosome 11p11.2-[[MADD]] locus: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. | |||
|date=06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24951664 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066205 | |||
}} | |||
==MAFB== | |||
* {{medline-title | |||
|title=Age-dependent skeletal muscle transcriptome response to bed rest-induced atrophy. | |||
|date=01.04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30605403 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485685 | |||
}} | |||
==MAGOHB== | |||
* {{medline-title | |||
|title=Proteomic analysis reveals novel common genes modulated in both replicative and stress-induced senescence. | |||
|date=14.10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26206181 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jprot.2015.07.010 | |||
}} | |||
==MAK== | |||
* {{medline-title | |||
|title=Age-dependent autophagy induction after injury promotes axon regeneration by limiting NOTCH. | |||
|date=11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31920157 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595581 | |||
}} | |||
==MANBA== | |||
* {{medline-title | |||
|title=A meta-analysis of genome-wide association studies of epigenetic age acceleration. | |||
|date=11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31738745 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6886870 | |||
}} | |||
==MANF== | |||
* {{medline-title | |||
|title=Age-dependent decrease in chaperone activity impairs [[MANF]] expression, leading to Purkinje cell degeneration in inducible SCA17 mice. | |||
|date=22.01.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24462098 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4863472 | |||
}} | |||
==MAOB== | |||
* {{medline-title | |||
|title=Modulation of [[KDM1A]] with vafidemstat rescues memory deficit and behavioral alterations. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32469975 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259601 | |||
}} | |||
==MAP2K3== | |||
* {{medline-title | |||
|title=Associations of [i][[MAP2K3]][/i] Gene Variants With Superior Memory in SuperAgers. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29896098 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5987172 | |||
}} | |||
==MAP3K11== | |||
* {{medline-title | |||
|title=Aberrant DNA Methylation in Keratoacanthoma. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27788211 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5082942 | |||
}} | |||
==MAP3K5== | |||
* {{medline-title | |||
|title=Analysis of Polymorphisms in 59 Potential Candidate Genes for Association With Human Longevity. | |||
|date=08.10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29300832 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6175033 | |||
}} | |||
==MAP4K3== | |||
* {{medline-title | |||
|title=[[MAP4K3]]/GLK in autoimmune disease, cancer and aging. | |||
|date=22.10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31640697 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806545 | |||
}} | |||
==MAPK10== | |||
* {{medline-title | |||
|title=Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. | |||
|date=15.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |||
}} | |||
==MAPK11== | |||
* {{medline-title | |||
|title=lncRNA ENSMUST00000134285 Increases [[MAPK11]] Activity, Regulating Aging-Related Myocardial Apoptosis. | |||
|date=09.07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29415197 | |||
|full-text-url=https://sci-hub.do/10.1093/gerona/gly020 | |||
}} | |||
==MAPK13== | |||
* {{medline-title | |||
|title=Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. | |||
|date=15.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |||
}} | |||
==MAPK8== | |||
* {{medline-title | |||
|title=Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats. | |||
|date=02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30661688 | |||
|full-text-url=https://sci-hub.do/10.1016/j.clnesp.2018.10.003 | |||
}} | |||
==MARCKSL1== | |||
* {{medline-title | |||
|title=[[MARCKSL1]] Regulates Spine Formation in the Amygdala and Controls the Hypothalamic-Pituitary-Adrenal Axis and Anxiety-Like Behaviors. | |||
|date=04.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29580842 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5952351 | |||
}} | |||
==MARK1== | |||
* {{medline-title | |||
|title=SerThr-PhosphoProteome of Brain from Aged [[PINK1]]-KO A53T-[[SNCA]] Mice Reveals pT1928-[[MAP1B]] and pS3781-[[ANK2]] Deficits, as Hub between Autophagy and Synapse Changes. | |||
|date=04.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31277379 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651490 | |||
}} | |||
==MARK4== | |||
* {{medline-title | |||
|title=Two-stage Bayesian GWAS of 9576 individuals identifies SNP regions that are targeted by miRNAs inversely expressed in Alzheimer's and cancer. | |||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31914222 | |||
|full-text-url=https://sci-hub.do/10.1002/alz.12003 | |||
}} | |||
==MAS1== | |||
* {{medline-title | |||
|title=AVE0991, a nonpeptide analogue of Ang-(1-7), attenuates aging-related neuroinflammation. | |||
|date=17.04.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29667931 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940107 | |||
}} | |||
==MASP1== | |||
* {{medline-title | |||
|title=Polymorphisms in the [[MASP1]] gene are associated with serum levels of MASP-1, MASP-3, and MAp44. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24023860 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759447 | |||
}} | |||
==MATN2== | |||
* {{medline-title | |||
|title=Mice Lacking the Matrilin Family of Extracellular Matrix Proteins Develop Mild Skeletal Abnormalities and Are Susceptible to Age-Associated Osteoarthritis. | |||
|date=19.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31963938 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013758 | |||
}} | |||
==MATN3== | |||
* {{medline-title | |||
|title=Mice Lacking the Matrilin Family of Extracellular Matrix Proteins Develop Mild Skeletal Abnormalities and Are Susceptible to Age-Associated Osteoarthritis. | |||
|date=19.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31963938 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013758 | |||
}} | |||
==MATN4== | |||
* {{medline-title | |||
|title=Mice Lacking the Matrilin Family of Extracellular Matrix Proteins Develop Mild Skeletal Abnormalities and Are Susceptible to Age-Associated Osteoarthritis. | |||
|date=19.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31963938 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013758 | |||
}} | |||
==MATR3== | |||
* {{medline-title | |||
|title=Heterogeneity of Matrin 3 in the developing and aging murine central nervous system. | |||
|date=01.10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26878116 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832027 | |||
}} | |||
==MBD2== | |||
* {{medline-title | |||
|title=Age-related Changes in the Global DNA Methylation Profile of Oligodendrocyte Progenitor Cells Derived from Rat Spinal Cords. | |||
|date=02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30868493 | |||
|full-text-url=https://sci-hub.do/10.1007/s11596-019-2001-y | |||
}} | |||
==MBOAT2== | |||
* {{medline-title | |||
|title=Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. | |||
|date=03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109663 | |||
|full-text-url=https://sci-hub.do/10.1016/j.atherosclerosis.2020.02.005 | |||
}} | |||
==MBTD1== | |||
* {{medline-title | |||
|title=LncRNA [[TTN]]-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/[[MBTD1]] axis. | |||
|date=10.10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31600142 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814585 | |||
}} | |||
==MCF2L== | |||
* {{medline-title | |||
|title=DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. | |||
|date=25.07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30045751 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058387 | |||
}} | |||
==MCM3AP== | |||
* {{medline-title | |||
|title=Nodes and biological processes identified on the basis of network analysis in the brain of the senescence accelerated mice as an Alzheimer's disease animal model. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24194717 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810591 | |||
}} | |||
==MCM5== | |||
* {{medline-title | |||
|title=Changes in [[MCM2]]-7 proteins at senescence. | |||
|date=27.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31092751 | |||
|full-text-url=https://sci-hub.do/10.1266/ggs.18-00062 | |||
}} | |||
==MCM6== | |||
* {{medline-title | |||
|title=Changes in [[MCM2]]-7 proteins at senescence. | |||
|date=27.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31092751 | |||
|full-text-url=https://sci-hub.do/10.1266/ggs.18-00062 | |||
}} | |||
==MCUR1== | |||
* {{medline-title | |||
|title=Cytosolic and mitochondrial Ca concentrations in primary hepatocytes change with ageing and in consequence of an mtDNA mutation. | |||
|date=09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31377553 | |||
|full-text-url=https://sci-hub.do/10.1016/j.ceca.2019.102055 | |||
}} | |||
==MDK== | |||
* {{medline-title | |||
|title=A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass. | |||
|date=20.06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31219803 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628988 | |||
}} | |||
==MDN1== | |||
* {{medline-title | |||
|title=Whole-Exome Sequencing of an Exceptional Longevity Cohort. | |||
|date=16.08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29750252 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696723 | |||
}} | |||
==ME3== | |||
* {{medline-title | |||
|title=Acceleration of age-associated methylation patterns in HIV-1-infected adults. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25807146 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4373843 | |||
}} | |||
==MECOM== | |||
* {{medline-title | |||
|title=Clinical and genetic risk factors for decreased bone mineral density in Japanese patients with inflammatory bowel disease. | |||
|date=11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29603369 | |||
|full-text-url=https://sci-hub.do/10.1111/jgh.14149 | |||
}} | |||
==MED25== | |||
* {{medline-title | |||
|title=The [i]HAC1[/i] histone acetyltransferase promotes leaf senescence and regulates the expression of [i]ERF022[/i]. | |||
|date=08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31468026 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710649 | |||
}} | |||
==MED28== | |||
* {{medline-title | |||
|title=Redox regulation of the [[MED28]] and MED32 mediator subunits is important for development and senescence. | |||
|date=05.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26195288 | |||
|full-text-url=https://sci-hub.do/10.1007/s00709-015-0853-y | |||
}} | |||
==MEIS2== | |||
* {{medline-title | |||
|title=Pbx1 is required for adult subventricular zone neurogenesis. | |||
|date=01.07.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27226325 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4958316 | |||
}} | |||
==MEPE== | |||
* {{medline-title | |||
|title=Remodeling process in bone of aged rats in response to resistance training. | |||
|date=01.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32593709 | |||
|full-text-url=https://sci-hub.do/10.1016/j.lfs.2020.118008 | |||
}} | |||
==MERTK== | |||
* {{medline-title | |||
|title=Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. | |||
|date=15.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |||
}} | |||
==MESP1== | |||
* {{medline-title | |||
|title=Simulated Microgravity Exerts an Age-Dependent Effect on the Differentiation of Cardiovascular Progenitors Isolated from the Human Heart. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26161778 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498633 | |||
}} | |||
==MEST== | |||
* {{medline-title | |||
|title=Improving specific autobiographical memory in older adults: impacts on mood, social problem solving, and functional limitations. | |||
|date=09.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28825508 | |||
|full-text-url=https://sci-hub.do/10.1080/13825585.2017.1365815 | |||
}} | |||
==MFAP4== | |||
* {{medline-title | |||
|title=The role of microfibrillar-associated protein 4 ([[MFAP4]]) in the formation and function of splenic compartments during embryonic and adult life. | |||
|date=07.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26899386 | |||
|full-text-url=https://sci-hub.do/10.1007/s00441-016-2374-1 | |||
}} | |||
==MFSD2A== | |||
* {{medline-title | |||
|title=Decreased Blood Level of MFSD2a as a Potential Biomarker of Alzheimer's Disease. | |||
|date=20.12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31861865 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981746 | |||
}} | |||
==MICB== | |||
* {{medline-title | |||
|title=Genetic associations with age of menopause in familial longevity. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31188284 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7008937 | |||
}} | |||
==MICU1== | |||
* {{medline-title | |||
|title=Cytosolic and mitochondrial Ca concentrations in primary hepatocytes change with ageing and in consequence of an mtDNA mutation. | |||
|date=09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31377553 | |||
|full-text-url=https://sci-hub.do/10.1016/j.ceca.2019.102055 | |||
}} | |||
==MIPEP== | |||
* {{medline-title | |||
|title=[Metabolic Alteration in Aging Process: Metabolic Remodeling in White Adipose Tissue by Caloric Restriction]. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32115557 | |||
|full-text-url=https://sci-hub.do/10.1248/yakushi.19-00193-2 | |||
}} | |||
==MKRN1== | |||
* {{medline-title | |||
|title=Endothelial senescence-associated secretory phenotype (SASP) is regulated by Makorin-1 ubiquitin E3 ligase. | |||
|date=11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31476350 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059097 | |||
}} | |||
==MLH3== | |||
* {{medline-title | |||
|title=Age-Dependent Alterations in Meiotic Recombination Cause Chromosome Segregation Errors in Spermatocytes. | |||
|date=19.10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28942922 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5679441 | |||
}} | |||
==MLST8== | |||
* {{medline-title | |||
|title=Genetic variants near [[MLST8]] and [[DHX57]] affect the epigenetic age of the cerebellum. | |||
|date=02.02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26830004 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4740877 | |||
}} | |||
==MMP20== | |||
* {{medline-title | |||
|title=Identification of the effects of aging-related gene-matrix metalloproteinase on allograft outcomes in kidney transplantation. | |||
|date=07-08.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23953525 | |||
|full-text-url=https://sci-hub.do/10.1016/j.transproceed.2013.03.020 | |||
}} | |||
==MOB1B== | |||
* {{medline-title | |||
|title=Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. | |||
|date=05.03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109421 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058826 | |||
}} | |||
==MOG== | |||
* {{medline-title | |||
|title=Efficacy of vitamin D in treating multiple sclerosis-like neuroinflammation depends on developmental stage. | |||
|date=11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23954214 | |||
|full-text-url=https://sci-hub.do/10.1016/j.expneurol.2013.08.002 | |||
}} | |||
==MORF4L1== | |||
* {{medline-title | |||
|title=A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass. | |||
|date=20.06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31219803 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628988 | |||
}} | |||
==MPC1== | |||
* {{medline-title | |||
|title=Age-related impairments in skeletal muscle PDH phosphorylation and plasma lactate are indicative of metabolic inflexibility and the effects of exercise training. | |||
|date=01.07.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27221120 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967149 | |||
}} | |||
==MPG== | |||
* {{medline-title | |||
|title=Menoprogen, a TCM Herbal Formula for Menopause, Increases Endogenous E2 in an Aged Rat Model of Menopause by Reducing Ovarian Granulosa Cell Apoptosis. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26981526 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4769746 | |||
}} | |||
==MPHOSPH6== | |||
* {{medline-title | |||
|title=Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. | |||
|date=05.03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109421 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058826 | |||
}} | |||
==MPL== | |||
* {{medline-title | |||
|title=Molecular Pathogenesis of Myeloproliferative Neoplasms: Influence of Age and Gender. | |||
|date=10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28948454 | |||
|full-text-url=https://sci-hub.do/10.1007/s11899-017-0411-0 | |||
}} | |||
==MPP3== | |||
* {{medline-title | |||
|title=[[MPP3]] regulates levels of PALS1 and adhesion between photoreceptors and Müller cells. | |||
|date=10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23893895 | |||
|full-text-url=https://sci-hub.do/10.1002/glia.22545 | |||
}} | |||
==MPP4== | |||
* {{medline-title | |||
|title=DNA damage tolerance in hematopoietic stem and progenitor cells in mice. | |||
|date=15.08.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28761001 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5565453 | |||
}} | |||
==MPST== | |||
* {{medline-title | |||
|title=Methionine restriction leads to hyperhomocysteinemia and alters hepatic H S production capacity in Fischer-344 rats. | |||
|date=12.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30367932 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2018.10.004 | |||
}} | |||
==MPV17== | |||
* {{medline-title | |||
|title=The Human Mitochondrial DNA Depletion Syndrome Gene [[MPV17]] Encodes a Non-selective Channel That Modulates Membrane Potential. | |||
|date=29.05.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25861990 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447960 | |||
}} | |||
==MR1== | |||
* {{medline-title | |||
|title=Human blood MAIT cell subsets defined using [[MR1]] tetramers. | |||
|date=05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29437263 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446826 | |||
}} | |||
==MRC1== | |||
* {{medline-title | |||
|title=Myocardial Infarction Superimposed on Aging: MMP-9 Deletion Promotes M2 Macrophage Polarization. | |||
|date=04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25878031 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5175450 | |||
}} | |||
==MRO== | |||
* {{medline-title | |||
|title=[Effects of different intensities exercise combined with resveratrol on [[RBP4]] in aged obese rats]. | |||
|date=08.05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29926594 | |||
|full-text-url=https://sci-hub.do/10.12047/j.cjap.5527.2017.110 | |||
}} | |||
==MRTFA== | |||
* {{medline-title | |||
|title=Endothelial progerin expression causes cardiovascular pathology through an impaired mechanoresponse. | |||
|date=01.02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30422822 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6355303 | |||
}} | |||
==MS4A1== | |||
* {{medline-title | |||
|title=Age-related but not longevity-related genes are found by weighted gene co-expression network analysis in the peripheral blood cells of humans. | |||
|date=19.01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30541985 | |||
|full-text-url=https://sci-hub.do/10.1266/ggs.17-00052 | |||
}} | |||
==MS4A4A== | |||
* {{medline-title | |||
|title=Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. | |||
|date=11.04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28199971 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421828 | |||
}} | |||
==MS4A6A== | |||
* {{medline-title | |||
|title=Recent studies on cellular and molecular mechanisms in Alzheimer's disease: focus on epigenetic factors and histone deacetylase. | |||
|date=28.03.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29397389 | |||
|full-text-url=https://sci-hub.do/10.1515/revneuro-2017-0049 | |||
}} | |||
==MSH3== | |||
* {{medline-title | |||
|title=RNA-Seq analysis of differentially expressed genes relevant to mismatch repair in aging hematopoietic stem-progenitor cells. | |||
|date=25.02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30805972 | |||
|full-text-url=https://sci-hub.do/10.1002/jcb.28417 | |||
}} | |||
==MSH5== | |||
* {{medline-title | |||
|title=Exome sequencing analysis reveals variants in primary immunodeficiency genes in patients with very early onset inflammatory bowel disease. | |||
|date=11.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26193622 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4853027 | |||
}} | |||
==MSN== | |||
* {{medline-title | |||
|title=The sigma-1 receptor mediates the beneficial effects of pridopidine in a mouse model of Huntington disease. | |||
|date=01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27818324 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5214572 | |||
}} | |||
==MSR1== | |||
* {{medline-title | |||
|title=Role of TGFβ signaling in the pathogenesis of Alzheimer's disease. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26578886 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4623426 | |||
}} | |||
==MSRA== | |||
* {{medline-title | |||
|title=Temporal pattern of neuronal insulin release during Caenorhabditis elegans aging: Role of redox homeostasis. | |||
|date=02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30456853 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351846 | |||
}} | |||
==MT1B== | |||
* {{medline-title | |||
|title=Pharmacological advantages of melatonin in immunosenescence by improving activity of T lymphocytes. | |||
|date=07.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27533940 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4946322 | |||
}} | |||
==MT1M== | |||
* {{medline-title | |||
|title=A novel strain of Lactobacillus mucosae isolated from a Gaotian villager improves in vitro and in vivo antioxidant as well as biological properties in D-galactose-induced aging mice. | |||
|date=02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26709186 | |||
|full-text-url=https://sci-hub.do/10.3168/jds.2015-10265 | |||
}} | |||
==MT3== | |||
* {{medline-title | |||
|title=Age-related changes of metallothionein 1/2 and metallothionein 3 expression in rat brain. | |||
|date=01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27939232 | |||
|full-text-url=https://sci-hub.do/10.1016/j.crvi.2016.11.003 | |||
}} | |||
==MTBP== | |||
* {{medline-title | |||
|title=Multiomics Approach to Novel Therapeutic Targets for Cancer and Aging-Related Diseases: Role of Sld7 in Yeast Aging Network. | |||
|date=02.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28118095 | |||
|full-text-url=https://sci-hub.do/10.1089/omi.2016.0157 | |||
}} | |||
==MTCH2== | |||
* {{medline-title | |||
|title=The influence of obesity-related single nucleotide polymorphisms on BMI across the life course: the PAGE study. | |||
|date=05.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23300277 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636619 | |||
}} | |||
==MTHFD2== | |||
* {{medline-title | |||
|title=A multidimensional systems biology analysis of cellular senescence in aging and disease. | |||
|date=07.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264951 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333371 | |||
}} | |||
==MTNR1A== | |||
* {{medline-title | |||
|title=Influence of melatonin receptor 1A gene polymorphisms on seasonal reproduction in Sarda ewes with different body condition scores and ages. | |||
|date=10.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25132211 | |||
|full-text-url=https://sci-hub.do/10.1016/j.anireprosci.2014.07.022 | |||
}} | |||
==MTTP== | |||
* {{medline-title | |||
|title=Active vitamin D supplementation alleviates initiation and progression of nonalcoholic fatty liver disease by repressing the p53 pathway. | |||
|date=15.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31756344 | |||
|full-text-url=https://sci-hub.do/10.1016/j.lfs.2019.117086 | |||
}} | |||
==MUC7== | |||
* {{medline-title | |||
|title=Reduced Salivary Mucin Binding and Glycosylation in Older Adults Influences Taste in an In Vitro Cell Model. | |||
|date=24.09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31554163 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835954 | |||
}} | |||
==MUL1== | |||
* {{medline-title | |||
|title=Effects of [[MUL1]] and PARKIN on the circadian clock, brain and behaviour in Drosophila Parkinson's disease models. | |||
|date=28.05.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31138137 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6540415 | |||
}} | |||
==MUTYH== | |||
* {{medline-title | |||
|title=Cholangiocyte senescence caused by lysophosphatidylcholine as a potential implication in carcinogenesis. | |||
|date=09.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25921542 | |||
|full-text-url=https://sci-hub.do/10.1002/jhbp.256 | |||
}} | |||
==MVP== | |||
* {{medline-title | |||
|title=Reexamining the minimum viable population concept for long-lived species. | |||
|date=06.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23458501 | |||
|full-text-url=https://sci-hub.do/10.1111/cobi.12028 | |||
}} | |||
==MYBBP1A== | |||
* {{medline-title | |||
|title=The protein-interaction network with functional roles in tumorigenesis, neurodegeneration, and aging. | |||
|date=12.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27699588 | |||
|full-text-url=https://sci-hub.do/10.1007/s11010-016-2836-5 | |||
}} | |||
==MYBPC1== | |||
* {{medline-title | |||
|title=Myosin Binding Protein-C Slow Phosphorylation is Altered in Duchenne Dystrophy and Arthrogryposis Myopathy in Fast-Twitch Skeletal Muscles. | |||
|date=19.08.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26287277 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642557 | |||
}} | |||
==MYCN== | |||
* {{medline-title | |||
|title=Silencing of [[AURKA]] augments the antitumor efficacy of the [[AURKA]] inhibitor MLN8237 on neuroblastoma cells. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31920463 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947931 | |||
}} | |||
==MYCNOS== | |||
* {{medline-title | |||
|title=Insights into the Function of Long Noncoding RNAs in Sepsis Revealed by Gene Co-Expression Network Analysis. | |||
|date=26.01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29657277 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5831999 | |||
}} | |||
==MYH10== | |||
* {{medline-title | |||
|title=Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31254144 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733812 | |||
}} | |||
==MYH9== | |||
* {{medline-title | |||
|title=Estimated glomerular filtration rate (eGFR), 25(OH) D3, chronic kidney disease (CKD), the [[MYH9]] (myosin heavy chain 9) gene in old and very elderly people. | |||
|date=08.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26152646 | |||
|full-text-url=https://sci-hub.do/10.1007/s11255-015-1041-x | |||
}} | |||
==MYLPF== | |||
* {{medline-title | |||
|title=Explaining meat quality of bulls and steers by differential proteome and phosphoproteome analysis of skeletal muscle. | |||
|date=15.05.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30862562 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jprot.2019.03.004 | |||
}} | |||
==MYNN== | |||
* {{medline-title | |||
|title=Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24478790 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894567 | |||
}} | |||
==MYO18B== | |||
* {{medline-title | |||
|title=A common variant in myosin-18B contributes to mathematical abilities in children with dyslexia and intraparietal sulcus variability in adults. | |||
|date=19.02.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23423138 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591001 | |||
}} | |||
==MYO1F== | |||
* {{medline-title | |||
|title=A Microglial Signature Directing Human Aging and Neurodegeneration-Related Gene Networks. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30733664 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6353788 | |||
}} | |||
==MYO5B== | |||
* {{medline-title | |||
|title=Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. | |||
|date=12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27878761 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441979 | |||
}} | |||
==MYOC== | |||
* {{medline-title | |||
|title=Binding of a glaucoma-associated myocilin variant to the αB-crystallin chaperone impedes protein clearance in trabecular meshwork cells. | |||
|date=28.12.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30389787 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311499 | |||
}} | |||
==MYOF== | |||
* {{medline-title | |||
|title=Genetics of Human Longevity From Incomplete Data: New Findings From the Long Life Family Study. | |||
|date=08.10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30299504 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6175028 | |||
}} | |||
==MYOG== | |||
* {{medline-title | |||
|title=Low Six4 and Six5 gene dosage improves dystrophic phenotype and prolongs life span of mdx mice. | |||
|date=08.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27224259 | |||
|full-text-url=https://sci-hub.do/10.1111/dgd.12290 | |||
}} | |||
==MYSM1== | |||
* {{medline-title | |||
|title=[[MYSM1]] Suppresses Cellular Senescence and the Aging Process to Prolong Lifespan. | |||
|date=11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33240758 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7675055 | |||
}} | |||
==MYT1== | |||
* {{medline-title | |||
|title=ESC-sEVs Rejuvenate Aging Hippocampal NSCs by Transferring SMADs to Regulate the [[MYT1]]-Egln3-Sirt1 Axis. | |||
|date=01.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33038325 | |||
|full-text-url=https://sci-hub.do/10.1016/j.ymthe.2020.09.037 | |||
}} | |||
==NACA== | |||
* {{medline-title | |||
|title=Age and Sex Are Strongly Correlated to the Rate and Type of Mountain Injuries Requiring Search and Rescue Missions. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31699646 | |||
|full-text-url=https://sci-hub.do/10.1016/j.wem.2019.06.016 | |||
}} | |||
==NAF1== | |||
* {{medline-title | |||
|title=Telomere length and aging-related outcomes in humans: A Mendelian randomization study in 261,000 older participants. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31444995 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826144 | |||
}} | |||
==NAIP== | |||
* {{medline-title | |||
|title=Protective effect of xanthohumol against age-related brain damage. | |||
|date=11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28950154 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jnutbio.2017.07.011 | |||
}} | |||
==NBPF6== | |||
* {{medline-title | |||
|title=Genomewide Association Scan of a Mortality Associated Endophenotype for a Long and Healthy Life in the Long Life Family Study. | |||
|date=01.10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28329217 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861859 | |||
}} | |||
==NCAPD2== | |||
* {{medline-title | |||
|title=[[KDM3A]] and [[KDM4C]] Regulate Mesenchymal Stromal Cell Senescence and Bone Aging via Condensin-mediated Heterochromatin Reorganization. | |||
|date=22.11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31704649 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888768 | |||
}} | |||
==NCAPG2== | |||
* {{medline-title | |||
|title=[[KDM3A]] and [[KDM4C]] Regulate Mesenchymal Stromal Cell Senescence and Bone Aging via Condensin-mediated Heterochromatin Reorganization. | |||
|date=22.11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31704649 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888768 | |||
}} | |||
==NCK2== | |||
* {{medline-title | |||
|title=Genetic associations with age of menopause in familial longevity. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31188284 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7008937 | |||
}} | |||
==NCOR2== | |||
* {{medline-title | |||
|title=DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. | |||
|date=25.07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30045751 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058387 | |||
}} | |||
==NCSTN== | |||
* {{medline-title | |||
|title=The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. | |||
|date=29.07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32727592 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392710 | |||
}} | |||
==NDN== | |||
* {{medline-title | |||
|title=The Changing Landscape of Naive T Cell Receptor Repertoire With Human Aging. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30087674 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6066563 | |||
}} | |||
==NDP== | |||
* {{medline-title | |||
|title=Association between Cognitive Status before Surgery and Outcomes in Elderly Patients with Hip Fracture in a Dedicated Orthogeriatric Care Pathway. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27911302 | |||
|full-text-url=https://sci-hub.do/10.3233/JAD-160655 | |||
}} | |||
==NDUFA8== | |||
* {{medline-title | |||
|title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. | |||
|date=31.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708 | |||
}} | |||
==NDUFA9== | |||
* {{medline-title | |||
|title=Preservation of skeletal muscle mitochondrial content in older adults: relationship between mitochondria, fibre type and high-intensity exercise training. | |||
|date=01.06.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28251664 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451733 | |||
}} | |||
==NDUFAB1== | |||
* {{medline-title | |||
|title=Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. | |||
|date=02.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29196338 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795392 | |||
}} | |||
==NDUFS4== | |||
* {{medline-title | |||
|title=Low abundance of [[NDUFV2]] and [[NDUFS4]] subunits of the hydrophilic complex I domain and [[VDAC1]] predicts mammalian longevity. | |||
|date=07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32353747 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191849 | |||
}} | |||
==NDUFS7== | |||
* {{medline-title | |||
|title=Nod-like receptor pyrin containing 3 ([[NLRP3]]) in the post-mortem frontal cortex from patients with bipolar disorder: A potential mediator between mitochondria and immune-activation. | |||
|date=01.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26540403 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jpsychires.2015.10.015 | |||
}} | |||
==NDUFS8== | |||
* {{medline-title | |||
|title=Mitochondrial Complex I Mutations Predispose Drosophila to Isoflurane Neurotoxicity. | |||
|date=01.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32773682 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7494633 | |||
}} | |||
==NDUFV1== | |||
* {{medline-title | |||
|title=Contribution of genetic polymorphisms on functional status at very old age: a gene-based analysis of 38 genes (311 SNPs) in the oxidative stress pathway. | |||
|date=04.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24462499 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050201 | |||
}} | |||
==NEBL== | |||
* {{medline-title | |||
|title=Isolation and characterization of the human immature osteoblast culture system from the alveolar bones of aged donors for bone regeneration therapy. | |||
|date=12.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25241883 | |||
|full-text-url=https://sci-hub.do/10.1517/14712598.2014.960387 | |||
}} | |||
==NEDD4L== | |||
* {{medline-title | |||
|title=DP1 Activation Reverses Age-Related Hypertension Via [[NEDD4L]]-Mediated T-Bet Degradation in T Cells. | |||
|date=25.02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31893939 | |||
|full-text-url=https://sci-hub.do/10.1161/CIRCULATIONAHA.119.042532 | |||
}} | |||
==NEGR1== | |||
* {{medline-title | |||
|title=The influence of obesity-related single nucleotide polymorphisms on BMI across the life course: the PAGE study. | |||
|date=05.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23300277 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636619 | |||
}} | |||
==NEIL3== | |||
* {{medline-title | |||
|title=Age-Related Oxidative Changes in Primary Porcine Fibroblasts Expressing Mutated Huntingtin. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31167196 | |||
|full-text-url=https://sci-hub.do/10.1159/000500091 | |||
}} | |||
==NEK9== | |||
* {{medline-title | |||
|title=Effect of sex, age and genetics on crossover interference in cattle. | |||
|date=28.11.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27892966 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5125268 | |||
}} | |||
==NELL1== | |||
* {{medline-title | |||
|title=Pharmacogenomics study of thiazide diuretics and QT interval in multi-ethnic populations: the cohorts for heart and aging research in genomic epidemiology. | |||
|date=04.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28719597 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5773415 | |||
}} | |||
==NEU1== | |||
* {{medline-title | |||
|title=Sialylation regulates myofibroblast differentiation of human skin fibroblasts. | |||
|date=18.04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28420408 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5395757 | |||
}} | |||
==NF2== | |||
* {{medline-title | |||
|title=Rac1-Mediated DNA Damage and Inflammation Promote Nf2 Tumorigenesis but Also Limit Cell-Cycle Progression. | |||
|date=21.11.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27818180 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5519326 | |||
}} | |||
==NFIA== | |||
* {{medline-title | |||
|title=Cell-type-specific expression of [[NFIX]] in the developing and adult cerebellum. | |||
|date=07.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27878595 | |||
|full-text-url=https://sci-hub.do/10.1007/s00429-016-1340-8 | |||
}} | |||
==NFIL3== | |||
* {{medline-title | |||
|title=[Identification of single nucleotide polymorphisms in centenarians]. | |||
|date=05-06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26541311 | |||
|full-text-url=https://sci-hub.do/10.1016/j.regg.2015.09.006 | |||
}} | |||
==NFIX== | |||
* {{medline-title | |||
|title=Cell-type-specific expression of [[NFIX]] in the developing and adult cerebellum. | |||
|date=07.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27878595 | |||
|full-text-url=https://sci-hub.do/10.1007/s00429-016-1340-8 | |||
}} | |||
==NFKB2== | |||
* {{medline-title | |||
|title=Partial sleep deprivation activates the DNA damage response (DDR) and the senescence-associated secretory phenotype (SASP) in aged adult humans. | |||
|date=01.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26336034 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4679552 | |||
}} | |||
==NFKBIA== | |||
* {{medline-title | |||
|title=Analysis of molecular networks and targets mining of Chinese herbal medicines on anti-aging. | |||
|date=28.12.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28031022 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5198498 | |||
}} | |||
==NHP2== | |||
* {{medline-title | |||
|title=Pseudouridylation defect due to [i]DKC1[/i] and [i][[NOP10]][/i] mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis. | |||
|date=30.06.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32554502 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334496 | |||
}} | |||
==NIN== | |||
* {{medline-title | |||
|title=Increased macromolecular damage due to oxidative stress in the neocortex and hippocampus of W[[NIN]]/Ob, a novel rat model of premature aging. | |||
|date=06.06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24709042 | |||
|full-text-url=https://sci-hub.do/10.1016/j.neuroscience.2014.03.040 | |||
}} | |||
==NIPA2== | |||
* {{medline-title | |||
|title=A multidimensional systems biology analysis of cellular senescence in aging and disease. | |||
|date=07.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264951 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333371 | |||
}} | |||
==NKAP== | |||
* {{medline-title | |||
|title=[[NKAP]] Regulates Senescence and Cell Death Pathways in Hematopoietic Progenitors. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31632967 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6783958 | |||
}} | |||
==NKIRAS2== | |||
* {{medline-title | |||
|title=Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. | |||
|date=11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28841467 | |||
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.07.015 | |||
}} | |||
==NKX2-1== | |||
* {{medline-title | |||
|title=Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. | |||
|date=03.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25761685 | |||
|full-text-url=https://sci-hub.do/10.1134/S0006297915030062 | |||
}} | |||
==NKX2-5== | |||
* {{medline-title | |||
|title=Isolation, Characterization, and Differentiation of Cardiac Stem Cells from the Adult Mouse Heart. | |||
|date=07.01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30663680 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7207148 | |||
}} | |||
==NKX6-1== | |||
* {{medline-title | |||
|title=The dynamic methylome of islets in health and disease. | |||
|date=09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31500828 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6768570 | |||
}} | |||
==NLRP5== | |||
* {{medline-title | |||
|title=Effects of aging in the expression of NOD-like receptors and inflammasome-related genes in oral mucosa. | |||
|date=02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26197995 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4712099 | |||
}} | |||
==NLRP6== | |||
* {{medline-title | |||
|title=LRP6 targeting suppresses gastric tumorigenesis via P14 -Mdm2-P53-dependent cellular senescence. | |||
|date=19.12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29340077 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5762345 | |||
}} | |||
==NMI== | |||
* {{medline-title | |||
|title=Age-Dependent Control of Shoulder Muscles During a Reach-and-Lift Task. | |||
|date=10.12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31825888 | |||
|full-text-url=https://sci-hub.do/10.1123/japa.2019-0055 | |||
}} | |||
==NMNAT3== | |||
* {{medline-title | |||
|title=Restoration of Mitochondrial NAD Levels Delays Stem Cell Senescence and Facilitates Reprogramming of Aged Somatic Cells. | |||
|date=12.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27428041 | |||
|full-text-url=https://sci-hub.do/10.1002/stem.2460 | |||
}} | |||
==NMRK2== | |||
* {{medline-title | |||
|title=Aged Nicotinamide Riboside Kinase 2 Deficient Mice Present an Altered Response to Endurance Exercise Training. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30283350 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156423 | |||
}} | |||
==NMU== | |||
* {{medline-title | |||
|title=[Medicinal Chemistry Focused on Mid-sized Peptides Derived from Biomolecules]. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31685733 | |||
|full-text-url=https://sci-hub.do/10.1248/yakushi.19-00149 | |||
}} | |||
==NMUR1== | |||
* {{medline-title | |||
|title=[Medicinal Chemistry Focused on Mid-sized Peptides Derived from Biomolecules]. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31685733 | |||
|full-text-url=https://sci-hub.do/10.1248/yakushi.19-00149 | |||
}} | |||
==NMUR2== | |||
* {{medline-title | |||
|title=[Medicinal Chemistry Focused on Mid-sized Peptides Derived from Biomolecules]. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31685733 | |||
|full-text-url=https://sci-hub.do/10.1248/yakushi.19-00149 | |||
}} | |||
==NOBOX== | |||
* {{medline-title | |||
|title=Observation of the influences of diosgenin on aging ovarian reserve and function in a mouse model. | |||
|date=18.10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29047400 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5648463 | |||
}} | |||
==NOD2== | |||
* {{medline-title | |||
|title=Molecular modeling in the age of clinical genomics, the enterprise of the next generation. | |||
|date=03.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28204942 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5529140 | |||
}} | |||
==NOL12== | |||
* {{medline-title | |||
|title=[[NOL12]] Repression Induces Nucleolar Stress-Driven Cellular Senescence and Is Associated with Normative Aging. | |||
|date=15.06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30988155 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6549468 | |||
}} | |||
==NOLC1== | |||
* {{medline-title | |||
|title=Enhanced [[NOLC1]] promotes cell senescence and represses hepatocellular carcinoma cell proliferation by disturbing the organization of nucleolus. | |||
|date=08.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28493459 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5506443 | |||
}} | |||
==NOTCH4== | |||
* {{medline-title | |||
|title=Age-dependent autophagy induction after injury promotes axon regeneration by limiting NOTCH. | |||
|date=11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31920157 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595581 | |||
}} | |||
==NPB== | |||
* {{medline-title | |||
|title=The Role of the IGF-1 Signaling Cascade in Muscle Protein Synthesis and Anabolic Resistance in Aging Skeletal Muscle. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31552262 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6746962 | |||
}} | |||
==NPBWR1== | |||
* {{medline-title | |||
|title=Genome-wide association study and annotating candidate gene networks affecting age at first calving in Nellore cattle. | |||
|date=12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28994157 | |||
|full-text-url=https://sci-hub.do/10.1111/jbg.12299 | |||
}} | |||
==NPFFR2== | |||
* {{medline-title | |||
|title=Genome-wide association study for longevity with whole-genome sequencing in 3 cattle breeds. | |||
|date=09.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27289149 | |||
|full-text-url=https://sci-hub.do/10.3168/jds.2015-10697 | |||
}} | |||
==NPPB== | |||
* {{medline-title | |||
|title=Chloride channels are involved in sperm motility and are downregulated in spermatozoa from patients with asthenozoospermia. | |||
|date=07-08.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27270342 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5507086 | |||
}} | |||
==NPRL2== | |||
* {{medline-title | |||
|title=[[KLHL22]] activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing. | |||
|date=05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29769719 | |||
|full-text-url=https://sci-hub.do/10.1038/s41586-018-0128-9 | |||
}} | |||
==NPRL3== | |||
* {{medline-title | |||
|title=[[KLHL22]] activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing. | |||
|date=05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29769719 | |||
|full-text-url=https://sci-hub.do/10.1038/s41586-018-0128-9 | |||
}} | |||
==NPSR1== | |||
* {{medline-title | |||
|title=Variants of asthma and chronic obstructive pulmonary disease genes and lung function decline in aging. | |||
|date=07.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24253534 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111635 | |||
}} | |||
==NPY2R== | |||
* {{medline-title | |||
|title=Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25765287 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475460 | |||
}} | |||
==NQO2== | |||
* {{medline-title | |||
|title=The ontogeny and population variability of human hepatic dihydronicotinamide riboside:quinone oxidoreductase ([[NQO2]]). | |||
|date=08.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28346733 | |||
|full-text-url=https://sci-hub.do/10.1002/jbt.21921 | |||
}} | |||
==NR1D1== | |||
* {{medline-title | |||
|title=Quercetin, caffeic acid and resveratrol regulate circadian clock genes and aging-related genes in young and old human lung fibroblast cells. | |||
|date=02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31773385 | |||
|full-text-url=https://sci-hub.do/10.1007/s11033-019-05194-8 | |||
}} | |||
==NR1H3== | |||
* {{medline-title | |||
|title=Association of levels of fasting glucose and insulin with rare variants at the chromosome 11p11.2-[[MADD]] locus: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. | |||
|date=06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24951664 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066205 | |||
}} | |||
==NR2C2== | |||
* {{medline-title | |||
|title=Minireview: Pathophysiological roles of the TR4 nuclear receptor: lessons learned from mice lacking TR4. | |||
|date=06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24702179 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4042077 | |||
}} | |||
==NR2F2== | |||
* {{medline-title | |||
|title=Fine mapping genetic variants associated with age at puberty and sow fertility using SowPro90 genotyping array. | |||
|date=01.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32888012 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568434 | |||
}} | |||
==NR5A2== | |||
* {{medline-title | |||
|title=Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. | |||
|date=12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27878761 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441979 | |||
}} | |||
==NRARP== | |||
* {{medline-title | |||
|title=Low dose Emodin induces tumor senescence for boosting breast cancer chemotherapy via silencing [[NRARP]]. | |||
|date=10.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30274778 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2018.09.045 | |||
}} | |||
==NRSN2== | |||
* {{medline-title | |||
|title=Down-Regulated [[NRSN2]] Promotes Cell Proliferation and Survival Through PI3K/Akt/mTOR Pathway in Hepatocellular Carcinoma. | |||
|date=10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26055238 | |||
|full-text-url=https://sci-hub.do/10.1007/s10620-015-3736-3 | |||
}} | |||
==NRXN2== | |||
* {{medline-title | |||
|title=Neurexins 1-3 Each Have a Distinct Pattern of Expression in the Early Developing Human Cerebral Cortex. | |||
|date=01.01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28013231 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5654756 | |||
}} | |||
==NSD1== | |||
* {{medline-title | |||
|title=Screening for genes that accelerate the epigenetic aging clock in humans reveals a role for the H3K36 methyltransferase [[NSD1]]. | |||
|date=14.08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31409373 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693144 | |||
}} | |||
==NSF== | |||
* {{medline-title | |||
|title=Effects of air pollution on children from a socioecological perspective. | |||
|date=15.11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31727016 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6857293 | |||
}} | |||
==NSMCE2== | |||
* {{medline-title | |||
|title=[[NSMCE2]] suppresses cancer and aging in mice independently of its SUMO ligase activity. | |||
|date=03.11.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26443207 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4641528 | |||
}} | |||
==NSUN2== | |||
* {{medline-title | |||
|title=RNA methyltransferase [[NSUN2]] promotes stress-induced HUVEC senescence. | |||
|date=12.04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26992231 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4991368 | |||
}} | |||
==NSUN5== | |||
* {{medline-title | |||
|title=Methylation of ribosomal RNA by [[NSUN5]] is a conserved mechanism modulating organismal lifespan. | |||
|date=30.01.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25635753 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4317494 | |||
}} | |||
==NT5E== | |||
* {{medline-title | |||
|title=The [[NT5E]] gene variant strongly affects the degradation rate of inosine 5'-monophosphate under postmortem conditions in Japanese Black beef. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31401370 | |||
|full-text-url=https://sci-hub.do/10.1016/j.meatsci.2019.107893 | |||
}} | |||
==NTHL1== | |||
* {{medline-title | |||
|title=Mitochondrial base excision repair positively correlates with longevity in the liver and heart of mammals. | |||
|date=04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31970600 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7205949 | |||
}} | |||
==NTM== | |||
* {{medline-title | |||
|title=Attenuated heme oxygenase-1 responses predispose the elderly to pulmonary nontuberculous mycobacterial infections. | |||
|date=01.11.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27694475 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5504405 | |||
}} | |||
==NTN4== | |||
* {{medline-title | |||
|title=[[EGF]]/[[EGF]]R upregulates and cooperates with Netrin-4 to protect glioblastoma cells from DNA damage-induced senescence. | |||
|date=04.12.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30514230 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6280426 | |||
}} | |||
==NTNG2== | |||
* {{medline-title | |||
|title=Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. | |||
|date=03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109663 | |||
|full-text-url=https://sci-hub.do/10.1016/j.atherosclerosis.2020.02.005 | |||
}} | |||
==NUBP2== | |||
* {{medline-title | |||
|title=Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. | |||
|date=10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27329260 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013013 | |||
}} | |||
==NUCB2== | |||
* {{medline-title | |||
|title=Ontogenetic Pattern Changes of Nucleobindin-2/Nesfatin-1 in the Brain and Intestinal Bulb of the Short Lived African Turquoise Killifish. | |||
|date=31.12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31906085 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019235 | |||
}} | |||
==NUDT12== | |||
* {{medline-title | |||
|title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. | |||
|date=31.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708 | |||
}} | |||
==NUPR1== | |||
* {{medline-title | |||
|title=[[NUPR1]] maintains autolysosomal efflux by activating [[SNAP25]] transcription in cancer cells. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29130426 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5959327 | |||
}} | |||
==NUSAP1== | |||
* {{medline-title | |||
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335 | |||
}} | |||
==NVL== | |||
* {{medline-title | |||
|title=[The effectiveness of non-invasive lung ventilation in lateral amyotrophic sclerosis]. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25345635 | |||
}} | |||
==NXF1== | |||
* {{medline-title | |||
|title=[[WRN]] modulates translation by influencing nuclear mRNA export in HeLa cancer cells. | |||
|date=14.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33054770 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557079 | |||
}} | |||
==OAS1== | |||
* {{medline-title | |||
|title=Fine mapping genetic variants associated with age at puberty and sow fertility using SowPro90 genotyping array. | |||
|date=01.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32888012 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568434 | |||
}} | |||
==OASL== | |||
* {{medline-title | |||
|title=Effect of age on the pathogenesis of DHV-1 in Pekin ducks and on the innate immune responses of ducks to infection. | |||
|date=05.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24162826 | |||
|full-text-url=https://sci-hub.do/10.1007/s00705-013-1900-7 | |||
}} | |||
==OAZ1== | |||
* {{medline-title | |||
|title=Identification of reference genes for RT-qPCR data normalisation in aging studies. | |||
|date=27.09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31562345 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764958 | |||
}} | |||
==OCLN== | |||
* {{medline-title | |||
|title=Reduction of Aging-Induced Oxidative Stress and Activation of Autophagy by Bilberry Anthocyanin Supplementation via the AMPK-mTOR Signaling Pathway in Aged Female Rats. | |||
|date=17.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31242723 | |||
|full-text-url=https://sci-hub.do/10.1021/acs.jafc.9b02567 | |||
}} | |||
==OCRL== | |||
* {{medline-title | |||
|title=Decreased urinary excretion of the ectodomain form of megalin (A-megalin) in children with [[OCRL]] gene mutations. | |||
|date=04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27766457 | |||
|full-text-url=https://sci-hub.do/10.1007/s00467-016-3535-x | |||
}} | |||
==ODC1== | |||
* {{medline-title | |||
|title=The curious case of polyamines: spermidine drives reversal of B cell senescence. | |||
|date=03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31795807 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999633 | |||
}} | |||
==OGDH== | |||
* {{medline-title | |||
|title=An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31531781 | |||
|full-text-url=https://sci-hub.do/10.1007/s00425-019-03272-6 | |||
}} | |||
==OGFOD1== | |||
* {{medline-title | |||
|title=2-Oxoglutarate-dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process. | |||
|date=10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26118662 | |||
|full-text-url=https://sci-hub.do/10.1007/s00018-015-1978-z | |||
}} | |||
==OLFML3== | |||
* {{medline-title | |||
|title=Dexamethasone Induces a Specific Form of Ramified Dysfunctional Microglia. | |||
|date=02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29948944 | |||
|full-text-url=https://sci-hub.do/10.1007/s12035-018-1156-z | |||
}} | |||
==OMA1== | |||
* {{medline-title | |||
|title='Mitotherapy' for Heart Failure. | |||
|date=04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26965961 | |||
|full-text-url=https://sci-hub.do/10.1016/j.molmed.2016.02.007 | |||
}} | |||
==ONECUT1== | |||
* {{medline-title | |||
|title=Survival analyses in Holstein cows considering direct disease diagnoses and specific SNP marker effects. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32684467 | |||
|full-text-url=https://sci-hub.do/10.3168/jds.2020-18174 | |||
}} | |||
==OOEP== | |||
* {{medline-title | |||
|title=Maternal gene [i]Ooep[/i] may participate in homologous recombination-mediated DNA double-strand break repair in mouse oocytes. | |||
|date=18.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29955025 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6085769 | |||
}} | |||
==OPLAH== | |||
* {{medline-title | |||
|title=An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31531781 | |||
|full-text-url=https://sci-hub.do/10.1007/s00425-019-03272-6 | |||
}} | |||
==OPRD1== | |||
* {{medline-title | |||
|title=A commonly carried genetic variant in the delta opioid receptor gene, [[OPRD1]], is associated with smaller regional brain volumes: replication in elderly and young populations. | |||
|date=04.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23427138 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046708 | |||
}} | |||
==OR2AG1== | |||
* {{medline-title | |||
|title=The activation of [[OR51E1]] causes growth suppression of human prostate cancer cells. | |||
|date=26.07.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27374083 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217014 | |||
}} | |||
==OR51E1== | |||
* {{medline-title | |||
|title=The activation of [[OR51E1]] causes growth suppression of human prostate cancer cells. | |||
|date=26.07.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27374083 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217014 | |||
}} | |||
==OR51E2== | |||
* {{medline-title | |||
|title=The activation of [[OR51E1]] causes growth suppression of human prostate cancer cells. | |||
|date=26.07.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27374083 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217014 | |||
}} | |||
==ORC1== | |||
* {{medline-title | |||
|title=The hyperornithinemia-hyperammonemia-homocitrullinuria syndrome. | |||
|date=11.03.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25874378 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358699 | |||
}} | |||
==ORMDL3== | |||
* {{medline-title | |||
|title=Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31508907 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6903450 | |||
}} | |||
==OSCAR== | |||
* {{medline-title | |||
|title=Awareness tool for safe and responsible driving ([[OSCAR]]): a potential educational intervention for increasing interest, openness and knowledge about the abilities required and compensatory strategies among older drivers. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25802971 | |||
|full-text-url=https://sci-hub.do/10.1080/15389588.2014.994742 | |||
}} | |||
==OSGEP== | |||
* {{medline-title | |||
|title=Novel homozygous [[OSGEP]] gene pathogenic variants in two unrelated patients with Galloway-Mowat syndrome: case report and review of the literature. | |||
|date=11.04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30975089 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458604 | |||
}} | |||
==OTUD7A== | |||
* {{medline-title | |||
|title=A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. | |||
|date=07.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23650146 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990406 | |||
}} | |||
==OXT== | |||
* {{medline-title | |||
|title=Medial amygdala lesions modify aggressive behavior and immediate early gene expression in oxytocin and vasopressin neurons during intermale exposure. | |||
|date=15.05.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23403283 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbr.2013.02.002 | |||
}} | |||
==P2RX3== | |||
* {{medline-title | |||
|title=Fine mapping genetic variants associated with age at puberty and sow fertility using SowPro90 genotyping array. | |||
|date=01.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32888012 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568434 | |||
}} | |||
==P2RX4== | |||
* {{medline-title | |||
|title=A rare functional haplotype of the [[P2RX4]] and [[P2RX7]] genes leads to loss of innate phagocytosis and confers increased risk of age-related macular degeneration. | |||
|date=04.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23303206 | |||
|full-text-url=https://sci-hub.do/10.1096/fj.12-215368 | |||
}} | |||
==P2RY10== | |||
* {{medline-title | |||
|title=Divergent age-dependent peripheral immune transcriptomic profile following traumatic brain injury. | |||
|date=12.06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31189983 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6561964 | |||
}} | |||
==P4HA2== | |||
* {{medline-title | |||
|title=Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients. | |||
|date=03.09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31560770 | |||
|full-text-url=https://sci-hub.do/10.1167/iovs.19-27921 | |||
}} | |||
==P4HA3== | |||
* {{medline-title | |||
|title=Age-associated genes in human mammary gland drive human breast cancer progression. | |||
|date=15.06.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32539762 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7294649 | |||
}} | |||
==PABPC1== | |||
* {{medline-title | |||
|title=Comprehensive Analysis of Interaction Networks of Telomerase Reverse Transcriptase with Multiple Bioinformatic Approaches: Deep Mining the Potential Functions of Telomere and Telomerase. | |||
|date=08.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28281877 | |||
|full-text-url=https://sci-hub.do/10.1089/rej.2016.1909 | |||
}} | |||
==PACSIN1== | |||
* {{medline-title | |||
|title=GluN3A promotes dendritic spine pruning and destabilization during postnatal development. | |||
|date=09.07.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25009255 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608362 | |||
}} | |||
==PAFAH2== | |||
* {{medline-title | |||
|title=Elevated truncated oxidized phospholipids as a factor exacerbating ALI in the aging lungs. | |||
|date=03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30521374 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404557 | |||
}} | |||
==PAK2== | |||
* {{medline-title | |||
|title=Targeting genes in insulin-associated signalling pathway, DNA damage, cell proliferation and cell differentiation pathways by tocotrienol-rich fraction in preventing cellular senescence of human diploid fibroblasts. | |||
|date=11-12.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26794818 | |||
|full-text-url=https://sci-hub.do/10.7417/T.2015.1902 | |||
}} | |||
==PALM== | |||
* {{medline-title | |||
|title=Signatures of malaria vaccine efficacy in ageing murine immune memory. | |||
|date=05.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24495208 | |||
|full-text-url=https://sci-hub.do/10.1111/pim.12104 | |||
}} | |||
==PAPSS1== | |||
* {{medline-title | |||
|title=Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24478790 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894567 | |||
}} | |||
==PARN== | |||
* {{medline-title | |||
|title=CD8 T-cell senescence and skewed lymphocyte subsets in young Dyskeratosis Congenita patients with [[PARN]] and [[DKC1]] mutations. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32452087 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521304 | |||
}} | |||
==PARP2== | |||
* {{medline-title | |||
|title=Molecular evolutionary patterns of NAD /Sirtuin aging signaling pathway across taxa. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28767699 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5540417 | |||
}} | |||
==PATE1== | |||
* {{medline-title | |||
|title=Aged men share the sperm protein [[PATE1]] defect with young asthenozoospermia patients. | |||
|date=04.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25637620 | |||
|full-text-url=https://sci-hub.do/10.1093/humrep/dev003 | |||
}} | |||
==PAX1== | |||
* {{medline-title | |||
|title=Co-culturing nucleus pulposus mesenchymal stem cells with notochordal cell-rich nucleus pulposus explants attenuates tumor necrosis factor-α-induced senescence. | |||
|date=26.06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29941029 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019307 | |||
}} | |||
==PAX4== | |||
* {{medline-title | |||
|title=Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. | |||
|date=03.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25761685 | |||
|full-text-url=https://sci-hub.do/10.1134/S0006297915030062 | |||
}} | |||
==PAX7== | |||
* {{medline-title | |||
|title=Muscle health and performance in monozygotic twins with 30 years of discordant exercise habits. | |||
|date=10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30006671 | |||
|full-text-url=https://sci-hub.do/10.1007/s00421-018-3943-7 | |||
}} | |||
==PAX8== | |||
* {{medline-title | |||
|title=Inadequate control of thyroid hormones sensitizes to hepatocarcinogenesis and unhealthy aging. | |||
|date=13.09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31518338 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6781991 | |||
}} | |||
==PBX4== | |||
* {{medline-title | |||
|title=Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31508907 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6903450 | |||
}} | |||
==PCBP2== | |||
* {{medline-title | |||
|title=RNA-binding Protein [[PCBP2]] Regulates p73 Expression and p73-dependent Antioxidant Defense. | |||
|date=29.04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26907686 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4850300 | |||
}} | |||
==PCCA== | |||
* {{medline-title | |||
|title=Propionyl-CoA carboxylase pcca-1 and pccb-1 gene deletions in Caenorhabditis elegans globally impair mitochondrial energy metabolism. | |||
|date=03.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29159707 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832583 | |||
}} | |||
==PCCB== | |||
* {{medline-title | |||
|title=Propionyl-CoA carboxylase pcca-1 and pccb-1 gene deletions in Caenorhabditis elegans globally impair mitochondrial energy metabolism. | |||
|date=03.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29159707 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832583 | |||
}} | |||
==PCDH9== | |||
* {{medline-title | |||
|title=A reverse genetics cell-based evaluation of genes linked to healthy human tissue age. | |||
|date=01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27698205 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5161526 | |||
}} | |||
==PCDHGA3== | |||
* {{medline-title | |||
|title=DNA methylation associated with healthy aging of elderly twins. | |||
|date=12.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30136078 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294724 | |||
}} | |||
==PCGF2== | |||
* {{medline-title | |||
|title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. | |||
|date=24.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659 | |||
}} | |||
==PCGF3== | |||
* {{medline-title | |||
|title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. | |||
|date=24.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659 | |||
}} | |||
==PCGF5== | |||
* {{medline-title | |||
|title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. | |||
|date=24.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659 | |||
}} | |||
==PCK1== | |||
* {{medline-title | |||
|title=[[PCK1]] is negatively regulated by bta-miR-26a, and a single-nucleotide polymorphism in the 3' untranslated region is involved in semen quality and longevity of Holstein bulls. | |||
|date=03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26725319 | |||
|full-text-url=https://sci-hub.do/10.1002/mrd.22613 | |||
}} | |||
==PCMTD1== | |||
* {{medline-title | |||
|title=Genome-wide association study and annotating candidate gene networks affecting age at first calving in Nellore cattle. | |||
|date=12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28994157 | |||
|full-text-url=https://sci-hub.do/10.1111/jbg.12299 | |||
}} | |||
==PCP4== | |||
* {{medline-title | |||
|title=Specific age-related molecular alterations in the cerebellum of Down syndrome mouse models. | |||
|date=01.09.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27297494 | |||
|full-text-url=https://sci-hub.do/10.1016/j.brainres.2016.06.003 | |||
}} | |||
==PDE11A== | |||
* {{medline-title | |||
|title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653 | |||
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007 | |||
}} | |||
==PDE1B== | |||
* {{medline-title | |||
|title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653 | |||
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007 | |||
}} | |||
==PDE3B== | |||
* {{medline-title | |||
|title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653 | |||
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007 | |||
}} | |||
==PDE4A== | |||
* {{medline-title | |||
|title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653 | |||
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007 | |||
}} | |||
==PDE7A== | |||
* {{medline-title | |||
|title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653 | |||
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007 | |||
}} | |||
==PDE7B== | |||
* {{medline-title | |||
|title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653 | |||
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007 | |||
}} | |||
==PDE8A== | |||
* {{medline-title | |||
|title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653 | |||
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007 | |||
}} | |||
==PDE8B== | |||
* {{medline-title | |||
|title=Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24184653 | |||
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2013.10.007 | |||
}} | |||
==PDGFRA== | |||
* {{medline-title | |||
|title=GBM-associated mutations and altered protein expression are more common in young patients. | |||
|date=25.10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27579614 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342491 | |||
}} | |||
==PDP1== | |||
* {{medline-title | |||
|title=Age-related impairments in skeletal muscle PDH phosphorylation and plasma lactate are indicative of metabolic inflexibility and the effects of exercise training. | |||
|date=01.07.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27221120 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967149 | |||
}} | |||
==PDP2== | |||
* {{medline-title | |||
|title=Age-related impairments in skeletal muscle PDH phosphorylation and plasma lactate are indicative of metabolic inflexibility and the effects of exercise training. | |||
|date=01.07.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27221120 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967149 | |||
}} | |||
==PEBP1== | |||
* {{medline-title | |||
|title=[i]Drosophila[/i] [[PEBP1]] inhibits intestinal stem cell aging via suppression of ERK pathway. | |||
|date=06.04.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29719584 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5915051 | |||
}} | |||
==PER3== | |||
* {{medline-title | |||
|title=Effects of [[PER3]] clock gene polymorphisms on aging-related changes of the cerebral cortex. | |||
|date=03.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28900721 | |||
|full-text-url=https://sci-hub.do/10.1007/s00429-017-1513-0 | |||
}} | |||
==PEX1== | |||
* {{medline-title | |||
|title=Transcription factor [[PEX1]] modulates extracellular matrix turnover through regulation of MMP-9 expression. | |||
|date=02.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27826738 | |||
|full-text-url=https://sci-hub.do/10.1007/s00441-016-2527-2 | |||
}} | |||
==PEX19== | |||
* {{medline-title | |||
|title=A genome-wide screen identifies genes that suppress the accumulation of spontaneous mutations in young and aged yeast cells. | |||
|date=02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31854076 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996960 | |||
}} | |||
==PEX5== | |||
* {{medline-title | |||
|title=Aging lowers [[PEX5]] levels in cortical neurons in male and female mouse brains. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32777345 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7484460 | |||
}} | |||
==PF4V1== | |||
* {{medline-title | |||
|title=Involvement of ERK1/2 activation in the gene expression of senescence-associated secretory factors in human hepatic stellate cells. | |||
|date=05.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30426301 | |||
|full-text-url=https://sci-hub.do/10.1007/s11010-018-3466-x | |||
}} | |||
==PFKL== | |||
* {{medline-title | |||
|title=Developmental changes in hepatic glucose metabolism in a newborn piglet model: A comparative analysis for suckling period and early weaning period. | |||
|date=19.02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26802463 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2016.01.114 | |||
}} | |||
==PGAP1== | |||
* {{medline-title | |||
|title=Hypoxia-inducible transcription factors, [[HIF1A]] and HIF2A, increase in aging mucosal tissues. | |||
|date=07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29338076 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002220 | |||
}} | |||
==PGK2== | |||
* {{medline-title | |||
|title=Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice. | |||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31472347 | |||
|full-text-url=https://sci-hub.do/10.1016/j.chemosphere.2019.124650 | |||
}} | |||
==PGLS== | |||
* {{medline-title | |||
|title=547 transcriptomes from 44 brain areas reveal features of the aging brain in non-human primates. | |||
|date=28.11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31779658 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883628 | |||
}} | |||
==PGLYRP1== | |||
* {{medline-title | |||
|title=PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan. | |||
|date=16.01.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24439372 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3928474 | |||
}} | |||
==PGLYRP2== | |||
* {{medline-title | |||
|title=Innate immune response to LPS in airway epithelium is dependent on chronological age and antecedent exposures. | |||
|date=11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23600597 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931090 | |||
}} | |||
==PGM1== | |||
* {{medline-title | |||
|title=Explaining meat quality of bulls and steers by differential proteome and phosphoproteome analysis of skeletal muscle. | |||
|date=15.05.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30862562 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jprot.2019.03.004 | |||
}} | |||
==PHAX== | |||
* {{medline-title | |||
|title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. | |||
|date=31.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708 | |||
}} | |||
==PHF19== | |||
* {{medline-title | |||
|title=A reverse genetics cell-based evaluation of genes linked to healthy human tissue age. | |||
|date=01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27698205 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5161526 | |||
}} | |||
==PHF6== | |||
* {{medline-title | |||
|title=miR-128 regulates neuronal migration, outgrowth and intrinsic excitability via the intellectual disability gene Phf6. | |||
|date=03.01.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25556700 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337614 | |||
}} | |||
==PHGDH== | |||
* {{medline-title | |||
|title=Tanshinone prevents alveolar bone loss in ovariectomized osteoporosis rats by up-regulating phosphoglycerate dehydrogenase. | |||
|date=01.08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31108107 | |||
|full-text-url=https://sci-hub.do/10.1016/j.taap.2019.05.014 | |||
}} | |||
==PHLPP1== | |||
* {{medline-title | |||
|title=Defects in the [[CAPN1]] Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans. | |||
|date=28.06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27320912 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4927383 | |||
}} | |||
==PHOSPHO1== | |||
* {{medline-title | |||
|title=Phospho1 deficiency transiently modifies bone architecture yet produces consistent modification in osteocyte differentiation and vascular porosity with ageing. | |||
|date=12.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26232374 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4652607 | |||
}} | |||
==PI4KA== | |||
* {{medline-title | |||
|title=Combined aerobic exercise and enzyme replacement therapy rejuvenates the mitochondrial-lysosomal axis and alleviates autophagic blockage in Pompe disease. | |||
|date=10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26001726 | |||
|full-text-url=https://sci-hub.do/10.1016/j.freeradbiomed.2015.05.019 | |||
}} | |||
==PIAS1== | |||
* {{medline-title | |||
|title=Age-Dependent and -Independent Effects of Perivascular Adipose Tissue and Its Paracrine Activities during Neointima Formation. | |||
|date=31.12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31906225 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981748 | |||
}} | |||
==PICK1== | |||
* {{medline-title | |||
|title=Development- and age-related alterations in the expression of AMPA receptor subunit GluR2 and its trafficking proteins in the hippocampus of male mouse brain. | |||
|date=06.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25559403 | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-014-9548-6 | |||
}} | |||
==PIGR== | |||
* {{medline-title | |||
|title=Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. | |||
|date=02.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29196338 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795392 | |||
}} | |||
==PIK3C2A== | |||
* {{medline-title | |||
|title=Identification of key genes and transcription factors in aging mesenchymal stem cells by DNA microarray data. | |||
|date=15.04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30641220 | |||
|full-text-url=https://sci-hub.do/10.1016/j.gene.2018.12.063 | |||
}} | |||
==PIK3C2B== | |||
* {{medline-title | |||
|title=In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31520345 | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-019-09834-1 | |||
}} | |||
==PIK3C3== | |||
* {{medline-title | |||
|title=Metabolomic analyses reveal that anti-aging metabolites are depleted by palmitate but increased by oleate in vivo. | |||
|date=03.08.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26098646 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4615103 | |||
}} | |||
==PIK3CB== | |||
* {{medline-title | |||
|title=Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26168237 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567 | |||
}} | |||
==PIK3R1== | |||
* {{medline-title | |||
|title=Analysis of Polymorphisms in 59 Potential Candidate Genes for Association With Human Longevity. | |||
|date=08.10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29300832 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6175033 | |||
}} | |||
==PIK3R3== | |||
* {{medline-title | |||
|title=Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26168237 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567 | |||
}} | |||
==PIM1== | |||
* {{medline-title | |||
|title=[[PIM1]]-catalyzed [[CBX8]] phosphorylation promotes the oncogene-induced senescence of human diploid fibroblast. | |||
|date=27.06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29763603 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2018.05.070 | |||
}} | |||
==PIP5K1C== | |||
* {{medline-title | |||
|title=[Target protein candidates of hypothalamus in aging rats with intervention by Qiongyugao]. | |||
|date=04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28879748 | |||
|full-text-url=https://sci-hub.do/10.4268/cjcmm20160724 | |||
}} | |||
==PIPOX== | |||
* {{medline-title | |||
|title=Aging related methylation influences the gene expression of key control genes in colorectal cancer and adenoma. | |||
|date=21.12.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28058013 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5175245 | |||
}} | |||
==PKD1== | |||
* {{medline-title | |||
|title=The protein kinase D1-mediated classical protein secretory pathway regulates the Ras oncogene-induced senescence response. | |||
|date=16.03.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29420297 | |||
|full-text-url=https://sci-hub.do/10.1242/jcs.207217 | |||
}} | |||
==PKHD1L1== | |||
* {{medline-title | |||
|title=[Role of [[PLAT]], [[PKHD1L1]], [[STK38L]] and [[TEAD1]] genes Alu-polymorphism for longevity]. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28556638 | |||
}} | |||
==PKLR== | |||
* {{medline-title | |||
|title=Developmental changes in hepatic glucose metabolism in a newborn piglet model: A comparative analysis for suckling period and early weaning period. | |||
|date=19.02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26802463 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2016.01.114 | |||
}} | |||
==PKNOX1== | |||
* {{medline-title | |||
|title=The effects of environmental stressors on candidate aging associated genes. | |||
|date=08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32344118 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2020.110952 | |||
}} | |||
==PLA2G4A== | |||
* {{medline-title | |||
|title=Coordination of gene expression of arachidonic and docosahexaenoic acid cascade enzymes during human brain development and aging. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24963629 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070994 | |||
}} | |||
==PLA2G4B== | |||
* {{medline-title | |||
|title=Monocytes present age-related changes in phospholipid concentration and decreased energy metabolism. | |||
|date=04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32107839 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189998 | |||
}} | |||
==PLA2G7== | |||
* {{medline-title | |||
|title=Elevated [[PLA2G7]] gene promoter methylation as a gender-specific marker of aging increases the risk of coronary heart disease in females. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23555769 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3610900 | |||
}} | |||
==PLAGL1== | |||
* {{medline-title | |||
|title=Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. | |||
|date=12.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25824446 | |||
|full-text-url=https://sci-hub.do/10.1136/bjsports-2014-094073 | |||
}} | |||
==PLAT== | |||
* {{medline-title | |||
|title=[Role of [[PLAT]], [[PKHD1L1]], [[STK38L]] and [[TEAD1]] genes Alu-polymorphism for longevity]. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28556638 | |||
}} | |||
==PLCB1== | |||
* {{medline-title | |||
|title=Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26168237 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567 | |||
}} | |||
==PLCD1== | |||
* {{medline-title | |||
|title=Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26168237 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567 | |||
}} | |||
==PLCG2== | |||
* {{medline-title | |||
|title=A nonsynonymous mutation in [[PLCG2]] reduces the risk of Alzheimer's disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity. | |||
|date=08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31131421 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660501 | |||
}} | |||
==PLEC== | |||
* {{medline-title | |||
|title=Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. | |||
|date=07.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24496748 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209016 | |||
}} | |||
==PLEKHA6== | |||
* {{medline-title | |||
|title=In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31520345 | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-019-09834-1 | |||
}} | |||
==PLEKHO1== | |||
* {{medline-title | |||
|title=Increased [[PLEKHO1]] within osteoblasts suppresses Smad-dependent BMP signaling to inhibit bone formation during aging. | |||
|date=04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28083909 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5334543 | |||
}} | |||
==PLIN1== | |||
* {{medline-title | |||
|title=Determination of the Mechanisms that Cause Sarcopenia through cDNA Microarray. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28555711 | |||
|full-text-url=https://sci-hub.do/10.14283/jfa.2017.13 | |||
}} | |||
==PLK2== | |||
* {{medline-title | |||
|title=Age- and brain region-dependent α-synuclein oligomerization is attributed to alterations in intrinsic enzymes regulating α-synuclein phosphorylation in aging monkey brains. | |||
|date=23.02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27032368 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890980 | |||
}} | |||
==PLP1== | |||
* {{medline-title | |||
|title=Age-related changes in a patient with Pelizaeus-Merzbacher disease determined by repeated 1H-magnetic resonance spectroscopy. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24056155 | |||
|full-text-url=https://sci-hub.do/10.1177/0883073813499635 | |||
}} | |||
==PLTP== | |||
* {{medline-title | |||
|title=[[PLTP]] deficiency impairs learning and memory capabilities partially due to alteration of amyloid-β metabolism in old mice. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24121956 | |||
|full-text-url=https://sci-hub.do/10.3233/JAD-130812 | |||
}} | |||
==PLXNA4== | |||
* {{medline-title | |||
|title=Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. | |||
|date=15.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |||
}} | |||
==PMM2== | |||
* {{medline-title | |||
|title=Synaptic roles for phosphomannomutase type 2 in a new Drosophila congenital disorder of glycosylation disease model. | |||
|date=01.05.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26940433 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4892659 | |||
}} | |||
==PMS1== | |||
* {{medline-title | |||
|title=RNA-Seq analysis of differentially expressed genes relevant to mismatch repair in aging hematopoietic stem-progenitor cells. | |||
|date=25.02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30805972 | |||
|full-text-url=https://sci-hub.do/10.1002/jcb.28417 | |||
}} | |||
==PNPLA6== | |||
* {{medline-title | |||
|title=Delayed Induction of Human NTE ([[PNPLA6]]) Rescues Neurodegeneration and Mobility Defects of Drosophila swiss cheese (sws) Mutants. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26671664 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684404 | |||
}} | |||
==PODXL== | |||
* {{medline-title | |||
|title=Induced Pluripotent Stem Cell-Derived Dopaminergic Neurons from Adult Common Marmoset Fibroblasts. | |||
|date=01.09.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28635509 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5576272 | |||
}} | |||
==POLDIP2== | |||
* {{medline-title | |||
|title=Essential role of [[POLDIP2]] in Tau aggregation and neurotoxicity via autophagy/proteasome inhibition. | |||
|date=26.06.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25930997 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2015.04.084 | |||
}} | |||
==POLL== | |||
* {{medline-title | |||
|title=Temporal trends in loss of life expectancy after a cancer diagnosis among the Australian population. | |||
|date=04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32062407 | |||
|full-text-url=https://sci-hub.do/10.1016/j.canep.2020.101686 | |||
}} | |||
==POLN== | |||
* {{medline-title | |||
|title=Analysis of DNA polymerase ν function in meiotic recombination, immunoglobulin class-switching, and DNA damage tolerance. | |||
|date=06.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28570559 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472330 | |||
}} | |||
==POLR3A== | |||
* {{medline-title | |||
|title=Nucleolar disruption, activation of P53 and premature senescence in [[POLR3A]]-mutated Wiedemann-Rautenstrauch syndrome fibroblasts. | |||
|date=12.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32976914 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2020.111360 | |||
}} | |||
==POU2F1== | |||
* {{medline-title | |||
|title=Methyl CpG level at distal part of heat-shock protein promoter HSP70 exhibits epigenetic memory for heat stress by modulating recruitment of [[POU2F1]]-associated nucleosome-remodeling deacetylase (NuRD) complex. | |||
|date=05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28278364 | |||
|full-text-url=https://sci-hub.do/10.1111/jnc.14014 | |||
}} | |||
==POU3F2== | |||
* {{medline-title | |||
|title=[[POU3F2]] participates in cognitive function and adult hippocampal neurogenesis via mammalian-characteristic amino acid repeats. | |||
|date=02.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28782255 | |||
|full-text-url=https://sci-hub.do/10.1111/gbb.12408 | |||
}} | |||
==POU4F3== | |||
* {{medline-title | |||
|title=In Vivo Interplay between p27 , [[GATA3]], [[ATOH1]], and [[POU4F3]] Converts Non-sensory Cells to Hair Cells in Adult Mice. | |||
|date=11.04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28402854 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5423718 | |||
}} | |||
==PPA2== | |||
* {{medline-title | |||
|title=Characterization of long living yeast deletion mutants that lack mitochondrial metabolism genes DSS1, [[PPA2]] and AFG3. | |||
|date=20.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31082499 | |||
|full-text-url=https://sci-hub.do/10.1016/j.gene.2019.05.001 | |||
}} | |||
==PPARA== | |||
* {{medline-title | |||
|title=[Genotype and allele frequencies of UCP and PPAR gene families in residents of besieged Leningrad and in the control group]. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25826986 | |||
}} | |||
==PPCDC== | |||
* {{medline-title | |||
|title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. | |||
|date=31.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708 | |||
}} | |||
==PPFIA1== | |||
* {{medline-title | |||
|title=Explorative results from multistep screening for potential genetic risk loci of Alzheimer's disease in the longitudinal VITA study cohort. | |||
|date=01.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29027019 | |||
|full-text-url=https://sci-hub.do/10.1007/s00702-017-1796-6 | |||
}} | |||
==PPM1A== | |||
* {{medline-title | |||
|title=The TGF-β1/p53/PAI-1 Signaling Axis in Vascular Senescence: Role of Caveolin-1. | |||
|date=03.08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31382626 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723262 | |||
}} | |||
==PPM1B== | |||
* {{medline-title | |||
|title=[[PPM1B]] depletion induces premature senescence in human IMR-90 fibroblasts. | |||
|date=06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24674756 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2014.03.003 | |||
}} | |||
==PPP1R12B== | |||
* {{medline-title | |||
|title=BDA-410 Treatment Reduces Body Weight and Fat Content by Enhancing Lipolysis in Sedentary Senescent Mice. | |||
|date=01.08.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27789616 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861946 | |||
}} | |||
==PPP1R15B== | |||
* {{medline-title | |||
|title=In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31520345 | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-019-09834-1 | |||
}} | |||
==PPP1R1B== | |||
* {{medline-title | |||
|title=Effects of [[PPP1R1B]] (DARPP-32) Polymorphism on Feedback-Related Brain Potentials Across the Life Span. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23459765 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586677 | |||
}} | |||
==PPP1R3C== | |||
* {{medline-title | |||
|title=Uncovering genetic mechanisms of kidney aging through transcriptomics, genomics, and epigenomics. | |||
|date=03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30784661 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390171 | |||
}} | |||
==PPP2R1A== | |||
* {{medline-title | |||
|title=Identification of key genes and transcription factors in aging mesenchymal stem cells by DNA microarray data. | |||
|date=15.04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30641220 | |||
|full-text-url=https://sci-hub.do/10.1016/j.gene.2018.12.063 | |||
}} | |||
==PPP2R2B== | |||
* {{medline-title | |||
|title=Germline genetics of the p53 pathway affect longevity in a gender specific manner. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24654968 | |||
|full-text-url=https://sci-hub.do/10.2174/1874609807666140321150751 | |||
}} | |||
==PPP2R3C== | |||
* {{medline-title | |||
|title=The mir-465 family is upregulated with age and attenuates growth hormone signaling in mouse liver. | |||
|date=04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30637918 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6413667 | |||
}} | |||
==PPT1== | |||
* {{medline-title | |||
|title=Neuroprotection and lifespan extension in Ppt1(-/-) mice by NtBuHA: therapeutic implications for INCL. | |||
|date=11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24056696 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812271 | |||
}} | |||
==PRDM1== | |||
* {{medline-title | |||
|title=Age-related changes in the [[BACH2]] and [[PRDM1]] genes in lymphocytes from healthy donors and chronic lymphocytic leukemia patients. | |||
|date=17.01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30654767 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6337793 | |||
}} | |||
==PRDM8== | |||
* {{medline-title | |||
|title=[[PRDM8]] reveals aberrant DNA methylation in aging syndromes and is relevant for hematopoietic and neuronal differentiation. | |||
|date=20.08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32819411 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439574 | |||
}} | |||
==PRDX2== | |||
* {{medline-title | |||
|title=Regulation of [[PRDX1]] peroxidase activity by Pin1. | |||
|date=15.03.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23421996 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637353 | |||
}} | |||
==PRDX5== | |||
* {{medline-title | |||
|title=The antioxidant icariin protects porcine oocytes from age-related damage in vitro. | |||
|date=12.05.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32777912 | |||
|full-text-url=https://sci-hub.do/10.5713/ajas.20.0046 | |||
}} | |||
==PRG2== | |||
* {{medline-title | |||
|title=Peritoneal carcinomatosis of colorectal cancer is characterized by structural and functional reorganization of the tumor microenvironment inducing senescence and proliferation arrest in cancer cells. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28439450 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391678 | |||
}} | |||
==PRKAA1== | |||
* {{medline-title | |||
|title=Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats. | |||
|date=02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30661688 | |||
|full-text-url=https://sci-hub.do/10.1016/j.clnesp.2018.10.003 | |||
}} | |||
==PRKACA== | |||
* {{medline-title | |||
|title=Intratumoral heterogeneity of the tumor cells based on in situ cortisol excess in cortisol-producing adenomas; ∼An association among morphometry, genotype and cellular senescence∼. | |||
|date=11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33002589 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jsbmb.2020.105764 | |||
}} | |||
==PRKCB== | |||
* {{medline-title | |||
|title=[[MEF2A]] alters the proliferation, inflammation-related gene expression profiles and its silencing induces cellular senescence in human coronary endothelial cells. | |||
|date=18.03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30885136 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423757 | |||
}} | |||
==PRKCD== | |||
* {{medline-title | |||
|title=Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. | |||
|date=05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28325852 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417827 | |||
}} | |||
==PRKCH== | |||
* {{medline-title | |||
|title=Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. | |||
|date=15.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |||
}} | |||
==PRKDC== | |||
* {{medline-title | |||
|title=DNA-PKcs modulates progenitor cell proliferation and fibroblast senescence in idiopathic pulmonary fibrosis. | |||
|date=29.08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31464599 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6716822 | |||
}} | |||
==PRKN== | |||
* {{medline-title | |||
|title=[[PRKN]]-regulated mitophagy and cellular senescence during COPD pathogenesis. | |||
|date=03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30290714 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351145 | |||
}} | |||
==PRLR== | |||
* {{medline-title | |||
|title=Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. | |||
|date=15.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |||
}} | |||
==PRM1== | |||
* {{medline-title | |||
|title=Cytological and molecular aspects of the ageing sperm. | |||
|date=01.02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30551142 | |||
|full-text-url=https://sci-hub.do/10.1093/humrep/dey357 | |||
}} | |||
==PRM2== | |||
* {{medline-title | |||
|title=Cytological and molecular aspects of the ageing sperm. | |||
|date=01.02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30551142 | |||
|full-text-url=https://sci-hub.do/10.1093/humrep/dey357 | |||
}} | |||
==PRODH== | |||
* {{medline-title | |||
|title=Proline dehydrogenase promotes senescence through the generation of reactive oxygen species. | |||
|date=15.04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28264926 | |||
|full-text-url=https://sci-hub.do/10.1242/jcs.196469 | |||
}} | |||
==PRR9== | |||
* {{medline-title | |||
|title=Circadian control of [i]ORE1[/i] by [[PRR9]] positively regulates leaf senescence in [i]Arabidopsis[/i]. | |||
|date=14.08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30065116 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6099856 | |||
}} | |||
==PRRC2A== | |||
* {{medline-title | |||
|title=Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. | |||
|date=05.03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109421 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058826 | |||
}} | |||
==PRRX1== | |||
* {{medline-title | |||
|title=A [[SIRT1]]-centered circuitry regulates breast cancer stemness and metastasis. | |||
|date=12.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30038266 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6283862 | |||
}} | |||
==PRSS16== | |||
* {{medline-title | |||
|title=The complex genetics of gait speed: genome-wide meta-analysis approach. | |||
|date=10.01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28077804 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5310665 | |||
}} | |||
==PSAP== | |||
* {{medline-title | |||
|title=Prosaposin and its receptors are differentially expressed in the salivary glands of male and female rats. | |||
|date=08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29656342 | |||
|full-text-url=https://sci-hub.do/10.1007/s00441-018-2835-9 | |||
}} | |||
==PSMA7== | |||
* {{medline-title | |||
|title=Role of the Ubiquitin C-Terminal Hydrolase L1-Modulated Ubiquitin Proteasome System in Auditory Cortex Senescence. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28407635 | |||
|full-text-url=https://sci-hub.do/10.1159/000468944 | |||
}} | |||
==PSMB10== | |||
* {{medline-title | |||
|title=Identification of the activating cytotoxicity receptor NKG2D as a senescence marker in zero-hour kidney biopsies is indicative for clinical outcome. | |||
|date=06.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28233611 | |||
|full-text-url=https://sci-hub.do/10.1016/j.kint.2016.12.018 | |||
}} | |||
==PSMB5== | |||
* {{medline-title | |||
|title=Ameliorating replicative senescence of human bone marrow stromal cells by [[PSMB5]] overexpression. | |||
|date=24.01.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24393841 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2013.12.113 | |||
}} | |||
==PSMB9== | |||
* {{medline-title | |||
|title=Identification of the activating cytotoxicity receptor NKG2D as a senescence marker in zero-hour kidney biopsies is indicative for clinical outcome. | |||
|date=06.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28233611 | |||
|full-text-url=https://sci-hub.do/10.1016/j.kint.2016.12.018 | |||
}} | |||
==PSMD11== | |||
* {{medline-title | |||
|title=The effect and mechanism of 19S proteasome [[PSMD11]]/Rpn6 subunit in D-Galactose induced mimetic aging models. | |||
|date=01.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32450067 | |||
|full-text-url=https://sci-hub.do/10.1016/j.yexcr.2020.112093 | |||
}} | |||
==PSMD13== | |||
* {{medline-title | |||
|title=Lifelong Football Training: Effects on Autophagy and Healthy Longevity Promotion. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30837897 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390296 | |||
}} | |||
==PSMD14== | |||
* {{medline-title | |||
|title=Upregulation of deubiquitinase [[PSMD14]] in lung adenocarcinoma (LUAD) and its prognostic significance. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32226511 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7086243 | |||
}} | |||
==PSMG1== | |||
* {{medline-title | |||
|title=Long-lived rodents reveal signatures of positive selection in genes associated with lifespan. | |||
|date=03.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29570707 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884551 | |||
}} | |||
==PSTK== | |||
* {{medline-title | |||
|title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. | |||
|date=31.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708 | |||
}} | |||
==PTCH1== | |||
* {{medline-title | |||
|title=Sonic hedgehog regulation of cavernous nerve regeneration and neurite formation in aged pelvic plexus. | |||
|date=02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30391523 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6342483 | |||
}} | |||
==PTGDR== | |||
* {{medline-title | |||
|title=Does prostaglandin D2 hold the cure to male pattern baldness? | |||
|date=04.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24521203 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982925 | |||
}} | |||
==PTGDS== | |||
* {{medline-title | |||
|title=Does prostaglandin D2 hold the cure to male pattern baldness? | |||
|date=04.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24521203 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982925 | |||
}} | |||
==PTGER2== | |||
* {{medline-title | |||
|title=Molecular cloning and expression analysis of prostaglandin E receptor 2 gene in cashmere goat (Capra hircus) skin during hair follicle development. | |||
|date=03.04.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24555795 | |||
|full-text-url=https://sci-hub.do/10.1080/10495398.2013.826236 | |||
}} | |||
==PTH2R== | |||
* {{medline-title | |||
|title=Variation in the [[[[PTH]]2R]] gene is associated with age-related degenerative changes in the lumbar spine. | |||
|date=01.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24378925 | |||
|full-text-url=https://sci-hub.do/10.1007/s00774-013-0550-x | |||
}} | |||
==PTHLH== | |||
* {{medline-title | |||
|title=Variation in the [[[[PTH]]2R]] gene is associated with age-related degenerative changes in the lumbar spine. | |||
|date=01.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24378925 | |||
|full-text-url=https://sci-hub.do/10.1007/s00774-013-0550-x | |||
}} | |||
==PTK2== | |||
* {{medline-title | |||
|title=[[PTK2]] rs7460 and rs7843014 polymorphisms and exceptional longevity: a functional replication study. | |||
|date=10.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24930376 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203112 | |||
}} | |||
==PTP4A3== | |||
* {{medline-title | |||
|title=Transcriptional and Functional Changes of the Human Microvasculature during Physiological Aging and Alzheimer Disease. | |||
|date=05.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32402127 | |||
|full-text-url=https://sci-hub.do/10.1002/adbi.202000044 | |||
}} | |||
==PTPN7== | |||
* {{medline-title | |||
|title=DNA methylation-based age prediction from saliva: High age predictability by combination of 7 CpG markers. | |||
|date=07.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28419903 | |||
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.04.006 | |||
}} | |||
==PTPRC== | |||
* {{medline-title | |||
|title=Selective molecular biomarkers to predict biologic behavior in pituitary tumors. | |||
|date=05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30063456 | |||
|full-text-url=https://sci-hub.do/10.1080/17446651.2017.1312341 | |||
}} | |||
==PTPRD== | |||
* {{medline-title | |||
|title=Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. | |||
|date=15.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |||
}} | |||
==PTPRR== | |||
* {{medline-title | |||
|title=Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. | |||
|date=15.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |||
}} | |||
==PTPRT== | |||
* {{medline-title | |||
|title=The complex genetics of gait speed: genome-wide meta-analysis approach. | |||
|date=10.01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28077804 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5310665 | |||
}} | |||
==PUM1== | |||
* {{medline-title | |||
|title=Identification of reference genes for RT-qPCR data normalisation in aging studies. | |||
|date=27.09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31562345 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764958 | |||
}} | |||
==PXN== | |||
* {{medline-title | |||
|title=pxn-1 and pxn-2 May Interact Negatively during Neuronal Development and Aging in C. elegans. | |||
|date=08.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26194821 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4546945 | |||
}} | |||
==QRFPR== | |||
* {{medline-title | |||
|title=Explorative results from multistep screening for potential genetic risk loci of Alzheimer's disease in the longitudinal VITA study cohort. | |||
|date=01.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29027019 | |||
|full-text-url=https://sci-hub.do/10.1007/s00702-017-1796-6 | |||
}} | |||
==RAB10== | |||
* {{medline-title | |||
|title=Aberrant mitochondrial morphology and function associated with impaired mitophagy and [[DNM1L]]-MAPK/ERK signaling are found in aged mutant Parkinsonian [[LRRK2]] mice. | |||
|date=10.12.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33300446 | |||
|full-text-url=https://sci-hub.do/10.1080/15548627.2020.1850008 | |||
}} | |||
==RAB1B== | |||
* {{medline-title | |||
|title=Lifelong Football Training: Effects on Autophagy and Healthy Longevity Promotion. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30837897 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390296 | |||
}} | |||
==RAB27A== | |||
* {{medline-title | |||
|title=Reduced expression level of the cyclic adenosine monophosphate response element-binding protein contributes to lung aging. | |||
|date=01.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23991634 | |||
|full-text-url=https://sci-hub.do/10.1165/rcmb.2013-0057OC | |||
}} | |||
==RAC3== | |||
* {{medline-title | |||
|title=[[RAC3]] more than a nuclear receptor coactivator: a key inhibitor of senescence that is downregulated in aging. | |||
|date=15.10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26469953 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4632280 | |||
}} | |||
==RAD21== | |||
* {{medline-title | |||
|title=Suppression of [[RAD21]] Induces Senescence of MDA-[[MB]]-231 Human Breast Cancer Cells Through [[RB1]] Pathway Activation Via c-Myc Downregulation. | |||
|date=06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26529363 | |||
|full-text-url=https://sci-hub.do/10.1002/jcb.25426 | |||
}} | |||
==RAD23A== | |||
* {{medline-title | |||
|title=Lifelong Football Training: Effects on Autophagy and Healthy Longevity Promotion. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30837897 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390296 | |||
}} | |||
==RAD51C== | |||
* {{medline-title | |||
|title=Polymorphisms of the DNA repair gene [[EXO1]] modulate cognitive aging in old adults in a Taiwanese population. | |||
|date=06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30928815 | |||
|full-text-url=https://sci-hub.do/10.1016/j.dnarep.2019.03.013 | |||
}} | |||
==RAD9A== | |||
* {{medline-title | |||
|title=Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. | |||
|date=02.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29196338 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795392 | |||
}} | |||
==RAI1== | |||
* {{medline-title | |||
|title=DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. | |||
|date=25.07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30045751 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058387 | |||
}} | |||
==RAMP1== | |||
* {{medline-title | |||
|title=Depressed perivascular sensory innervation of mouse mesenteric arteries with advanced age. | |||
|date=15.04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26010764 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933107 | |||
}} | |||
==RAMP2== | |||
* {{medline-title | |||
|title=Vascular endothelial adrenomedullin-[[RAMP2]] system is essential for vascular integrity and organ homeostasis. | |||
|date=19.02.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23355623 | |||
|full-text-url=https://sci-hub.do/10.1161/CIRCULATIONAHA.112.000756 | |||
}} | |||
==RAPGEF2== | |||
* {{medline-title | |||
|title=Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. | |||
|date=12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27878761 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441979 | |||
}} | |||
==RARB== | |||
* {{medline-title | |||
|title=Genome-wide meta-analysis of macronutrient intake of 91,114 European ancestry participants from the cohorts for heart and aging research in genomic epidemiology consortium. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29988085 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326896 | |||
}} | |||
==RASEF== | |||
* {{medline-title | |||
|title=Near-genomewide RNAi screening for regulators of [[BRAF]](V600E) -induced senescence identifies [[RASEF]], a gene epigenetically silenced in melanoma. | |||
|date=07.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24703243 | |||
|full-text-url=https://sci-hub.do/10.1111/pcmr.12248 | |||
}} | |||
==RASGEF1A== | |||
* {{medline-title | |||
|title=Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24478790 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894567 | |||
}} | |||
==RASGRF2== | |||
* {{medline-title | |||
|title=A single nucleotide polymorphism associated with reduced alcohol intake in the [[RASGRF2]] gene predicts larger cortical volumes but faster longitudinal ventricular expansion in the elderly. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24409144 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3867747 | |||
}} | |||
==RB1CC1== | |||
* {{medline-title | |||
|title=Tumor-suppressive functions of 15-Lipoxygenase-2 and [[RB1CC1]] in prostate cancer. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24732589 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111726 | |||
}} | |||
==RBBP4== | |||
* {{medline-title | |||
|title=Retinoblastoma-binding Protein 4-regulated Classical Nuclear Transport Is Involved in Cellular Senescence. | |||
|date=04.12.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26491019 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705941 | |||
}} | |||
==RBFOX1== | |||
* {{medline-title | |||
|title=Genetics of Gene Expression in the Aging Human Brain Reveal TDP-43 Proteinopathy Pathophysiology. | |||
|date=05.08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32526197 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416464 | |||
}} | |||
==RBL1== | |||
* {{medline-title | |||
|title=Deregulation of hsa-miR-20b expression in [[TNF]]-α-induced premature senescence of human pulmonary microvascular endothelial cells. | |||
|date=11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28595801 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mvr.2017.06.002 | |||
}} | |||
==RBM25== | |||
* {{medline-title | |||
|title=HPV shapes tumor transcriptome by globally modifying the pool of RNA binding protein-binding motif. | |||
|date=29.04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31039132 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520004 | |||
}} | |||
==RBM3== | |||
* {{medline-title | |||
|title=Infants Uniquely Express High Levels of [[RBM3]] and Other Cold-Adaptive Neuroprotectant Proteins in the Human Brain. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30399610 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311128 | |||
}} | |||
==RBM34== | |||
* {{medline-title | |||
|title=The association between poverty and gene expression within peripheral blood mononuclear cells in a diverse Baltimore City cohort. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32970748 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514036 | |||
}} | |||
==RBM38== | |||
* {{medline-title | |||
|title=Genetic Ablation of [i]Rbm38[/i] Promotes Lymphomagenesis in the Context of Mutant p53 by Downregulating [[PTEN]]. | |||
|date=15.03.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29330147 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6340497 | |||
}} | |||
==RBM6== | |||
* {{medline-title | |||
|title=Bayesian association scan reveals loci associated with human lifespan and linked biomarkers. | |||
|date=27.07.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28748955 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537485 | |||
}} | |||
==RBMXL1== | |||
* {{medline-title | |||
|title=Whole-Exome Sequencing of an Exceptional Longevity Cohort. | |||
|date=16.08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29750252 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696723 | |||
}} | |||
==RBP1== | |||
* {{medline-title | |||
|title=The SR proteins SF2 and [[RBP1]] regulate triglyceride storage in the fat body of Drosophila. | |||
|date=27.08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31277943 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2019.06.151 | |||
}} | |||
==RC3H2== | |||
* {{medline-title | |||
|title=The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. | |||
|date=29.07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32727592 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392710 | |||
}} | |||
==RDX== | |||
* {{medline-title | |||
|title=Toxicity of the conventional energetics TNT and [[RDX]] relative to new insensitive munitions constituents DNAN and NTO in Rana pipiens tadpoles. | |||
|date=04.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25586961 | |||
|full-text-url=https://sci-hub.do/10.1002/etc.2890 | |||
}} | |||
==REEP4== | |||
* {{medline-title | |||
|title=Chromosome Missegregation in Single Human Oocytes Is Related to the Age and Gene Expression Profile. | |||
|date=12.03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32178390 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139522 | |||
}} | |||
==REL== | |||
* {{medline-title | |||
|title=Impact of loss of NF-κB1, NF-κB2 or c-[[REL]] on SLE-like autoimmune disease and lymphadenopathy in Fas(lpr/lpr) mutant mice. | |||
|date=01.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26084385 | |||
|full-text-url=https://sci-hub.do/10.1038/icb.2015.66 | |||
}} | |||
==RELB== | |||
* {{medline-title | |||
|title=New control of the senescence barrier in breast cancer. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32158912 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7051141 | |||
}} | |||
==REV1== | |||
* {{medline-title | |||
|title=[[REV1]] inhibitor JH-RE-06 enhances tumor cell response to chemotherapy by triggering senescence hallmarks. | |||
|date=17.11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33168727 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7682577 | |||
}} | |||
==RFWD3== | |||
* {{medline-title | |||
|title=Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. | |||
|date=05.03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109421 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058826 | |||
}} | |||
==RGL1== | |||
* {{medline-title | |||
|title=Arabidopsis WRKY45 Interacts with the DELLA Protein [[RGL1]] to Positively Regulate Age-Triggered Leaf Senescence. | |||
|date=12.09.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28735023 | |||
|full-text-url=https://sci-hub.do/10.1016/j.molp.2017.07.008 | |||
}} | |||
==RGS10== | |||
* {{medline-title | |||
|title=Age-related changes in regulator of G-protein signaling (RGS)-10 expression in peripheral and central immune cells may influence the risk for age-related degeneration. | |||
|date=05.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25784210 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4417042 | |||
}} | |||
==RGS14== | |||
* {{medline-title | |||
|title=Enhanced longevity and metabolism by brown adipose tissue with disruption of the regulator of G protein signaling 14. | |||
|date=08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29654651 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052469 | |||
}} | |||
==RGS3== | |||
* {{medline-title | |||
|title=The roles of ribosomal protein S19 C-terminus in a shortened neutrophil lifespan through delta lactoferrin. | |||
|date=09.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26003841 | |||
|full-text-url=https://sci-hub.do/10.1016/j.imbio.2015.05.006 | |||
}} | |||
==RHCG== | |||
* {{medline-title | |||
|title=Rh type C-glycoprotein functions as a novel tumor suppressor gene by inhibiting tumorigenicity and metastasis in head and neck squamous cell carcinoma. | |||
|date=06.06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31170090 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594797 | |||
}} | |||
==RHD== | |||
* {{medline-title | |||
|title=Suppression and narrative time shifts in adults with right-hemisphere brain damage. | |||
|date=05.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23695902 | |||
|full-text-url=https://sci-hub.do/10.1044/1058-0360(2012/12-0072) | |||
}} | |||
==RHEBL1== | |||
* {{medline-title | |||
|title=Long-lived rodents reveal signatures of positive selection in genes associated with lifespan. | |||
|date=03.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29570707 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884551 | |||
}} | |||
==RHOB== | |||
* {{medline-title | |||
|title=Regulation of RhoB Gene Expression during Tumorigenesis and Aging Process and Its Potential Applications in These Processes. | |||
|date=13.06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31200451 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627600 | |||
}} | |||
==RIC3== | |||
* {{medline-title | |||
|title=Genetic modifiers of cognitive maintenance among older adults. | |||
|date=09.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24616004 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107001 | |||
}} | |||
==RIF1== | |||
* {{medline-title | |||
|title=53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination. | |||
|date=02.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31653568 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993210 | |||
}} | |||
==RIMS2== | |||
* {{medline-title | |||
|title=Age-related gene and miRNA expression changes in airways of healthy individuals. | |||
|date=06.03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30842487 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403379 | |||
}} | |||
==RIN3== | |||
* {{medline-title | |||
|title=Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. | |||
|date=11.04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28199971 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421828 | |||
}} | |||
==RNASEL== | |||
* {{medline-title | |||
|title=Age-related methylation profiles of equine blood leukocytes in the [[RNASEL]] locus. | |||
|date=08.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26553552 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4963465 | |||
}} | |||
==RNF10== | |||
* {{medline-title | |||
|title=Reduced RING finger protein 10 expression in macrophages is associated with aging-related inflammation. | |||
|date=28.11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33249776 | |||
|full-text-url=https://sci-hub.do/10.1002/2211-5463.13049 | |||
}} | |||
==RNF111== | |||
* {{medline-title | |||
|title=Global-genome Nucleotide Excision Repair Controlled by Ubiquitin/Sumo Modifiers. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27200078 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4848295 | |||
}} | |||
==RNF13== | |||
* {{medline-title | |||
|title=The effects of environmental stressors on candidate aging associated genes. | |||
|date=08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32344118 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2020.110952 | |||
}} | |||
==RNF144A== | |||
* {{medline-title | |||
|title=Identification of age- and gender-associated long noncoding RNAs in the human brain with Alzheimer's disease. | |||
|date=09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31280115 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6732230 | |||
}} | |||
==RORB== | |||
* {{medline-title | |||
|title=Effects of circadian clock genes and environmental factors on cognitive aging in old adults in a Taiwanese population. | |||
|date=11.04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28412756 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421829 | |||
}} | |||
==ROS1== | |||
* {{medline-title | |||
|title=Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. | |||
|date=15.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |||
}} | |||
==RPA1== | |||
* {{medline-title | |||
|title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. | |||
|date=31.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708 | |||
}} | |||
==RPA2== | |||
* {{medline-title | |||
|title=Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. | |||
|date=11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28841467 | |||
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.07.015 | |||
}} | |||
==RPL13== | |||
* {{medline-title | |||
|title=Selection of a Real-Time PCR Housekeeping Gene Panel in Human Endothelial Colony Forming Cells for Cellular Senescence Studies. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30915334 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421261 | |||
}} | |||
==RPL18== | |||
* {{medline-title | |||
|title=Comprehensive analysis of the ubiquitinome during oncogene-induced senescence in human fibroblasts. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25785348 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4614229 | |||
}} | |||
==RPL30== | |||
* {{medline-title | |||
|title=Selection of a Real-Time PCR Housekeeping Gene Panel in Human Endothelial Colony Forming Cells for Cellular Senescence Studies. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30915334 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421261 | |||
}} | |||
==RPL31== | |||
* {{medline-title | |||
|title=Selection of a Real-Time PCR Housekeeping Gene Panel in Human Endothelial Colony Forming Cells for Cellular Senescence Studies. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30915334 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421261 | |||
}} | |||
==RPL36== | |||
* {{medline-title | |||
|title=Lifelong Football Training: Effects on Autophagy and Healthy Longevity Promotion. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30837897 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390296 | |||
}} | |||
==RPL37== | |||
* {{medline-title | |||
|title=Selection of a Real-Time PCR Housekeeping Gene Panel in Human Endothelial Colony Forming Cells for Cellular Senescence Studies. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30915334 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421261 | |||
}} | |||
==RPL4== | |||
* {{medline-title | |||
|title=Lifelong Football Training: Effects on Autophagy and Healthy Longevity Promotion. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30837897 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390296 | |||
}} | |||
==RPS11== | |||
* {{medline-title | |||
|title=Comprehensive analysis of the ubiquitinome during oncogene-induced senescence in human fibroblasts. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25785348 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4614229 | |||
}} | |||
==RPS19BP1== | |||
* {{medline-title | |||
|title=Material basis, effect, and mechanism of ethanol extract of Pinellia ternata tubers on oxidative stress-induced cell senescence. | |||
|date=10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32659678 | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2020.153275 | |||
}} | |||
==RPS6KA1== | |||
* {{medline-title | |||
|title=Genetic analysis of TOR complex gene variation with human longevity: a nested case-control study of American men of Japanese ancestry. | |||
|date=02.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24589862 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4366598 | |||
}} | |||
==RPS6KB1== | |||
* {{medline-title | |||
|title=Inhibition of glioma growth by flavokawain B is mediated through endoplasmic reticulum stress induced autophagy. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30025493 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152528 | |||
}} | |||
==RPS7== | |||
* {{medline-title | |||
|title=Comprehensive analysis of the ubiquitinome during oncogene-induced senescence in human fibroblasts. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25785348 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4614229 | |||
}} | |||
==RRAD== | |||
* {{medline-title | |||
|title=Pan-senescence transcriptome analysis identified [[RRAD]] as a marker and negative regulator of cellular senescence. | |||
|date=01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30391675 | |||
|full-text-url=https://sci-hub.do/10.1016/j.freeradbiomed.2018.10.457 | |||
}} | |||
==RRM2B== | |||
* {{medline-title | |||
|title=Troponin T3 associates with DNA consensus sequence that overlaps with p53 binding motifs. | |||
|date=15.07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29596868 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5994179 | |||
}} | |||
==RS1== | |||
* {{medline-title | |||
|title=Retinoschisin gene therapy in photoreceptors, Müller glia or all retinal cells in the Rs1h-/- mouse. | |||
|date=06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24694538 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047144 | |||
}} | |||
==RSAD2== | |||
* {{medline-title | |||
|title=Progression of pathology in [[PINK1]]-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation. | |||
|date=02.08.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28768533 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5541666 | |||
}} | |||
==RSF1== | |||
* {{medline-title | |||
|title=The SR proteins SF2 and [[RBP1]] regulate triglyceride storage in the fat body of Drosophila. | |||
|date=27.08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31277943 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2019.06.151 | |||
}} | |||
==RSL1D1== | |||
* {{medline-title | |||
|title=Ribosomal L1 domain and lysine-rich region are essential for CSIG/ [[RSL1D1]] to regulate proliferation and senescence. | |||
|date=15.01.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26686419 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2015.12.004 | |||
}} | |||
==RTN3== | |||
* {{medline-title | |||
|title=Dysfunctional tubular endoplasmic reticulum constitutes a pathological feature of Alzheimer's disease. | |||
|date=09.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26619807 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4887420 | |||
}} | |||
==RTN4== | |||
* {{medline-title | |||
|title=Cell fate regulation by reticulon-4 in human prostate cancers. | |||
|date=07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30480803 | |||
|full-text-url=https://sci-hub.do/10.1002/jcp.27704 | |||
}} | |||
==RUNX3== | |||
* {{medline-title | |||
|title=circLARP4 induces cellular senescence through regulating miR-761/[[RUNX3]]/p53/p21 signaling in hepatocellular carcinoma. | |||
|date=02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30520539 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6361555 | |||
}} | |||
==RUVBL2== | |||
* {{medline-title | |||
|title=Proton irradiation impacts age-driven modulations of cancer progression influenced by immune system transcriptome modifications from splenic tissue. | |||
|date=09.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26253138 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4577010 | |||
}} | |||
==RXFP1== | |||
* {{medline-title | |||
|title=Sex- and age-specific differences in relaxin family peptide receptor expression within the hippocampus and amygdala in rats. | |||
|date=22.01.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25313002 | |||
|full-text-url=https://sci-hub.do/10.1016/j.neuroscience.2014.10.006 | |||
}} | |||
==RXFP3== | |||
* {{medline-title | |||
|title=The [[RXFP3]] receptor is functionally associated with cellular responses to oxidative stress and DNA damage. | |||
|date=03.12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31794429 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6932917 | |||
}} | |||
==RXRA== | |||
* {{medline-title | |||
|title=The nuclear receptor [[RXRA]] controls cellular senescence by regulating calcium signaling. | |||
|date=12.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30216632 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6260923 | |||
}} | |||
==RYR3== | |||
* {{medline-title | |||
|title=Association of the [[RYR3]] gene polymorphisms with atherosclerosis in elderly Japanese population. | |||
|date=14.01.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24423397 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898238 | |||
}} | |||
==S100A10== | |||
* {{medline-title | |||
|title=Age-related and depot-specific changes in white adipose tissue of growth hormone receptor-null mice. | |||
|date=01.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23873966 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3859361 | |||
}} | |||
==S100A13== | |||
* {{medline-title | |||
|title=[[S100A13]] promotes senescence-associated secretory phenotype and cellular senescence via modulation of non-classical secretion of IL-1α. | |||
|date=23.01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30670674 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6366962 | |||
}} | |||
==S100A7== | |||
* {{medline-title | |||
|title=The secreted protein [[S100A7]] (psoriasin) is induced by telomere dysfunction in human keratinocytes independently of a DNA damage response and cell cycle regulators. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25621169 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304136 | |||
}} | |||
==S100P== | |||
* {{medline-title | |||
|title=Cancer-associated [[S100P]] protein binds and inactivates p53, permits therapy-induced senescence and supports chemoresistance. | |||
|date=19.04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26967060 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5008377 | |||
}} | |||
==SAA2== | |||
* {{medline-title | |||
|title=Naturally occurring antibodies against serum amyloid A reduce IL-6 release from peripheral blood mononuclear cells. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29617422 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884545 | |||
}} | |||
==SACM1L== | |||
* {{medline-title | |||
|title=Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26168237 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500567 | |||
}} | |||
==SAMD10== | |||
* {{medline-title | |||
|title=Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. | |||
|date=11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28841467 | |||
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.07.015 | |||
}} | |||
==SAMD12== | |||
* {{medline-title | |||
|title=Genome-wide scan of depressive symptomatology in two representative cohorts in the United States and the United Kingdom. | |||
|date=05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29486404 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882010 | |||
}} | |||
==SAMHD1== | |||
* {{medline-title | |||
|title=Gut microbiota lipopolysaccharide accelerates inflamm-aging in mice. | |||
|date=16.01.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26772806 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4715324 | |||
}} | |||
==SARM1== | |||
* {{medline-title | |||
|title=Sarm1 Deletion, but Not Wld , Confers Lifelong Rescue in a Mouse Model of Severe Axonopathy. | |||
|date=03.10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28978465 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5640801 | |||
}} | |||
==SAT1== | |||
* {{medline-title | |||
|title=Triethylenetetramine (trientine): a caloric restriction mimetic with a new mode of action. | |||
|date=08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32544364 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469548 | |||
}} | |||
==SCAMP1== | |||
* {{medline-title | |||
|title=Secretory Carrier Membrane Protein (SCAMP) deficiency influences behavior of adult flies. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25478561 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4235465 | |||
}} | |||
==SCAMP4== | |||
* {{medline-title | |||
|title=[[SCAMP4]] enhances the senescent cell secretome. | |||
|date=01.07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29967290 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6075036 | |||
}} | |||
==SCD5== | |||
* {{medline-title | |||
|title=Bovine brain region-specific stearoyl-CoA desaturase expression and fatty acid composition. | |||
|date=06.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25899038 | |||
|full-text-url=https://sci-hub.do/10.1007/s11745-015-4015-y | |||
}} | |||
==SCGB1A1== | |||
* {{medline-title | |||
|title=Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. | |||
|date=03.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25761685 | |||
|full-text-url=https://sci-hub.do/10.1134/S0006297915030062 | |||
}} | |||
==SCGB2A2== | |||
* {{medline-title | |||
|title=Sensitivity of neoplastic cells to senescence unveiled under standard cell culture conditions. | |||
|date=05.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25964555 | |||
}} | |||
==SCGB3A2== | |||
* {{medline-title | |||
|title=Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. | |||
|date=03.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25761685 | |||
|full-text-url=https://sci-hub.do/10.1134/S0006297915030062 | |||
}} | |||
==SCN1A== | |||
* {{medline-title | |||
|title=Effects of normal aging and [[SCN1A]] risk-gene expression on brain metabolites: evidence for an association between [[SCN1A]] and myo-inositol. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24357141 | |||
|full-text-url=https://sci-hub.do/10.1002/nbm.3057 | |||
}} | |||
==SCN2A== | |||
* {{medline-title | |||
|title=Na 1.2 haploinsufficiency in Scn2a knock-out mice causes an autistic-like phenotype attenuated with age. | |||
|date=09.09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31501495 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733925 | |||
}} | |||
==SCN9A== | |||
* {{medline-title | |||
|title=The [[SCN9A]] channel and plasma membrane depolarization promote cellular senescence through Rb pathway. | |||
|date=06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29446526 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946064 | |||
}} | |||
==SCNN1B== | |||
* {{medline-title | |||
|title=Bitter, Sweet, Salty, Sour and Umami Taste Perception Decreases with Age: Sex-Specific Analysis, Modulation by Genetic Variants and Taste-Preference Associations in 18 to 80 Year-Old Subjects. | |||
|date=18.10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30340375 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6213100 | |||
}} | |||
==SCO1== | |||
* {{medline-title | |||
|title=Real-Time PCR Analysis of Metabolism-Related Genes in a Long-Lived Model of C. elegans. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32219749 | |||
|full-text-url=https://sci-hub.do/10.1007/978-1-0716-0471-7_12 | |||
}} | |||
==SCPEP1== | |||
* {{medline-title | |||
|title=Structural and kinetic evidence of aging after organophosphate inhibition of human Cathepsin A. | |||
|date=07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32305437 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bcp.2020.113980 | |||
}} | |||
==SCRIB== | |||
* {{medline-title | |||
|title=Scribble is required for pregnancy-induced alveologenesis in the adult mammary gland. | |||
|date=15.06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27179074 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4920253 | |||
}} | |||
==SCX== | |||
* {{medline-title | |||
|title=Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. | |||
|date=15.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |||
}} | |||
==SDC2== | |||
* {{medline-title | |||
|title=Alterations in Corneal Sensory Nerves During Homeostasis, Aging, and After Injury in Mice Lacking the Heparan Sulfate Proteoglycan Syndecan-1. | |||
|date=01.10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28973369 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627677 | |||
}} | |||
==SDC3== | |||
* {{medline-title | |||
|title=Alterations in Corneal Sensory Nerves During Homeostasis, Aging, and After Injury in Mice Lacking the Heparan Sulfate Proteoglycan Syndecan-1. | |||
|date=01.10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28973369 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627677 | |||
}} | |||
==SDHAF2== | |||
* {{medline-title | |||
|title=Long-term prognosis of patients with pediatric pheochromocytoma. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24169644 | |||
|full-text-url=https://sci-hub.do/10.1530/ERC-13-0415 | |||
}} | |||
==SDHD== | |||
* {{medline-title | |||
|title=Long-term prognosis of patients with pediatric pheochromocytoma. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24169644 | |||
|full-text-url=https://sci-hub.do/10.1530/ERC-13-0415 | |||
}} | |||
==SEC23A== | |||
* {{medline-title | |||
|title=Pancreatic [[SEC23B]] deficiency is sufficient to explain the perinatal lethality of germline [[SEC23B]] deficiency in mice. | |||
|date=14.06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27297878 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906273 | |||
}} | |||
==SEC23B== | |||
* {{medline-title | |||
|title=Pancreatic [[SEC23B]] deficiency is sufficient to explain the perinatal lethality of germline [[SEC23B]] deficiency in mice. | |||
|date=14.06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27297878 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906273 | |||
}} | |||
==SELENBP1== | |||
* {{medline-title | |||
|title=A Caenorhabditis elegans ortholog of human selenium-binding protein 1 is a pro-aging factor protecting against selenite toxicity. | |||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31557719 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812014 | |||
}} | |||
==SELENOH== | |||
* {{medline-title | |||
|title=The Thioredoxin-Like Family of Selenoproteins: Implications in Aging and Age-Related Degeneration. | |||
|date=03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30229511 | |||
|full-text-url=https://sci-hub.do/10.1007/s12011-018-1521-9 | |||
}} | |||
==SELENOK== | |||
* {{medline-title | |||
|title=Dietary selenium deficiency and supplementation differentially modulate the expression of two ER-resident selenoproteins (selenoprotein K and selenoprotein M) in the ovaries of aged mice: Preliminary data. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32736983 | |||
|full-text-url=https://sci-hub.do/10.1016/j.repbio.2020.07.006 | |||
}} | |||
==SELENOP== | |||
* {{medline-title | |||
|title=Analyses of Selenotranscriptomes and Selenium Concentrations in Response to Dietary Selenium Deficiency and Age Reveal Common and Distinct Patterns by Tissue and Sex in Telomere-Dysfunctional Mice. | |||
|date=10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28855418 | |||
|full-text-url=https://sci-hub.do/10.3945/jn.117.247775 | |||
}} | |||
==SELENOT== | |||
* {{medline-title | |||
|title=The Thioredoxin-Like Family of Selenoproteins: Implications in Aging and Age-Related Degeneration. | |||
|date=03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30229511 | |||
|full-text-url=https://sci-hub.do/10.1007/s12011-018-1521-9 | |||
}} | |||
==SELENOV== | |||
* {{medline-title | |||
|title=The Thioredoxin-Like Family of Selenoproteins: Implications in Aging and Age-Related Degeneration. | |||
|date=03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30229511 | |||
|full-text-url=https://sci-hub.do/10.1007/s12011-018-1521-9 | |||
}} | |||
==SELENOW== | |||
* {{medline-title | |||
|title=The Thioredoxin-Like Family of Selenoproteins: Implications in Aging and Age-Related Degeneration. | |||
|date=03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30229511 | |||
|full-text-url=https://sci-hub.do/10.1007/s12011-018-1521-9 | |||
}} | |||
==SELP== | |||
* {{medline-title | |||
|title=Effect of age on expression of spermatogonial markers in bovine testis and isolated cells. | |||
|date=07.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27180120 | |||
|full-text-url=https://sci-hub.do/10.1016/j.anireprosci.2016.04.004 | |||
}} | |||
==SEMA3A== | |||
* {{medline-title | |||
|title=Autoregulation of Osteocyte Sema3A Orchestrates Estrogen Action and Counteracts Bone Aging. | |||
|date=05.03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30661929 | |||
|full-text-url=https://sci-hub.do/10.1016/j.cmet.2018.12.021 | |||
}} | |||
==SEMA6C== | |||
* {{medline-title | |||
|title=Suppression of [[SEMA6C]] promotes preantral follicles atresia with decreased cell junctions in mice ovaries. | |||
|date=04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30256425 | |||
|full-text-url=https://sci-hub.do/10.1002/jcp.27294 | |||
}} | |||
==SENP1== | |||
* {{medline-title | |||
|title=Aging-related SUMOylation pattern in the cortex and blood plasma of wild type mice. | |||
|date=06.03.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29325714 | |||
|full-text-url=https://sci-hub.do/10.1016/j.neulet.2018.01.004 | |||
}} | |||
==SENP6== | |||
* {{medline-title | |||
|title=Molecular signature for senile and complicated cataracts derived from analysis of sumoylation enzymes and their substrates in human cataract lenses. | |||
|date=10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32827359 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7576240 | |||
}} | |||
==SENP7== | |||
* {{medline-title | |||
|title=Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. | |||
|date=05.03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109421 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058826 | |||
}} | |||
==SERPINA1== | |||
* {{medline-title | |||
|title=Proteomic profiling of follicle fluids after superstimulation in one-month-old lambs. | |||
|date=02.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29080277 | |||
|full-text-url=https://sci-hub.do/10.1111/rda.13091 | |||
}} | |||
==SERPINB3== | |||
* {{medline-title | |||
|title=[[SERPINB3]] is associated with longer survival in transgenic mice. | |||
|date=28.10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24162160 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808827 | |||
}} | |||
==SESN1== | |||
* {{medline-title | |||
|title=Sestrins are differentially expressed with age in the skeletal muscle of men: A cross-sectional analysis. | |||
|date=09.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29751091 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2018.05.006 | |||
}} | |||
==SETX== | |||
* {{medline-title | |||
|title=Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae. | |||
|date=11.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27718307 | |||
|full-text-url=https://sci-hub.do/10.1111/febs.13917 | |||
}} | |||
==SFPQ== | |||
* {{medline-title | |||
|title=Downregulation of LncRNA NORAD promotes Ox-LDL-induced vascular endothelial cell injury and atherosclerosis. | |||
|date=08.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32267831 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7185106 | |||
}} | |||
==SFRP5== | |||
* {{medline-title | |||
|title=[[SFRP5]] serves a beneficial role in arterial aging by inhibiting the proliferation, migration and inflammation of smooth muscle cells. | |||
|date=11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30221661 | |||
|full-text-url=https://sci-hub.do/10.3892/mmr.2018.9467 | |||
}} | |||
==SFTPA1== | |||
* {{medline-title | |||
|title=Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. | |||
|date=03.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25761685 | |||
|full-text-url=https://sci-hub.do/10.1134/S0006297915030062 | |||
}} | |||
==SGCE== | |||
* {{medline-title | |||
|title=Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. | |||
|date=12.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25824446 | |||
|full-text-url=https://sci-hub.do/10.1136/bjsports-2014-094073 | |||
}} | |||
==SGPP2== | |||
* {{medline-title | |||
|title=Vitamin D-responsive [[SGPP2]] variants associated with lung cell expression and lung function. | |||
|date=25.11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24274704 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907038 | |||
}} | |||
==SGSH== | |||
* {{medline-title | |||
|title=MPS-IIIA mice acquire autistic behaviours with age. | |||
|date=07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29520737 | |||
|full-text-url=https://sci-hub.do/10.1007/s10545-018-0160-9 | |||
}} | |||
==SH2B1== | |||
* {{medline-title | |||
|title=The Dyslexia-susceptibility Protein [[KIAA0319]] Inhibits Axon Growth Through Smad2 Signaling. | |||
|date=01.03.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28334068 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5905272 | |||
}} | |||
==SH2B3== | |||
* {{medline-title | |||
|title=Genome-wide meta-analysis associates HLA-DQA1/DRB1 and [[LPA]] and lifestyle factors with human longevity. | |||
|date=13.10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29030599 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5715013 | |||
}} | |||
==SHC1== | |||
* {{medline-title | |||
|title=Docosahexaenoic acid prevented tumor necrosis factor alpha-induced endothelial dysfunction and senescence. | |||
|date=01.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26802937 | |||
|full-text-url=https://sci-hub.do/10.1016/j.plefa.2015.10.006 | |||
}} | |||
==SHCBP1== | |||
* {{medline-title | |||
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335 | |||
}} | |||
==SHD== | |||
* {{medline-title | |||
|title=Does self-reported hearing difficulty decrease older adults' cognitive and physical functioning? The mediating role of social isolation. | |||
|date=11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33036703 | |||
|full-text-url=https://sci-hub.do/10.1016/j.maturitas.2020.06.011 | |||
}} | |||
==SHMT2== | |||
* {{medline-title | |||
|title=Epigenetic regulation of the nuclear-coded [[GCAT]] and [[SHMT2]] genes confers human age-associated mitochondrial respiration defects. | |||
|date=22.05.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26000717 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5377050 | |||
}} | |||
==SHOX2== | |||
* {{medline-title | |||
|title=Role of [[SHOX2]] in the development of intervertebral disc degeneration. | |||
|date=05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26697824 | |||
|full-text-url=https://sci-hub.do/10.1002/jor.23140 | |||
}} | |||
==SHROOM3== | |||
* {{medline-title | |||
|title=A roadmap for the genetic analysis of renal aging. | |||
|date=10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26219736 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568960 | |||
}} | |||
==SIGIRR== | |||
* {{medline-title | |||
|title=Anti-Inflamm-Aging Effects of Long-Term Caloric Restriction via Overexpression of [[SIGIRR]] to Inhibit NF-κB Signaling Pathway. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26431348 | |||
|full-text-url=https://sci-hub.do/10.1159/000430248 | |||
}} | |||
==SIK3== | |||
* {{medline-title | |||
|title=Quantitative and Qualitative Role of Antagonistic Heterogeneity in Genetics of Blood Lipids. | |||
|date=25.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31566214 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518561 | |||
}} | |||
==SIL1== | |||
* {{medline-title | |||
|title=[[SIL1]], the endoplasmic-reticulum-localized BiP co-chaperone, plays a crucial role in maintaining skeletal muscle proteostasis and physiology. | |||
|date=10.05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29666155 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5992605 | |||
}} | |||
==SIX1== | |||
* {{medline-title | |||
|title=Low Six4 and Six5 gene dosage improves dystrophic phenotype and prolongs life span of mdx mice. | |||
|date=08.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27224259 | |||
|full-text-url=https://sci-hub.do/10.1111/dgd.12290 | |||
}} | |||
==SIX2== | |||
* {{medline-title | |||
|title=Age-Dependent Pancreatic Gene Regulation Reveals Mechanisms Governing Human β Cell Function. | |||
|date=10.05.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27133132 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4864151 | |||
}} | |||
==SIX4== | |||
* {{medline-title | |||
|title=Low Six4 and Six5 gene dosage improves dystrophic phenotype and prolongs life span of mdx mice. | |||
|date=08.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27224259 | |||
|full-text-url=https://sci-hub.do/10.1111/dgd.12290 | |||
}} | |||
==SIX5== | |||
* {{medline-title | |||
|title=Low Six4 and Six5 gene dosage improves dystrophic phenotype and prolongs life span of mdx mice. | |||
|date=08.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27224259 | |||
|full-text-url=https://sci-hub.do/10.1111/dgd.12290 | |||
}} | |||
==SKAP2== | |||
* {{medline-title | |||
|title=Longevity-related molecular pathways are subject to midlife "switch" in humans. | |||
|date=08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31168962 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612641 | |||
}} | |||
==SKI== | |||
* {{medline-title | |||
|title=Preventive effect of Shenkang injection against high glucose-induced senescence of renal tubular cells. | |||
|date=04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29700792 | |||
|full-text-url=https://sci-hub.do/10.1007/s11684-017-0586-8 | |||
}} | |||
==SKP1== | |||
* {{medline-title | |||
|title=Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and abscisic acid. | |||
|date=01.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26373937 | |||
|full-text-url=https://sci-hub.do/10.1007/s00425-015-2402-5 | |||
}} | |||
==SLAMF1== | |||
* {{medline-title | |||
|title=Systemic Inflammation and the Increased Risk of Inflamm-Aging and Age-Associated Diseases in People Living With HIV on Long Term Suppressive Antiretroviral Therapy. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31507593 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718454 | |||
}} | |||
==SLAMF7== | |||
* {{medline-title | |||
|title=Age-related differences in neuroinflammatory responses associated with a distinct profile of regulatory markers on neonatal microglia. | |||
|date=04.04.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24708744 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4234188 | |||
}} | |||
==SLC11A1== | |||
* {{medline-title | |||
|title=The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. | |||
|date=29.07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32727592 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392710 | |||
}} | |||
==SLC12A5== | |||
* {{medline-title | |||
|title=DNA methylation-based age prediction from saliva: High age predictability by combination of 7 CpG markers. | |||
|date=07.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28419903 | |||
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.04.006 | |||
}} | |||
==SLC12A8== | |||
* {{medline-title | |||
|title=Identifying blood-specific age-related DNA methylation markers on the Illumina MethylationEPIC® BeadChip. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31546163 | |||
|full-text-url=https://sci-hub.do/10.1016/j.forsciint.2019.109944 | |||
}} | |||
==SLC15A1== | |||
* {{medline-title | |||
|title=Molecular changes to the rat renal cotransporters PEPT1 and PEPT2 due to ageing. | |||
|date=02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30019300 | |||
|full-text-url=https://sci-hub.do/10.1007/s11010-018-3413-x | |||
}} | |||
==SLC15A2== | |||
* {{medline-title | |||
|title=Molecular changes to the rat renal cotransporters PEPT1 and PEPT2 due to ageing. | |||
|date=02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30019300 | |||
|full-text-url=https://sci-hub.do/10.1007/s11010-018-3413-x | |||
}} | |||
==SLC16A10== | |||
* {{medline-title | |||
|title=The SLC16 gene family - structure, role and regulation in health and disease. | |||
|date=04-06.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23506875 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mam.2012.05.003 | |||
}} | |||
==SLC16A2== | |||
* {{medline-title | |||
|title=The SLC16 gene family - structure, role and regulation in health and disease. | |||
|date=04-06.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23506875 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mam.2012.05.003 | |||
}} | |||
==SLC16A3== | |||
* {{medline-title | |||
|title=The SLC16 gene family - structure, role and regulation in health and disease. | |||
|date=04-06.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23506875 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mam.2012.05.003 | |||
}} | |||
==SLC17A3== | |||
* {{medline-title | |||
|title=Sequencing of 2 subclinical atherosclerosis candidate regions in 3669 individuals: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. | |||
|date=06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24951662 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112104 | |||
}} | |||
==SLC17A4== | |||
* {{medline-title | |||
|title=Sequencing of 2 subclinical atherosclerosis candidate regions in 3669 individuals: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. | |||
|date=06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24951662 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112104 | |||
}} | |||
==SLC1A5== | |||
* {{medline-title | |||
|title=[[SLC1A5]] glutamine transporter is a target of [[MYC]] and mediates reduced mTORC1 signaling and increased fatty acid oxidation in long-lived Myc hypomorphic mice. | |||
|date=06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30909319 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6516164 | |||
}} | |||
==SLC22A12== | |||
* {{medline-title | |||
|title=[[ABCG2]] rs2231142 variant in hyperuricemia is modified by [[SLC2A9]] and [[SLC22A12]] polymorphisms and cardiovascular risk factors in an elderly community-dwelling population. | |||
|date=17.03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32183743 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7077001 | |||
}} | |||
==SLC22A14== | |||
* {{medline-title | |||
|title=Explorative results from multistep screening for potential genetic risk loci of Alzheimer's disease in the longitudinal VITA study cohort. | |||
|date=01.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29027019 | |||
|full-text-url=https://sci-hub.do/10.1007/s00702-017-1796-6 | |||
}} | |||
==SLC22A23== | |||
* {{medline-title | |||
|title=Clinical and genetic risk factors for decreased bone mineral density in Japanese patients with inflammatory bowel disease. | |||
|date=11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29603369 | |||
|full-text-url=https://sci-hub.do/10.1111/jgh.14149 | |||
}} | |||
==SLC24A5== | |||
* {{medline-title | |||
|title=[A question of colour]. | |||
|date=01.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29384103 | |||
|full-text-url=https://sci-hub.do/10.1051/medsci/20183401020 | |||
}} | |||
==SLC25A15== | |||
* {{medline-title | |||
|title=The hyperornithinemia-hyperammonemia-homocitrullinuria syndrome. | |||
|date=11.03.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25874378 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358699 | |||
}} | |||
==SLC27A1== | |||
* {{medline-title | |||
|title=EPRS is a critical mTORC1-S6K1 effector that influences adiposity in mice. | |||
|date=16.02.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28178239 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5480610 | |||
}} | |||
==SLC2A4RG== | |||
* {{medline-title | |||
|title=Genome-wide association study for lactation persistency, female fertility, longevity, and lifetime profit index traits in Holstein dairy cattle. | |||
|date=02.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27889128 | |||
|full-text-url=https://sci-hub.do/10.3168/jds.2016-11770 | |||
}} | |||
==SLC30A1== | |||
* {{medline-title | |||
|title=Changes in Zn homeostasis during long term culture of primary endothelial cells and effects of Zn on endothelial cell senescence. | |||
|date=01.12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28918363 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2017.09.006 | |||
}} | |||
==SLC30A10== | |||
* {{medline-title | |||
|title=Changes in Zn homeostasis during long term culture of primary endothelial cells and effects of Zn on endothelial cell senescence. | |||
|date=01.12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28918363 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2017.09.006 | |||
}} | |||
==SLC30A3== | |||
* {{medline-title | |||
|title=[[SLC30A3]] and SEP15 gene polymorphisms influence the serum concentrations of zinc and selenium in mature adults. | |||
|date=09.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25249019 | |||
|full-text-url=https://sci-hub.do/10.1016/j.nutres.2014.08.009 | |||
}} | |||
==SLC30A5== | |||
* {{medline-title | |||
|title=Changes in Zn homeostasis during long term culture of primary endothelial cells and effects of Zn on endothelial cell senescence. | |||
|date=01.12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28918363 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2017.09.006 | |||
}} | |||
==SLC36A4== | |||
* {{medline-title | |||
|title=The amino acid transporter [[SLC36A4]] regulates the amino acid pool in retinal pigmented epithelial cells and mediates the mechanistic target of rapamycin, complex 1 signaling. | |||
|date=04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28083894 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5334531 | |||
}} | |||
==SLC39A5== | |||
* {{medline-title | |||
|title=Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients. | |||
|date=03.09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31560770 | |||
|full-text-url=https://sci-hub.do/10.1167/iovs.19-27921 | |||
}} | |||
==SLC39A6== | |||
* {{medline-title | |||
|title=Changes in Zn homeostasis during long term culture of primary endothelial cells and effects of Zn on endothelial cell senescence. | |||
|date=01.12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28918363 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2017.09.006 | |||
}} | |||
==SLC41A1== | |||
* {{medline-title | |||
|title=Magnesium transporter protein solute carrier family 41 member 1 suppresses human pancreatic ductal adenocarcinoma through magnesium-dependent Akt/mTOR inhibition and bax-associated mitochondrial apoptosis. | |||
|date=08.05.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31076559 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535063 | |||
}} | |||
==SLC4A7== | |||
* {{medline-title | |||
|title=Multivariate genomic scan implicates novel loci and haem metabolism in human ageing. | |||
|date=16.07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32678081 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366647 | |||
}} | |||
==SLC52A2== | |||
* {{medline-title | |||
|title=Clinical, pathological and functional characterization of riboflavin-responsive neuropathy. | |||
|date=01.11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29053833 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5808726 | |||
}} | |||
==SLC52A3== | |||
* {{medline-title | |||
|title=Clinical, pathological and functional characterization of riboflavin-responsive neuropathy. | |||
|date=01.11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29053833 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5808726 | |||
}} | |||
==SLCO1B1== | |||
* {{medline-title | |||
|title=The [[SLCO1B1]] c.521T>C polymorphism is associated with dose decrease or switching during statin therapy in the Rotterdam Study. | |||
|date=01.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24263182 | |||
|full-text-url=https://sci-hub.do/10.1097/FPC.0000000000000018 | |||
}} | |||
==SLCO1B3== | |||
* {{medline-title | |||
|title=Paclitaxel-induced sensory peripheral neuropathy is associated with an [[ABCB1]] single nucleotide polymorphism and older age in Japanese. | |||
|date=06.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28447211 | |||
|full-text-url=https://sci-hub.do/10.1007/s00280-017-3314-9 | |||
}} | |||
==SLCO1C1== | |||
* {{medline-title | |||
|title=Genomics and CSF analyses implicate thyroid hormone in hippocampal sclerosis of aging. | |||
|date=12.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27815632 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5154615 | |||
}} | |||
==SLIT2== | |||
* {{medline-title | |||
|title=Analysis of gene expression during aging of CGNs in culture: implication of [[SLIT2]] and [[NPY]] in senescence. | |||
|date=06.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26047956 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4493715 | |||
}} | |||
==SLPI== | |||
* {{medline-title | |||
|title=Human buccal epithelium acquires microbial hyporesponsiveness at birth, a role for secretory leukocyte protease inhibitor. | |||
|date=06.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25056659 | |||
|full-text-url=https://sci-hub.do/10.1136/gutjnl-2013-306149 | |||
}} | |||
==SMAP== | |||
* {{medline-title | |||
|title=DNA integrity-protecting and survival-promoting activity of serotonergic system in sturgeon juveniles and sazans. | |||
|date=08.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28321525 | |||
|full-text-url=https://sci-hub.do/10.1007/s10695-017-0360-5 | |||
}} | |||
==SMARCA5== | |||
* {{medline-title | |||
|title=The epigenetic regulator [[SIRT7]] guards against mammalian cellular senescence induced by ribosomal DNA instability. | |||
|date=13.07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29728458 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052228 | |||
}} | |||
==SMARCB1== | |||
* {{medline-title | |||
|title=High-Throughput Functional Genetic and Compound Screens Identify Targets for Senescence Induction in Cancer. | |||
|date=17.10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29045843 | |||
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2017.09.085 | |||
}} | |||
==SMARCD1== | |||
* {{medline-title | |||
|title=Delphinidin-3-glucoside suppresses lipid accumulation in HepG2 cells. | |||
|date=12.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30155609 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6269360 | |||
}} | |||
==SMC1A== | |||
* {{medline-title | |||
|title=Age-related decrease of meiotic cohesins in human oocytes. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24806359 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013030 | |||
}} | |||
==SMC1B== | |||
* {{medline-title | |||
|title=Age-related decrease of meiotic cohesins in human oocytes. | |||
|date=2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24806359 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013030 | |||
}} | |||
==SMC2== | |||
* {{medline-title | |||
|title=The proteomic study of serially passaged human skin fibroblast cells uncovers down-regulation of the chromosome condensin complex proteins involved in replicative senescence. | |||
|date=10.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30336977 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2018.10.065 | |||
}} | |||
==SMC4== | |||
* {{medline-title | |||
|title=The proteomic study of serially passaged human skin fibroblast cells uncovers down-regulation of the chromosome condensin complex proteins involved in replicative senescence. | |||
|date=10.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30336977 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2018.10.065 | |||
}} | |||
==SMC5== | |||
* {{medline-title | |||
|title=[[SMC5]]/6 is required for the formation of segregation-competent bivalent chromosomes during meiosis I in mouse oocytes. | |||
|date=01.05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28302748 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5450844 | |||
}} | |||
==SMG1== | |||
* {{medline-title | |||
|title=[[SMG1]] heterozygosity exacerbates haematopoietic cancer development in Atm null mice by increasing persistent DNA damage and oxidative stress. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31565865 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850945 | |||
}} | |||
==SMG6== | |||
* {{medline-title | |||
|title=Genetic Burden Analyses of Phenotypes Relevant to Aging in the Berlin Aging Study II (BASE-II). | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26821332 | |||
|full-text-url=https://sci-hub.do/10.1159/000438900 | |||
}} | |||
==SMPD3== | |||
* {{medline-title | |||
|title=Endoplasmic Reticulum Stress Mediates Vascular Smooth Muscle Cell Calcification via Increased Release of Grp78-Loaded Extracellular Vesicles. | |||
|date=10.12.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33297752 | |||
|full-text-url=https://sci-hub.do/10.1161/ATVBAHA.120.315506 | |||
}} | |||
==SMURF2== | |||
* {{medline-title | |||
|title=Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24478790 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894567 | |||
}} | |||
==SMYD2== | |||
* {{medline-title | |||
|title=Collaboration of [[MYC]] and [[RUNX2]] in lymphoma simulates T-cell receptor signaling and attenuates p53 pathway activity. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31257681 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6772115 | |||
}} | |||
==SNAI2== | |||
* {{medline-title | |||
|title=Reawakening of dormant estrogen-dependent human breast cancer cells by bone marrow stroma secretory senescence. | |||
|date=17.08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30119678 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6098600 | |||
}} | |||
==SNAP23== | |||
* {{medline-title | |||
|title=Effects of immobilization and aerobic training on proteins related to intramuscular substrate storage and metabolism in young and older men. | |||
|date=03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26626913 | |||
|full-text-url=https://sci-hub.do/10.1007/s00421-015-3302-x | |||
}} | |||
==SND1== | |||
* {{medline-title | |||
|title=[Downregulation of [[SND1]] Expression Accelerates Cell Senescence of Human Diploid Fibroblasts 2BS via Modulating the SASP]. | |||
|date=05.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32543144 | |||
|full-text-url=https://sci-hub.do/10.12182/20200560504 | |||
}} | |||
==SNN== | |||
* {{medline-title | |||
|title=Evolving Spiking Neural Networks for Recognition of Aged Voices. | |||
|date=01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27049449 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jvoice.2016.02.019 | |||
}} | |||
==SNRPE== | |||
* {{medline-title | |||
|title=In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31520345 | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-019-09834-1 | |||
}} | |||
==SNRPN== | |||
* {{medline-title | |||
|title=Age-associated changes in gene expression of goat oocytes. | |||
|date=01.09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23746875 | |||
|full-text-url=https://sci-hub.do/10.1016/j.theriogenology.2013.04.019 | |||
}} | |||
==SNX15== | |||
* {{medline-title | |||
|title=[[SNX15]] Regulates Cell Surface Recycling of [[APP]] and Aβ Generation. | |||
|date=08.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26115702 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4691577 | |||
}} | |||
==SOBP== | |||
* {{medline-title | |||
|title=Lifetime increased cancer risk in mice following exposure to clinical proton beam-generated neutrons. | |||
|date=01.05.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24725699 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4298825 | |||
}} | |||
==SORCS2== | |||
* {{medline-title | |||
|title=Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. | |||
|date=10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27329260 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013013 | |||
}} | |||
==SORT1== | |||
* {{medline-title | |||
|title=Soluble sortilin is present in excess and positively correlates with progranulin in CSF of aging individuals. | |||
|date=11.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27612602 | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2016.09.002 | |||
}} | |||
==SOS1== | |||
* {{medline-title | |||
|title=Fucoidan⁻Fucoxanthin Ameliorated Cardiac Function via [[IRS1]]/[[GRB2]]/ [[SOS1]], GSK3β/CREB Pathways and Metabolic Pathways in Senescent Mice. | |||
|date=21.01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30669571 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356397 | |||
}} | |||
==SOX1== | |||
* {{medline-title | |||
|title=The [[APOE]] gene cluster responds to air pollution factors in mice with coordinated expression of genes that differs by age in humans. | |||
|date=20.11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33215813 | |||
|full-text-url=https://sci-hub.do/10.1002/alz.12230 | |||
}} | |||
==SOX10== | |||
* {{medline-title | |||
|title=[[SOX10]] Distinguishes Pilocytic and Pilomyxoid Astrocytomas From Ependymomas but Shows No Differences in Expression Level in Ependymomas From Infants Versus Older Children or Among Molecular Subgroups. | |||
|date=04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26945037 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5009481 | |||
}} | |||
==SOX11== | |||
* {{medline-title | |||
|title=A lowered 26S proteasome activity correlates with mantle lymphoma cell lines resistance to genotoxic stress. | |||
|date=10.08.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28797244 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5553741 | |||
}} | |||
==SOX13== | |||
* {{medline-title | |||
|title=In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31520345 | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-019-09834-1 | |||
}} | |||
==SOX17== | |||
* {{medline-title | |||
|title=[[SOX17]] Regulates Conversion of Human Fibroblasts Into Endothelial Cells and Erythroblasts by Dedifferentiation Into [[CD34]] Progenitor Cells. | |||
|date=20.06.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28381471 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472005 | |||
}} | |||
==SOX6== | |||
* {{medline-title | |||
|title=Gene expression markers in horse articular chondrocytes: Chondrogenic differentiaton IN VITRO depends on the proliferative potential and ageing. Implication for tissue engineering of cartilage. | |||
|date=02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31778851 | |||
|full-text-url=https://sci-hub.do/10.1016/j.rvsc.2019.10.024 | |||
}} | |||
==SP2== | |||
* {{medline-title | |||
|title=Influence of season, age and management on scrotal thermal profile in Murrah bulls using scrotal infrared digital thermography. | |||
|date=12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28791483 | |||
|full-text-url=https://sci-hub.do/10.1007/s00484-017-1415-0 | |||
}} | |||
==SP7== | |||
* {{medline-title | |||
|title=microRNA-31 inhibition partially ameliorates the deficiency of bone marrow stromal cells from cleidocranial dysplasia. | |||
|date=06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30506733 | |||
|full-text-url=https://sci-hub.do/10.1002/jcb.28223 | |||
}} | |||
==SP8== | |||
* {{medline-title | |||
|title=Molecular control of two novel migratory paths for CGE-derived interneurons in the developing mouse brain. | |||
|date=15.05.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27034423 | |||
|full-text-url=https://sci-hub.do/10.1242/dev.131102 | |||
}} | |||
==SPAG9== | |||
* {{medline-title | |||
|title=Sperm-associated antigen 9 ([[SPAG9]]) promotes the survival and tumor growth of triple-negative breast cancer cells. | |||
|date=10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27449044 | |||
|full-text-url=https://sci-hub.do/10.1007/s13277-016-5240-6 | |||
}} | |||
==SPATS2L== | |||
* {{medline-title | |||
|title=Longitudinal analysis of bronchodilator response in asthmatics and effect modification of age-related trends by genotype. | |||
|date=02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30585438 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6818258 | |||
}} | |||
==SPG11== | |||
* {{medline-title | |||
|title=[i]Malassezia[/i] and Parkinson's Disease. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31396143 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6667642 | |||
}} | |||
==SPG21== | |||
* {{medline-title | |||
|title=Loss of Maspardin Attenuates the Growth and Maturation of Mouse Cortical Neurons. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26978163 | |||
|full-text-url=https://sci-hub.do/10.1159/000443666 | |||
}} | |||
==SPG7== | |||
* {{medline-title | |||
|title=Loss of the Drosophila m-AAA mitochondrial protease paraplegin results in mitochondrial dysfunction, shortened lifespan, and neuronal and muscular degeneration. | |||
|date=21.02.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29467464 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833341 | |||
}} | |||
==SPHK1== | |||
* {{medline-title | |||
|title=Sphingosine Kinase-1 Is Essential for Maintaining External/Outer Limiting Membrane and Associated Adherens Junctions in the Aging Retina. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30997640 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7425817 | |||
}} | |||
==SPHK2== | |||
* {{medline-title | |||
|title=Loss of genomic integrity induced by lysosphingolipid imbalance drives ageing in the heart. | |||
|date=04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30886000 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446199 | |||
}} | |||
==SPI1== | |||
* {{medline-title | |||
|title=Association of levels of fasting glucose and insulin with rare variants at the chromosome 11p11.2-[[MADD]] locus: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. | |||
|date=06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24951664 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066205 | |||
}} | |||
==SPO11== | |||
* {{medline-title | |||
|title="Mitotic Slippage" and Extranuclear DNA in Cancer Chemoresistance: A Focus on Telomeres. | |||
|date=16.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32316332 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7215480 | |||
}} | |||
==SPX== | |||
* {{medline-title | |||
|title=Phosphorus remobilization from rice flag leaves during grain filling: an RNA-seq study. | |||
|date=01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27228336 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253468 | |||
}} | |||
==SREBF1== | |||
* {{medline-title | |||
|title=The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. | |||
|date=29.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32997995 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527782 | |||
}} | |||
==SRI== | |||
* {{medline-title | |||
|title=The Role of Aging, Drug Dependence, and Hepatitis C Comorbidity in Alcoholism Cortical Compromise. | |||
|date=01.05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29541774 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5875381 | |||
}} | |||
==SRL== | |||
* {{medline-title | |||
|title=Income dividends and subjective survival in a Cherokee Indian cohort: a quasi-experiment. | |||
|date=04-06.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32432936 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250001 | |||
}} | |||
==SRPK1== | |||
* {{medline-title | |||
|title=[Age-related changes in the content of serine-arginine protein kinase 1 ([[SRPK1]]) in human dermis.] | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29322729 | |||
}} | |||
==SRSF1== | |||
* {{medline-title | |||
|title=Cellular stress and AMPK activation as a common mechanism of action linking the effects of metformin and diverse compounds that alleviate accelerated aging defects in Hutchinson-Gilford progeria syndrome. | |||
|date=09.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30037605 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mehy.2018.06.029 | |||
}} | |||
==SRSF10== | |||
* {{medline-title | |||
|title=Inflammation and hyperglycemia mediate Deaf1 splicing in the pancreatic lymph nodes via distinct pathways during type 1 diabetes. | |||
|date=02.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25187368 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4303971 | |||
}} | |||
==SRSF2== | |||
* {{medline-title | |||
|title=Insight into the molecular pathophysiology of myelodysplastic syndromes: targets for novel therapy. | |||
|date=10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27147278 | |||
|full-text-url=https://sci-hub.do/10.1111/ejh.12771 | |||
}} | |||
==SRSF3== | |||
* {{medline-title | |||
|title=Alternative polyadenylation dependent function of splicing factor [[SRSF3]] contributes to cellular senescence. | |||
|date=04.03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30835716 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428108 | |||
}} | |||
==SSBP2== | |||
* {{medline-title | |||
|title=Genetic associations with age of menopause in familial longevity. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31188284 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7008937 | |||
}} | |||
==SSTR3== | |||
* {{medline-title | |||
|title=Type 3 Adenylyl Cyclase and Somatostatin Receptor 3 Expression Persists in Aged Rat Neocortical and Hippocampal Neuronal Cilia. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27303293 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4885836 | |||
}} | |||
==SSX2== | |||
* {{medline-title | |||
|title=Ectopic expression of cancer/testis antigen [[SSX2]] induces DNA damage and promotes genomic instability. | |||
|date=02.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25363656 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5528659 | |||
}} | |||
==ST18== | |||
* {{medline-title | |||
|title=[Target protein candidates of hypothalamus in aging rats with intervention by Qiongyugao]. | |||
|date=04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28879748 | |||
|full-text-url=https://sci-hub.do/10.4268/cjcmm20160724 | |||
}} | |||
==STAT5B== | |||
* {{medline-title | |||
|title=Reductions in serum IGF-1 during aging impair health span. | |||
|date=06.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24341939 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326899 | |||
}} | |||
==STC1== | |||
* {{medline-title | |||
|title=Proteomic profiling of follicle fluids after superstimulation in one-month-old lambs. | |||
|date=02.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29080277 | |||
|full-text-url=https://sci-hub.do/10.1111/rda.13091 | |||
}} | |||
==STC2== | |||
* {{medline-title | |||
|title=Genome-wide Associations Reveal Human-Mouse Genetic Convergence and Modifiers of Myogenesis, [[CPNE1]] and [[STC2]]. | |||
|date=05.12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31761296 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904802 | |||
}} | |||
==STIP1== | |||
* {{medline-title | |||
|title=The E3 ubiquitin ligase [[STUB1]] attenuates cell senescence by promoting the ubiquitination and degradation of the core circadian regulator BMAL1. | |||
|date=03.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32041778 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7135990 | |||
}} | |||
==STK11== | |||
* {{medline-title | |||
|title=A Multigene Test Could Cost-Effectively Help Extend Life Expectancy for Women at Risk of Hereditary Breast Cancer. | |||
|date=04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28407996 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jval.2017.01.006 | |||
}} | |||
==STK32C== | |||
* {{medline-title | |||
|title=DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. | |||
|date=25.07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30045751 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058387 | |||
}} | |||
==STK38L== | |||
* {{medline-title | |||
|title=[Role of [[PLAT]], [[PKHD1L1]], [[STK38L]] and [[TEAD1]] genes Alu-polymorphism for longevity]. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28556638 | |||
}} | |||
==STOML2== | |||
* {{medline-title | |||
|title=Slower Dynamics and Aged Mitochondria in Sporadic Alzheimer's Disease. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29201274 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5672147 | |||
}} | |||
==STRA6== | |||
* {{medline-title | |||
|title=Transport of vitamin A across blood-tissue barriers is facilitated by [[STRA6]]. | |||
|date=08.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27189978 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4970611 | |||
}} | |||
==STX16== | |||
* {{medline-title | |||
|title=Clinical characterization and molecular classification of 12 Korean patients with pseudohypoparathyroidism and pseudopseudohypoparathyroidism. | |||
|date=10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24127307 | |||
|full-text-url=https://sci-hub.do/10.1055/s-0033-1349867 | |||
}} | |||
==STX17== | |||
* {{medline-title | |||
|title=Directed elimination of senescent cells attenuates development of osteoarthritis by inhibition of c-IAP and [[XIAP]]. | |||
|date=01.10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31251987 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbadis.2019.05.017 | |||
}} | |||
==SUCLA2== | |||
* {{medline-title | |||
|title=An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31531781 | |||
|full-text-url=https://sci-hub.do/10.1007/s00425-019-03272-6 | |||
}} | |||
==SUCNR1== | |||
* {{medline-title | |||
|title=[The effect of Mexidol on cerebral mitochondriogenesis at a young age and during aging]. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32105271 | |||
|full-text-url=https://sci-hub.do/10.17116/jnevro202012001162 | |||
}} | |||
==SUGCT== | |||
* {{medline-title | |||
|title=Knockout of the non-essential gene [[SUGCT]] creates diet-linked, age-related microbiome disbalance with a diabetes-like metabolic syndrome phenotype. | |||
|date=09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31722069 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7426296 | |||
}} | |||
==SULT1A1== | |||
* {{medline-title | |||
|title=Bayesian association scan reveals loci associated with human lifespan and linked biomarkers. | |||
|date=27.07.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28748955 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537485 | |||
}} | |||
==SULT1E1== | |||
* {{medline-title | |||
|title=Sex- and age-dependent gene expression in human liver: An implication for drug-metabolizing enzymes. | |||
|date=02.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28153492 | |||
|full-text-url=https://sci-hub.do/10.1016/j.dmpk.2016.10.409 | |||
}} | |||
==SULT2A1== | |||
* {{medline-title | |||
|title=Sex-, age-, and race/ethnicity-dependent variations in drug-processing and NRF2-regulated genes in human livers. | |||
|date=08.11.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33162398 | |||
|full-text-url=https://sci-hub.do/10.1124/dmd.120.000181 | |||
}} | |||
==SUMO1== | |||
* {{medline-title | |||
|title=[[SUMO1]]-conjugation is altered during normal aging but not by increased amyloid burden. | |||
|date=08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29633471 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052395 | |||
}} | |||
==SUMO2== | |||
* {{medline-title | |||
|title=KSHV latent protein LANA2 inhibits sumo2 modification of p53. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25607652 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4615004 | |||
}} | |||
==SUN1== | |||
* {{medline-title | |||
|title=Imbalanced nucleocytoskeletal connections create common polarity defects in progeria and physiological aging. | |||
|date=26.02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30808750 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397528 | |||
}} | |||
==SUN2== | |||
* {{medline-title | |||
|title=Imbalanced nucleocytoskeletal connections create common polarity defects in progeria and physiological aging. | |||
|date=26.02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30808750 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397528 | |||
}} | |||
==SUSD1== | |||
* {{medline-title | |||
|title=A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. | |||
|date=07.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23650146 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990406 | |||
}} | |||
==SUSD2== | |||
* {{medline-title | |||
|title=Comparing the Effect of TGF-β Receptor Inhibition on Human Perivascular Mesenchymal Stromal Cells Derived from Endometrium, Bone Marrow and Adipose Tissues. | |||
|date=01.12.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33271899 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712261 | |||
}} | |||
==SV2B== | |||
* {{medline-title | |||
|title=Mutant Huntingtin Causes a Selective Decrease in the Expression of Synaptic Vesicle Protein 2C. | |||
|date=10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29713895 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6129247 | |||
}} | |||
==SV2C== | |||
* {{medline-title | |||
|title=Mutant Huntingtin Causes a Selective Decrease in the Expression of Synaptic Vesicle Protein 2C. | |||
|date=10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29713895 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6129247 | |||
}} | |||
==SYCP2== | |||
* {{medline-title | |||
|title=Accelerated reproductive aging in females lacking a novel centromere protein [[[[SYCP2]]L]]. | |||
|date=15.11.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26362258 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4614708 | |||
}} | |||
==SYCP2L== | |||
* {{medline-title | |||
|title=Accelerated reproductive aging in females lacking a novel centromere protein [[[[SYCP2]]L]]. | |||
|date=15.11.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26362258 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4614708 | |||
}} | |||
==SYCP3== | |||
* {{medline-title | |||
|title=Effects of Saikokaryukotsuboreito on Spermatogenesis and Fertility in Aging Male Mice. | |||
|date=05.04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26996482 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819307 | |||
}} | |||
==SYNE1== | |||
* {{medline-title | |||
|title=Nesprin-1 impact on tumorigenic cell phenotypes. | |||
|date=02.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31741263 | |||
|full-text-url=https://sci-hub.do/10.1007/s11033-019-05184-w | |||
}} | |||
==SYNE2== | |||
* {{medline-title | |||
|title=Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. | |||
|date=03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109663 | |||
|full-text-url=https://sci-hub.do/10.1016/j.atherosclerosis.2020.02.005 | |||
}} | |||
==SYNJ2== | |||
* {{medline-title | |||
|title=DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. | |||
|date=25.07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30045751 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058387 | |||
}} | |||
==SYT1== | |||
* {{medline-title | |||
|title=Two Behavioral Tests Allow a Better Correlation Between Cognitive Function and Expression of Synaptic Proteins. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29670520 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5893842 | |||
}} | |||
==SYT4== | |||
* {{medline-title | |||
|title=Age-related obesity and type 2 diabetes dysregulate neuronal associated genes and proteins in humans. | |||
|date=06.10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26337083 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745765 | |||
}} | |||
==SYT7== | |||
* {{medline-title | |||
|title=Synaptotagmin-7, a binding protein of P53, inhibits the senescence and promotes the tumorigenicity of lung cancer cells. | |||
|date=28.02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30647108 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6367206 | |||
}} | |||
==TAAR1== | |||
* {{medline-title | |||
|title=Minimal Age-Related Alterations in Behavioral and Hematological Parameters in Trace Amine-Associated Receptor 1 ([[TAAR1]]) Knockout Mice. | |||
|date=03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31399838 | |||
|full-text-url=https://sci-hub.do/10.1007/s10571-019-00721-4 | |||
}} | |||
==TAC3== | |||
* {{medline-title | |||
|title=Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25765287 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475460 | |||
}} | |||
==TAF15== | |||
* {{medline-title | |||
|title=FET proteins regulate lifespan and neuronal integrity. | |||
|date=27.04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27117089 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846834 | |||
}} | |||
==TAF7== | |||
* {{medline-title | |||
|title=Basonuclin 1 deficiency causes testicular premature aging: [[BNC1]] cooperates with [[TAF7]]L to regulate spermatogenesis. | |||
|date=22.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31065688 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052986 | |||
}} | |||
==TAF7L== | |||
* {{medline-title | |||
|title=Basonuclin 1 deficiency causes testicular premature aging: [[BNC1]] cooperates with [[TAF7]]L to regulate spermatogenesis. | |||
|date=22.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31065688 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052986 | |||
}} | |||
==TANK== | |||
* {{medline-title | |||
|title=Aging aggravated liver ischemia and reperfusion injury by promoting STING-mediated [[NLRP3]] activation in macrophages. | |||
|date=08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32666684 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431827 | |||
}} | |||
==TAP1== | |||
* {{medline-title | |||
|title=Age-associated methylation change of [[TAP1]] promoter in piglet. | |||
|date=15.11.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26169022 | |||
|full-text-url=https://sci-hub.do/10.1016/j.gene.2015.07.026 | |||
}} | |||
==TAP2== | |||
* {{medline-title | |||
|title=Lifespan of mice and primates correlates with immunoproteasome expression. | |||
|date=05.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25866968 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4463211 | |||
}} | |||
==TAS1R2== | |||
* {{medline-title | |||
|title=Bitter, Sweet, Salty, Sour and Umami Taste Perception Decreases with Age: Sex-Specific Analysis, Modulation by Genetic Variants and Taste-Preference Associations in 18 to 80 Year-Old Subjects. | |||
|date=18.10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30340375 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6213100 | |||
}} | |||
==TBC1D2== | |||
* {{medline-title | |||
|title=Genome-wide association study identifies [i]SIAH3[/i] locus influencing the rate of ventricular enlargement in non-demented elders. | |||
|date=11.11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31711042 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874439 | |||
}} | |||
==TBR1== | |||
* {{medline-title | |||
|title=DNA methylation-based age prediction from saliva: High age predictability by combination of 7 CpG markers. | |||
|date=07.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28419903 | |||
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.04.006 | |||
}} | |||
==TBX3== | |||
* {{medline-title | |||
|title=Coordinated control of senescence by lncRNA and a novel T-box3 co-repressor complex. | |||
|date=29.05.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24876127 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4071561 | |||
}} | |||
==TCERG1== | |||
* {{medline-title | |||
|title=The longevity-promoting factor, TCER-1, widely represses stress resistance and innate immunity. | |||
|date=17.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31316054 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6637209 | |||
}} | |||
==TCF15== | |||
* {{medline-title | |||
|title=Loss of Neurogenesis in Aging Hydra. | |||
|date=05.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30912256 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586502 | |||
}} | |||
==TCF21== | |||
* {{medline-title | |||
|title=Balance between senescence and apoptosis is regulated by telomere damage-induced association between p16 and caspase-3. | |||
|date=22.06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29748384 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6016453 | |||
}} | |||
==TCF7L1== | |||
* {{medline-title | |||
|title=[[TCF7L1]] promotes skin tumorigenesis independently of β-catenin through induction of [[LCN2]]. | |||
|date=03.05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28467300 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5438253 | |||
}} | |||
==TCP1== | |||
* {{medline-title | |||
|title=Proteometabolomic characterization of apical bud maturation in Pinus pinaster. | |||
|date=01.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32870277 | |||
|full-text-url=https://sci-hub.do/10.1093/treephys/tpaa111 | |||
}} | |||
==TCTA== | |||
* {{medline-title | |||
|title=Exciplex-Forming Cohost for High Efficiency and High Stability Phosphorescent Organic Light-Emitting Diodes. | |||
|date=17.01.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29265796 | |||
|full-text-url=https://sci-hub.do/10.1021/acsami.7b15034 | |||
}} | |||
==TDRD1== | |||
* {{medline-title | |||
|title=Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice. | |||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31472347 | |||
|full-text-url=https://sci-hub.do/10.1016/j.chemosphere.2019.124650 | |||
}} | |||
==TDRD6== | |||
* {{medline-title | |||
|title=Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice. | |||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31472347 | |||
|full-text-url=https://sci-hub.do/10.1016/j.chemosphere.2019.124650 | |||
}} | |||
==TEAD4== | |||
* {{medline-title | |||
|title=Clinical, polysomnographic and genome-wide association analyses of narcolepsy with cataplexy: a European Narcolepsy Network study. | |||
|date=10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23496005 | |||
|full-text-url=https://sci-hub.do/10.1111/jsr.12044 | |||
}} | |||
==TECPR2== | |||
* {{medline-title | |||
|title=Neuropathology-driven Whole-genome Sequencing Study Points to Novel Candidate Genes for Healthy Brain Aging. | |||
|date=01-03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30681437 | |||
|full-text-url=https://sci-hub.do/10.1097/WAD.0000000000000294 | |||
}} | |||
==TEP1== | |||
* {{medline-title | |||
|title=[Influence of Age on the Susceptibility of Anopheles stephensi to Plasmodium berghei Infection]. | |||
|date=12.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30141604 | |||
}} | |||
==TERF2IP== | |||
* {{medline-title | |||
|title=Endothelial senescence-associated secretory phenotype (SASP) is regulated by Makorin-1 ubiquitin E3 ligase. | |||
|date=11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31476350 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059097 | |||
}} | |||
==TESC== | |||
* {{medline-title | |||
|title=Clonogenic Culture of Mouse Thymic Epithelial Cells. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31396938 | |||
|full-text-url=https://sci-hub.do/10.1007/978-1-4939-9728-2_15 | |||
}} | |||
==TFAP2A== | |||
* {{medline-title | |||
|title=Replicative senescence is associated with nuclear reorganization and with DNA methylation at specific transcription factor binding sites. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25763115 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356053 | |||
}} | |||
==TFE3== | |||
* {{medline-title | |||
|title=Towards Age-Related Anti-Inflammatory Therapy: Klotho Suppresses Activation of ER and Golgi Stress Response in Senescent Monocytes. | |||
|date=21.01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31972978 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072557 | |||
}} | |||
==TFG== | |||
* {{medline-title | |||
|title=[[TFG]]-maintaining stability of overlooked [[FANCD2]] confers early DNA-damage response. | |||
|date=24.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33099537 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7655164 | |||
}} | |||
==TFPI== | |||
* {{medline-title | |||
|title=Identification of cardiovascular health gene variants related to longevity in a Chinese population. | |||
|date=07.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32897244 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521493 | |||
}} | |||
==TGDS== | |||
* {{medline-title | |||
|title=The evaluation and design of a short depression screening tool in Turkish older adults. | |||
|date=10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29560848 | |||
|full-text-url=https://sci-hub.do/10.1017/S1041610218000236 | |||
}} | |||
==TGFB2== | |||
* {{medline-title | |||
|title=Seminal plasma transforming growth factor-β, activin A and follistatin fluctuate within men over time. | |||
|date=10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27609985 | |||
|full-text-url=https://sci-hub.do/10.1093/humrep/dew185 | |||
}} | |||
==TGFBR1== | |||
* {{medline-title | |||
|title=Dexamethasone Induces a Specific Form of Ramified Dysfunctional Microglia. | |||
|date=02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29948944 | |||
|full-text-url=https://sci-hub.do/10.1007/s12035-018-1156-z | |||
}} | |||
==TGM2== | |||
* {{medline-title | |||
|title=Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. | |||
|date=11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30071357 | |||
|full-text-url=https://sci-hub.do/10.1016/j.arr.2018.07.004 | |||
}} | |||
==THADA== | |||
* {{medline-title | |||
|title=Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. | |||
|date=29.09.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26416764 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598835 | |||
}} | |||
==THBS1== | |||
* {{medline-title | |||
|title=G protein-coupled receptor kinase 4-induced cellular senescence and its senescence-associated gene expression profiling. | |||
|date=15.11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28912086 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5944352 | |||
}} | |||
==THBS4== | |||
* {{medline-title | |||
|title=Specific factors in blood from young but not old mice directly promote synapse formation and NMDA-receptor recruitment. | |||
|date=18.06.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31160442 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589664 | |||
}} | |||
==THEMIS== | |||
* {{medline-title | |||
|title=Lifetime benefits of early detection and treatment of diabetic kidney disease. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31150444 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544227 | |||
}} | |||
==THPO== | |||
* {{medline-title | |||
|title=Thrombopoietin is associated with δ's intercept, and only in Non-Hispanic Whites. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27239547 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4879650 | |||
}} | |||
==TIE1== | |||
* {{medline-title | |||
|title=Cerebrovascular Senescence Is Associated With Tau Pathology in Alzheimer's Disease. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33041998 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7525127 | |||
}} | |||
==TIMP3== | |||
* {{medline-title | |||
|title=Enhanced tissue regeneration potential of juvenile articular cartilage. | |||
|date=11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24043472 | |||
|full-text-url=https://sci-hub.do/10.1177/0363546513502945 | |||
}} | |||
==TINF2== | |||
* {{medline-title | |||
|title=Acute telomerase components depletion triggers oxidative stress as an early event previous to telomeric shortening. | |||
|date=04.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29055871 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5650655 | |||
}} | |||
==TJP1== | |||
* {{medline-title | |||
|title=Morphological and immunohistochemical characteristics of the equine corneal epithelium. | |||
|date=11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30767359 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6900071 | |||
}} | |||
==TLR10== | |||
* {{medline-title | |||
|title=Innate immune response to LPS in airway epithelium is dependent on chronological age and antecedent exposures. | |||
|date=11.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23600597 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931090 | |||
}} | |||
==TM9SF1== | |||
* {{medline-title | |||
|title=Epigallocatechin-3-gallate increases autophagy signaling in resting and unloaded plantaris muscles but selectively suppresses autophagy protein abundance in reloaded muscles of aged rats. | |||
|date=06.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28286171 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501279 | |||
}} | |||
==TMEM127== | |||
* {{medline-title | |||
|title=Long-term prognosis of patients with pediatric pheochromocytoma. | |||
|date=02.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24169644 | |||
|full-text-url=https://sci-hub.do/10.1530/ERC-13-0415 | |||
}} | |||
==TMEM135== | |||
* {{medline-title | |||
|title=Mouse [i]Tmem135[/i] mutation reveals a mechanism involving mitochondrial dynamics that leads to age-dependent retinal pathologies. | |||
|date=15.11.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27863209 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5117855 | |||
}} | |||
==TMEM38B== | |||
* {{medline-title | |||
|title=Genome wide association study of age at menarche in the Japanese population. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23667675 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646805 | |||
}} | |||
==TMEM51== | |||
* {{medline-title | |||
|title=Genome-wide analysis of DNA methylation profiles in a senescence-accelerated mouse prone 8 brain using whole-genome bisulfite sequencing. | |||
|date=01.06.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28130229 | |||
|full-text-url=https://sci-hub.do/10.1093/bioinformatics/btx040 | |||
}} | |||
==TNFAIP3== | |||
* {{medline-title | |||
|title=[[TNFAIP3]] Plays a Role in Aging of the Hematopoietic System. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33224133 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7670064 | |||
}} | |||
==TNFRSF11B== | |||
* {{medline-title | |||
|title=Genetic Burden Analyses of Phenotypes Relevant to Aging in the Berlin Aging Study II (BASE-II). | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26821332 | |||
|full-text-url=https://sci-hub.do/10.1159/000438900 | |||
}} | |||
==TNFRSF1A== | |||
* {{medline-title | |||
|title=Consumption of protein-enriched milk has minor effects on inflammation in older adults-A 12-week double-blind randomized controlled trial. | |||
|date=03.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28163108 | |||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2017.01.011 | |||
}} | |||
==TNFSF13== | |||
* {{medline-title | |||
|title=Genome-wide methylation analysis reveals differentially methylated loci that are associated with an age-dependent increase in bovine fibroblast response to LPS. | |||
|date=25.05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28545453 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445414 | |||
}} | |||
==TNFSF15== | |||
* {{medline-title | |||
|title=Expression of pro- and anti-inflammatory cytokines and chemokines during the ovulatory cycle and effects of aging on their expression in the uterine mucosa of laying hens. | |||
|date=11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30269026 | |||
|full-text-url=https://sci-hub.do/10.1016/j.cyto.2018.09.015 | |||
}} | |||
==TNK1== | |||
* {{medline-title | |||
|title=Role of [[CLU]], [[PICALM]], and [[TNK1]] Genotypes in Aging With and Without Alzheimer's Disease. | |||
|date=05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28631188 | |||
|full-text-url=https://sci-hub.do/10.1007/s12035-017-0547-x | |||
}} | |||
==TNKS2== | |||
* {{medline-title | |||
|title=Gene expression in human mesenchymal stem cell aging cultures: modulation by short peptides. | |||
|date=06.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32399807 | |||
|full-text-url=https://sci-hub.do/10.1007/s11033-020-05506-3 | |||
}} | |||
==TNNI1== | |||
* {{medline-title | |||
|title=Regular aerobic exercise-ameliorated troponin I carbonylation to mitigate aged rat soleus muscle functional recession. | |||
|date=05.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30820991 | |||
|full-text-url=https://sci-hub.do/10.1113/EP087564 | |||
}} | |||
==TNP1== | |||
* {{medline-title | |||
|title=Cytological and molecular aspects of the ageing sperm. | |||
|date=01.02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30551142 | |||
|full-text-url=https://sci-hub.do/10.1093/humrep/dey357 | |||
}} | |||
==TNP2== | |||
* {{medline-title | |||
|title=Cytological and molecular aspects of the ageing sperm. | |||
|date=01.02.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30551142 | |||
|full-text-url=https://sci-hub.do/10.1093/humrep/dey357 | |||
}} | |||
==TNPO3== | |||
* {{medline-title | |||
|title=Genetic associations with age of menopause in familial longevity. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31188284 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7008937 | |||
}} | |||
==TNS3== | |||
* {{medline-title | |||
|title=Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. | |||
|date=10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27329260 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013013 | |||
}} | |||
==TOP3A== | |||
* {{medline-title | |||
|title=Replication Stress at Telomeric and Mitochondrial DNA: Common Origins and Consequences on Ageing. | |||
|date=08.10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31597307 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6801922 | |||
}} | |||
==TOR2A== | |||
* {{medline-title | |||
|title=The correlation of copy number variations with longevity in a genome-wide association study of Han Chinese. | |||
|date=05.06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29883365 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6046244 | |||
}} | |||
==TP53BP1== | |||
* {{medline-title | |||
|title=Induction of DNA double-strand breaks and cellular senescence by human respiratory syncytial virus. | |||
|date=18.05.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26809688 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4871660 | |||
}} | |||
==TP53INP1== | |||
* {{medline-title | |||
|title=[[TP53INP1]] deficiency maintains murine B lymphopoiesis in aged bone marrow through redox-controlled IL-7R/STAT5 signaling. | |||
|date=02.01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30559202 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6320535 | |||
}} | |||
==TP53RK== | |||
* {{medline-title | |||
|title=Novel homozygous [[OSGEP]] gene pathogenic variants in two unrelated patients with Galloway-Mowat syndrome: case report and review of the literature. | |||
|date=11.04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30975089 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458604 | |||
}} | |||
==TP73== | |||
* {{medline-title | |||
|title=G protein-coupled receptor kinase 4-induced cellular senescence and its senescence-associated gene expression profiling. | |||
|date=15.11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28912086 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5944352 | |||
}} | |||
==TPCN1== | |||
* {{medline-title | |||
|title=Effect of aging on calcium signaling in C57Bl6J mouse cerebral arteries. | |||
|date=06.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23238969 | |||
|full-text-url=https://sci-hub.do/10.1007/s00424-012-1195-7 | |||
}} | |||
==TPP2== | |||
* {{medline-title | |||
|title=Early-onset Evans syndrome, immunodeficiency, and premature immunosenescence associated with tripeptidyl-peptidase II deficiency. | |||
|date=29.01.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25414442 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4463807 | |||
}} | |||
==TPRKB== | |||
* {{medline-title | |||
|title=Novel homozygous [[OSGEP]] gene pathogenic variants in two unrelated patients with Galloway-Mowat syndrome: case report and review of the literature. | |||
|date=11.04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30975089 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458604 | |||
}} | |||
==TRAV1-2== | |||
* {{medline-title | |||
|title=Human blood MAIT cell subsets defined using [[MR1]] tetramers. | |||
|date=05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29437263 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446826 | |||
}} | |||
==TRAV27== | |||
* {{medline-title | |||
|title=Perturbed CD8 T cell immunity across universal influenza epitopes in the elderly. | |||
|date=02.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28928269 | |||
|full-text-url=https://sci-hub.do/10.1189/jlb.5MA0517-207R | |||
}} | |||
==TRBV19== | |||
* {{medline-title | |||
|title=Perturbed CD8 T cell immunity across universal influenza epitopes in the elderly. | |||
|date=02.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28928269 | |||
|full-text-url=https://sci-hub.do/10.1189/jlb.5MA0517-207R | |||
}} | |||
==TREM1== | |||
* {{medline-title | |||
|title=A [[TREM1]] variant alters the accumulation of Alzheimer-related amyloid pathology. | |||
|date=03.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25545807 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461024 | |||
}} | |||
==TRHR== | |||
* {{medline-title | |||
|title=Association between polymorphisms in the [[TRHR]] gene, fat-free mass, and muscle strength in older women. | |||
|date=12.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23543262 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3824979 | |||
}} | |||
==TRIB2== | |||
* {{medline-title | |||
|title=[[TRIB2]] functions as novel oncogene in colorectal cancer by blocking cellular senescence through AP4/p21 signaling. | |||
|date=12.12.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30541550 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6291992 | |||
}} | |||
==TRIB3== | |||
* {{medline-title | |||
|title=Inhibition of glioma growth by flavokawain B is mediated through endoplasmic reticulum stress induced autophagy. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30025493 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152528 | |||
}} | |||
==TRIM27== | |||
* {{medline-title | |||
|title=[[TRIM27]] Functions as a Novel Oncogene in Non-Triple-Negative Breast Cancer by Blocking Cellular Senescence through p21 Ubiquitination. | |||
|date=04.12.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33251042 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7666371 | |||
}} | |||
==TRIOBP== | |||
* {{medline-title | |||
|title=A Large Genome-Wide Association Study of Age-Related Hearing Impairment Using Electronic Health Records. | |||
|date=10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27764096 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072625 | |||
}} | |||
==TRPC1== | |||
* {{medline-title | |||
|title=Ca entry via [[TRPC1]] is essential for cellular differentiation and modulates secretion via the SNARE complex. | |||
|date=01.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31182642 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6633397 | |||
}} | |||
==TRPC7== | |||
* {{medline-title | |||
|title=Nociceptive transient receptor potential canonical 7 ([[TRPC7]]) mediates aging-associated tumorigenesis induced by ultraviolet B. | |||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31755176 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974716 | |||
}} | |||
==TRPM5== | |||
* {{medline-title | |||
|title=Genetic strategies to analyze primary TRP channel-expressing cells in mice. | |||
|date=11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28571899 | |||
|full-text-url=https://sci-hub.do/10.1016/j.ceca.2017.05.009 | |||
}} | |||
==TRPS1== | |||
* {{medline-title | |||
|title=miRNA expression profiling uncovers a role of miR-302b-3p in regulating skin fibroblasts senescence. | |||
|date=01.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31074095 | |||
|full-text-url=https://sci-hub.do/10.1002/jcb.28862 | |||
}} | |||
==TRPV2== | |||
* {{medline-title | |||
|title=The role of transient receptor potential vanilloid 2 channel in cardiac aging. | |||
|date=10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27804106 | |||
|full-text-url=https://sci-hub.do/10.1007/s40520-016-0663-x | |||
}} | |||
==TSG101== | |||
* {{medline-title | |||
|title=Exosomal Notch3 from high glucose-stimulated endothelial cells regulates vascular smooth muscle cells calcification/aging. | |||
|date=01.09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31220525 | |||
|full-text-url=https://sci-hub.do/10.1016/j.lfs.2019.116582 | |||
}} | |||
==TSHR== | |||
* {{medline-title | |||
|title=TSH-independent release of thyroid hormones through cold exposure in aging rats. | |||
|date=27.10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29163760 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685681 | |||
}} | |||
==TSPYL5== | |||
* {{medline-title | |||
|title=Uncovering genetic mechanisms of kidney aging through transcriptomics, genomics, and epigenomics. | |||
|date=03.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30784661 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390171 | |||
}} | |||
==TSSK6== | |||
* {{medline-title | |||
|title=DNA methylation-based age prediction from saliva: High age predictability by combination of 7 CpG markers. | |||
|date=07.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28419903 | |||
|full-text-url=https://sci-hub.do/10.1016/j.fsigen.2017.04.006 | |||
}} | |||
==TTF1== | |||
* {{medline-title | |||
|title=Senescence and autophagy in usual interstitial pneumonia of different etiology. | |||
|date=27.08.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32851507 | |||
|full-text-url=https://sci-hub.do/10.1007/s00428-020-02917-2 | |||
}} | |||
==TUBA1A== | |||
* {{medline-title | |||
|title=Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31733664 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939615 | |||
}} | |||
==TUBAL3== | |||
* {{medline-title | |||
|title=Identification of biomarkers of human skin ageing in both genders. Wnt signalling - a label of skin ageing? | |||
|date=2012 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23226273 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3511529 | |||
}} | |||
==TWIST2== | |||
* {{medline-title | |||
|title=DNA methylation abnormalities at gene promoters are extensive and variable in the elderly and phenocopy cancer cells. | |||
|date=07.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24858281 | |||
|full-text-url=https://sci-hub.do/10.1096/fj.13-246173 | |||
}} | |||
==TXK== | |||
* {{medline-title | |||
|title=Phenotypic characteristics of aged [[CD4]] [[CD28]] T lymphocytes are determined by changes in the whole-genome DNA methylation pattern. | |||
|date=04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28026094 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5334526 | |||
}} | |||
==TXN== | |||
* {{medline-title | |||
|title=Thioredoxin mitigates radiation-induced hematopoietic stem cell injury in mice. | |||
|date=15.11.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29141658 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5688691 | |||
}} | |||
==TXNDC5== | |||
* {{medline-title | |||
|title=Genetic associations with age of menopause in familial longevity. | |||
|date=10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31188284 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7008937 | |||
}} | |||
==TXNRD3== | |||
* {{medline-title | |||
|title=Mitochondrial thioredoxin reductase 2 is elevated in long-lived primate as well as rodent species and extends fly mean lifespan. | |||
|date=08.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28474396 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5506402 | |||
}} | |||
==TYK2== | |||
* {{medline-title | |||
|title=Immunologic effects of chronic administration of tofacitinib, a Janus kinase inhibitor, in cynomolgus monkeys and rats - Comparison of juvenile and adult responses. | |||
|date=04.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29454012 | |||
|full-text-url=https://sci-hub.do/10.1016/j.yrtph.2018.02.006 | |||
}} | |||
==TYMS== | |||
* {{medline-title | |||
|title=C. elegans lifespan extension by osmotic stress requires FUdR, base excision repair, FOXO, and sirtuins. | |||
|date=03.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26854551 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4789167 | |||
}} | |||
==TYRO3== | |||
* {{medline-title | |||
|title=The tyrosine kinase receptor Tyro3 enhances lifespan and neuropeptide Y (Npy) neuron survival in the mouse anorexia ([i]anx[/i]) mutation. | |||
|date=01.05.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28093506 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451163 | |||
}} | |||
==TYRP1== | |||
* {{medline-title | |||
|title=Thymocid , a Standardized Black Cumin ([i]Nigella sativa[/i]) Seed Extract, Modulates Collagen Cross-Linking, Collagenase and Elastase Activities, and Melanogenesis in Murine B16F10 Melanoma Cells. | |||
|date=19.07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32707654 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400895 | |||
}} | |||
==UACA== | |||
* {{medline-title | |||
|title=Knockdown of [i][[UACA]][/i] inhibitsproliferation and invasion and promotes senescence of hepatocellular carcinoma cells. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31949867 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962967 | |||
}} | |||
==UAP1== | |||
* {{medline-title | |||
|title=Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 ([[UAP1]]) induces early leaf senescence and defence responses in rice. | |||
|date=02.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25399020 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4321554 | |||
}} | |||
==UBC== | |||
* {{medline-title | |||
|title=Selection of a Real-Time PCR Housekeeping Gene Panel in Human Endothelial Colony Forming Cells for Cellular Senescence Studies. | |||
|date=2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30915334 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421261 | |||
}} | |||
==UBE2C== | |||
* {{medline-title | |||
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335 | |||
}} | |||
==UBE2D2== | |||
* {{medline-title | |||
|title=Stable reference genes in granulosa cells of bovine dominant follicles during follicular growth, FSH stimulation and maternal aging. | |||
|date=04.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25426842 | |||
|full-text-url=https://sci-hub.do/10.1071/RD14089 | |||
}} | |||
==UBE2E3== | |||
* {{medline-title | |||
|title=Loss of the ubiquitin conjugating enzyme [[UBE2E3]] induces cellular senescence. | |||
|date=07.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29879550 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6007080 | |||
}} | |||
==UBE2N== | |||
* {{medline-title | |||
|title=Aged monkey brains reveal the role of ubiquitin-conjugating enzyme [[UBE2N]] in the synaptosomal accumulation of mutant huntingtin. | |||
|date=01.03.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25343992 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4321442 | |||
}} | |||
==UBE2T== | |||
* {{medline-title | |||
|title=Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23704896 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660335 | |||
}} | |||
==UBE4B== | |||
* {{medline-title | |||
|title=CircRNAs in the tree shrew ([i]Tupaia belangeri[/i]) brain during postnatal development and aging. | |||
|date=30.04.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29723158 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940110 | |||
}} | |||
==UBN1== | |||
* {{medline-title | |||
|title=O-linked N-acetylglucosamine transferase ([[OGT]]) interacts with the histone chaperone [[HIRA]] complex and regulates nucleosome assembly and cellular senescence. | |||
|date=07.06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27217568 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4988580 | |||
}} | |||
==UBP1== | |||
* {{medline-title | |||
|title=Expression of potato RNA-binding proteins StUBA2a/b and StUBA2c induces hypersensitive-like cell death and early leaf senescence in Arabidopsis. | |||
|date=07.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25944928 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4473998 | |||
}} | |||
==UBQLN2== | |||
* {{medline-title | |||
|title=Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis. | |||
|date=24.02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26912063 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765225 | |||
}} | |||
==UBTD1== | |||
* {{medline-title | |||
|title=[[UBTD1]] induces cellular senescence through an [[UBTD1]]-Mdm2/p53 positive feedback loop. | |||
|date=03.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25382750 | |||
|full-text-url=https://sci-hub.do/10.1002/path.4478 | |||
}} | |||
==UBTF== | |||
* {{medline-title | |||
|title=Age-associated dysregulation of protein metabolism in the mammalian oocyte. | |||
|date=12.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28994181 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5676066 | |||
}} | |||
==UBXN2B== | |||
* {{medline-title | |||
|title=Clinical, polysomnographic and genome-wide association analyses of narcolepsy with cataplexy: a European Narcolepsy Network study. | |||
|date=10.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23496005 | |||
|full-text-url=https://sci-hub.do/10.1111/jsr.12044 | |||
}} | |||
==UCHL3== | |||
* {{medline-title | |||
|title=[[UCHL3]] Regulates Topoisomerase-Induced Chromosomal Break Repair by Controlling [[TDP1]] Proteostasis. | |||
|date=12.06.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29898404 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019701 | |||
}} | |||
==UCHL5== | |||
* {{medline-title | |||
|title=Amelioration of neuronal cell death in a spontaneous obese rat model by dietary restriction through modulation of ubiquitin proteasome system. | |||
|date=07.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27260470 | |||
|full-text-url=https://sci-hub.do/10.1016/j.jnutbio.2016.03.008 | |||
}} | |||
==UCN== | |||
* {{medline-title | |||
|title=Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. | |||
|date=15.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |||
}} | |||
==UCN3== | |||
* {{medline-title | |||
|title=Urocortin 3 signalling in the auditory brainstem aids recovery of hearing after reversible noise-induced threshold shift. | |||
|date=08.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31270820 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6852351 | |||
}} | |||
==UGT1A6== | |||
* {{medline-title | |||
|title=Expression of UDP-Glucuronosyltransferase 1 (UGT1) and Glucuronidation Activity toward Endogenous Substances in Humanized UGT1 Mouse Brain. | |||
|date=07.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25953521 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4468441 | |||
}} | |||
==UGT2B28== | |||
* {{medline-title | |||
|title=Ages of hepatocellular carcinoma occurrence and life expectancy are associated with a [[UGT2B28]] genomic variation. | |||
|date=05.12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31805979 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896495 | |||
}} | |||
==UGT2B7== | |||
* {{medline-title | |||
|title=Application of a physiologically based pharmacokinetic model for the prediction of mirabegron plasma concentrations in a population with severe renal impairment. | |||
|date=05.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30985942 | |||
|full-text-url=https://sci-hub.do/10.1002/bdd.2181 | |||
}} | |||
==ULK2== | |||
* {{medline-title | |||
|title=miR-26a suppresses autophagy in swine Sertoli cells by targeting [[ULK2]]. | |||
|date=08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29761550 | |||
|full-text-url=https://sci-hub.do/10.1111/rda.13177 | |||
}} | |||
==UNC5C== | |||
* {{medline-title | |||
|title=Identification of genes associated with dissociation of cognitive performance and neuropathological burden: Multistep analysis of genetic, epigenetic, and transcriptional data. | |||
|date=04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28441426 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5404753 | |||
}} | |||
==UPF1== | |||
* {{medline-title | |||
|title=Differential alternative splicing coupled to nonsense-mediated decay of mRNA ensures dietary restriction-induced longevity. | |||
|date=21.08.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28824175 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5563511 | |||
}} | |||
==UPRT== | |||
* {{medline-title | |||
|title=[[UPRT]], a suicide-gene therapy candidate in higher eukaryotes, is required for Drosophila larval growth and normal adult lifespan. | |||
|date=14.08.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26271729 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4536494 | |||
}} | |||
==UQCRC1== | |||
* {{medline-title | |||
|title=Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone. | |||
|date=07.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24760536 | |||
|full-text-url=https://sci-hub.do/10.1530/EJE-14-0006 | |||
}} | |||
==UQCRFS1== | |||
* {{medline-title | |||
|title=Contribution of genetic polymorphisms on functional status at very old age: a gene-based analysis of 38 genes (311 SNPs) in the oxidative stress pathway. | |||
|date=04.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24462499 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050201 | |||
}} | |||
==USF1== | |||
* {{medline-title | |||
|title=The rs2516839 variation of [[USF1]] gene is associated with 4-year mortality of nonagenarian women: The Vitality 90 study. | |||
|date=01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30203836 | |||
|full-text-url=https://sci-hub.do/10.1111/ahg.12282 | |||
}} | |||
==USF2== | |||
* {{medline-title | |||
|title=Age-Related Expression of Human AT1R Variants and Associated Renal Dysfunction in Transgenic Mice. | |||
|date=15.10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30084918 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6454504 | |||
}} | |||
==USP15== | |||
* {{medline-title | |||
|title=Deficiency of parkin and [[PINK1]] impairs age-dependent mitophagy in [i]Drosophila[/i]. | |||
|date=29.05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29809156 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008047 | |||
}} | |||
==USP28== | |||
* {{medline-title | |||
|title=Genetic interrogation of replicative senescence uncovers a dual role for [[USP28]] in coordinating the p53 and [[GATA4]] branches of the senescence program. | |||
|date=01.10.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29089421 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5710139 | |||
}} | |||
==USP30== | |||
* {{medline-title | |||
|title=Deficiency of parkin and [[PINK1]] impairs age-dependent mitophagy in [i]Drosophila[/i]. | |||
|date=29.05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29809156 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008047 | |||
}} | |||
==USP4== | |||
* {{medline-title | |||
|title=Increased Expression of Ubiquitin-Specific Protease 4 Participates in Neuronal Apoptosis After Intracerebral Hemorrhage in Adult Rats. | |||
|date=04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27114249 | |||
|full-text-url=https://sci-hub.do/10.1007/s10571-016-0375-y | |||
}} | |||
==USP8== | |||
* {{medline-title | |||
|title=Inhibition of the deubiquitinase [[USP8]] corrects a Drosophila [[PINK1]] model of mitochondria dysfunction. | |||
|date=04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30988163 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6467245 | |||
}} | |||
==UTF1== | |||
* {{medline-title | |||
|title=miR-377 induces senescence in human skin fibroblasts by targeting DNA methyltransferase 1. | |||
|date=09.03.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28277545 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386568 | |||
}} | |||
==UVRAG== | |||
* {{medline-title | |||
|title=Essential role for [[UVRAG]] in autophagy and maintenance of cardiac function. | |||
|date=01.01.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24081163 | |||
|full-text-url=https://sci-hub.do/10.1093/cvr/cvt223 | |||
}} | |||
==UVSSA== | |||
* {{medline-title | |||
|title=A C. elegans homolog for the UV-hypersensitivity syndrome disease gene [[UVSSA]]. | |||
|date=05.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27043179 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4886821 | |||
}} | |||
==VAMP2== | |||
* {{medline-title | |||
|title=Newly produced synaptic vesicle proteins are preferentially used in synaptic transmission. | |||
|date=01.08.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29950309 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068464 | |||
}} | |||
==VAMP8== | |||
* {{medline-title | |||
|title=[[NUPR1]] maintains autolysosomal efflux by activating [[SNAP25]] transcription in cancer cells. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29130426 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5959327 | |||
}} | |||
==VAPB== | |||
* {{medline-title | |||
|title=Transforming Cytosolic Proteins into "Insoluble" and Membrane-toxic Forms Triggering Diseases/Aging by Genetic, Pathological or Environmental Factors. | |||
|date=2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28190398 | |||
|full-text-url=https://sci-hub.do/10.2174/0929866524666170209154001 | |||
}} | |||
==VAV3== | |||
* {{medline-title | |||
|title=Age-related obesity and type 2 diabetes dysregulate neuronal associated genes and proteins in humans. | |||
|date=06.10.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26337083 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745765 | |||
}} | |||
==VCL== | |||
* {{medline-title | |||
|title=The effects of different preservation methods on ide (Leuciscus idus) sperm and the longevity of sperm movement. | |||
|date=04.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29397922 | |||
|full-text-url=https://sci-hub.do/10.1016/j.cryobiol.2018.01.014 | |||
}} | |||
==VCPIP1== | |||
* {{medline-title | |||
|title=Tandem Deubiquitination and Acetylation of [[SPRTN]] Promotes DNA-Protein Crosslink Repair and Protects against Aging. | |||
|date=03.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32649882 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7484104 | |||
}} | |||
==VDAC3== | |||
* {{medline-title | |||
|title=[[VDAC3]] As a Potential Marker of Mitochondrial Status Is Involved in Cancer and Pathology. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28066720 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5179545 | |||
}} | |||
==VEGFC== | |||
* {{medline-title | |||
|title=Proteomic profiling of follicle fluids after superstimulation in one-month-old lambs. | |||
|date=02.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29080277 | |||
|full-text-url=https://sci-hub.do/10.1111/rda.13091 | |||
}} | |||
==VEGFD== | |||
* {{medline-title | |||
|title=Single-Arm Resistance Training Study to Determine the Relationship between Training Outcomes and Muscle Growth Factor mRNAs in Older Adults Consuming Numerous Medications and Supplements. | |||
|date=2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29380855 | |||
|full-text-url=https://sci-hub.do/10.1007/s12603-017-0913-4 | |||
}} | |||
==VHLL== | |||
* {{medline-title | |||
|title=The Monetary Valuation of Lifetime Health Improvement and Life Expectancy Gains in Turkey. | |||
|date=29.09.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28961227 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5664652 | |||
}} | |||
==VIT== | |||
* {{medline-title | |||
|title=Autophagy-mediated longevity is modulated by lipoprotein biogenesis. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26671266 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4836030 | |||
}} | |||
==VPREB3== | |||
* {{medline-title | |||
|title=Age-related but not longevity-related genes are found by weighted gene co-expression network analysis in the peripheral blood cells of humans. | |||
|date=19.01.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30541985 | |||
|full-text-url=https://sci-hub.do/10.1266/ggs.17-00052 | |||
}} | |||
==VPS13C== | |||
* {{medline-title | |||
|title=SerThr-PhosphoProteome of Brain from Aged [[PINK1]]-KO A53T-[[SNCA]] Mice Reveals pT1928-[[MAP1B]] and pS3781-[[ANK2]] Deficits, as Hub between Autophagy and Synapse Changes. | |||
|date=04.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31277379 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651490 | |||
}} | |||
==VPS13D== | |||
* {{medline-title | |||
|title=SerThr-PhosphoProteome of Brain from Aged [[PINK1]]-KO A53T-[[SNCA]] Mice Reveals pT1928-[[MAP1B]] and pS3781-[[ANK2]] Deficits, as Hub between Autophagy and Synapse Changes. | |||
|date=04.07.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31277379 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651490 | |||
}} | |||
==VPS26A== | |||
* {{medline-title | |||
|title=Characterization of novel markers of senescence and their prognostic potential in cancer. | |||
|date=20.11.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25412306 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260747 | |||
}} | |||
==VPS37B== | |||
* {{medline-title | |||
|title=Identification of HIV infection-related DNA methylation sites and advanced epigenetic aging in HIV-positive, treatment-naive U.S. veterans. | |||
|date=20.02.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27922854 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5263111 | |||
}} | |||
==VPS4A== | |||
* {{medline-title | |||
|title=The expression changes of vacuolar protein sorting 4B ([[VPS4B]]) following middle cerebral artery occlusion (MCAO) in adult rats brain hippocampus. | |||
|date=01.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24077878 | |||
|full-text-url=https://sci-hub.do/10.1007/s10571-013-9989-5 | |||
}} | |||
==VPS4B== | |||
* {{medline-title | |||
|title=The expression changes of vacuolar protein sorting 4B ([[VPS4B]]) following middle cerebral artery occlusion (MCAO) in adult rats brain hippocampus. | |||
|date=01.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24077878 | |||
|full-text-url=https://sci-hub.do/10.1007/s10571-013-9989-5 | |||
}} | |||
==VRK2== | |||
* {{medline-title | |||
|title=Accelerated Epigenetic Aging and Methylation Disruptions Occur in Human Immunodeficiency Virus Infection Prior to Antiretroviral Therapy. | |||
|date=22.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32959881 | |||
|full-text-url=https://sci-hub.do/10.1093/infdis/jiaa599 | |||
}} | |||
==VSIG4== | |||
* {{medline-title | |||
|title=Immune checkpoint protein [[VSIG4]] as a biomarker of aging in murine adipose tissue. | |||
|date=10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32856419 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7576241 | |||
}} | |||
==VSX1== | |||
* {{medline-title | |||
|title=Amyloid Precursor-Like Protein 2 deletion-induced retinal synaptopathy related to congenital stationary night blindness: structural, functional and molecular characteristics. | |||
|date=08.06.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27267879 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897877 | |||
}} | |||
==WAC== | |||
* {{medline-title | |||
|title=Implementation of Writing Across the Curriculum ([[WAC]]) learning approaches in social work and sociology gerontology courses. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23383857 | |||
|full-text-url=https://sci-hub.do/10.1080/02701960.2012.718011 | |||
}} | |||
==WASL== | |||
* {{medline-title | |||
|title=Loss of Wasl improves pancreatic cancer outcome. | |||
|date=21.05.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32434991 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259520 | |||
}} | |||
==WBP11== | |||
* {{medline-title | |||
|title=Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of mRNA splicing relevant proteins in aging HSPCs. | |||
|date=05.03.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32141009 | |||
|full-text-url=https://sci-hub.do/10.1007/s40520-020-01509-z | |||
}} | |||
==WDR48== | |||
* {{medline-title | |||
|title=Genome-wide studies of verbal declarative memory in nondemented older people: the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium. | |||
|date=15.04.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25648963 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4513651 | |||
}} | |||
==WDR5== | |||
* {{medline-title | |||
|title=Inhibition of the H3K4 methyltransferase MLL1/[[WDR5]] complex attenuates renal senescence in ischemia reperfusion mice by reduction of p16 . | |||
|date=11.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31570196 | |||
|full-text-url=https://sci-hub.do/10.1016/j.kint.2019.06.021 | |||
}} | |||
==WDR73== | |||
* {{medline-title | |||
|title=Novel homozygous [[OSGEP]] gene pathogenic variants in two unrelated patients with Galloway-Mowat syndrome: case report and review of the literature. | |||
|date=11.04.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30975089 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458604 | |||
}} | |||
==WDSUB1== | |||
* {{medline-title | |||
|title=The complex genetics of gait speed: genome-wide meta-analysis approach. | |||
|date=10.01.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28077804 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5310665 | |||
}} | |||
==WFDC2== | |||
* {{medline-title | |||
|title=Differences in biomarkers and molecular pathways according to age for patients with HFrEF. | |||
|date=01.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33002110 | |||
|full-text-url=https://sci-hub.do/10.1093/cvr/cvaa279 | |||
}} | |||
==WIF1== | |||
* {{medline-title | |||
|title=Identification of the mechanisms by which age alters the mechanosensitivity of mesenchymal stromal cells on substrates of differing stiffness: Implications for osteogenesis and angiogenesis. | |||
|date=15.04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28216301 | |||
|full-text-url=https://sci-hub.do/10.1016/j.actbio.2017.02.031 | |||
}} | |||
==WNK1== | |||
* {{medline-title | |||
|title=Overexpression of [[WNK1]] in [[POMC]]-expressing neurons reduces weigh gain via [[WNK4]]-mediated degradation of Kir6.2. | |||
|date=10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29392534 | |||
|full-text-url=https://sci-hub.do/10.1007/s11010-018-3301-4 | |||
}} | |||
==WNK4== | |||
* {{medline-title | |||
|title=Overexpression of [[WNK1]] in [[POMC]]-expressing neurons reduces weigh gain via [[WNK4]]-mediated degradation of Kir6.2. | |||
|date=10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29392534 | |||
|full-text-url=https://sci-hub.do/10.1007/s11010-018-3301-4 | |||
}} | |||
==WNT10A== | |||
* {{medline-title | |||
|title=Dysregulation of the Wnt Signaling Pathway and Synovial Stem Cell Dysfunction in Osteoarthritis Development. | |||
|date=01.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31964233 | |||
|full-text-url=https://sci-hub.do/10.1089/scd.2019.0260 | |||
}} | |||
==WNT3== | |||
* {{medline-title | |||
|title=Role of CD133 Molecule in Wnt Response and Renal Repair. | |||
|date=03.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29431914 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5827750 | |||
}} | |||
==WNT5B== | |||
* {{medline-title | |||
|title=Dysregulation of the Wnt Signaling Pathway and Synovial Stem Cell Dysfunction in Osteoarthritis Development. | |||
|date=01.04.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31964233 | |||
|full-text-url=https://sci-hub.do/10.1089/scd.2019.0260 | |||
}} | |||
==WNT7A== | |||
* {{medline-title | |||
|title=Exogenous Expression of [[WNT7A]] in Leukemia-Derived Cell Lines Induces Resistance to Chemotherapeutic Agents. | |||
|date=2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32436833 | |||
|full-text-url=https://sci-hub.do/10.2174/1871520620666200521114100 | |||
}} | |||
==WWC1== | |||
* {{medline-title | |||
|title=[[WWC1]] genotype modulates age-related decline in episodic memory function across the adult life span. | |||
|date=01.05.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24290728 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3989426 | |||
}} | |||
==XAF1== | |||
* {{medline-title | |||
|title=[[XIAP]]-associating factor 1, a transcriptional target of [[BRD7]], contributes to endothelial cell senescence. | |||
|date=02.02.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26802028 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4868675 | |||
}} | |||
==XG== | |||
* {{medline-title | |||
|title=The effect of administration media on palatability and ease of swallowing of multiparticulate formulations. | |||
|date=15.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30170024 | |||
|full-text-url=https://sci-hub.do/10.1016/j.ijpharm.2018.08.021 | |||
}} | |||
==XK== | |||
* {{medline-title | |||
|title=Neurodegeneration in the elderly - When the blood type matters: An overview of the McLeod syndrome with focus on hematological features. | |||
|date=06.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25934153 | |||
|full-text-url=https://sci-hub.do/10.1016/j.transci.2015.04.007 | |||
}} | |||
==XPO1== | |||
* {{medline-title | |||
|title=Nuclear Export Inhibition Enhances HLH-30/[[TFEB]] Activity, Autophagy, and Lifespan. | |||
|date=15.05.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29768192 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5991088 | |||
}} | |||
==XRCC2== | |||
* {{medline-title | |||
|title=Copy neutral loss of heterozygosity is more frequent in older ovarian cancer patients. | |||
|date=09.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23716468 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3767172 | |||
}} | |||
==XRCC5== | |||
* {{medline-title | |||
|title=Repairing DNA damage by [[XRCC6]]/KU70 reverses [[TLR4]]-deficiency-worsened HCC development via restoring senescence and autophagic flux. | |||
|date=01.06.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23518600 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3672303 | |||
}} | |||
==YBX2== | |||
* {{medline-title | |||
|title=Preovulatory Aging In Vivo and In Vitro Affects Maturation Rates, Abundance of Selected Proteins, Histone Methylation Pattern and Spindle Integrity in Murine Oocytes. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27611906 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5017692 | |||
}} | |||
==YES1== | |||
* {{medline-title | |||
|title=Re-exploring the core genes and modules in the human frontal cortex during chronological aging: insights from network-based analysis of transcriptomic studies. | |||
|date=20.10.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30341976 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6224233 | |||
}} | |||
==ZAP70== | |||
* {{medline-title | |||
|title=Increased [[ZAP70]] Is Involved in Dry Skin Pruritus in Aged Mice. | |||
|date=2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27195291 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4852331 | |||
}} | |||
==ZBED6== | |||
* {{medline-title | |||
|title=Correlation between [[ZBED6]] Gene Upstream CpG Island methylation and mRNA expression in cattle. | |||
|date=03.04.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27532432 | |||
|full-text-url=https://sci-hub.do/10.1080/10495398.2016.1212060 | |||
}} | |||
==ZBTB7A== | |||
* {{medline-title | |||
|title=The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. | |||
|date=29.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32997995 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527782 | |||
}} | |||
==ZC3H11A== | |||
* {{medline-title | |||
|title=In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31520345 | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-019-09834-1 | |||
}} | |||
==ZFHX3== | |||
* {{medline-title | |||
|title=Shift work, DNA methylation and epigenetic age. | |||
|date=01.10.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30879037 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6857743 | |||
}} | |||
==ZFP36L1== | |||
* {{medline-title | |||
|title=Zinc finger protein [[ZFP36L1]] promotes osteoblastic differentiation but represses adipogenic differentiation of mouse multipotent cells. | |||
|date=28.03.2017 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28206953 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5400528 | |||
}} | |||
==ZFPM2== | |||
* {{medline-title | |||
|title=Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. | |||
|date=15.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |||
}} | |||
==ZIC1== | |||
* {{medline-title | |||
|title=The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. | |||
|date=29.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32997995 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527782 | |||
}} | |||
==ZNF14== | |||
* {{medline-title | |||
|title=Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. | |||
|date=07.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24496748 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209016 | |||
}} | |||
==ZNF207== | |||
* {{medline-title | |||
|title=Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. | |||
|date=02.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29196338 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795392 | |||
}} | |||
==ZNF211== | |||
* {{medline-title | |||
|title=Genetics of facial telangiectasia in the Rotterdam Study: a genome-wide association study and candidate gene approach. | |||
|date=23.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33095951 | |||
|full-text-url=https://sci-hub.do/10.1111/jdv.17014 | |||
}} | |||
==ZNF367== | |||
* {{medline-title | |||
|title=RNA-seq of the aging brain in the short-lived fish N. furzeri - conserved pathways and novel genes associated with neurogenesis. | |||
|date=12.2014 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25059688 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326923 | |||
}} | |||
==ZNF396== | |||
* {{medline-title | |||
|title=Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. | |||
|date=15.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |||
}} | |||
==ZNF467== | |||
* {{medline-title | |||
|title=Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. | |||
|date=15.11.2018 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30466987 | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2018.09.204 | |||
}} | |||
==ZNF483== | |||
* {{medline-title | |||
|title=Genome wide association study of age at menarche in the Japanese population. | |||
|date=2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23667675 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646805 | |||
}} | |||
==ZNF518B== | |||
* {{medline-title | |||
|title=The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. | |||
|date=29.09.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32997995 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527782 | |||
}} | |||
==ZNF616== | |||
* {{medline-title | |||
|title=Global Characteristics of CSIG-Associated Gene Expression Changes in Human HEK293 Cells and the Implications for CSIG Regulating Cell Proliferation and Senescence. | |||
|date=2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26029164 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432801 | |||
}} | |||
==ZNF619== | |||
* {{medline-title | |||
|title=Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. | |||
|date=12.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31508907 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6903450 | |||
}} | |||
==ZNF644== | |||
* {{medline-title | |||
|title=Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients. | |||
|date=03.09.2019 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31560770 | |||
|full-text-url=https://sci-hub.do/10.1167/iovs.19-27921 | |||
}} | |||
==ZNF704== | |||
* {{medline-title | |||
|title=Genome-Wide Association Study and Linkage Analysis of the Healthy Aging Index. | |||
|date=08.2015 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25758594 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506316 | |||
}} | |||
==ZPBP2== | |||
* {{medline-title | |||
|title=Sex- and age-dependent DNA methylation at the 17q12-q21 locus associated with childhood asthma. | |||
|date=07.2013 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/23546690 | |||
|full-text-url=https://sci-hub.do/10.1007/s00439-013-1298-z | |||
}} | |||
==ZRSR2== | |||
* {{medline-title | |||
|title=Insight into the molecular pathophysiology of myelodysplastic syndromes: targets for novel therapy. | |||
|date=10.2016 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27147278 | |||
|full-text-url=https://sci-hub.do/10.1111/ejh.12771 | |||
}} | |||
==ZSCAN4== | |||
* {{medline-title | |||
|title=Genetics of facial telangiectasia in the Rotterdam Study: a genome-wide association study and candidate gene approach. | |||
|date=23.10.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33095951 | |||
|full-text-url=https://sci-hub.do/10.1111/jdv.17014 | |||
}} | |||
==ZW10== | |||
* {{medline-title | |||
|title=Multivariate genomic scan implicates novel loci and haem metabolism in human ageing. | |||
|date=16.07.2020 | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32678081 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366647 | |||
}} | }} |
Текущая версия от 16:42, 29 апреля 2021
- Genes with 300 and more publications
- Genes with 200-299 publications
- Genes with 100-199 publications
- Genes with 90-99 publications
- Genes with 80-89 publications
- Genes with 70-79 publications
- Genes with 60-69 publications
- Genes with 50-59 publications
- Genes with 40-49 publications
- Genes with 30-39 publications
- Genes with 20-29 publications
- Genes with 10-19 publications
- Genes with 5-9 publications
- Genes with 3-4 publications
- Genes with 1-2 publications
- Aging_genes_A-Z_table
AACS[править]
- Sex differences in subjective age-associated changes in sleep: a prospective elderly cohort study. / 07.11.2020 / PubMed / Full text
- Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text
ABCC2[править]
- Proteomic Analysis of the Developmental Trajectory of Human Hepatic Membrane Transporter Proteins in the First Three Months of Life. / 07.2016 / PubMed / Full text
- Developmental characteristics of urinary coproporphyrin I/(I III) ratio. / 10.2016 / PubMed / Full text
ABCG1[править]
- Disrupted cholesterol metabolism promotes age-related photoreceptor neurodegeneration. / 08.2018 / PubMed / Full text
- Elevated COX2 expression and PGE2 production by downregulation of RXRα in senescent macrophages. / 11.10.2013 / PubMed / Full text
ABCG5[править]
- 2, 3, 4', 5-tetrahydroxystilbene-2-0-β-d Glycoside Attenuates Age- and Diet-Associated Non-Alcoholic Steatohepatitis and Atherosclerosis in LDL Receptor Knockout Mice and Its Possible Mechanisms. / 01.04.2019 / PubMed / Full text
- Genetic determinants of macular pigments in women of the Carotenoids in Age-Related Eye Disease Study. / 28.03.2013 / PubMed / Full text
ABI3[править]
- Arabidopsis seed-specific vacuolar aquaporins are involved in maintaining seed longevity under the control of ABSCISIC ACID INSENSITIVE 3. / 08.2015 / PubMed / Full text
- A forward genetic approach in Arabidopsis thaliana identifies a RING-type ubiquitin ligase as a novel determinant of seed longevity. / 02.2014 / PubMed / Full text
ACACA[править]
- Expression of lipogenic markers is decreased in subcutaneous adipose tissue and adipocytes of older women and is negatively linked to GDF15 expression. / 08.2019 / PubMed / Full text
- GH prevents adipogenic differentiation of mesenchymal stromal stem cells derived from human trabecular bone via canonical Wnt signaling. / 07.2018 / PubMed / Full text
ACAT2[править]
- Cholesterol Homeostasis: An In Silico Investigation into How Aging Disrupts Its Key Hepatic Regulatory Mechanisms. / 30.09.2020 / PubMed / Full text
- Serum starvation of ARPE-19 changes the cellular distribution of cholesterol and Fibulin3 in patterns reminiscent of age-related macular degeneration. / 15.12.2017 / PubMed / Full text
ACTA1[править]
- Explaining meat quality of bulls and steers by differential proteome and phosphoproteome analysis of skeletal muscle. / 15.05.2019 / PubMed / Full text
- Serum starvation of ARPE-19 changes the cellular distribution of cholesterol and Fibulin3 in patterns reminiscent of age-related macular degeneration. / 15.12.2017 / PubMed / Full text
ACTB[править]
- Selection of a Real-Time PCR Housekeeping Gene Panel in Human Endothelial Colony Forming Cells for Cellular Senescence Studies. / 2019 / PubMed / Full text
- WNT-activated bone grafts repair osteonecrotic lesions in aged animals. / 27.10.2017 / PubMed / Full text
ACVR1[править]
- Fibrodysplasia Ossificans Progressiva (FOP): A Segmental Progeroid Syndrome. / 2019 / PubMed / Full text
- BMP-SMAD-ID promotes reprogramming to pluripotency by inhibiting p16/INK4A-dependent senescence. / 15.11.2016 / PubMed / Full text
ADAMTS4[править]
- Influences of circulatory factors on intervertebral disc aging phenotype. / 11.06.2020 / PubMed / Full text
- Genotoxic stress accelerates age-associated degenerative changes in intervertebral discs. / 01-02.2013 / PubMed / Full text
ADH5[править]
- Can Serum Nitrosoproteome Predict Longevity of Aged Women? / 27.11.2020 / PubMed / Full text
- Denitrosylate and live longer: how ADH5/GSNOR links mitophagy to aging. / 2018 / PubMed / Full text
ADIPOR1[править]
- A Novel [i]Dnmt3a1[/i] Transcript Inhibits Adipogenesis. / 2018 / PubMed / Full text
- Contribution of adiponectin and its type 1 receptor to age-related hearing impairment. / 06.2015 / PubMed / Full text
ADNP[править]
- ADNP differentially interact with genes/proteins in correlation with aging: a novel marker for muscle aging. / 06.2019 / PubMed / Full text
- ADNP: A major autism mutated gene is differentially distributed (age and gender) in the songbird brain. / 10.2015 / PubMed / Full text
ADRA2B[править]
- Aging and the Combined effects of ADRA2B and CB1 deletions on Affective Working Memory. / 11.03.2019 / PubMed / Full text
- Aging and the genetic road towards the positivity effect in memory. / 09.2016 / PubMed / Full text
ADRB2[править]
- Interactions between social/ behavioral factors and ADRB2 genotypes may be associated with health at advanced ages in China. / 09.09.2013 / PubMed / Full text
- ADRB2, brain white matter integrity and cognitive ageing in the Lothian Birth Cohort 1936. / 01.2013 / PubMed / Full text
AGO2[править]
- Profiling of m6A RNA modifications identified an age-associated regulation of AGO2 mRNA stability. / 06.2018 / PubMed / Full text
- miRNA processing gene polymorphisms, blood DNA methylation age and long-term ambient PM exposure in elderly men. / 12.2017 / PubMed / Full text
AHCY[править]
- Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. / 11.2018 / PubMed / Full text
- Tissue-specific down-regulation of S-adenosyl-homocysteine via suppression of dAhcyL1/dAhcyL2 extends health span and life span in Drosophila. / 15.06.2016 / PubMed / Full text
AIDA[править]
- Identification of Postharvest Senescence Regulators Through Map-Based Cloning Using Detached Arabidopsis Inflorescences as a Model Tissue. / 2018 / PubMed / Full text
- Interaction of DHPG-LTD and synaptic-LTD at senescent CA3-CA1 hippocampal synapses. / 04.2014 / PubMed / Full text
AKT2[править]
- A conserved role of the insulin-like signaling pathway in diet-dependent uric acid pathologies in Drosophila melanogaster. / 08.2019 / PubMed / Full text
- Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats. / 02.2019 / PubMed / Full text
AKT3[править]
- Oxidative stress-induced miRNAs modulate AKT signaling and promote cellular senescence in uterine leiomyoma. / 10.2018 / PubMed / Full text
- MicroRNA-22 induces endothelial progenitor cell senescence by targeting AKT3. / 2014 / PubMed / Full text
AKTIP[править]
- Mice with reduced expression of the telomere-associated protein Ft1 develop p53-sensitive progeroid traits. / 08.2018 / PubMed / Full text
- The telomeric protein AKTIP interacts with A- and B-type lamins and is involved in regulation of cellular senescence. / 08.2016 / PubMed / Full text
ALDOA[править]
- Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. / 2019 / PubMed / Full text
- An Adult Drosophila Glioma Model for Studying Pathometabolic Pathways of Gliomagenesis. / 06.2019 / PubMed / Full text
ALKBH8[править]
- Loss of epitranscriptomic control of selenocysteine utilization engages senescence and mitochondrial reprogramming . / 01.2020 / PubMed / Full text
- ALKB-8, a 2-Oxoglutarate-Dependent Dioxygenase and S-Adenosine Methionine-Dependent Methyltransferase Modulates Metabolic Events Linked to Lysosome-Related Organelles and Aging in C. elegans. / 2018 / PubMed
ALOX5[править]
- Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis. / 19.12.2019 / PubMed / Full text
- Functional Characterization of Knock-In Mice Expressing a 12/15-Lipoxygenating Alox5 Mutant Instead of the 5-Lipoxygenating Wild-Type Enzyme. / 01.01.2020 / PubMed / Full text
ANK1[править]
- Alzheimer's Disease Associated Genes Ankyrin and Tau Cause Shortened Lifespan and Memory Loss in [i]Drosophila[/i]. / 2019 / PubMed / Full text
- DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. / 25.07.2018 / PubMed / Full text
ANK3[править]
- Age-related atrophy of cortical thickness and genetic effect of ANK3 gene in first episode MDD patients. / 26.08.2020 / PubMed / Full text
- Mood, stress and longevity: convergence on ANK3. / 08.2016 / PubMed / Full text
AP2B1[править]
- Circular RNA NF1-419 enhances autophagy to ameliorate senile dementia by binding Dynamin-1 and Adaptor protein 2 B1 in AD-like mice. / 20.12.2019 / PubMed / Full text
- Investigating the specific core genetic-and-epigenetic networks of cellular mechanisms involved in human aging in peripheral blood mononuclear cells. / 23.02.2016 / PubMed / Full text
APOD[править]
- Identification of reference genes for RT-qPCR data normalisation in aging studies. / 27.09.2019 / PubMed / Full text
- Apolipoprotein D takes center stage in the stress response of the aging and degenerative brain. / 07.2014 / PubMed / Full text
APOL1[править]
- APOL1 Risk Alleles Are Associated with Exaggerated Age-Related Changes in Glomerular Number and Volume in African-American Adults: An Autopsy Study. / 12.2015 / PubMed / Full text
- Apolipoprotein L1, income and early kidney damage. / 10.02.2015 / PubMed / Full text
APPL2[править]
- The reversal effect of physical exercise on aging-related increases in APPL2 content in skeletal muscle. / 01.10.2018 / PubMed / Full text
- Adaptor Protein APPL2 Affects Adult Antidepressant Behaviors and Hippocampal Neurogenesis via Regulating the Sensitivity of Glucocorticoid Receptor. / 07.2018 / PubMed / Full text
AQP2[править]
- A bell-shaped pattern of urinary aquaporin-2-bearing extracellular vesicle release in an experimental model of nephronophthisis. / 05.2019 / PubMed / Full text
- Nitric oxide and AQP2 in hypothyroid rats: a link between aging and water homeostasis. / 09.2013 / PubMed / Full text
AQP3[править]
- Transbuccal platform for delivery of lipogenic actives to facial skin: Because fat matters. / 08.2020 / PubMed / Full text
- [Age-related changes of water transport by corneal endothelial cells in rats.] / 2017 / PubMed
ARID1B[править]
- A 69-year-old woman with Coffin-Siris syndrome. / 08.2018 / PubMed / Full text
- SWI/SNF regulates a transcriptional program that induces senescence to prevent liver cancer. / 01.10.2016 / PubMed / Full text
ARX[править]
- Converting Adult Pancreatic Islet α Cells into β Cells by Targeting Both Dnmt1 and Arx. / 07.03.2017 / PubMed / Full text
- Acacetin 7-O-α-l-rhamnopyranosyl (1-2) β-D-xylopyranoside Elicits Life-span Extension and Stress Resistance in Caenorhabditis elegans. / 09.2016 / PubMed / Full text
ASXL2[править]
- Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. / 10.2016 / PubMed / Full text
- The BAP1/ASXL2 Histone H2A Deubiquitinase Complex Regulates Cell Proliferation and Is Disrupted in Cancer. / 27.11.2015 / PubMed / Full text
ATF2[править]
- Transcriptional regulation of stress kinase JNK2 in pro-arrhythmic CaMKIIδ expression in the aged atrium. / 01.04.2018 / PubMed / Full text
- Prmt7 Deficiency Causes Reduced Skeletal Muscle Oxidative Metabolism and Age-Related Obesity. / 07.2016 / PubMed / Full text
ATF7[править]
- Stress-induced and ATF7-dependent epigenetic change influences cellular senescence. / 09.2019 / PubMed / Full text
- Identification of ATF-7 and the insulin signaling pathway in the regulation of metallothionein in C. elegans suggests roles in aging and reactive oxygen species. / 2017 / PubMed / Full text
ATG9A[править]
- SIRT1 protects cochlear hair cell and delays age-related hearing loss via autophagy. / 08.2019 / PubMed / Full text
- Activation of miR-34a impairs autophagic flux and promotes cochlear cell death via repressing ATG9A: implications for age-related hearing loss. / 05.10.2017 / PubMed / Full text
ATOH1[править]
- In Vivo Interplay between p27 , GATA3, ATOH1, and POU4F3 Converts Non-sensory Cells to Hair Cells in Adult Mice. / 11.04.2017 / PubMed / Full text
- A new mutation of the Atoh1 gene in mice with normal life span allows analysis of inner ear and cerebellar phenotype in aging. / 2013 / PubMed / Full text
ATP1A2[править]
- SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text
- The Influence of Na( ), K( )-ATPase on Glutamate Signaling in Neurodegenerative Diseases and Senescence. / 2016 / PubMed / Full text
ATP6V1E1[править]
- Low expression of aging-related [[NRXN3]] is associated with Alzheimer disease: A systematic review and meta-analysis. / 07.2018 / PubMed / Full text
- Chemical screening identifies ATM as a target for alleviating senescence. / 06.2017 / PubMed / Full text
ATP7A[править]
- Adipocyte-specific disruption of ATPase copper transporting α in mice accelerates lipoatrophy. / 12.2019 / PubMed / Full text
- TAp73 regulates ATP7A: possible implications for ageing-related diseases. / 08.12.2018 / PubMed / Full text
ATXN3[править]
- Rescue of ATXN3 neuronal toxicity in [i]Caenorhabditis[/i][i]elegans[/i] by chemical modification of endoplasmic reticulum stress. / 19.12.2017 / PubMed / Full text
- Sodium valproate alleviates neurodegeneration in SCA3/MJD via suppressing apoptosis and rescuing the hypoacetylation levels of histone H3 and H4. / 2013 / PubMed / Full text
AXL[править]
- Extracellular acidosis triggers a senescence-like phenotype in human melanoma cells. / 01.2020 / PubMed / Full text
- CSF protein changes associated with hippocampal sclerosis risk gene variants highlight impact of GRN/PGRN. / 04.2017 / PubMed / Full text
B4GALT1[править]
- Expression of β-1,4-galactosyltransferases during Aging in Caenorhabditis elegans. / 2020 / PubMed / Full text
- Glycobiology of Aging. / 2018 / PubMed / Full text
BACH2[править]
- Age-related changes in the BACH2 and PRDM1 genes in lymphocytes from healthy donors and chronic lymphocytic leukemia patients. / 17.01.2019 / PubMed / Full text
- BACH2: a marker of DNA damage and ageing. / 11.2013 / PubMed / Full text
BAG3[править]
- Nrf2 mediates the expression of BAG3 and autophagy cargo adaptor proteins and tau clearance in an age-dependent manner. / 03.2018 / PubMed / Full text
- Age-related obesity and type 2 diabetes dysregulate neuronal associated genes and proteins in humans. / 06.10.2015 / PubMed / Full text
BANF1[править]
- An additional case of Néstor-Guillermo progeria syndrome diagnosed in early childhood. / 10.2020 / PubMed / Full text
- Néstor-Guillermo Progeria Syndrome: a biochemical insight into Barrier-to-Autointegration Factor 1, alanine 12 threonine mutation. / 12.12.2014 / PubMed / Full text
BARD1[править]
- BRCA1 and BARD1 mediate apoptotic resistance but not longevity upon mitochondrial stress in [i]Caenorhabditis elegans[/i]. / 12.2018 / PubMed / Full text
- The Histone Variant MacroH2A1 Is a BRCA1 Ubiquitin Ligase Substrate. / 30.05.2017 / PubMed / Full text
BCL11B[править]
- Responders and non-responders to influenza vaccination: A DNA methylation approach on blood cells. / 05.2018 / PubMed / Full text
- Age-related profiling of DNA methylation in CD8 T cells reveals changes in immune response and transcriptional regulator genes. / 19.08.2015 / PubMed / Full text
BCL2L1[править]
- The transcription factor ETS1 promotes apoptosis resistance of senescent cholangiocytes by epigenetically up-regulating the apoptosis suppressor BCL2L1. / 06.12.2019 / PubMed / Full text
- SIRT6 histone deacetylase functions as a potential oncogene in human melanoma. / 09.2017 / PubMed / Full text
BMPR1B[править]
- Growth hormone during in vitro fertilization in older women modulates the density of receptors in granulosa cells, with improved pregnancy outcomes. / 12.2018 / PubMed / Full text
- Dysregulation of granulosal bone morphogenetic protein receptor 1B density is associated with reduced ovarian reserve and the age-related decline in human fertility. / 15.04.2016 / PubMed / Full text
BMX[править]
- Inducible Activation of FGFR2 in Adult Mice Promotes Bone Formation After Bone Marrow Ablation. / 11.2017 / PubMed / Full text
- Enhanced activity of an angiotensin-(1-7) neuropeptidase in glucocorticoid-induced fetal programming. / 02.2014 / PubMed / Full text
BRD2[править]
- Brd2 haploinsufficiency extends lifespan and healthspan in C57B6/J mice. / 2020 / PubMed / Full text
- Genetic architecture differences between pediatric and adult-onset inflammatory bowel diseases in the Polish population. / 23.12.2016 / PubMed / Full text
BTC[править]
- Behavioral tagging and capture: long-term memory decline in middle-aged rats. / 07.2018 / PubMed / Full text
- Estimates of genetic parameters for content of boar taint compounds in adipose tissue of intact males at 160 and 220 days of age. / 09.2015 / PubMed / Full text
BTG1[править]
- Effects of hydrogen peroxide, doxorubicin and ultraviolet irradiation on senescence of human dental pulp stem cells. / 09.2020 / PubMed / Full text
- Tumor cell escape from therapy-induced senescence. / 04.2019 / PubMed / Full text
BTK[править]
- Amelioration of age-related brain function decline by Bruton's tyrosine kinase inhibition. / 01.2020 / PubMed / Full text
- BTK suppresses myeloma cellular senescence through activating AKT/P27/Rb signaling. / 22.08.2017 / PubMed / Full text
BTLA[править]
- Combinatorial approach to cancer immunotherapy: strength in numbers. / 08.2016 / PubMed / Full text
- BTLA expression declines on B cells of the aged and is associated with low responsiveness to the trivalent influenza vaccine. / 14.08.2015 / PubMed / Full text
CA12[править]
- Co-culturing nucleus pulposus mesenchymal stem cells with notochordal cell-rich nucleus pulposus explants attenuates tumor necrosis factor-α-induced senescence. / 26.06.2018 / PubMed / Full text
- Notochordal and nucleus pulposus marker expression is maintained by sub-populations of adult human nucleus pulposus cells through aging and degeneration. / 04.05.2017 / PubMed / Full text
CACNA1C[править]
- Profiling gene expression in the human dentate gyrus granule cell layer reveals insights into schizophrenia and its genetic risk. / 04.2020 / PubMed / Full text
- Epigenetic regulation of L-type voltage-gated Ca channels in mesenteric arteries of aging hypertensive rats. / 05.2017 / PubMed / Full text
CALR[править]
- Elevated circulating HtrA4 in preeclampsia may alter endothelial expression of senescence genes. / 15.01.2020 / PubMed / Full text
- Molecular Pathogenesis of Myeloproliferative Neoplasms: Influence of Age and Gender. / 10.2017 / PubMed / Full text
CASK[править]
- Integrated study on comparative transcriptome and skeletal muscle function in aged rats. / 01.2018 / PubMed / Full text
- Neurexins 1-3 Each Have a Distinct Pattern of Expression in the Early Developing Human Cerebral Cortex. / 01.01.2017 / PubMed / Full text
CASP1[править]
- White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy. / 02.2020 / PubMed / Full text
- Gene expression of inflammasome components in peripheral blood mononuclear cells (PBMC) of vascular patients increases with age. / 2015 / PubMed / Full text
CASP7[править]
- Global Characteristics of CSIG-Associated Gene Expression Changes in Human HEK293 Cells and the Implications for CSIG Regulating Cell Proliferation and Senescence. / 2015 / PubMed / Full text
- Dual role of the caspase enzymes in satellite cells from aged and young subjects. / 12.12.2013 / PubMed / Full text
CASP8[править]
- Crucial role of the terminal complement complex in chondrocyte death and hypertrophy after cartilage trauma. / 05.2020 / PubMed / Full text
- [Association of polymorphic markers of CASP8, BCL2 and BAX genes with aging and longevity]. / 2012 / PubMed
CASQ2[править]
- Single delivery of an adeno-associated viral construct to transfer the CASQ2 gene to knock-in mice affected by catecholaminergic polymorphic ventricular tachycardia is able to cure the disease from birth to advanced age. / 24.06.2014 / PubMed / Full text
- The role of mutant protein level in autosomal recessive catecholamine dependent polymorphic ventricular tachycardia (CPVT2). / 01.12.2013 / PubMed / Full text
CAST[править]
- Cytomatrix proteins CAST and ELKS regulate retinal photoreceptor development and maintenance. / 05.11.2018 / PubMed / Full text
- Short Telomeres Induce p53 and Autophagy and Modulate Age-Associated Changes in Cardiac Progenitor Cell Fate. / 06.2018 / PubMed / Full text
CAV1[править]
- Candesartan Neuroprotection in Rat Primary Neurons Negatively Correlates with Aging and Senescence: a Transcriptomic Analysis. / 03.2020 / PubMed / Full text
- Broad range metabolomics coupled with network analysis for explaining possible mechanisms of Er-Zhi-Wan in treating liver-kidney Yin deficiency syndrome of Traditional Chinese medicine. / 24.04.2019 / PubMed / Full text
CBX4[править]
- Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text
- Maintenance of Nucleolar Homeostasis by CBX4 Alleviates Senescence and Osteoarthritis. / 26.03.2019 / PubMed / Full text
CBX8[править]
- PIM1-catalyzed CBX8 phosphorylation promotes the oncogene-induced senescence of human diploid fibroblast. / 27.06.2018 / PubMed / Full text
- CBX8 antagonizes the effect of Sirtinol on premature senescence through the AKT-RB-E2F1 pathway in K562 leukemia cells. / 22.01.2016 / PubMed / Full text
CCL13[править]
- Age-specific changes in the molecular phenotype of patients with moderate-to-severe atopic dermatitis. / 07.2019 / PubMed / Full text
- Differential Gene Expression Profiles Reflecting Macrophage Polarization in Aging and Periodontitis Gingival Tissues. / 2015 / PubMed / Full text
CCL17[править]
- Aging and chronic high-fat feeding negatively affects kidney size, function, and gene expression in CTRP1-deficient mice. / 21.10.2020 / PubMed / Full text
- Senescent thyrocytes and thyroid tumor cells induce M2-like macrophage polarization of human monocytes via a PGE2-dependent mechanism. / 21.05.2019 / PubMed / Full text
CCL24[править]
- Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner. / 2019 / PubMed / Full text
- Anserine/Carnosine Supplementation Suppresses the Expression of the Inflammatory Chemokine CCL24 in Peripheral Blood Mononuclear Cells from Elderly People. / 31.10.2017 / PubMed / Full text
CCL7[править]
- Increased cardiovascular and atherosclerosis markers in blood of older patients with atopic dermatitis. / 01.2020 / PubMed / Full text
- Advanced atherosclerosis is associated with inflammation, vascular dysfunction and oxidative stress, but not hypertension. / 02.2017 / PubMed / Full text
CCNG2[править]
- A Novel [i]Dnmt3a1[/i] Transcript Inhibits Adipogenesis. / 2018 / PubMed / Full text
- Hypoxia-inducible transcription factors, HIF1A and HIF2A, increase in aging mucosal tissues. / 07.2018 / PubMed / Full text
CCR4[править]
- mTOR regulates the expression of DNA damage response enzymes in long-lived Snell dwarf, GHRKO, and PAPPA-KO mice. / 02.2017 / PubMed / Full text
- Circulating T helper and T regulatory subsets in untreated early rheumatoid arthritis and healthy control subjects. / 10.2016 / PubMed / Full text
CD209[править]
- Senescence in Monocytes Facilitates Dengue Virus Infection by Increasing Infectivity. / 2020 / PubMed / Full text
- Comparative analysis of microbial sensing molecules in mucosal tissues with aging. / 03.2018 / PubMed / Full text
CD46[править]
- Soluble forms of CD46 are detected in Bos taurus plasma and neutralize BVDV, the bovine pestivirus. / 12.2016 / PubMed / Full text
- Brain innate immunity in the regulation of neuroinflammation: therapeutic strategies by modulating CD200-CD200R interaction involve the cannabinoid system. / 2014 / PubMed / Full text
CD70[править]
- CD70 contributes to age-associated T cell defects and overwhelming inflammatory responses. / 19.06.2020 / PubMed / Full text
- Molecular mechanisms involved in the aging of the T-cell immune response. / 12.2012 / PubMed / Full text
CDH1[править]
- Cdc6 as a novel target in cancer: Oncogenic potential, senescence and subcellular localisation. / 15.09.2020 / PubMed / Full text
- A Multigene Test Could Cost-Effectively Help Extend Life Expectancy for Women at Risk of Hereditary Breast Cancer. / 04.2017 / PubMed / Full text
CDKN1B[править]
- A Novel [i]Dnmt3a1[/i] Transcript Inhibits Adipogenesis. / 2018 / PubMed / Full text
- RNA methyltransferase NSUN2 promotes stress-induced HUVEC senescence. / 12.04.2016 / PubMed / Full text
CDKN1C[править]
- Human iPSC-derived MSCs (iMSCs) from aged individuals acquire a rejuvenation signature. / 18.03.2019 / PubMed / Full text
- Expansion of adipose tissue-derived stromal cells at "physiologic" hypoxia attenuates replicative senescence. / 06.2017 / PubMed / Full text
CDR1[править]
- Two Distinct Pathways in Mice Generate Antinuclear Antigen-Reactive B Cell Repertoires. / 2018 / PubMed / Full text
- Neuro-degeneration profile of Alzheimer's patients: A brain morphometry study. / 2017 / PubMed / Full text
CDX2[править]
- Maternal ageing impairs mitochondrial DNA kinetics during early embryogenesis in mice. / 08.07.2019 / PubMed / Full text
- Autophagic homeostasis is required for the pluripotency of cancer stem cells. / 02.2017 / PubMed / Full text
CEBPB[править]
- Integrative Analysis of Hippocampus Gene Expression Profiles Identifies Network Alterations in Aging and Alzheimer's Disease. / 2018 / PubMed / Full text
- The microRNA miR-17-3p inhibits mouse cardiac fibroblast senescence by targeting Par4. / 15.01.2015 / PubMed / Full text
CELF1[править]
- Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text
- Gene-based aggregate SNP associations between candidate AD genes and cognitive decline. / 04.2016 / PubMed / Full text
CHEK1[править]
- Candesartan Neuroprotection in Rat Primary Neurons Negatively Correlates with Aging and Senescence: a Transcriptomic Analysis. / 03.2020 / PubMed / Full text
- The Ubiquitin-like with PHD and Ring Finger Domains 1 (UHRF1)/DNA Methyltransferase 1 (DNMT1) Axis Is a Primary Regulator of Cell Senescence. / 03.03.2017 / PubMed / Full text
CHEK2[править]
- Elevated circulating HtrA4 in preeclampsia may alter endothelial expression of senescence genes. / 15.01.2020 / PubMed / Full text
- A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass. / 20.06.2019 / PubMed / Full text
CHI3L1[править]
- Postsynaptic damage and microglial activation in AD patients could be linked CXCR4/CXCL12 expression levels. / 15.12.2020 / PubMed / Full text
- Sex difference in CHI3L1 expression levels in human brain aging and in Alzheimer's disease. / 01.10.2019 / PubMed / Full text
CHIA[править]
- Lipoprotein Profile in Aged Rats Fed Chia Oil- or Hydroxytyrosol-Enriched Pork in High Cholesterol/High Saturated Fat Diets. / 26.11.2018 / PubMed / Full text
- Chia Oil-Enriched Restructured Pork Effects on Oxidative and Inflammatory Status of Aged Rats Fed High Cholesterol/High Fat Diets. / 05.2017 / PubMed / Full text
CHL1[править]
- Close Homolog of L1 Regulates Dendritic Spine Density in the Mouse Cerebral Cortex Through Semaphorin 3B. / 07.08.2019 / PubMed / Full text
- Age-dependent loss of parvalbumin-expressing hippocampal interneurons in mice deficient in CHL1, a mental retardation and schizophrenia susceptibility gene. / 11.2015 / PubMed / Full text
CHM[править]
- [Molecular regulative mechanisms of aging and interventional effects of Chinese herbal medicine]. / 08.2017 / PubMed / Full text
- [Molecular mechanisms of autophagy in regulating renal aging and interventional effects of Chinese herbal medicine]. / 11.2016 / PubMed / Full text
CIDEA[править]
- Growth hormone receptor expression in human gluteal versus abdominal subcutaneous adipose tissue: Association with body shape. / 05.2016 / PubMed / Full text
- The developmental transition of ovine adipose tissue through early life. / 01.2014 / PubMed / Full text
CIP2A[править]
- Long-lived mice with reduced growth hormone signaling have a constitutive upregulation of hepatic chaperone-mediated autophagy. / 12.02.2020 / PubMed / Full text
- Inhibition of CIP2A attenuates tumor progression by inducing cell cycle arrest and promoting cellular senescence in hepatocellular carcinoma. / 08.01.2018 / PubMed / Full text
CLC[править]
- Impact of Intervention to Improve Nursing Home Resident-Staff Interactions and Engagement. / 13.07.2018 / PubMed / Full text
- Effect of cholesterol loaded cyclodextrin on semen cryopreservation of Aksaray Malakli shepherd dogs of different ages. / 06.2018 / PubMed / Full text
CLEC3B[править]
- CLEC3B p.S106G Mutant in a Caucasian Population of Successful Neurological Aging. / 16.09.2020 / PubMed / Full text
- Exome-wide Association Study Identifies CLEC3B Missense Variant p.S106G as Being Associated With Extreme Longevity in East Asian Populations. / 01.03.2017 / PubMed / Full text
CLPP[править]
- Mitochondrial unfolded protein response: a stress response with implications for fertility and reproductive aging. / 02.2019 / PubMed / Full text
- Mitochondrial unfolded protein response gene Clpp is required to maintain ovarian follicular reserve during aging, for oocyte competence, and development of pre-implantation embryos. / 08.2018 / PubMed / Full text
CLSTN2[править]
- Investigating the influence of KIBRA and CLSTN2 genetic polymorphisms on cross-sectional and longitudinal measures of memory performance and hippocampal volume in older individuals. / 11.2015 / PubMed / Full text
- Genetic effects on old-age cognitive functioning: a population-based study. / 03.2013 / PubMed / Full text
CNP[править]
- Environmental Enrichment Elicits a Transient Rise of Bioactive C-Type Natriuretic Peptide in Young but Not Aged Rats. / 2018 / PubMed / Full text
- In aging, the vulnerability of rat brain mitochondria is enhanced due to reduced level of 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNP) and subsequently increased permeability transition in brain mitochondria in old animals. / 01.2015 / PubMed / Full text
CNTF[править]
- Absence of axonal sprouting following unilateral lesion in 125-day-old rat supraoptic nucleus may be due to age-dependent decrease in protein levels of ciliary neurotrophic factor receptor alpha. / 01.10.2019 / PubMed / Full text
- Maintenance of membrane organization in the aging mouse brain as the determining factor for preventing receptor dysfunction and for improving response to anti-Alzheimer treatments. / 06.2017 / PubMed / Full text
CNTNAP2[править]
- Selective molecular biomarkers to predict biologic behavior in pituitary tumors. / 05.2017 / PubMed / Full text
- A common copy number variation polymorphism in the CNTNAP2 gene: sexual dimorphism in association with healthy aging and disease. / 2015 / PubMed / Full text
COPE[править]
- Patterns and characteristics of cognitive functioning in older patients approaching end stage kidney disease, the COPE-study. / 09.04.2020 / PubMed / Full text
- Falls self-efficacy and falls incidence in community-dwelling older people: the mediating role of coping. / 05.2018 / PubMed / Full text
COQ7[править]
- Reduction in the levels of CoQ biosynthetic proteins is related to an increase in lifespan without evidence of hepatic mitohormesis. / 18.09.2018 / PubMed / Full text
- Gene expression differences in relation to age and social environment in queen and worker bumble bees. / 05.2016 / PubMed / Full text
COX5B[править]
- Role of Mitochondrial Complex IV in Age-Dependent Obesity. / 13.09.2016 / PubMed / Full text
- Loss of COX5B inhibits proliferation and promotes senescence via mitochondrial dysfunction in breast cancer. / 22.12.2015 / PubMed / Full text
CPNE1[править]
- Prevalent intron retention fine-tunes gene expression and contributes to cellular senescence. / 04.12.2020 / PubMed / Full text
- Genome-wide Associations Reveal Human-Mouse Genetic Convergence and Modifiers of Myogenesis, CPNE1 and STC2. / 05.12.2019 / PubMed / Full text
CPQ[править]
- A Spanish Adaptation of the Computer and Mobile Device Proficiency Questionnaires (CPQ and MDPQ) for Older Adults. / 2019 / PubMed / Full text
- Protective Effect of Semisynthetic and Natural Flavonoid on Aged Rat Microglia-enriched Cultures. / 11.2019 / PubMed / Full text
CPT1B[править]
- Effects of carnitine palmitoyltransferases on cancer cellular senescence. / 02.2019 / PubMed / Full text
- Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone. / 07.2014 / PubMed / Full text
CPT2[править]
- The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats. / 09.2020 / PubMed / Full text
- Glial β-oxidation regulates Drosophila energy metabolism. / 15.01.2015 / PubMed / Full text
CRABP2[править]
- Preconception resveratrol intake against infertility: Friend or foe? / 04.2020 / PubMed / Full text
- Cross platform analysis of transcriptomic data identifies ageing has distinct and opposite effects on tendon in males and females. / 31.10.2017 / PubMed / Full text
CREB5[править]
- Cellular senescence induces replication stress with almost no affect on DNA replication timing. / 2018 / PubMed / Full text
- Transcriptomic and epigenetic analyses reveal a gender difference in aging-associated inflammation: the Vitality 90 study. / 08.2015 / PubMed / Full text
CREBBP[править]
- Systems biology and network pharmacology of frailty reveal novel epigenetic targets and mechanisms. / 22.07.2019 / PubMed / Full text
- Genetic variants in a 'cAMP element binding protein' (CREB)-dependent histone acetylation pathway influence memory performance in cognitively healthy elderly individuals. / 12.2014 / PubMed / Full text
CRYAB[править]
- Binding of a glaucoma-associated myocilin variant to the αB-crystallin chaperone impedes protein clearance in trabecular meshwork cells. / 28.12.2018 / PubMed / Full text
- Quantitative proteomics analysis by iTRAQ in human nuclear cataracts of different ages and normal lens nuclei. / 08.2015 / PubMed / Full text
CSRP1[править]
- FOXO3, a Molecular Search for the Fountain of Youth. / 07.03.2019 / PubMed / Full text
- FOXO3-Engineered Human ESC-Derived Vascular Cells Promote Vascular Protection and Regeneration. / 07.03.2019 / PubMed / Full text
CYB5A[править]
- 11-Oxygenated C19 Steroids Do Not Decline With Age in Women. / 01.07.2019 / PubMed / Full text
- 3βHSD and CYB5A double positive adrenocortical cells during adrenal development/aging. / 2015 / PubMed / Full text
CYP11B2[править]
- Expression of aldosterone synthase CYP11B2 was inversely correlated with longevity. / 07.2019 / PubMed / Full text
- Age-Related Autonomous Aldosteronism. / 25.07.2017 / PubMed / Full text
CYP27A1[править]
- Prenatal betaine exposure alleviates corticosterone-induced inhibition of CYP27A1 expression in the liver of juvenile chickens associated with its promoter DNA methylation. / 15.05.2017 / PubMed / Full text
- Synergic hypocholesterolaemic effect of n-3 PUFA and oestrogen by modulation of hepatic cholesterol metabolism in female rats. / 14.12.2015 / PubMed / Full text
CYP2A6[править]
- Analysis of the variability of the pharmacokinetics of multiple drugs in young adult and elderly subjects and its implications for acceptable daily exposures and cleaning validation limits. / 06.2017 / PubMed / Full text
- Sex- and age-dependent gene expression in human liver: An implication for drug-metabolizing enzymes. / 02.2017 / PubMed / Full text
CYP2C8[править]
- Paclitaxel-induced sensory peripheral neuropathy is associated with an ABCB1 single nucleotide polymorphism and older age in Japanese. / 06.2017 / PubMed / Full text
- Determination of Human Hepatic CYP2C8 and CYP1A2 Age-Dependent Expression to Support Human Health Risk Assessment for Early Ages. / 05.2017 / PubMed / Full text
CYP3A7[править]
- Dynamics of Cytosine Methylation in the Proximal Promoters of CYP3A4 and CYP3A7 in Pediatric and Prenatal Livers. / 07.2016 / PubMed / Full text
- Predicting the "First dose in children" of CYP3A-metabolized drugs: Evaluation of scaling approaches and insights into the CYP3A7-CYP3A4 switch at young ages. / 09.2014 / PubMed / Full text
DAO[править]
- Age- and gender-dependent D-amino acid oxidase activity in mouse brain and peripheral tissues: implication for aging and neurodegeneration. / 01.08.2019 / PubMed / Full text
- Blood levels of D-amino acid oxidase vs. D-amino acids in reflecting cognitive aging. / 01.11.2017 / PubMed / Full text
DAPK1[править]
- SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text
- Degradation of Caytaxin Causes Learning and Memory Deficits via Activation of DAPK1 in Aging. / 05.2019 / PubMed / Full text
DAZL[править]
- DAZL Regulates Germ Cell Survival through a Network of PolyA-Proximal mRNA Interactions. / 30.10.2018 / PubMed / Full text
- No evidence for neo-oogenesis may link to ovarian senescence in adult monkey. / 11.2013 / PubMed / Full text
DBT[править]
- Diurnal rhythms of heart and respiratory rates in donkeys of different age groups during the cold-dry and hot-dry seasons in a tropical savannah. / 09.2018 / PubMed / Full text
- Anodal Transcranial Direct Current Stimulation Does Not Facilitate Dynamic Balance Task Learning in Healthy Old Adults. / 2017 / PubMed / Full text
DCTN3[править]
- Dynactin pathway-related gene expression is altered by aging, but not by vitrification. / 09.2019 / PubMed / Full text
- Alteration of Motor Protein Expression Involved in Bidirectional Transport in Peripheral Blood Mononuclear Cells of Patients with Amyotrophic Lateral Sclerosis. / 2016 / PubMed / Full text
DDAH1[править]
- Dimethylarginine Dimethylaminohydrolase 1 Deficiency Induces the Epithelial to Mesenchymal Transition in Renal Proximal Tubular Epithelial Cells and Exacerbates Kidney Damage in Aged and Diabetic Mice. / 01.12.2017 / PubMed / Full text
- Epigallocatechin-3-gallate ameliorates erectile function in aged rats via regulation of PRMT1/DDAH/ADMA/NOS metabolism pathway. / 05-06.2017 / PubMed / Full text
DDAH2[править]
- Epigallocatechin-3-gallate ameliorates erectile function in aged rats via regulation of PRMT1/DDAH/ADMA/NOS metabolism pathway. / 05-06.2017 / PubMed / Full text
- Regulation of endothelial progenitor cell differentiation and function by dimethylarginine dimethylaminohydrolase 2 in an asymmetric dimethylarginine-independent manner. / 09.2014 / PubMed / Full text
DDB1[править]
- DCAF1 regulates Treg senescence via the ROS axis during immunological aging. / 02.11.2020 / PubMed / Full text
- Deletion of DDB1- and CUL4- associated factor-17 (Dcaf17) gene causes spermatogenesis defects and male infertility in mice. / 15.06.2018 / PubMed / Full text
DDR2[править]
- Selective Role of Discoidin Domain Receptor 2 in Murine Temporomandibular Joint Development and Aging. / 03.2018 / PubMed / Full text
- Type I collagen aging impairs discoidin domain receptor 2-mediated tumor cell growth suppression. / 03.05.2016 / PubMed / Full text
DDX41[править]
- Salidroside influences the cellular cross-talk of human fetal lung diploid fibroblasts: A proteomic approach. / 03.2018 / PubMed / Full text
- Sequential acquisition of mutations in myelodysplastic syndromes. / 2017 / PubMed / Full text
DEGS1[править]
- [Frailty: Prevalence in the Resident Population of Germany 70 - 79 Years of Age - a Population-Based Approach]. / 11.2017 / PubMed / Full text
- Physical exercise and cognitive function across the life span: Results of a nationwide population-based study. / 05.2018 / PubMed / Full text
DHFR[править]
- Excessive folic acid intake and relation to adverse health outcome. / 07.2016 / PubMed / Full text
- Increase in tetrahydrobiopterin concentration with aging in the cerebral cortex of the senescence-accelerated mouse prone 10 strain caused by abnormal regulation of tetrahydrobiopterin biosynthesis. / 10.2013 / PubMed / Full text
DHX9[править]
- The biology of DHX9 and its potential as a therapeutic target. / 05.07.2016 / PubMed / Full text
- Suppression of the DHX9 helicase induces premature senescence in human diploid fibroblasts in a p53-dependent manner. / 15.08.2014 / PubMed / Full text
DIAPH1[править]
- Diaphanous 1 (DIAPH1) is Highly Expressed in the Aged Human Medial Temporal Cortex and Upregulated in Myeloid Cells During Alzheimer's Disease. / 2018 / PubMed / Full text
- The multiple faces of RAGE--opportunities for therapeutic intervention in aging and chronic disease. / 2016 / PubMed / Full text
DIRAS3[править]
- Silencing of the small GTPase DIRAS3 induces cellular senescence in human white adipose stromal/progenitor cells. / 17.03.2017 / PubMed / Full text
- Weight Loss Upregulates the Small GTPase DIRAS3 in Human White Adipose Progenitor Cells, Which Negatively Regulates Adipogenesis and Activates Autophagy via Akt-mTOR Inhibition. / 04.2016 / PubMed / Full text
DKK2[править]
- Low Serum Levels of DKK2 Predict Incident Low-Impact Fracture in Older Women. / 07.2019 / PubMed / Full text
- Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text
DLC1[править]
- Resveratrol promotes oxidative stress to drive DLC1 mediated cellular senescence in cancer cells. / 15.09.2018 / PubMed / Full text
- Depletion of the transcriptional coactivators megakaryoblastic leukaemia 1 and 2 abolishes hepatocellular carcinoma xenograft growth by inducing oncogene-induced senescence. / 09.2013 / PubMed / Full text
DLX5[править]
- Inhibition of microRNA-27b-3p relieves osteoarthritis pain via regulation of KDM4B-dependent DLX5. / 09.2020 / PubMed / Full text
- Detection and evaluation of DNA methylation markers found at SCGN and KLF14 loci to estimate human age. / 11.2017 / PubMed / Full text
DNA2[править]
- 53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination. / 02.01.2020 / PubMed / Full text
- Replication Stress at Telomeric and Mitochondrial DNA: Common Origins and Consequences on Ageing. / 08.10.2019 / PubMed / Full text
DNAJC5[править]
- Gene Therapy of Adult Neuronal Ceroid Lipofuscinoses with CRISPR/Cas9 in Zebrafish. / 07.2017 / PubMed / Full text
- Caenorhabditis elegans dnj-14, the orthologue of the DNAJC5 gene mutated in adult onset neuronal ceroid lipofuscinosis, provides a new platform for neuroprotective drug screening and identifies a SIR-2.1-independent action of resveratrol. / 15.11.2014 / PubMed / Full text
DOCK11[править]
- [Immunosenescence: The Forefront of Infection and Trophic Control]. / 2020 / PubMed / Full text
- Genetic correlation and genome-wide association study (GWAS) of the length of productive life, days open, and 305-days milk yield in crossbred Holstein dairy cattle. / 29.06.2017 / PubMed / Full text
DOT1L[править]
- Metformin regulates mitochondrial biogenesis and senescence through AMPK mediated H3K79 methylation: Relevance in age-associated vascular dysfunction. / 04.2018 / PubMed / Full text
- NF-κB activation impairs somatic cell reprogramming in ageing. / 08.2015 / PubMed / Full text
DRAM1[править]
- Genome-wide meta-analysis of macronutrient intake of 91,114 European ancestry participants from the cohorts for heart and aging research in genomic epidemiology consortium. / 12.2019 / PubMed / Full text
- Di-retinoid-pyridinium-ethanolamine (A2E) Accumulation and the Maintenance of the Visual Cycle Are Independent of Atg7-mediated Autophagy in the Retinal Pigmented Epithelium. / 27.11.2015 / PubMed / Full text
DRD1[править]
- Impact of dopamine-related genetic variants on physical activity in old age - a cohort study. / 24.05.2020 / PubMed / Full text
- Maternal deprivation enhances behavioral vulnerability to stress associated with miR-504 expression in nucleus accumbens of rats. / 2013 / PubMed / Full text
DROSHA[править]
- Profiling of m6A RNA modifications identified an age-associated regulation of AGO2 mRNA stability. / 06.2018 / PubMed / Full text
- Centenarians maintain miRNA biogenesis pathway while it is impaired in octogenarians. / 12.2017 / PubMed / Full text
DSCAM[править]
- Age- and speed-dependent modulation of gaits in DSCAM mutant mice. / 01.02.2018 / PubMed / Full text
- Developmentally dynamic colocalization patterns of DSCAM with adhesion and synaptic proteins in the mouse retina. / 2014 / PubMed / Full text
DSG2[править]
- Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text
- Age-dependent clinical and genetic characteristics in Japanese patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. / 2013 / PubMed / Full text
DSPP[править]
- Effects of [i]p[/i]-Cresol on Senescence, Survival, Inflammation, and Odontoblast Differentiation in Canine Dental Pulp Stem Cells. / 21.09.2020 / PubMed / Full text
- GREM1 inhibits osteogenic differentiation, senescence and BMP transcription of adipose-derived stem cells. / 09.03.2020 / PubMed / Full text
DUSP2[править]
- The association between poverty and gene expression within peripheral blood mononuclear cells in a diverse Baltimore City cohort. / 2020 / PubMed / Full text
- Aging Increases Hippocampal DUSP2 by a Membrane Cholesterol Loss-Mediated RTK/p38MAPK Activation Mechanism. / 2019 / PubMed / Full text
E2F2[править]
- MicroRNA-31a-5p from aging BMSCs links bone formation and resorption in the aged bone marrow microenvironment. / 08.2018 / PubMed / Full text
- In situ regeneration of retinal pigment epithelium by gene transfer of E2F2: a potential strategy for treatment of macular degenerations. / 12.2017 / PubMed / Full text
EBF1[править]
- Genome-wide Association Study of Parental Life Span. / 01.10.2017 / PubMed / Full text
- Non-Lethal Ionizing Radiation Promotes Aging-Like Phenotypic Changes of Human Hematopoietic Stem and Progenitor Cells in Humanized Mice. / 2015 / PubMed / Full text
ECM1[править]
- Novel role of extracellular matrix protein 1 (ECM1) in cardiac aging and myocardial infarction. / 2019 / PubMed / Full text
- Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text
EDNRB[править]
- Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. / 03.03.2016 / PubMed / Full text
- Variation in genes in the endothelin pathway and endothelium-dependent and endothelium-independent vasodilation in an elderly population. / 05.2013 / PubMed / Full text
EED[править]
- Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text
- Economic evaluations of eHealth technologies: A systematic review. / 2018 / PubMed / Full text
EIF2B1[править]
- Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of CSF1R and NOTCH3. / 06.2018 / PubMed / Full text
- Infantile onset Vanishing White Matter disease associated with a novel EIF2B5 variant, remarkably long life span, severe epilepsy, and hypopituitarism. / 04.2015 / PubMed / Full text
EIF2B5[править]
- Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of CSF1R and NOTCH3. / 06.2018 / PubMed / Full text
- Infantile onset Vanishing White Matter disease associated with a novel EIF2B5 variant, remarkably long life span, severe epilepsy, and hypopituitarism. / 04.2015 / PubMed / Full text
EIF5A[править]
- The curious case of polyamines: spermidine drives reversal of B cell senescence. / 03.2020 / PubMed / Full text
- Polyamines reverse immune senescence via the translational control of autophagy. / 01.2020 / PubMed / Full text
EN1[править]
- Electrochemically detecting DNA methylation in the EN1 gene promoter: implications for understanding ageing and disease. / 27.11.2020 / PubMed / Full text
- The role of DNA methylation in ageing and cancer. / 11.2018 / PubMed / Full text
ENC1[править]
- Selective molecular biomarkers to predict biologic behavior in pituitary tumors. / 05.2017 / PubMed / Full text
- Identification of genes associated with dissociation of cognitive performance and neuropathological burden: Multistep analysis of genetic, epigenetic, and transcriptional data. / 04.2017 / PubMed / Full text
ENTPD7[править]
- Inhibition of lung cancer cells and Ras/Raf/MEK/ERK signal transduction by ectonucleoside triphosphate phosphohydrolase-7 (ENTPD7). / 23.08.2019 / PubMed / Full text
- SWI/SNF regulates a transcriptional program that induces senescence to prevent liver cancer. / 01.10.2016 / PubMed / Full text
EOMES[править]
- Association of Epigenetic Age and p16INK4a With Markers of T-Cell Composition in a Healthy Cohort. / 13.11.2020 / PubMed / Full text
- Eomesodermin Expression in CD4 T Cells Restricts Peripheral Foxp3 Induction. / 15.11.2015 / PubMed / Full text
EPHA2[править]
- Germ-line and somatic EPHA2 coding variants in lens aging and cataract. / 2017 / PubMed / Full text
- EPHA2 Polymorphisms in Estonian Patients with Age-Related Cataract. / 2016 / PubMed / Full text
EPM2A[править]
- Inflammation in Lafora Disease: Evolution with Disease Progression in Laforin and Malin Knock-out Mouse Models. / 07.2017 / PubMed / Full text
- Loss of GABAergic cortical neurons underlies the neuropathology of Lafora disease. / 28.01.2014 / PubMed / Full text
ERBB2[править]
- The biological age linked to oxidative stress modifies breast cancer aggressiveness. / 20.05.2018 / PubMed / Full text
- Identification of human age-associated gene co-expressions in functional modules using liquid association. / 02.01.2018 / PubMed / Full text
ERCC6[править]
- Two Cockayne Syndrome patients with a novel splice site mutation - clinical and metabolic analyses. / 10.2018 / PubMed / Full text
- The associations between single nucleotide polymorphisms of DNA repair genes, DNA damage, and age-related cataract: Jiangsu Eye Study. / 01.02.2013 / PubMed / Full text
ETS2[править]
- FOXO3 targets are reprogrammed as Huntington's disease neural cells and striatal neurons face senescence with p16 increase. / 11.2020 / PubMed / Full text
- The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. / 29.09.2020 / PubMed / Full text
EWSR1[править]
- EWSR1, a multifunctional protein, regulates cellular function and aging via genetic and epigenetic pathways. / 01.07.2019 / PubMed / Full text
- EWSR1/ELF5 induces acute myeloid leukemia by inhibiting p53/p21 pathway. / 12.2016 / PubMed / Full text
EZR[править]
- Proteomic analysis of six- and twelve-month hippocampus and cerebellum in a murine Down syndrome model. / 03.2018 / PubMed / Full text
- Genetic variations and polymorphisms in the ezrin gene are associated with age-related cataract. / 2013 / PubMed / Full text
F8[править]
- The Pattern of Mu Rhythm Modulation During Emotional Destination Memory: Comparison Between Mild Cognitive Impairment Patients and Healthy Controls. / 2019 / PubMed / Full text
- Correlations between the signal complexity of cerebral and cardiac electrical activity: a multiscale entropy analysis. / 2014 / PubMed / Full text
F9[править]
- Hypermaintenance and hypofunction of aged spermatogonia: insight from age-related increase of Plzf expression. / 30.06.2015 / PubMed / Full text
- eHealth literacy and Web 2.0 health information seeking behaviors among baby boomers and older adults. / 17.03.2015 / PubMed / Full text
FABP1[править]
- The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats. / 09.2020 / PubMed / Full text
- Expression of digestive enzyme and intestinal transporter genes during chronic heat stress in the thermally manipulated broiler chicken. / 01.09.2019 / PubMed / Full text
FADS1[править]
- Aging and FADS1 polymorphisms decrease the biosynthetic capacity of long-chain PUFAs: A human trial using [U- C]linoleic acid. / 09.2019 / PubMed / Full text
- Genetic determinants of macular pigments in women of the Carotenoids in Age-Related Eye Disease Study. / 28.03.2013 / PubMed / Full text
FAHD1[править]
- Oxaloacetate decarboxylase FAHD1 - a new regulator of mitochondrial function and senescence. / 01.2019 / PubMed / Full text
- Depletion of oxaloacetate decarboxylase FAHD1 inhibits mitochondrial electron transport and induces cellular senescence in human endothelial cells. / 06.2017 / PubMed / Full text
FANCD2[править]
- TFG-maintaining stability of overlooked FANCD2 confers early DNA-damage response. / 24.10.2020 / PubMed / Full text
- FANCD2 and DNA Damage. / 19.08.2017 / PubMed / Full text
FAR2[править]
- FAR2 is associated with kidney disease in mice and humans. / 01.08.2018 / PubMed / Full text
- Genetic analysis of mesangial matrix expansion in aging mice and identification of Far2 as a candidate gene. / 12.2013 / PubMed / Full text
FBN1[править]
- Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text
- Muscle and Bone Impairment in Children With Marfan Syndrome: Correlation With Age and FBN1 Genotype. / 08.2015 / PubMed / Full text
FBN2[править]
- Assessment of Human Skin Gene Expression by Different Blends of Plant Extracts with Implications to Periorbital Skin Aging. / 26.10.2018 / PubMed / Full text
- Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text
FBXO31[править]
- The SCF ubiquitin ligase complex mediates degradation of the tumor suppressor FBXO31 and thereby prevents premature cellular senescence. / 19.10.2018 / PubMed / Full text
- Solutions to Peto's paradox revealed by mathematical modelling and cross-species cancer gene analysis. / 19.07.2015 / PubMed / Full text
FGF6[править]
- Genome-wide associations and detection of potential candidate genes for direct genetic and maternal genetic effects influencing dairy cattle body weight at different ages. / 06.02.2019 / PubMed / Full text
- Regulation of skeletal muscle stem cells by fibroblast growth factors. / 05.2017 / PubMed / Full text
FGG[править]
- Candidate SNP associations of optimism and resilience in older adults: exploratory study of 935 community-dwelling adults. / 10.2014 / PubMed / Full text
- A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. / 07.2013 / PubMed / Full text
FHL1[править]
- The forkhead-like transcription factor (Fhl1p) maintains yeast replicative lifespan by regulating ribonucleotide reductase 1 (RNR1) gene transcription. / 17.06.2017 / PubMed / Full text
- Transcription factor genes essential for cell proliferation and replicative lifespan in budding yeast. / 31.07.2015 / PubMed / Full text
FLT1[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
- Analysis of Polymorphisms in 59 Potential Candidate Genes for Association With Human Longevity. / 08.10.2018 / PubMed / Full text
FOXA2[править]
- Induced Pluripotent Stem Cell-Derived Dopaminergic Neurons from Adult Common Marmoset Fibroblasts. / 01.09.2017 / PubMed / Full text
- Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. / 03.2015 / PubMed / Full text
FOXC1[править]
- Identification of key genes and transcription factors in aging mesenchymal stem cells by DNA microarray data. / 15.04.2019 / PubMed / Full text
- FOXC1 maintains the hair follicle stem cell niche and governs stem cell quiescence to preserve long-term tissue-regenerating potential. / 15.03.2016 / PubMed / Full text
FOXF1[править]
- Functional CRISPR screen identifies AP1-associated enhancer regulating FOXF1 to modulate oncogene-induced senescence. / 17.08.2018 / PubMed / Full text
- Co-culturing nucleus pulposus mesenchymal stem cells with notochordal cell-rich nucleus pulposus explants attenuates tumor necrosis factor-α-induced senescence. / 26.06.2018 / PubMed / Full text
FOXP2[править]
- Identification of the neurotransmitter profile of AmFoxP expressing neurons in the honeybee brain using double-label in situ hybridization. / 06.11.2018 / PubMed / Full text
- Human skin keratinocytes can be reprogrammed to express neuronal genes and proteins after a single treatment with decitabine. / 06.2013 / PubMed / Full text
FSTL1[править]
- Blocking the FSTL1-DIP2A Axis Improves Anti-tumor Immunity. / 14.08.2018 / PubMed / Full text
- Vitamin D-responsive SGPP2 variants associated with lung cell expression and lung function. / 25.11.2013 / PubMed / Full text
FXN[править]
- Two different pathogenic mechanisms, dying-back axonal neuropathy and pancreatic senescence, are present in the YG8R mouse model of Friedreich's ataxia. / 01.06.2016 / PubMed / Full text
- Mitochondrial dysfunction induced by frataxin deficiency is associated with cellular senescence and abnormal calcium metabolism. / 2014 / PubMed / Full text
GABARAP[править]
- Age-dependent loss of adipose Rubicon promotes metabolic disorders via excess autophagy. / 18.08.2020 / PubMed / Full text
- Age-dependent autophagy induction after injury promotes axon regeneration by limiting NOTCH. / 11.2020 / PubMed / Full text
GAK[править]
- Auxilin Underlies Progressive Locomotor Deficits and Dopaminergic Neuron Loss in a Drosophila Model of Parkinson's Disease. / 31.01.2017 / PubMed / Full text
- Disruption of clathrin-mediated trafficking causes centrosome overduplication and senescence. / 01.2014 / PubMed / Full text
GAS6[править]
- Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner. / 2019 / PubMed / Full text
- Red blood cell distribution width: Genetic evidence for aging pathways in 116,666 volunteers. / 2017 / PubMed / Full text
GATA2[править]
- GATA2 hypomorphism induces chronic myelomonocytic leukemia in mice. / 04.2019 / PubMed / Full text
- Sequential acquisition of mutations in myelodysplastic syndromes. / 2017 / PubMed / Full text
GCAT[править]
- Impairing L-Threonine Catabolism Promotes Healthspan through Methylglyoxal-Mediated Proteohormesis. / 03.04.2018 / PubMed / Full text
- Epigenetic regulation of the nuclear-coded GCAT and SHMT2 genes confers human age-associated mitochondrial respiration defects. / 22.05.2015 / PubMed / Full text
GDF3[править]
- In vivo GDF3 administration abrogates aging related muscle regeneration delay following acute sterile injury. / 10.2018 / PubMed / Full text
- Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. / 05.10.2017 / PubMed / Full text
GIT1[править]
- GIT2-A keystone in ageing and age-related disease. / 05.2018 / PubMed / Full text
- GluN3A promotes dendritic spine pruning and destabilization during postnatal development. / 09.07.2014 / PubMed / Full text
GLI1[править]
- Sonic hedgehog regulation of cavernous nerve regeneration and neurite formation in aged pelvic plexus. / 02.2019 / PubMed / Full text
- GLI1 progenitor cells in the adrenal capsule of the adult mouse give rise to heterotopic gonadal-like tissue. / 05.02.2017 / PubMed / Full text
GLRX[править]
- Gender- and region-dependent changes of redox biomarkers in the brain of successfully aging LOU/C rats. / 07.2015 / PubMed / Full text
- Contribution of genetic polymorphisms on functional status at very old age: a gene-based analysis of 38 genes (311 SNPs) in the oxidative stress pathway. / 04.2014 / PubMed / Full text
GNAQ[править]
- Active notch protects MAPK activated melanoma cell lines from MEK inhibitor cobimetinib. / 14.11.2020 / PubMed / Full text
- GNAQ expression initiated in multipotent neural crest cells drives aggressive melanoma of the central nervous system. / 01.2020 / PubMed / Full text
GNAS[править]
- Intratumoral heterogeneity of the tumor cells based on in situ cortisol excess in cortisol-producing adenomas; ∼An association among morphometry, genotype and cellular senescence∼. / 11.2020 / PubMed / Full text
- Clinical characterization and molecular classification of 12 Korean patients with pseudohypoparathyroidism and pseudopseudohypoparathyroidism. / 10.2013 / PubMed / Full text
GNG3[править]
- Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex. / 2018 / PubMed / Full text
- Low expression of aging-related [[NRXN3]] is associated with Alzheimer disease: A systematic review and meta-analysis. / 07.2018 / PubMed / Full text
GNRH1[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
- Elucidating the genetic architecture of reproductive ageing in the Japanese population. / 17.05.2018 / PubMed / Full text
GP6[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
- Estimation of human age using N-glycan profiles from bloodstains. / 09.2015 / PubMed / Full text
GPER1[править]
- 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Nongenomic effects via the mineralocorticoid receptor. / 07.2017 / PubMed / Full text
- Diverse Synaptic Distributions of G Protein-coupled Estrogen Receptor 1 in Monkey Prefrontal Cortex with Aging and Menopause. / 01.03.2017 / PubMed / Full text
GPR158[править]
- Identifying blood-specific age-related DNA methylation markers on the Illumina MethylationEPIC® BeadChip. / 10.2019 / PubMed / Full text
- RbAp48 Protein Is a Critical Component of GPR158/OCN Signaling and Ameliorates Age-Related Memory Loss. / 23.10.2018 / PubMed / Full text
GPR17[править]
- Pharmaceutical Rejuvenation of Age-Associated Decline in Spatial Memory. / 12.2016 / PubMed / Full text
- Structural and functional rejuvenation of the aged brain by an approved anti-asthmatic drug. / 27.10.2015 / PubMed / Full text
GPR3[править]
- Mice lacking GPR3 receptors display late-onset obese phenotype due to impaired thermogenic function in brown adipose tissue. / 12.10.2015 / PubMed / Full text
- Effects of aging on gene expression and mitochondrial DNA in the equine oocyte and follicle cells. / 07.2015 / PubMed / Full text
GPR39[править]
- Zinc-mediated Neurotransmission in Alzheimer's Disease: A Potential Role of the GPR39 in Dementia. / 2020 / PubMed / Full text
- GPR39 agonist TC-G 1008 ameliorates IL-1β-induced chondrocyte senescence. / 12.2019 / PubMed / Full text
GRB10[править]
- De-silencing [i]Grb10[/i] contributes to acute ER stress-induced steatosis in mouse liver. / 05.2018 / PubMed / Full text
- Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. / 12.2015 / PubMed / Full text
GRB2[править]
- Fucoidan⁻Fucoxanthin Ameliorated Cardiac Function via IRS1/GRB2/ SOS1, GSK3β/CREB Pathways and Metabolic Pathways in Senescent Mice. / 21.01.2019 / PubMed / Full text
- The different expression profiles of microRNAs in elderly and young human dental pulp and the role of miR-433 in human dental pulp cells. / 03.2015 / PubMed / Full text
GRIA2[править]
- The EpiTect Methyl qPCR Assay as novel age estimation method in forensic biology. / 07.2016 / PubMed / Full text
- Evaluation of DNA methylation markers and their potential to predict human aging. / 08.2015 / PubMed / Full text
GRIK2[править]
- Senescence of Normal Human Fibroblasts Relates to the Expression of Ionotropic Glutamate Receptor GluR6/Grik2. / 11-12.2020 / PubMed / Full text
- Isoforms of Ionotropic Glutamate Receptor GRIK2 Induce Senescence of Carcinoma Cells. / 01-02.2019 / PubMed / Full text
GRIN2B[править]
- Medial temporal lobe atrophy relates more strongly to sleep-wake rhythm fragmentation than to age or any other known risk. / 04.2019 / PubMed / Full text
- Gene Expression Switching of Receptor Subunits in Human Brain Development. / 12.2015 / PubMed / Full text
GRM3[править]
- Profiling gene expression in the human dentate gyrus granule cell layer reveals insights into schizophrenia and its genetic risk. / 04.2020 / PubMed / Full text
- Hippocampal proteomics defines pathways associated with memory decline and resilience in normal aging and Alzheimer's disease mouse models. / 30.03.2017 / PubMed / Full text
GRSF1[править]
- GRSF1 is an age-related regulator of senescence. / 03.04.2019 / PubMed / Full text
- GRSF1 suppresses cell senescence. / 07.08.2018 / PubMed / Full text
GSTA2[править]
- The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats. / 09.2020 / PubMed / Full text
- The age-related change of glutathione antioxidant system in mice liver. / 07.2013 / PubMed / Full text
GSTA4[править]
- Impaired enzymatic reactive aldehyde-detoxifying capacity and glutathione peroxidase activity in the aged human arterial tissue. / 02.2019 / PubMed / Full text
- Age-associated changes in GSH S-transferase gene/proteins in livers of rats. / 12.2018 / PubMed / Full text
GSTK1[править]
- Age-associated changes in GSH S-transferase gene/proteins in livers of rats. / 12.2018 / PubMed / Full text
- Growth hormone alters the glutathione S-transferase and mitochondrial thioredoxin systems in long-living Ames dwarf mice. / 10.2014 / PubMed / Full text
GSTM3[править]
- Age-associated changes in GSH S-transferase gene/proteins in livers of rats. / 12.2018 / PubMed / Full text
- Relationship Between the Altered Expression and Epigenetics of GSTM3 and Age-Related Cataract. / 01.09.2016 / PubMed / Full text
GSTZ1[править]
- Age-associated changes in GSH S-transferase gene/proteins in livers of rats. / 12.2018 / PubMed / Full text
- Effects of insulin-like growth factor 1 on glutathione S-transferases and thioredoxin in growth hormone receptor knockout mice. / 2014 / PubMed / Full text
HAPLN1[править]
- Remodeling of the Collagen Matrix in Aging Skin Promotes Melanoma Metastasis and Affects Immune Cell Motility. / 01.2019 / PubMed / Full text
- Age-Related Changes in HAPLN1 Increase Lymphatic Permeability and Affect Routes of Melanoma Metastasis. / 01.2019 / PubMed / Full text
HAS1[править]
- A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass. / 20.06.2019 / PubMed / Full text
- Age-related changes in cyclic phosphatidic acid-induced hyaluronic acid synthesis in human fibroblasts. / 01.2018 / PubMed / Full text
HAS3[править]
- Microneedle fractional radiofrequency increases epidermal hyaluronan and reverses age-related epidermal dysfunction. / 02.2016 / PubMed / Full text
- Age-associated changes in gene expression of goat oocytes. / 01.09.2013 / PubMed / Full text
HAT1[править]
- Activation of p53 by spermine mediates induction of autophagy in HT1080 cells. / 02.2014 / PubMed / Full text
- Age-associated changes in gene expression of goat oocytes. / 01.09.2013 / PubMed / Full text
HBD[править]
- Impact of reproductive aging on the vaginal microbiome and soluble immune mediators in women living with and at-risk for HIV infection. / 2019 / PubMed / Full text
- Differences in Cytokine Production during Aging and Its Relationship with Antimicrobial Peptides Production. / 01.2017 / PubMed / Full text
HCN3[править]
- Characteristics of hyperpolarization-activated cyclic nucleotide-gated channels in dorsal root ganglion neurons at different ages and sizes. / 11.11.2015 / PubMed / Full text
- Integromics network meta-analysis on cardiac aging offers robust multi-layer modular signatures and reveals micronome synergism. / 04.03.2015 / PubMed / Full text
HCRT[править]
- Age-related central regulation of orexin and NPY in the short-lived African killifish Nothobranchius furzeri. / 15.05.2019 / PubMed / Full text
- Sleep and cardiovascular phenotype in middle-aged hypocretin-deficient narcoleptic mice. / 02.2014 / PubMed / Full text
HELLS[править]
- The Ubiquitin-like with PHD and Ring Finger Domains 1 (UHRF1)/DNA Methyltransferase 1 (DNMT1) Axis Is a Primary Regulator of Cell Senescence. / 03.03.2017 / PubMed / Full text
- Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text
HGD[править]
- High-glucose diets induce mitochondrial dysfunction in Caenorhabditis elegans. / 2019 / PubMed / Full text
- A high glucose diet induces autophagy in a HLH-30/TFEB-dependent manner and impairs the normal lifespan of [i]C. elegans[/i]. / 05.10.2018 / PubMed / Full text
HIF1A[править]
- Hypoxia-inducible transcription factors, HIF1A and HIF2A, increase in aging mucosal tissues. / 07.2018 / PubMed / Full text
- Role of Mitochondrial Complex IV in Age-Dependent Obesity. / 13.09.2016 / PubMed / Full text
HK2[править]
- Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury. / 11.01.2018 / PubMed / Full text
- Differentially expressed microRNAs in bone marrow mesenchymal stem cell-derived microvesicles in young and older rats and their effect on tumor growth factor-β1-mediated epithelial-mesenchymal transition in HK2 cells. / 28.09.2015 / PubMed / Full text
HLA-A[править]
- Reduced expression of the lncRNA NRON is a potential hallmark of the CMV-amplified CD8 T cell accumulations commonly seen in older humans. / 01.2019 / PubMed / Full text
- Cytomegalovirus-Specific T Cells Restricted by HLA-Cw*0702 Increase Markedly with Age and Dominate the CD8 T-Cell Repertoire in Older People. / 2017 / PubMed / Full text
HLA-B[править]
- Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. / 10.2019 / PubMed / Full text
- Cytomegalovirus-Specific T Cells Restricted by HLA-Cw*0702 Increase Markedly with Age and Dominate the CD8 T-Cell Repertoire in Older People. / 2017 / PubMed / Full text
HLA-C[править]
- Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. / 10.2019 / PubMed / Full text
- Cytomegalovirus-Specific T Cells Restricted by HLA-Cw*0702 Increase Markedly with Age and Dominate the CD8 T-Cell Repertoire in Older People. / 2017 / PubMed / Full text
HLA-DPB1[править]
- 17th IHIW component "Immunogenetics of Ageing" - New NGS data. / 09.2019 / PubMed / Full text
- Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. / 10.2019 / PubMed / Full text
HLA-DQA1[править]
- 17th IHIW component "Immunogenetics of Ageing" - New NGS data. / 09.2019 / PubMed / Full text
- [Clinical and genetic characteristics of long-livers in Moscow region]. / 2013 / PubMed
HLA-DQB1[править]
- Identification of new genetic variants of HLA-DQB1 associated with human longevity and lipid homeostasis-a cross-sectional study in a Chinese population. / 10.11.2017 / PubMed / Full text
- [Clinical and genetic characteristics of long-livers in Moscow region]. / 2013 / PubMed
HMGCS1[править]
- The Age-dependent Elevation of miR-335-3p Leads to Reduced Cholesterol and Impaired Memory in Brain. / 15.10.2018 / PubMed / Full text
- Controlled sumoylation of the mevalonate pathway enzyme HMGS-1 regulates metabolism during aging. / 16.09.2014 / PubMed / Full text
HNF4A[править]
- The Impact of Biomarker Screening and Cascade Genetic Testing on the Cost-Effectiveness of MODY Genetic Testing. / 12.2019 / PubMed / Full text
- Hepatocyte Nuclear Factor-4α P2 Promoter Variants Are Associated With the Risk of Metabolic Syndrome and Testosterone Deficiency in Aging Taiwanese Men. / 11.2018 / PubMed / Full text
HNRNPA1[править]
- HNRNPA1-mediated 3' UTR length changes of [i]HN1[/i] contributes to cancer- and senescence-associated phenotypes. / 30.06.2019 / PubMed / Full text
- Changes in the expression of splicing factor transcripts and variations in alternative splicing are associated with lifespan in mice and humans. / 10.2016 / PubMed / Full text
HOPX[править]
- Combinations of differentiation markers distinguish subpopulations of alveolar epithelial cells in adult lung. / 15.01.2016 / PubMed / Full text
- HOPX is methylated and exerts tumour-suppressive function through Ras-induced senescence in human lung cancer. / 02.2015 / PubMed / Full text
HOXC4[править]
- Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. / 11.2017 / PubMed / Full text
- Differential DNA Methylation in Relation to Age and Health Risks of Obesity. / 24.07.2015 / PubMed / Full text
HPD[править]
- Protein-Amino Acid Metabolism Disarrangements: The Hidden Enemy of Chronic Age-Related Conditions. / 22.03.2018 / PubMed / Full text
- Post-weaning parental care increases fitness but is not heritable in North American red squirrels. / 06.2015 / PubMed / Full text
HRG[править]
- Chronic dietary ginseng extract administration ameliorates antioxidant and cholinergic systems in the brains of aged mice. / 10.2017 / PubMed / Full text
- Heregulin, a new regulator of telomere length in human cells. / 24.11.2015 / PubMed / Full text
HSD3B2[править]
- 11-Oxygenated C19 Steroids Do Not Decline With Age in Women. / 01.07.2019 / PubMed / Full text
- Testicular gene expression of steroidogenesis-related factors in prepubertal, postpubertal, and aging dogs. / 01.03.2017 / PubMed / Full text
HSF4[править]
- Effect of HSF4b on age related cataract may through its novel downstream target Hif1α. / 24.10.2014 / PubMed / Full text
- Copy number variations of DNA repair genes and the age-related cataract: Jiangsu Eye Study. / 01.02.2013 / PubMed / Full text
HSP90AA1[править]
- SIRT6 histone deacetylase functions as a potential oncogene in human melanoma. / 09.2017 / PubMed / Full text
- Integration-independent Transgenic Huntington Disease Fragment Mouse Models Reveal Distinct Phenotypes and Life Span in Vivo. / 31.07.2015 / PubMed / Full text
HSPB1[править]
- The beneficial effects of 15 units of high-intensity circuit training in women is modified by age, baseline insulin resistance and physical capacity. / 06.2019 / PubMed / Full text
- Chicken heat shock protein HSPB1 increases and interacts with αB-crystallin in aged skeletal muscle. / 2015 / PubMed / Full text
HSPB6[править]
- Lifelong Football Training: Effects on Autophagy and Healthy Longevity Promotion. / 2019 / PubMed / Full text
- Apoptosis in muscle-to-meat aging process: The omic witness. / 01.07.2015 / PubMed / Full text
HUS1[править]
- Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes. / 19.10.2015 / PubMed / Full text
- [Role of DNA repair genes in radiation-induced changes of lifespan of Drosophila melanogaster]. / 09-10.2014 / PubMed
IAPP[править]
- Protein aggregates and proteostasis in aging: Amylin and β-cell function. / 01.2019 / PubMed / Full text
- Causative factors for formation of toxic islet amyloid polypeptide oligomer in type 2 diabetes mellitus. / 2015 / PubMed / Full text
ID2[править]
- Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. / 10.2019 / PubMed / Full text
- Ablation of the ID2 gene results in altered circadian feeding behavior, and sex-specific enhancement of insulin sensitivity and elevated glucose uptake in skeletal muscle and brown adipose tissue. / 2013 / PubMed / Full text
ID3[править]
- Transcription factor networks in aged naïve CD4 T cells bias lineage differentiation. / 08.2019 / PubMed / Full text
- Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. / 02.2018 / PubMed / Full text
IDO1[править]
- Different expression of Defensin-B gene in the endometrium of mares of different age during the breeding season. / 21.12.2019 / PubMed / Full text
- Advanced age negatively impacts survival in an experimental brain tumor model. / 06.09.2016 / PubMed / Full text
IFIT1[править]
- Sirtuin 1-Chromatin-Binding Dynamics Points to a Common Mechanism Regulating Inflammatory Targets in SIV Infection and in the Aging Brain. / 06.2018 / PubMed / Full text
- Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation. / 02.08.2017 / PubMed / Full text
IFIT3[править]
- Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation. / 02.08.2017 / PubMed / Full text
- Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text
IFITM1[править]
- White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy. / 02.2020 / PubMed / Full text
- Age-Associated Changes in the Respiratory Epithelial Response to Influenza Infection. / 10.11.2018 / PubMed / Full text
IFITM3[править]
- Blood DNA methylation sites predict death risk in a longitudinal study of 12, 300 individuals. / 22.07.2020 / PubMed / Full text
- Small Extracellular Vesicles Are Key Regulators of Non-cell Autonomous Intercellular Communication in Senescence via the Interferon Protein IFITM3. / 25.06.2019 / PubMed / Full text
IFNAR1[править]
- Suppression of Type I Interferon Signaling Overcomes Oncogene-Induced Senescence and Mediates Melanoma Development and Progression. / 05.04.2016 / PubMed / Full text
- Type 1 interferons contribute to the clearance of senescent cell. / 2015 / PubMed / Full text
IGFBP4[править]
- Quantitative iTRAQ-based proteomic analysis of differentially expressed proteins in aging in human and monkey. / 11.10.2019 / PubMed / Full text
- Age-Related Insulin-Like Growth Factor Binding Protein-4 Overexpression Inhibits Osteogenic Differentiation of Rat Mesenchymal Stem Cells. / 2017 / PubMed / Full text
IGHD[править]
- Growth Hormone Deficiency: Health and Longevity. / 01.04.2019 / PubMed / Full text
- Lifetime, untreated isolated GH deficiency due to a GH-releasing hormone receptor mutation has beneficial consequences on bone status in older individuals, and does not influence their abdominal aorta calcification. / 09.2014 / PubMed / Full text
IGSF1[править]
- Age-related gene and miRNA expression changes in airways of healthy individuals. / 06.03.2019 / PubMed / Full text
- The IGSF1 deficiency syndrome: characteristics of male and female patients. / 12.2013 / PubMed / Full text
IHH[править]
- Indian Hedgehog regulates senescence in bone marrow-derived mesenchymal stem cell through modulation of ROS/mTOR/4EBP1, p70S6K1/2 pathway. / 01.04.2020 / PubMed / Full text
- Transfection of the IHH gene into rabbit BMSCs in a simulated microgravity environment promotes chondrogenic differentiation and inhibits cartilage aging. / 27.09.2016 / PubMed / Full text
IL18[править]
- p53 and p53-related mediators PAI-1 and IGFBP-3 are downregulated in peripheral blood mononuclear cells of HIV-patients exposed to non-nucleoside reverse transcriptase inhibitors. / 06.2020 / PubMed / Full text
- Aging and the Inflammasomes. / 2018 / PubMed / Full text
IL9[править]
- A novel multi-marker discovery approach identifies new serum biomarkers for Parkinson's disease in older people: an EXosomes in PArkiNson Disease (EXPAND) ancillary study. / 10.2020 / PubMed / Full text
- Transcription factor networks in aged naïve CD4 T cells bias lineage differentiation. / 08.2019 / PubMed / Full text
ILDR1[править]
- Genome-wide association meta-analysis identifies five novel loci for age-related hearing impairment. / 23.10.2019 / PubMed / Full text
- A Large Genome-Wide Association Study of Age-Related Hearing Impairment Using Electronic Health Records. / 10.2016 / PubMed / Full text
ING1[править]
- Impaired DNA demethylation of C/EBP sites causes premature aging. / 01.06.2018 / PubMed / Full text
- The tumor suppressor ING1b is a novel corepressor for the androgen receptor and induces cellular senescence in prostate cancer cells. / 06.2016 / PubMed / Full text
INPP5A[править]
- DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. / 25.07.2018 / PubMed / Full text
- Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text
INSR[править]
- Proteomics of Long-Lived Mammals. / 03.2020 / PubMed / Full text
- The Ubiquitin Ligase CHIP Integrates Proteostasis and Aging by Regulation of Insulin Receptor Turnover. / 20.04.2017 / PubMed / Full text
IRF4[править]
- Transcription factor networks in aged naïve CD4 T cells bias lineage differentiation. / 08.2019 / PubMed / Full text
- Age-related differences in interferon regulatory factor-4 and -5 signaling in ischemic brains of mice. / 11.2017 / PubMed / Full text
IRGM[править]
- SIRT6 histone deacetylase functions as a potential oncogene in human melanoma. / 09.2017 / PubMed / Full text
- Bt Cry1Ie Toxin Does Not Impact the Survival and Pollen Consumption of Chinese Honey Bees, Apis cerana cerana (Hymenoptera, Apidae). / 01.12.2016 / PubMed / Full text
ISG15[править]
- White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy. / 02.2020 / PubMed / Full text
- Transcriptome analysis reveals immune-related gene expression changes with age in giant panda ([i]Ailuropoda melanoleuca[/i]) blood. / 14.01.2019 / PubMed / Full text
ISL1[править]
- Aging-relevant human basal forebrain cholinergic neurons as a cell model for Alzheimer's disease. / 21.10.2020 / PubMed / Full text
- Deterioration of the Medial Olivocochlear Efferent System Accelerates Age-Related Hearing Loss in Pax2-Isl1 Transgenic Mice. / 05.2016 / PubMed / Full text
ITGAM[править]
- Comparative Analysis of Gene Expression Patterns for Oral Epithelium-Related Functions with Aging. / 2019 / PubMed / Full text
- Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. / 08.2017 / PubMed / Full text
ITGB2[править]
- Comparative Analysis of Gene Expression Patterns for Oral Epithelium-Related Functions with Aging. / 2019 / PubMed / Full text
- A Microglial Signature Directing Human Aging and Neurodegeneration-Related Gene Networks. / 2019 / PubMed / Full text
ITK[править]
- Does Tetralogy of Fallot affect brain aging? A proof-of-concept study. / 2018 / PubMed / Full text
- Phenotypic characteristics of aged CD4 CD28 T lymphocytes are determined by changes in the whole-genome DNA methylation pattern. / 04.2017 / PubMed / Full text
JAK3[править]
- Immunologic effects of chronic administration of tofacitinib, a Janus kinase inhibitor, in cynomolgus monkeys and rats - Comparison of juvenile and adult responses. / 04.2018 / PubMed / Full text
- IL-15 enhances the antitumor effect of human antigen-specific CD8 T cells by cellular senescence delay. / 2016 / PubMed / Full text
KDM2B[править]
- Identification of Structural Elements of the Lysine Specific Demethylase 2B CxxC Domain Associated with Replicative Senescence Bypass in Primary Mouse Cells. / 06.2020 / PubMed / Full text
- Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases. / 03.2016 / PubMed / Full text
KDM4B[править]
- Inhibition of microRNA-27b-3p relieves osteoarthritis pain via regulation of KDM4B-dependent DLX5. / 09.2020 / PubMed / Full text
- Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases. / 03.2016 / PubMed / Full text
KDM4C[править]
- KDM3A and KDM4C Regulate Mesenchymal Stromal Cell Senescence and Bone Aging via Condensin-mediated Heterochromatin Reorganization. / 22.11.2019 / PubMed / Full text
- Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases. / 03.2016 / PubMed / Full text
KDM6B[править]
- Histone demethylase KDM6B regulates 1,25-dihydroxyvitamin D3-induced senescence in glioma cells. / 08.2019 / PubMed / Full text
- Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases. / 03.2016 / PubMed / Full text
KIFC3[править]
- Defective recruitment of motor proteins to autophagic compartments contributes to autophagic failure in aging. / 08.2018 / PubMed / Full text
- Alteration of Motor Protein Expression Involved in Bidirectional Transport in Peripheral Blood Mononuclear Cells of Patients with Amyotrophic Lateral Sclerosis. / 2016 / PubMed / Full text
KIR2DS5[править]
- [The relationship between the polymorphism of immunity genes and both aging and age-related diseases]. / 07.2013 / PubMed / Full text
- 16(th) IHIW: immunogenetics of aging. / 02.2013 / PubMed / Full text
KISS1R[править]
- Kisspeptin across the human lifespan:evidence from animal studies and beyond. / 06.2016 / PubMed / Full text
- Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus. / 2015 / PubMed / Full text
KPNA2[править]
- Karyopherin Alpha 2-Expressing Pancreatic Duct Glands and Intra-Islet Ducts in Aged Diabetic C414A-Mutant-CRY1 Transgenic Mice. / 2019 / PubMed / Full text
- Upregulated Expression of Karyopherin α2 is Involved in Neuronal Apoptosis Following Intracerebral Hemorrhage in Adult Rats. / 07.2016 / PubMed / Full text
LAMA5[править]
- The correlation of copy number variations with longevity in a genome-wide association study of Han Chinese. / 05.06.2018 / PubMed / Full text
- Association of the Laminin, Alpha 5 (LAMA5) rs4925386 with height and longevity in an elderly population from Southern Italy. / 04.2016 / PubMed / Full text
LAMC1[править]
- Relation of size of seminal vesicles on ultrasound to premature ejaculation. / 09-10.2017 / PubMed / Full text
- Discovery and characterization of miRNA during cellular senescence in bone marrow-derived human mesenchymal stem cells. / 10.2014 / PubMed / Full text
LAT[править]
- Is the combined auriculotherapy approach superior to magneto-auriculotherapy alone in aging males with lower urinary tract symptoms? A randomized controlled trial. / 16.01.2019 / PubMed / Full text
- Intra-couple Caregiving of Older Adults Living Apart Together: Commitment and Independence. / 09.2015 / PubMed / Full text
LATS2[править]
- [Expression relationship of Hippo signaling molecules and ovarian germline stem cell markers in the ovarian aging process of women and mice]. / 25.06.2019 / PubMed
- YAP1-LATS2 feedback loop dictates senescent or malignant cell fate to maintain tissue homeostasis. / 03.2019 / PubMed / Full text
LDHA[править]
- Upregulation of lactate-inducible snail protein suppresses oncogene-mediated senescence through p16 inactivation. / 26.02.2018 / PubMed / Full text
- Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. / 05.2018 / PubMed / Full text
LDLR[править]
- Inactivation of the E3 Ubiquitin Ligase IDOL Attenuates Diet-Induced Obesity and Metabolic Dysfunction in Mice. / 08.2018 / PubMed / Full text
- Impact of age and sex on the development of atherosclerosis and expression of the related genes in apoE deficient mice. / 15.01.2016 / PubMed / Full text
LEPR[править]
- Age-related changes of leptin and leptin receptor variants in healthy elderly and long-lived adults. / 03.2015 / PubMed / Full text
- Functional polymorphisms of the leptin and leptin receptor genes are associated with longevity and with the risk of myocardial infarction and of type 2 diabetes mellitus. / 2014 / PubMed / Full text
LGI1[править]
- Antibody-associated CNS syndromes without signs of inflammation in the elderly. / 03.10.2017 / PubMed / Full text
- Expression of NgR1-antagonizing proteins decreases with aging and cognitive decline in rat hippocampus. / 05.2013 / PubMed / Full text
LGR5[править]
- Thyroid hormone activates Wnt/β-catenin signaling involved in adult epithelial development during intestinal remodeling in Xenopus laevis. / 08.2016 / PubMed / Full text
- Cancer stem cells in Helicobacter pylori infection and aging: Implications for gastric carcinogenesis. / 15.08.2014 / PubMed / Full text
LHCGR[править]
- Comparative Study of the Steroidogenic Effects of Human Chorionic Gonadotropin and Thieno[2,3-D]pyrimidine-Based Allosteric Agonist of Luteinizing Hormone Receptor in Young Adult, Aging and Diabetic Male Rats. / 11.10.2020 / PubMed / Full text
- Association between the luteinizing hormone/chorionic gonadotropin receptor (LHCGR) rs4073366 polymorphism and ovarian hyperstimulation syndrome during controlled ovarian hyperstimulation. / 25.07.2013 / PubMed / Full text
LIFR[править]
- Efficacy of leukemia inhibitory factor as a therapeutic for permanent large vessel stroke differs among aged male and female rats. / 15.03.2019 / PubMed / Full text
- Characterization of Nestin-positive stem Leydig cells as a potential source for the treatment of testicular Leydig cell dysfunction. / 12.2014 / PubMed / Full text
LIPA[править]
- Modeling the cardiometabolic benefits of sleep in older women: exploring the 24-hour day. / 13.01.2020 / PubMed / Full text
- Influence of Habitual Physical Behavior - Sleeping, Sedentarism, Physical Activity - On Bone Health in Community-Dwelling Older People. / 2019 / PubMed / Full text
LOXL1[править]
- A blackberry-dill extract combination synergistically increases skin elasticity. / 10.2020 / PubMed / Full text
- Methylation of LOXL1 Promoter by DNMT3A in Aged Human Skin Fibroblasts. / 04.2017 / PubMed / Full text
LRP4[править]
- Multiple MuSK signaling pathways and the aging neuromuscular junction. / 13.07.2020 / PubMed / Full text
- Sarcoglycan Alpha Mitigates Neuromuscular Junction Decline in Aged Mice by Stabilizing LRP4. / 10.10.2018 / PubMed / Full text
LRPPRC[править]
- The loss of LRPPRC function induces the mitochondrial unfolded protein response. / 09.2015 / PubMed / Full text
- Drosophila melanogaster LRPPRC2 is involved in coordination of mitochondrial translation. / 16.12.2014 / PubMed / Full text
LRRN3[править]
- Accelerated aging in HIV/AIDS: novel biomarkers of senescent human CD8 T cells. / 2013 / PubMed / Full text
- Transcriptomics of cortical gray matter thickness decline during normal aging. / 15.11.2013 / PubMed / Full text
LTB[править]
- Aging and Hyperglycemia Intensify Dyslipidemia-Induced Oxidative Stress and Inflammation in Rats: Assessment of Restorative Potentials of ALA and EPA DHA. / 06.2019 / PubMed / Full text
- Advanced age in mares affects endometrial secretion of arachidonic acid metabolites during equine subclinical endometritis. / 11.2017 / PubMed / Full text
LTF[править]
- Uncovering genetic mechanisms of kidney aging through transcriptomics, genomics, and epigenomics. / 03.2019 / PubMed / Full text
- Effect of age on long-term facilitation and chemosensitivity during NREM sleep. / 15.11.2015 / PubMed / Full text
MALT1[править]
- MALT-1 mediates IL-17 neural signaling to regulate C. elegans behavior, immunity and longevity. / 29.04.2020 / PubMed / Full text
- MALT1-Deficient Mice Develop Atopic-Like Dermatitis Upon Aging. / 2019 / PubMed / Full text
MAP1A[править]
- SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text
- Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging. / 21.05.2014 / PubMed / Full text
MAP1LC3B[править]
- The effect of aging on the autophagic and heat shock response in human peripheral blood mononuclear cells. / 01.09.2018 / PubMed / Full text
- Inhibition of glioma growth by flavokawain B is mediated through endoplasmic reticulum stress induced autophagy. / 2018 / PubMed / Full text
MAVS[править]
- Spontaneous activation of a MAVS-dependent antiviral signaling pathway determines high basal interferon-β expression in cardiac myocytes. / 10.2017 / PubMed / Full text
- Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation. / 02.08.2017 / PubMed / Full text
MBNL1[править]
- Compound loss of muscleblind-like function in myotonic dystrophy. / 12.2013 / PubMed / Full text
- Dysfunction of protein homeostasis in myotonic dystrophies. / 09.2013 / PubMed / Full text
MC4R[править]
- Melanocortin-4 receptor rs17782313 polymorphisms are associated with serum triglycerides in older Chinese women. / 2016 / PubMed / Full text
- Polymorphic variants of neurotransmitter receptor genes may affect sexual function in aging males: data from the HALS study. / 2013 / PubMed / Full text
MCM3[править]
- Changes in MCM2-7 proteins at senescence. / 27.07.2019 / PubMed / Full text
- Up-regulation of MCM3 Relates to Neuronal Apoptosis After Traumatic Brain Injury in Adult Rats. / 05.2017 / PubMed / Full text
MCM4[править]
- Hepatoprotective effects of hydroxysafflor yellow A in D-galactose-treated aging mice. / 15.08.2020 / PubMed / Full text
- Changes in MCM2-7 proteins at senescence. / 27.07.2019 / PubMed / Full text
MCM8[править]
- Genetic variations, reproductive aging, and breast cancer risk in African American and European American women: The Women's Circle of Health Study. / 2017 / PubMed / Full text
- MCM8 and MCM9 Nucleotide Variants in Women With Primary Ovarian Insufficiency. / 01.02.2017 / PubMed / Full text
MCM9[править]
- MCM8- and MCM9 Deficiencies Cause Lifelong Increased Hematopoietic DNA Damage Driving p53-Dependent Myeloid Tumors. / 10.09.2019 / PubMed / Full text
- MCM8 and MCM9 Nucleotide Variants in Women With Primary Ovarian Insufficiency. / 01.02.2017 / PubMed / Full text
MDH1[править]
- Oxidative Damage to the TCA Cycle Enzyme MDH1 Dysregulates Bioenergetic Enzymatic Activity in the Aged Murine Brain. / 03.04.2020 / PubMed / Full text
- Low-Dose Pesticide Mixture Induces Accelerated Mesenchymal Stem Cell Aging In Vitro. / 08.2019 / PubMed / Full text
MDM4[править]
- In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. / 12.2019 / PubMed / Full text
- Germline genetics of the p53 pathway affect longevity in a gender specific manner. / 2014 / PubMed / Full text
ME1[править]
- NADP-MALIC ENZYME 1 Affects Germination after Seed Storage in Arabidopsis thaliana. / 01.02.2019 / PubMed / Full text
- Down-regulation of malic enzyme 1 and 2: Sensitizing head and neck squamous cell carcinoma cells to therapy-induced senescence. / 04.2016 / PubMed / Full text
ME2[править]
- A small-molecule inhibitor suppresses the tumor-associated mitochondrial NAD(P) -dependent malic enzyme (ME2) and induces cellular senescence. / 21.08.2015 / PubMed / Full text
- Down-regulation of malic enzyme 1 and 2: Sensitizing head and neck squamous cell carcinoma cells to therapy-induced senescence. / 04.2016 / PubMed / Full text
MEF2D[править]
- Molecular Pathway to Protection From Age-Dependent Photoreceptor Degeneration in Mef2 Deficiency. / 01.07.2017 / PubMed / Full text
- Epigenome-wide DNA methylation in hearing ability: new mechanisms for an old problem. / 2014 / PubMed / Full text
MEFV[править]
- The grandfather's fever. / 02.2020 / PubMed / Full text
- E148Q MEFV mutation carriage and longevity in individuals of Ashkenazi origin. / 07.2013 / PubMed / Full text
MEIS1[править]
- Down-regulation of MEIS1 promotes the maturation of oxidative phosphorylation in perinatal cardiomyocytes. / 06.2019 / PubMed / Full text
- Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. / 11.2017 / PubMed / Full text
MELK[править]
- MELK-T1, a small-molecule inhibitor of protein kinase MELK, decreases DNA-damage tolerance in proliferating cancer cells. / 02.10.2015 / PubMed / Full text
- Maternal embryonic leucine zipper kinase (MELK) reduces replication stress in glioblastoma cells. / 16.08.2013 / PubMed / Full text
MEOX2[править]
- Reduced expression of microRNA-130a promotes endothelial cell senescence and age-dependent impairment of neovascularization. / 26.05.2020 / PubMed / Full text
- Meox2 haploinsufficiency increases neuronal cell loss in a mouse model of Alzheimer's disease. / 06.2016 / PubMed / Full text
MGAT1[править]
- Pathways of aging: comparative analysis of gene signatures in replicative senescence and stress induced premature senescence. / 28.12.2016 / PubMed / Full text
- Transcriptional and biochemical responses of monoacylglycerol acyltransferase-mediated oil synthesis and associated senescence-like responses in Nicotiana benthamiana. / 2014 / PubMed / Full text
MIB1[править]
- MIB1-mediated degradation of WRN promotes cellular senescence in response to camptothecin treatment. / 09.2020 / PubMed / Full text
- Immunohistochemical detection of senescence markers in human sarcomas. / 02.2020 / PubMed / Full text
MICA[править]
- Derivation and Validation of a Geriatric-Sensitive Perioperative Cardiac Risk Index. / 16.11.2017 / PubMed / Full text
- NKG2D ligands mediate immunosurveillance of senescent cells. / 02.2016 / PubMed / Full text
MLH1[править]
- The somatic mutation landscape of the human body. / 24.12.2019 / PubMed / Full text
- RNA-Seq analysis of differentially expressed genes relevant to mismatch repair in aging hematopoietic stem-progenitor cells. / 25.02.2019 / PubMed / Full text
MMP10[править]
- Astrocyte senescence may drive alterations in GFAPα, [[CDKN2A]] p14 , and TAU3 transcript expression and contribute to cognitive decline. / 10.2019 / PubMed / Full text
- Bone biology-related gingival transcriptome in ageing and periodontitis in non-human primates. / 05.2016 / PubMed / Full text
MMP14[править]
- Overexpression of microRNA-1470 promotes proliferation and migration, and inhibits senescence of esophageal squamous carcinoma cells. / 12.2017 / PubMed / Full text
- Enhanced tissue regeneration potential of juvenile articular cartilage. / 11.2013 / PubMed / Full text
MMP8[править]
- [Investigation of signal molecules in saliva: prospects of application for diagnostics of myocardial infarction and the aging rate of different age people.] / 2019 / PubMed
- Bone biology-related gingival transcriptome in ageing and periodontitis in non-human primates. / 05.2016 / PubMed / Full text
MS4A6E[править]
- Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text
- Gene-based aggregate SNP associations between candidate AD genes and cognitive decline. / 04.2016 / PubMed / Full text
MSH6[править]
- RNA-Seq analysis of differentially expressed genes relevant to mismatch repair in aging hematopoietic stem-progenitor cells. / 25.02.2019 / PubMed / Full text
- DNA mismatch repair system: repercussions in cellular homeostasis and relationship with aging. / 2012 / PubMed / Full text
MT2A[править]
- Metallothionein Prevents Age-Associated Cardiomyopathy via Inhibiting NF-κB Pathway Activation and Associated Nitrative Damage to 2-OGD. / 10.12.2016 / PubMed / Full text
- Metallothioneins and renal ageing. / 09.2016 / PubMed / Full text
MTM1[править]
- Amphiphysin 2 modulation rescues myotubular myopathy and prevents focal adhesion defects in mice. / 20.03.2019 / PubMed / Full text
- Tamoxifen prolongs survival and alleviates symptoms in mice with fatal X-linked myotubular myopathy. / 19.11.2018 / PubMed / Full text
MTRR[править]
- One-carbon metabolism gene polymorphisms are associated with cognitive trajectory among African-American adults. / 12.2019 / PubMed / Full text
- [Clinical and genetic characteristics of long-livers in Moscow region]. / 2013 / PubMed
MUC1[править]
- Sensitivity of neoplastic cells to senescence unveiled under standard cell culture conditions. / 05.2015 / PubMed
- Serum KL-6 concentrations are associated with molecular sizes and efflux behavior of KL-6/MUC1 in healthy subjects. / 23.09.2013 / PubMed / Full text
MUC2[править]
- KLF4 deletion alters gastric cell lineage and induces MUC2 expression. / 09.06.2016 / PubMed / Full text
- Early intestinal development and mucin transcription in the young poult with probiotic and mannan oligosaccharide prebiotic supplementation. / 05.2016 / PubMed / Full text
MX1[править]
- White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy. / 02.2020 / PubMed / Full text
- Age-Associated Changes in the Respiratory Epithelial Response to Influenza Infection. / 10.11.2018 / PubMed / Full text
MYBL2[править]
- A multidimensional systems biology analysis of cellular senescence in aging and disease. / 07.04.2020 / PubMed / Full text
- Molecular mechanism of G arrest and cellular senescence induced by LEE011, a novel CDK4/CDK6 inhibitor, in leukemia cells. / 2017 / PubMed / Full text
MYBPC3[править]
- Compound heterozygosity deteriorates phenotypes of hypertrophic cardiomyopathy with founder MYBPC3 mutation: evidence from patients and zebrafish models. / 01.12.2014 / PubMed / Full text
- Association of levels of fasting glucose and insulin with rare variants at the chromosome 11p11.2-MADD locus: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text
MYOCD[править]
- Aging-associated changes in microRNA expression profile of internal anal sphincter smooth muscle: Role of microRNA-133a. / 01.11.2016 / PubMed / Full text
- Transplantation of mesenchymal cells rejuvenated by the overexpression of telomerase and myocardin promotes revascularization and tissue repair in a murine model of hindlimb ischemia. / 13.09.2013 / PubMed / Full text
MYOD1[править]
- Low Six4 and Six5 gene dosage improves dystrophic phenotype and prolongs life span of mdx mice. / 08.2016 / PubMed / Full text
- Age-associated changes in DNA methylation across multiple tissues in an inbred mouse model. / 03.2016 / PubMed / Full text
NAT2[править]
- Lifestyle and clinical determinants of skin autofluorescence in a population-based cohort study. / 05.2016 / PubMed / Full text
- The ultra-slow NAT2*6A haplotype is associated with reduced higher cognitive functions in an elderly study group. / 12.2015 / PubMed / Full text
NAV2[править]
- Genetic associations with age of menopause in familial longevity. / 10.2019 / PubMed / Full text
- Low expression of aging-related [[NRXN3]] is associated with Alzheimer disease: A systematic review and meta-analysis. / 07.2018 / PubMed / Full text
NCAM1[править]
- Resistance Training Enhances Skeletal Muscle Innervation Without Modifying the Number of Satellite Cells or their Myofiber Association in Obese Older Adults. / 10.2016 / PubMed / Full text
- Human skin keratinocytes can be reprogrammed to express neuronal genes and proteins after a single treatment with decitabine. / 06.2013 / PubMed / Full text
NDNF[править]
- Effect of neuron-derived neurotrophic factor on rejuvenation of human adipose-derived stem cells for cardiac repair after myocardial infarction. / 09.2019 / PubMed / Full text
- Aged Human Multipotent Mesenchymal Stromal Cells Can Be Rejuvenated by Neuron-Derived Neurotrophic Factor and Improve Heart Function After Injury. / 12.2017 / PubMed / Full text
NDUFS1[править]
- Mapping the protein phosphorylation sites in human mitochondrial complex I (NADH: Ubiquinone oxidoreductase): A bioinformatics study with implications for brain aging and neurodegeneration. / 01.2019 / PubMed / Full text
- Contribution of genetic polymorphisms on functional status at very old age: a gene-based analysis of 38 genes (311 SNPs) in the oxidative stress pathway. / 04.2014 / PubMed / Full text
NECTIN2[править]
- Genetics of Human Longevity From Incomplete Data: New Findings From the Long Life Family Study. / 08.10.2018 / PubMed / Full text
- Apolipoprotein E region molecular signatures of Alzheimer's disease. / 08.2018 / PubMed / Full text
NEDD4[править]
- Mechanism of PRL2 phosphatase-mediated PTEN degradation and tumorigenesis. / 25.08.2020 / PubMed / Full text
- Estrogen receptor β, a regulator of androgen receptor signaling in the mouse ventral prostate. / 09.05.2017 / PubMed / Full text
NEFM[править]
- Changes in mechanoreceptors in rabbits' anterior cruciate ligaments with age. / 06.2019 / PubMed / Full text
- The Alzheimer's disease transcriptome mimics the neuroprotective signature of IGF-1 receptor-deficient neurons. / 01.07.2017 / PubMed / Full text
NEIL1[править]
- NEIL1 stimulates neurogenesis and suppresses neuroinflammation after stress. / 09.2019 / PubMed / Full text
- Neil2-null Mice Accumulate Oxidized DNA Bases in the Transcriptionally Active Sequences of the Genome and Are Susceptible to Innate Inflammation. / 09.10.2015 / PubMed / Full text
NEIL2[править]
- Mitochondrial base excision repair positively correlates with longevity in the liver and heart of mammals. / 04.2020 / PubMed / Full text
- Neil2-null Mice Accumulate Oxidized DNA Bases in the Transcriptionally Active Sequences of the Genome and Are Susceptible to Innate Inflammation. / 09.10.2015 / PubMed / Full text
NEK2[править]
- A multidimensional systems biology analysis of cellular senescence in aging and disease. / 07.04.2020 / PubMed / Full text
- Upregulation of FOXM1 leads to diminished drug sensitivity in myeloma. / 21.11.2018 / PubMed / Full text
NEO1[править]
- Neogenin-1 distinguishes between myeloid-biased and balanced [i]Hoxb5[/i] mouse long-term hematopoietic stem cells. / 10.12.2019 / PubMed / Full text
- Ionizing radiation reduces ADAM10 expression in brain microvascular endothelial cells undergoing stress-induced senescence. / 04.2017 / PubMed / Full text
NFATC1[править]
- Age-dependent human β cell proliferation induced by glucagon-like peptide 1 and calcineurin signaling. / 02.10.2017 / PubMed / Full text
- Genome-wide methylation analysis reveals differentially methylated loci that are associated with an age-dependent increase in bovine fibroblast response to LPS. / 25.05.2017 / PubMed / Full text
NFIB[править]
- Cell-type-specific expression of NFIX in the developing and adult cerebellum. / 07.2017 / PubMed / Full text
- Multipotency of Adult Hippocampal NSCs In Vivo Is Restricted by Drosha/NFIB. / 03.11.2016 / PubMed / Full text
NHLRC1[править]
- DNA methylation-based forensic age prediction using artificial neural networks and next generation sequencing. / 05.2017 / PubMed / Full text
- Loss of GABAergic cortical neurons underlies the neuropathology of Lafora disease. / 28.01.2014 / PubMed / Full text
NLRP1[править]
- NADPH oxidase 2-mediated NLRP1 inflammasome activation involves in neuronal senescence in hippocampal neurons in vitro. / 04.2019 / PubMed / Full text
- Genetic analysis of long-lived families reveals novel variants influencing high density-lipoprotein cholesterol. / 2014 / PubMed / Full text
NLRP12[править]
- Persistent DNA damage-induced NLRP12 improves hematopoietic stem cell function. / 21.05.2020 / PubMed / Full text
- Effects of aging in the expression of NOD-like receptors and inflammasome-related genes in oral mucosa. / 02.2016 / PubMed / Full text
NLRX1[править]
- NOD-like receptor X1 functions as a tumor suppressor by inhibiting epithelial-mesenchymal transition and inducing aging in hepatocellular carcinoma cells. / 26.02.2018 / PubMed / Full text
- The expression of NLRX1 in C57BL/6 mice cochlear hair cells: Possible relation to aging- and neomycin-induced deafness. / 11.03.2016 / PubMed / Full text
NMB[править]
- Deceased donor kidney allocation: an economic evaluation of contemporary longevity matching practices. / 09.10.2020 / PubMed / Full text
- Asleep versus awake: does it matter?: Pediatric regional block complications by patient state: a report from the Pediatric Regional Anesthesia Network. / 07-08.2014 / PubMed / Full text
NME8[править]
- Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text
- Gene-based aggregate SNP associations between candidate AD genes and cognitive decline. / 04.2016 / PubMed / Full text
NMNAT1[править]
- ADNP differentially interact with genes/proteins in correlation with aging: a novel marker for muscle aging. / 06.2019 / PubMed / Full text
- Genome-wide association study and annotating candidate gene networks affecting age at first calving in Nellore cattle. / 12.2017 / PubMed / Full text
NMNAT2[править]
- NMNAT2-mediated NAD generation is essential for quality control of aged oocytes. / 06.2019 / PubMed / Full text
- Sarm1 Deletion, but Not Wld , Confers Lifelong Rescue in a Mouse Model of Severe Axonopathy. / 03.10.2017 / PubMed / Full text
NMS[править]
- Uncontrolled Diabetes as an Associated Factor with Dynapenia in Adults Aged 50 Years or Older: Sex Differences. / 22.05.2020 / PubMed / Full text
- Neonatal stress affects the aging trajectory of female rats on the endocrine, temperature, and ventilatory responses to hypoxia. / 01.04.2015 / PubMed / Full text
NNMT[править]
- Small molecule nicotinamide N-methyltransferase inhibitor activates senescent muscle stem cells and improves regenerative capacity of aged skeletal muscle. / 05.2019 / PubMed / Full text
- Nicotinamide-N-methyltransferase controls behavior, neurodegeneration and lifespan by regulating neuronal autophagy. / 09.2018 / PubMed / Full text
NONO[править]
- Physiological levels of thrombospondin-1 decrease NO-dependent vasodilation in coronary microvessels from aged rats. / 01.06.2016 / PubMed / Full text
- The effects of aging on the functional and structural properties of the rat basilar artery. / 01.06.2014 / PubMed / Full text
NOP10[править]
- Pseudouridylation defect due to [i]DKC1[/i] and [i]NOP10[/i] mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis. / 30.06.2020 / PubMed / Full text
- Acute telomerase components depletion triggers oxidative stress as an early event previous to telomeric shortening. / 04.2018 / PubMed / Full text
NPTX2[править]
- Evaluation of DNA methylation markers and their potential to predict human aging. / 08.2015 / PubMed / Full text
- Developing a DNA methylation assay for human age prediction in blood and bloodstain. / 07.2015 / PubMed / Full text
NPW[править]
- Novel information processing at work across time is associated with cognitive change in later life: A 14-year longitudinal study. / 09.2020 / PubMed / Full text
- Neuropeptide W modulation of gastric vagal afferent mechanosensitivity: Impact of age and sex. / 09.2015 / PubMed / Full text
NPY1R[править]
- NPY/neuropeptide Y enhances autophagy in the hypothalamus: a mechanism to delay aging? / 2015 / PubMed / Full text
- Vulnerability imposed by diet and brain trauma for anxiety-like phenotype: implications for post-traumatic stress disorders. / 2013 / PubMed / Full text
NPY5R[править]
- Effects of age on feeding response: Focus on the rostral C1 neuron and its glucoregulatory proteins. / 01.2020 / PubMed / Full text
- NPY/neuropeptide Y enhances autophagy in the hypothalamus: a mechanism to delay aging? / 2015 / PubMed / Full text
NR3C1[править]
- Glucocorticoid receptor (NR3C1) gene polymorphisms are associated with age and blood parameters in Polish Caucasian nonagenarians and centenarians. / 02.2019 / PubMed / Full text
- Inter-Regional Variations in Gene Expression and Age-Related Cortical Thinning in the Adolescent Brain. / 01.04.2018 / PubMed / Full text
NRL[править]
- Development of a cyclophosphamide stress test to predict resilience to aging in mice. / 12.2020 / PubMed / Full text
- A Spontaneous Aggressive ERα Mammary Tumor Model Is Driven by Kras Activation. / 06.08.2019 / PubMed / Full text
NRM[править]
- Association between Clonal Hematopoiesis and Late Nonrelapse Mortality after Autologous Hematopoietic Cell Transplantation. / 12.2019 / PubMed / Full text
- Who is the better donor for older hematopoietic transplant recipients: an older-aged sibling or a young, matched unrelated volunteer? / 28.03.2013 / PubMed / Full text
NRP1[править]
- APOE ε4-specific associations of VEGF gene family expression with cognitive aging and Alzheimer's disease. / 03.2020 / PubMed / Full text
- Neuropilin 1 is essential for gastrointestinal smooth muscle contractility and motility in aged mice. / 2015 / PubMed / Full text
NRXN1[править]
- Neurexins 1-3 Each Have a Distinct Pattern of Expression in the Early Developing Human Cerebral Cortex. / 01.01.2017 / PubMed / Full text
- Neurexin 1 ([[NRXN1]]) splice isoform expression during human neocortical development and aging. / 05.2016 / PubMed / Full text
NRXN3[править]
- Low expression of aging-related [[NRXN3]] is associated with Alzheimer disease: A systematic review and meta-analysis. / 07.2018 / PubMed / Full text
- Neurexins 1-3 Each Have a Distinct Pattern of Expression in the Early Developing Human Cerebral Cortex. / 01.01.2017 / PubMed / Full text
NTF4[править]
- Subcutaneous Neurotrophin 4 Infusion Using Osmotic Pumps or Direct Muscular Injection Enhances Aging Rat Laryngeal Muscles. / 13.06.2017 / PubMed / Full text
- Enhancement of aging rat laryngeal muscles with endogenous growth factor treatment. / 05.2016 / PubMed / Full text
NTRK2[править]
- The Role of BDNF in Age-Dependent Changes of Excitatory and Inhibitory Synaptic Markers in the Human Prefrontal Cortex. / 12.2016 / PubMed / Full text
- Nodes and biological processes identified on the basis of network analysis in the brain of the senescence accelerated mice as an Alzheimer's disease animal model. / 2013 / PubMed / Full text
OAT[править]
- Opioid agonist treatment reduces losses in quality of life and quality-adjusted life expectancy in heroin users: Evidence from real world data. / 01.08.2019 / PubMed / Full text
- Strength training and aerobic exercise alter mitochondrial parameters in brown adipose tissue and equally reduce body adiposity in aged rats. / 02.2019 / PubMed / Full text
OMD[править]
- Genome-wide associations and detection of potential candidate genes for direct genetic and maternal genetic effects influencing dairy cattle body weight at different ages. / 06.02.2019 / PubMed / Full text
- Digestive capacity in weanling and mature horses. / 05.2013 / PubMed / Full text
OPTN[править]
- Autophagy receptor OPTN (optineurin) regulates mesenchymal stem cell fate and bone-fat balance during aging by clearing FABP3. / 04.11.2020 / PubMed / Full text
- Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis. / 24.02.2016 / PubMed / Full text
ORAI1[править]
- Progerin in muscle leads to thermogenic and metabolic defects via impaired calcium homeostasis. / 02.2020 / PubMed / Full text
- Calcium Dynamics of Ex Vivo Long-Term Cultured CD8 T Cells Are Regulated by Changes in Redox Metabolism. / 2016 / PubMed / Full text
P2RX7[править]
- The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. / 29.07.2020 / PubMed / Full text
- A rare functional haplotype of the P2RX4 and P2RX7 genes leads to loss of innate phagocytosis and confers increased risk of age-related macular degeneration. / 04.2013 / PubMed / Full text
PALB2[править]
- 53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination. / 02.01.2020 / PubMed / Full text
- A Multigene Test Could Cost-Effectively Help Extend Life Expectancy for Women at Risk of Hereditary Breast Cancer. / 04.2017 / PubMed / Full text
PAX5[править]
- Diminished antibody response to influenza vaccination is characterized by expansion of an age-associated B-cell population with low PAX5. / 08.2018 / PubMed / Full text
- Developmental expression of B cell molecules in equine lymphoid tissues. / 01.2017 / PubMed / Full text
PAX6[править]
- Pbx1 is required for adult subventricular zone neurogenesis. / 01.07.2016 / PubMed / Full text
- Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. / 03.2015 / PubMed / Full text
PBX1[править]
- Internalization of the TAT-PBX1 fusion protein significantly enhances the proliferation of human hair follicle-derived mesenchymal stem cells and delays their senescence. / 10.2020 / PubMed / Full text
- Pbx1 is required for adult subventricular zone neurogenesis. / 01.07.2016 / PubMed / Full text
PCDH10[править]
- Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. / 12.2017 / PubMed / Full text
- PCDH10, a novel p53 transcriptional target in regulating cell migration. / 2015 / PubMed / Full text
PDCD4[править]
- Petal abscission in roses is associated with the activation of a truncated version of the animal PDCD4 homologue, RbPCD1. / 11.2019 / PubMed / Full text
- PDCD4 Knockdown Induces Senescence in Hepatoma Cells by Up-Regulating the p21 Expression. / 2018 / PubMed / Full text
PDE2A[править]
- TAK-915, a phosphodiesterase 2A inhibitor, ameliorates the cognitive impairment associated with aging in rodent models. / 30.12.2019 / PubMed / Full text
- Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text
PDE3A[править]
- Effects of aging on gene expression and mitochondrial DNA in the equine oocyte and follicle cells. / 07.2015 / PubMed / Full text
- Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text
PDE5A[править]
- Repurposing erectile dysfunction drugs tadalafil and vardenafil to increase bone mass. / 23.06.2020 / PubMed / Full text
- Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text
PDE9A[править]
- Identification of new PDE9A isoforms and how their expression and subcellular compartmentalization in the brain change across the life span. / 05.2018 / PubMed / Full text
- Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text
PDGFB[править]
- Skin-resident stem cells and wound healing. / 2017 / PubMed / Full text
- The choroid plexus transcriptome reveals changes in type I and II interferon responses in a mouse model of Alzheimer's disease. / 10.2015 / PubMed / Full text
PDHB[править]
- Oxidative Damage to the TCA Cycle Enzyme MDH1 Dysregulates Bioenergetic Enzymatic Activity in the Aged Murine Brain. / 03.04.2020 / PubMed / Full text
- Neuron-specific knockdown of Drosophila PDHB induces reduction of lifespan, deficient locomotive ability, abnormal morphology of motor neuron terminals and photoreceptor axon targeting. / 15.05.2018 / PubMed / Full text
PDK2[править]
- Age-related impairments in skeletal muscle PDH phosphorylation and plasma lactate are indicative of metabolic inflexibility and the effects of exercise training. / 01.07.2016 / PubMed / Full text
- Effects of Exercise Training on Regulation of Skeletal Muscle Glucose Metabolism in Elderly Men. / 07.2015 / PubMed / Full text
PDK4[править]
- Putrescine delays postovulatory aging of mouse oocytes by upregulating PDK4 expression and improving mitochondrial activity. / 16.12.2018 / PubMed / Full text
- Age-related impairments in skeletal muscle PDH phosphorylation and plasma lactate are indicative of metabolic inflexibility and the effects of exercise training. / 01.07.2016 / PubMed / Full text
PENK[править]
- Aging-associated DNA methylation changes in middle-aged individuals: the Young Finns study. / 09.02.2016 / PubMed / Full text
- Genome-wide age-related changes in DNA methylation and gene expression in human PBMCs. / 06.2014 / PubMed / Full text
PES1[править]
- Transcription factor RD26 is a key regulator of metabolic reprogramming during dark-induced senescence. / 06.2018 / PubMed / Full text
- The Plastoglobule-Localized Metallopeptidase PGM48 Is a Positive Regulator of Senescence in Arabidopsis thaliana. / 12.2016 / PubMed / Full text
PFKFB3[править]
- DNA damage, metabolism and aging in pro-inflammatory T cells: Rheumatoid arthritis as a model system. / 05.2018 / PubMed / Full text
- Bioenergetic mechanisms in astrocytes may contribute to amyloid plaque deposition and toxicity. / 15.05.2015 / PubMed / Full text
PGAM1[править]
- Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. / 2019 / PubMed / Full text
- The aged testis. A good model to find proteins involved in age-related changes of testis by proteomic analysis. / 01-02.2014 / PubMed
PGR[править]
- Inter-Regional Variations in Gene Expression and Age-Related Cortical Thinning in the Adolescent Brain. / 01.04.2018 / PubMed / Full text
- Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus. / 2015 / PubMed / Full text
PHB2[править]
- Prohibitin-2 is a novel regulator of p21 induced by depletion of γ-glutamylcyclotransferase. / 29.01.2018 / PubMed / Full text
- Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor. / 12.01.2017 / PubMed / Full text
PI4KB[править]
- Differential DNA Methylation in Relation to Age and Health Risks of Obesity. / 24.07.2015 / PubMed / Full text
- Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text
PIEZO1[править]
- Niche stiffness underlies the ageing of central nervous system progenitor cells. / 09.2019 / PubMed / Full text
- On the Mechanism of Human Red Blood Cell Longevity: Roles of Calcium, the Sodium Pump, PIEZO1, and Gardos Channels. / 2017 / PubMed / Full text
PIK3R2[править]
- The senescent status of endothelial cells affects proliferation, inflammatory profile and SOX2 expression in bone marrow-derived mesenchymal stem cells. / 06.2019 / PubMed / Full text
- Gene transcripts associated with muscle strength: a CHARGE meta-analysis of 7,781 persons. / 01.2016 / PubMed / Full text
PKP2[править]
- Molecular disturbance underlies to arrhythmogenic cardiomyopathy induced by transgene content, age and exercise in a truncated PKP2 mouse model. / 01.09.2016 / PubMed / Full text
- Age-dependent clinical and genetic characteristics in Japanese patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. / 2013 / PubMed / Full text
PLA2G6[править]
- Mutations in the Drosophila homolog of human PLA2G6 give rise to age-dependent loss of psychomotor activity and neurodegeneration. / 13.02.2018 / PubMed / Full text
- iPLA2β knockout mouse, a genetic model for progressive human motor disorders, develops age-related neuropathology. / 08.2014 / PubMed / Full text
PLD3[править]
- Whole-Exome Sequencing of an Exceptional Longevity Cohort. / 16.08.2019 / PubMed / Full text
- Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text
PLK1[править]
- Dynactin pathway-related gene expression is altered by aging, but not by vitrification. / 09.2019 / PubMed / Full text
- Downregulation of Polo-like kinase 1 induces cellular senescence in human primary cells through a p53-dependent pathway. / 10.2013 / PubMed / Full text
PLK4[править]
- A novel lncRNA PLK4 up-regulated by talazoparib represses hepatocellular carcinoma progression by promoting YAP-mediated cell senescence. / 05.2020 / PubMed / Full text
- Differential expression of AURKA/PLK4 in quiescence and senescence of osteosarcoma U2OS cells. / 04.2020 / PubMed / Full text
PMP22[править]
- Role of microRNAs in senescence and its contribution to peripheral neuropathy in the arsenic exposed population of West Bengal, India. / 02.2018 / PubMed / Full text
- A molecular signature predictive of indolent prostate cancer. / 11.09.2013 / PubMed / Full text
POLD3[править]
- POLD3 Is Haploinsufficient for DNA Replication in Mice. / 01.09.2016 / PubMed / Full text
- POLD1: Central mediator of DNA replication and repair, and implication in cancer and other pathologies. / 15.09.2016 / PubMed / Full text
POLG2[править]
- An N-Ethyl-N-Nitrosourea (ENU)-Induced Tyr265Stop Mutation of the DNA Polymerase Accessory Subunit Gamma 2 (Polg2) Is Associated With Renal Calcification in Mice. / 03.2019 / PubMed / Full text
- Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text
PPARD[править]
- PPARD 294C overrepresentation in general and long-lived population in China Bama longevity area and unique relationships between PPARD 294T/C polymorphism and serum lipid profiles. / 07.03.2015 / PubMed / Full text
- [Genotype and allele frequencies of UCP and PPAR gene families in residents of besieged Leningrad and in the control group]. / 2014 / PubMed
PPM1D[править]
- Detectible mosaic truncating PPM1D mutations, age and breast cancer risk. / 06.2019 / PubMed / Full text
- Age-related remodelling of oesophageal epithelia by mutated cancer drivers. / 01.2019 / PubMed / Full text
PPP3CB[править]
- The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. / 29.07.2020 / PubMed / Full text
- Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex. / 2018 / PubMed / Full text
PPY[править]
- Delta Cell Hyperplasia in Adult Goto-Kakizaki (GK/MolTac) Diabetic Rats. / 2015 / PubMed / Full text
- Blood Protein Markers of Neocortical Amyloid-β Burden: A Candidate Study Using SOMAscan Technology. / 2015 / PubMed / Full text
PRF1[править]
- Gene transcripts associated with muscle strength: a CHARGE meta-analysis of 7,781 persons. / 01.2016 / PubMed / Full text
- Gene expression markers of age-related inflammation in two human cohorts. / 10.2015 / PubMed / Full text
PRG4[править]
- Inhibition of Wnt/β-catenin signaling ameliorates osteoarthritis in a murine model of experimental osteoarthritis. / 08.02.2018 / PubMed / Full text
- Age-related changes in structure and extracellular matrix protein expression levels in rat tendons. / 12.2013 / PubMed / Full text
PRKAA2[править]
- Study on the effect of CaMKKβ-mediated AMPK activation on the glycolysis and the quality of different altitude postmortem bovines longissimus muscle. / 11.2019 / PubMed / Full text
- Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone. / 07.2014 / PubMed / Full text
PRMT7[править]
- Regenerating muscle with arginine methylation. / 27.05.2017 / PubMed / Full text
- PRMT7 Preserves Satellite Cell Regenerative Capacity. / 16.02.2016 / PubMed / Full text
PRMT8[править]
- Arginine Methyltransferase PRMT8 Provides Cellular Stress Tolerance in Aging Motoneurons. / 29.08.2018 / PubMed / Full text
- Novel Protein Arginine Methyltransferase 8 Isoform Is Essential for Cell Proliferation. / 09.2016 / PubMed / Full text
PROX1[править]
- Molecular control of two novel migratory paths for CGE-derived interneurons in the developing mouse brain. / 15.05.2016 / PubMed / Full text
- PROX1: a lineage tracer for cortical interneurons originating in the lateral/caudal ganglionic eminence and preoptic area. / 2013 / PubMed / Full text
PSMB8[править]
- [Target protein candidates of hypothalamus in aging rats with intervention by Qiongyugao]. / 04.2016 / PubMed / Full text
- Assessment of the risk of blastomere biopsy during preimplantation genetic diagnosis in a mouse model: reducing female ovary function with an increase in age by proteomics method. / 06.12.2013 / PubMed / Full text
PTH1R[править]
- Bone-remodeling transcript levels are independent of perching in end-of-lay white leghorn chickens. / 23.01.2015 / PubMed / Full text
- Variation in the [[PTH2R]] gene is associated with age-related degenerative changes in the lumbar spine. / 01.2015 / PubMed / Full text
PTK7[править]
- Innate and adaptive immune dysregulation in critically ill ICU patients. / 05.07.2018 / PubMed / Full text
- Heterogeneity in thymic emigrants: implications for thymectomy and immunosenescence. / 2013 / PubMed / Full text
PTPN1[править]
- The genetic component of human longevity: New insights from the analysis of pathway-based SNP-SNP interactions. / 06.2018 / PubMed / Full text
- Leptin and leptin-related gene polymorphisms, obesity, and influenza A/H1N1 vaccine-induced immune responses in older individuals. / 07.02.2014 / PubMed / Full text
PTTG1[править]
- [Down-regulated PTTG1 expression promotes the senescence of human prostate cancer LNCaP-AI]. / 03.2019 / PubMed
- Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text
PUM2[править]
- PUMILIO hyperactivity drives premature aging of [i]Norad[/i]-deficient mice. / 08.02.2019 / PubMed / Full text
- The RNA-Binding Protein PUM2 Impairs Mitochondrial Dynamics and Mitophagy During Aging. / 21.02.2019 / PubMed / Full text
PYCR1[править]
- A Transcriptome Study of Progeroid Neurocutaneous Syndrome Reveals POSTN As a New Element in Proline Metabolic Disorder. / 12.2018 / PubMed / Full text
- Sublethal endoplasmic reticulum stress caused by the mutation of immunoglobulin heavy chain-binding protein induces the synthesis of a mitochondrial protein, pyrroline-5-carboxylate reductase 1. / 01.2017 / PubMed / Full text
RAD51B[править]
- Increased age-adjusted hazard of death associated with a common single nucleotide polymorphism of the human RAD52 gene in a cardiovascular cohort. / 10.2017 / PubMed / Full text
- [What's new in dermatological research?]. / 12.2012 / PubMed / Full text
RAG1[править]
- T cell senescence accelerates Angiotensin II-induced target organ damage. / 12.02.2020 / PubMed / Full text
- Aged murine hematopoietic stem cells drive aging-associated immune remodeling. / 09.08.2018 / PubMed / Full text
RAG2[править]
- Phosphate Transporter Profiles in Murine and Human Thymi Identify Thymocytes at Distinct Stages of Differentiation. / 2020 / PubMed / Full text
- Both retention and recirculation contribute to long-lived regulatory T-cell accumulation in the thymus. / 09.2014 / PubMed / Full text
RASGRP1[править]
- Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. / 12.2017 / PubMed / Full text
- PPARβ/δ promotes HRAS-induced senescence and tumor suppression by potentiating p-ERK and repressing p-AKT signaling. / 13.11.2014 / PubMed / Full text
RECQL5[править]
- RECQL5 has unique strand annealing properties relative to the other human RecQ helicase proteins. / 01.2016 / PubMed / Full text
- Senescence induced by RECQL4 dysfunction contributes to Rothmund-Thomson syndrome features in mice. / 15.05.2014 / PubMed / Full text
RNF168[править]
- 53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination. / 02.01.2020 / PubMed / Full text
- PML nuclear bodies are recruited to persistent DNA damage lesions in an RNF168-53BP1 dependent manner and contribute to DNA repair. / 06.2019 / PubMed / Full text
RPIA[править]
- Suppression of p16 Induces mTORC1-Mediated Nucleotide Metabolic Reprogramming. / 20.08.2019 / PubMed / Full text
- Ribose-5-phosphate isomerase A regulates hepatocarcinogenesis via PP2A and ERK signaling. / 01.07.2015 / PubMed / Full text
RRM1[править]
- α-Synuclein toxicity in yeast and human cells is caused by cell cycle re-entry and autophagy degradation of ribonucleotide reductase 1. / 08.2019 / PubMed / Full text
- GBM-associated mutations and altered protein expression are more common in young patients. / 25.10.2016 / PubMed / Full text
RXRG[править]
- Genetic variations, reproductive aging, and breast cancer risk in African American and European American women: The Women's Circle of Health Study. / 2017 / PubMed / Full text
- Genome wide association study of age at menarche in the Japanese population. / 2013 / PubMed / Full text
S100A12[править]
- Fetal articular cartilage regeneration versus adult fibrocartilaginous repair: secretome proteomics unravels molecular mechanisms in an ovine model. / 06.07.2018 / PubMed / Full text
- Evaluation of serum biochemical marker concentrations and survival time in dogs with protein-losing enteropathy. / 01.01.2015 / PubMed / Full text
S100A6[править]
- Sex differences in distribution of cannabinoid receptors (CB1 and CB2), S100A6 and CacyBP/SIP in human ageing hearts. / 27.11.2018 / PubMed / Full text
- S100A6 (calcyclin) is a novel marker of neural stem cells and astrocyte precursors in the subgranular zone of the adult mouse hippocampus. / 01.2014 / PubMed / Full text
S1PR3[править]
- Sexual dimorphism of metabolic and vascular dysfunction in aged mice and those lacking the sphingosine 1-phosphate receptor 3. / 01.12.2017 / PubMed / Full text
- Impact of Age and Polytherapy on Fingolimod Induced Bradycardia: a Preclinical Study. / 03.2017 / PubMed / Full text
SAA1[править]
- Naturally occurring antibodies against serum amyloid A reduce IL-6 release from peripheral blood mononuclear cells. / 2018 / PubMed / Full text
- Association between local inflammation and breast tissue age-related lobular involution among premenopausal and postmenopausal breast cancer patients. / 2017 / PubMed / Full text
SALL1[править]
- SALL1 functions as a tumor suppressor in breast cancer by regulating cancer cell senescence and metastasis through the NuRD complex. / 06.04.2018 / PubMed / Full text
- Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. / 12.2017 / PubMed / Full text
SCGN[править]
- Detection and evaluation of DNA methylation markers found at SCGN and KLF14 loci to estimate human age. / 11.2017 / PubMed / Full text
- DNA methylation-based forensic age prediction using artificial neural networks and next generation sequencing. / 05.2017 / PubMed / Full text
SCN2B[править]
- MicroRNA‑449a regulates the progression of brain aging by targeting SCN2B in SAMP8 mice. / 04.2020 / PubMed / Full text
- Sodium Channel Voltage-Gated Beta 2 Plays a Vital Role in Brain Aging Associated with Synaptic Plasticity and Expression of COX5A and FGF-2. / 03.2016 / PubMed / Full text
SCN5A[править]
- [Use of Pharmacogenetic Information for Therapeutic Drug Monitoring of an Antiarrhythmic Drug]. / 2018 / PubMed / Full text
- Sequencing of SCN5A identifies rare and common variants associated with cardiac conduction: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. / 06.2014 / PubMed / Full text
SCO2[править]
- Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients. / 03.09.2019 / PubMed / Full text
- Role of SCOX in determination of Drosophila melanogaster lifespan. / 2014 / PubMed / Full text
SDC4[править]
- Alterations in Corneal Sensory Nerves During Homeostasis, Aging, and After Injury in Mice Lacking the Heparan Sulfate Proteoglycan Syndecan-1. / 01.10.2017 / PubMed / Full text
- Metabolism and successful aging: Polymorphic variation of syndecan-4 (SDC4) gene associate with longevity and lipid profile in healthy elderly Italian subjects. / 09.2015 / PubMed / Full text
SDHC[править]
- Endogenous reactive oxygen species cause astrocyte defects and neuronal dysfunctions in the hippocampus: a new model for aging brain. / 02.2017 / PubMed / Full text
- Long-term prognosis of patients with pediatric pheochromocytoma. / 02.2014 / PubMed / Full text
SERPINB2[править]
- Elevated circulating HtrA4 in preeclampsia may alter endothelial expression of senescence genes. / 15.01.2020 / PubMed / Full text
- An Endogenous Anti-aging Factor, Sonic Hedgehog, Suppresses Endometrial Stem Cell Aging through SERPINB2. / 03.07.2019 / PubMed / Full text
SESN2[править]
- Copy Number Alterations in Papillary Thyroid Carcinomas: Does Loss of [i]SESN2[/i] Have a Role in Age-related Different Prognoses? / 09-10.2020 / PubMed / Full text
- Loss of sestrin 2 potentiates the early onset of age-related sensory cell degeneration in the cochlea. / 11.10.2017 / PubMed / Full text
SESN3[править]
- Autophagy mediators (FOXO1, SESN3 and TSC2) in Lewy body disease and aging. / 25.09.2018 / PubMed / Full text
- Age-related reduction in the expression of FOXO transcription factors and correlations with intervertebral disc degeneration. / 12.2017 / PubMed / Full text
SFRP2[править]
- [Role and alterations of DNA methylation during the aging and cancer]. / 01.2018 / PubMed / Full text
- Thyroid hormone activates Wnt/β-catenin signaling involved in adult epithelial development during intestinal remodeling in Xenopus laevis. / 08.2016 / PubMed / Full text
SGK1[править]
- Epigenetic Regulation of KL (Klotho) via H3K27me3 (Histone 3 Lysine [K] 27 Trimethylation) in Renal Tubule Cells. / 05.2020 / PubMed / Full text
- The cell survival kinase SGK1 and its targets FOXO3a and NDRG1 in aged human brain. / 10.2013 / PubMed / Full text
SIX3[править]
- CellBIC: bimodality-based top-down clustering of single-cell RNA sequencing data reveals hierarchical structure of the cell type. / 30.11.2018 / PubMed / Full text
- Age-Dependent Pancreatic Gene Regulation Reveals Mechanisms Governing Human β Cell Function. / 10.05.2016 / PubMed / Full text
SLC13A5[править]
- INDY-A New Link to Metabolic Regulation in Animals and Humans. / 2017 / PubMed / Full text
- The role of INDY in metabolism, health and longevity. / 2015 / PubMed / Full text
SLC16A7[править]
- Genetics of facial telangiectasia in the Rotterdam Study: a genome-wide association study and candidate gene approach. / 23.10.2020 / PubMed / Full text
- The SLC16 gene family - structure, role and regulation in health and disease. / 04-06.2013 / PubMed / Full text
SLC19A1[править]
- Novel drug-resistance mechanisms of pemetrexed-treated non-small cell lung cancer. / 30.03.2018 / PubMed / Full text
- Association of MTHFR, SLC19A1 Genetic Polymorphism, Serum Folate, Vitamin B and Hcy Status with Cognitive Functions in Chinese Adults. / 24.10.2016 / PubMed / Full text
SLC24A4[править]
- Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text
- Gene-based aggregate SNP associations between candidate AD genes and cognitive decline. / 04.2016 / PubMed / Full text
SLC25A24[править]
- De Novo Mutations in SLC25A24 Cause a Disorder Characterized by Early Aging, Bone Dysplasia, Characteristic Face, and Early Demise. / 02.11.2017 / PubMed / Full text
- De Novo Mutations in SLC25A24 Cause a Craniosynostosis Syndrome with Hypertrichosis, Progeroid Appearance, and Mitochondrial Dysfunction. / 02.11.2017 / PubMed / Full text
SLC26A2[править]
- Phenotypic characterization of Slc26a2 mutant mice reveals a multifactorial etiology of spondylolysis. / 01.2020 / PubMed / Full text
- Alteration of proteoglycan sulfation affects bone growth and remodeling. / 05.2013 / PubMed / Full text
SLC2A4[править]
- Permanent cystathionine-β-Synthase gene knockdown promotes inflammation and oxidative stress in immortalized human adipose-derived mesenchymal stem cells, enhancing their adipogenic capacity. / 02.08.2020 / PubMed / Full text
- Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats. / 02.2019 / PubMed / Full text
SLC2A9[править]
- ABCG2 rs2231142 variant in hyperuricemia is modified by SLC2A9 and SLC22A12 polymorphisms and cardiovascular risk factors in an elderly community-dwelling population. / 17.03.2020 / PubMed / Full text
- MicroRNA-Based Linkage between Aging and Cancer: from Epigenetics View Point. / 07-09.2016 / PubMed / Full text
SLC6A3[править]
- A variable number of tandem repeats in the 3'-untranslated region of the dopamine transporter modulates striatal function during working memory updating across the adult age span. / 08.2015 / PubMed / Full text
- Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus. / 2015 / PubMed / Full text
SLC7A11[править]
- SOCS1 regulates senescence and ferroptosis by modulating the expression of p53 target genes. / 28.10.2017 / PubMed / Full text
- Comprehensive Analysis of Interaction Networks of Telomerase Reverse Transcriptase with Multiple Bioinformatic Approaches: Deep Mining the Potential Functions of Telomere and Telomerase. / 08.2017 / PubMed / Full text
SLN[править]
- Completion Lymph Node Dissection or Observation for Melanoma Sentinel Lymph Node Metastases: A Decision Analysis. / 09.2016 / PubMed / Full text
- Age differences in brain activity related to unsuccessful declarative memory retrieval. / 01.07.2015 / PubMed / Full text
SMAD1[править]
- TGFB1-Mediated Gliosis in Multiple Sclerosis Spinal Cords Is Favored by the Regionalized Expression of HOXA5 and the Age-Dependent Decline in Androgen Receptor Ligands. / 26.11.2019 / PubMed / Full text
- BMP-SMAD-ID promotes reprogramming to pluripotency by inhibiting p16/INK4A-dependent senescence. / 15.11.2016 / PubMed / Full text
SMAD7[править]
- Forkhead Box Protein 1 (FoxO1) Inhibits Accelerated β Cell Aging in Pancreas-specific SMAD7 Mutant Mice. / 24.02.2017 / PubMed / Full text
- Granulosa cell function and oocyte competence: Super-follicles, super-moms and super-stimulation in cattle. / 09.2014 / PubMed / Full text
SMARCA4[править]
- Attenuation of epigenetic regulator SMARCA4 and ERK-ETS signaling suppresses aging-related dopaminergic degeneration. / 09.2020 / PubMed / Full text
- GBM-associated mutations and altered protein expression are more common in young patients. / 25.10.2016 / PubMed / Full text
SMO[править]
- Sonic hedgehog regulation of cavernous nerve regeneration and neurite formation in aged pelvic plexus. / 02.2019 / PubMed / Full text
- Silybum marianum oil attenuates oxidative stress and ameliorates mitochondrial dysfunction in mice treated with D-galactose. / 01.2014 / PubMed / Full text
SMOX[править]
- Skeletal Muscle Pathophysiology: The Emerging Role of Spermine Oxidase and Spermidine. / 14.02.2018 / PubMed / Full text
- Haemocytes control stem cell activity in the Drosophila intestine. / 06.2015 / PubMed / Full text
SMPD1[править]
- Alterations in Lipid Profile of the Aging Kidney Identified by MALDI Imaging Mass Spectrometry. / 05.07.2019 / PubMed / Full text
- Rare lysosomal enzyme gene SMPD1 variant (p.R591C) associates with Parkinson's disease. / 12.2013 / PubMed / Full text
SNCB[править]
- Age-related distribution and potential role of SNCB in topographically different retinal areas of the common marmoset Callithrix jacchus, including the macula. / 08.2019 / PubMed / Full text
- Age-related Beta-synuclein Alters the p53/Mdm2 Pathway and Induces the Apoptosis of Brain Microvascular Endothelial Cells In Vitro. / 05.2018 / PubMed / Full text
SOCS2[править]
- Suppressor of Cytokine Signalling 2 (SOCS2) Regulates Numbers of Mature Newborn Adult Hippocampal Neurons and Their Dendritic Spine Maturation. / 07.2017 / PubMed / Full text
- Age-independent effects of hyaluronan amide derivative and growth hormone on human osteoarthritic chondrocytes. / 11.2015 / PubMed / Full text
SPARCL1[править]
- Specific factors in blood from young but not old mice directly promote synapse formation and NMDA-receptor recruitment. / 18.06.2019 / PubMed / Full text
- SPARCL1 Accelerates Symptom Onset in Alzheimer's Disease and Influences Brain Structure and Function During Aging. / 2018 / PubMed / Full text
SPN[править]
- Parkinson's disease-related Leucine-rich repeat kinase 2 modulates nuclear morphology and genomic stability in striatal projection neurons during aging. / 19.02.2020 / PubMed / Full text
- [Identification of single nucleotide polymorphisms in centenarians]. / 05-06.2016 / PubMed / Full text
SPON1[править]
- APOE influences working memory in non-demented elderly through an interaction with SPON1 rs2618516. / 07.2018 / PubMed / Full text
- HYDRA: Revealing heterogeneity of imaging and genetic patterns through a multiple max-margin discriminative analysis framework. / 15.01.2017 / PubMed / Full text
SREBF2[править]
- The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. / 29.09.2020 / PubMed / Full text
- White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy. / 02.2020 / PubMed / Full text
SRR[править]
- Mediterranean diet and its components in relation to all-cause mortality: meta-analysis. / 11.2018 / PubMed / Full text
- Genetic Biomarkers on Age-Related Cognitive Decline. / 2017 / PubMed / Full text
SSTR1[править]
- Expression and localization of somatostatin receptor types 3, 4 and 5 in the wild-type, SSTR1 and SSTR1/SSTR2 knockout mouse cochlea. / 12.2014 / PubMed / Full text
- Upregulated expression of SSTR1 is involved in neuronal apoptosis and is coupled to the reduction of bcl-2 following intracerebral hemorrhage in adult rats. / 10.2014 / PubMed / Full text
ST6GAL1[править]
- Glycobiology of Aging. / 2018 / PubMed / Full text
- Identification of novel plasma glycosylation-associated markers of aging. / 16.02.2016 / PubMed / Full text
STAR[править]
- Testicular gene expression of steroidogenesis-related factors in prepubertal, postpubertal, and aging dogs. / 01.03.2017 / PubMed / Full text
- Role of the steroidogenic acute regulatory protein in health and disease. / 01.2016 / PubMed / Full text
STAT4[править]
- Neonatal T Follicular Helper Cells Are Lodged in a Pre-T Follicular Helper Stage Favoring Innate Over Adaptive Germinal Center Responses. / 2019 / PubMed / Full text
- RNA-Seq analysis reveals new evidence for inflammation-related changes in aged kidney. / 24.05.2016 / PubMed / Full text
STAT5A[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
- SOCS1 regulates senescence and ferroptosis by modulating the expression of p53 target genes. / 28.10.2017 / PubMed / Full text
STK3[править]
- Dual functions for OVAAL in initiation of RAF/MEK/ERK prosurvival signals and evasion of p27-mediated cellular senescence. / 11.12.2018 / PubMed / Full text
- Organ-specific alteration in caspase expression and STK3 proteolysis during the aging process. / 11.2016 / PubMed / Full text
SURF1[править]
- Lifelong reduction in complex IV induces tissue-specific metabolic effects but does not reduce lifespan or healthspan in mice. / 08.2018 / PubMed / Full text
- Complex IV-deficient Surf1(-/-) mice initiate mitochondrial stress responses. / 01.09.2014 / PubMed / Full text
SV2A[править]
- Assessing Synaptic Density in Alzheimer Disease With Synaptic Vesicle Glycoprotein 2A Positron Emission Tomographic Imaging. / 01.10.2018 / PubMed / Full text
- Mutant Huntingtin Causes a Selective Decrease in the Expression of Synaptic Vesicle Protein 2C. / 10.2018 / PubMed / Full text
SYNC[править]
- Alpha-synuclein expression patterns in the colonic submucosal plexus of the aging Fischer 344 rat: implications for biopsies in aging and neurodegenerative disorders? / 09.2013 / PubMed / Full text
- Macrophages are unsuccessful in clearing aggregated alpha-synuclein from the gastrointestinal tract of healthy aged Fischer 344 rats. / 04.2013 / PubMed / Full text
SYNJ1[править]
- Excess Synaptojanin 1 Contributes to Place Cell Dysfunction and Memory Deficits in the Aging Hippocampus in Three Types of Alzheimer's Disease. / 05.06.2018 / PubMed / Full text
- Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text
TACR3[править]
- Association of a neurokinin 3 receptor polymorphism with the anterior basal forebrain. / 06.2015 / PubMed / Full text
- Neurokinin3 receptor as a target to predict and improve learning and memory in the aged organism. / 10.09.2013 / PubMed / Full text
TAS2R16[править]
- Taste receptor polymorphisms and longevity: a systematic review and meta-analysis. / 10.11.2020 / PubMed / Full text
- Taste receptors, innate immunity and longevity: the case of TAS2R16 gene. / 2019 / PubMed / Full text
TBC1D4[править]
- Effects of Exercise Training on Regulation of Skeletal Muscle Glucose Metabolism in Elderly Men. / 07.2015 / PubMed / Full text
- AMPK and insulin action--responses to ageing and high fat diet. / 2013 / PubMed / Full text
TBC1D5[править]
- TBC1D5-Catalyzed Cycling of Rab7 Is Required for Retromer-Mediated Human Papillomavirus Trafficking during Virus Entry. / 09.06.2020 / PubMed / Full text
- Retromer and TBC1D5 maintain late endosomal RAB7 domains to enable amino acid-induced mTORC1 signaling. / 02.09.2019 / PubMed / Full text
TBX21[править]
- Association of Epigenetic Age and p16INK4a With Markers of T-Cell Composition in a Healthy Cohort. / 13.11.2020 / PubMed / Full text
- [Study of gene expression of transcription factors T cells during aging]. / 2015 / PubMed
TCF7[править]
- Osteoprotection Through the Deletion of the Transcription Factor Rorβ in Mice. / 04.2018 / PubMed / Full text
- Age-related profiling of DNA methylation in CD8 T cells reveals changes in immune response and transcriptional regulator genes. / 19.08.2015 / PubMed / Full text
TDP1[править]
- UCHL3 Regulates Topoisomerase-Induced Chromosomal Break Repair by Controlling TDP1 Proteostasis. / 12.06.2018 / PubMed / Full text
- Neuroprotection and repair of 3'-blocking DNA ends by glaikit (gkt) encoding Drosophila tyrosyl-DNA phosphodiesterase 1 (TDP1). / 04.11.2014 / PubMed / Full text
TDRD7[править]
- Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice. / 01.2020 / PubMed / Full text
- RNA granule component TDRD7 gene polymorphisms in a Han Chinese population with age-related cataract. / 02.2014 / PubMed / Full text
TEAD1[править]
- [Role of PLAT, PKHD1L1, STK38L and TEAD1 genes Alu-polymorphism for longevity]. / 2016 / PubMed
- Acetylation of VGLL4 Regulates Hippo-YAP Signaling and Postnatal Cardiac Growth. / 21.11.2016 / PubMed / Full text
TEF[править]
- Expression of human HSP27 in yeast extends replicative lifespan and uncovers a hormetic response. / 10.2020 / PubMed / Full text
- Relationship Between the Dose Administered, Target Tissue Dose, and Toxicity Level After Acute Oral Exposure to Bifenthrin and Tefluthrin in Young Adult Rats. / 01.12.2019 / PubMed / Full text
TEN1[править]
- Stimulation of cell proliferation by glutathione monoethyl ester in aged bone marrow stromal cells is associated with the assistance of TERT gene expression and telomerase activity. / 08.2016 / PubMed / Full text
- Functional characterization of human CTC1 mutations reveals novel mechanisms responsible for the pathogenesis of the telomere disease Coats plus. / 12.2013 / PubMed / Full text
TERF1[править]
- Telomere protein RAP1 levels are affected by cellular aging and oxidative stress. / 08.2016 / PubMed / Full text
- Population-specific association of genes for telomere-associated proteins with longevity in an Italian population. / 06.2015 / PubMed / Full text
TERF2[править]
- Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. / 05.03.2020 / PubMed / Full text
- Endothelial senescence-associated secretory phenotype (SASP) is regulated by Makorin-1 ubiquitin E3 ligase. / 11.2019 / PubMed / Full text
TES[править]
- The Effects of Electrical Stimulation Pulse Duration on Lingual Palatal Pressure Measures During Swallowing in Healthy Older Adults. / 08.2019 / PubMed / Full text
- Comparison of different extenders on the recovery and longevity of epididymal sperm from Spix's yellow-toothed cavies (Galea spixii Wagler, 1831). / 04.2017 / PubMed / Full text
TFRC[править]
- Identification of reference genes for RT-qPCR data normalisation in aging studies. / 27.09.2019 / PubMed / Full text
- SQSTM1/p62 and PPARGC1A/PGC-1alpha at the interface of autophagy and vascular senescence. / 06.2020 / PubMed / Full text
TGFBR2[править]
- TGF-β type 2 receptor-mediated modulation of the IL-36 family can be therapeutically targeted in osteoarthritis. / 08.05.2019 / PubMed / Full text
- Serum levels of matrix metalloproteinases 2 and 9 and TGFBR2 gene screening in patients with ascending aortic dilatation. / 2013 / PubMed
TMEM119[править]
- Dexamethasone Induces a Specific Form of Ramified Dysfunctional Microglia. / 02.2019 / PubMed / Full text
- Loss of 'homeostatic' microglia and patterns of their activation in active multiple sclerosis. / 01.07.2017 / PubMed / Full text
TMEM18[править]
- Sequence variation in TMEM18 in association with body mass index: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text
- The influence of obesity-related single nucleotide polymorphisms on BMI across the life course: the PAGE study. / 05.2013 / PubMed / Full text
TNFSF10[править]
- Role of mitochondrial function in cell death and body metabolism. / 01.06.2016 / PubMed / Full text
- Sporadic colorectal cancer development shows rejuvenescence regarding epithelial proliferation and apoptosis. / 2013 / PubMed / Full text
TNNT1[править]
- Improved knee extensor strength with resistance training associates with muscle specific miRNAs in older adults. / 02.2015 / PubMed / Full text
- Human slow troponin T (TNNT1) pre-mRNA alternative splicing is an indicator of skeletal muscle response to resistance exercise in older adults. / 12.2014 / PubMed / Full text
TNR[править]
- Estimation of effectiveness of three methods of feral cat population control by use of a simulation model. / 15.08.2013 / PubMed / Full text
- The extracellular matrix glycoprotein tenascin-R affects adult but not developmental neurogenesis in the olfactory bulb. / 19.06.2013 / PubMed / Full text
TOMM20[править]
- Effect of aging on mitochondria and metabolism of bovine granulosa cells. / 13.09.2020 / PubMed / Full text
- PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis. / 2015 / PubMed / Full text
TOP1[править]
- UCHL3 Regulates Topoisomerase-Induced Chromosomal Break Repair by Controlling TDP1 Proteostasis. / 12.06.2018 / PubMed / Full text
- mir-24 activity propagates stress-induced senescence by down regulating DNA topoisomerase 1. / 03.2016 / PubMed / Full text
TOP2A[править]
- Proteomics of Long-Lived Mammals. / 03.2020 / PubMed / Full text
- Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text
TOX[править]
- Temporal Cognitive Decline Associated With Exposure to Infectious Agents in a Population-based, Aging Cohort. / 07-09.2016 / PubMed / Full text
- Incidence rate of modifying or discontinuing first combined antiretroviral therapy regimen due to toxicity during the first year of treatment stratified by age. / 01-02.2014 / PubMed / Full text
TPX2[править]
- Targeting DTL induces cell cycle arrest and senescence and suppresses cell growth and colony formation through TPX2 inhibition in human hepatocellular carcinoma cells. / 2018 / PubMed / Full text
- Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text
TREX1[править]
- Mechanistic link between DNA damage sensing, repairing and signaling factors and immune signaling. / 2019 / PubMed / Full text
- Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of CSF1R and NOTCH3. / 06.2018 / PubMed / Full text
TRIM21[править]
- TRIM21 overexpression promotes tumor progression by regulating cell proliferation, cell migration and cell senescence in human glioma. / 2020 / PubMed / Full text
- PRMT5-TRIM21 interaction regulates the senescence of osteosarcoma cells by targeting the TXNIP/p21 axis. / 05.02.2020 / PubMed / Full text
TRIM28[править]
- Depleting Trim28 in adult mice is well tolerated and reduces levels of α-synuclein and tau. / 04.06.2018 / PubMed / Full text
- Polyphenic trait promotes liver cancer in a model of epigenetic instability in mice. / 07.2017 / PubMed / Full text
TRIP13[править]
- BubR1 allelic effects drive phenotypic heterogeneity in mosaic-variegated aneuploidy progeria syndrome. / 02.01.2020 / PubMed / Full text
- PCH-2 regulates Caenorhabditis elegans lifespan. / 01.2015 / PubMed / Full text
TRPC3[править]
- Age-dependent alpha-synuclein accumulation is correlated with elevation of mitochondrial TRPC3 in the brains of monkeys and mice. / 04.2017 / PubMed / Full text
- TRPC3 channels critically regulate hippocampal excitability and contextual fear memory. / 15.03.2015 / PubMed / Full text
TRPC5[править]
- TRPC5 channel modulates endothelial cells senescence. / 05.05.2017 / PubMed / Full text
- Benzimidazole derivative M084 extends the lifespan of Caenorhabditis elegans in a DAF-16/FOXO-dependent way. / 02.2017 / PubMed / Full text
TRPC6[править]
- Redox and mTOR-dependent regulation of plasma lamellar calcium influx controls the senescence-associated secretory phenotype. / 11.2020 / PubMed / Full text
- TRPC6 in simulated microgravity of intervertebral disc cells. / 10.2018 / PubMed / Full text
TRPM6[править]
- Role of kinase-coupled TRP channels in mineral homeostasis. / 04.2018 / PubMed / Full text
- Epithelial magnesium transport by TRPM6 is essential for prenatal development and adult survival. / 19.12.2016 / PubMed / Full text
TRPM7[править]
- mRNA expression of transient receptor potential melastatin (TRPM) channels 2 and 7 in perinatal brain development. / 10.2018 / PubMed / Full text
- Role of kinase-coupled TRP channels in mineral homeostasis. / 04.2018 / PubMed / Full text
TRPV6[править]
- Changes in expression of klotho affect physiological processes, diseases, and cancer. / 01.2018 / PubMed / Full text
- Molecular aspects of intestinal calcium absorption. / 21.06.2015 / PubMed / Full text
TSHB[править]
- Adipose TSHB in Humans and Serum TSH in Hypothyroid Rats Inform About Cellular Senescence. / 2018 / PubMed / Full text
- Loss of basal and TRH-stimulated Tshb expression in dispersed pituitary cells. / 01.2015 / PubMed / Full text
TSLP[править]
- Cloning and expression of recombinant equine interleukin-3 and its effect on sulfidoleukotriene and cytokine production by equine peripheral blood leukocytes. / 15.02.2015 / PubMed / Full text
- Accumulation of prelamin A compromises NF-κB-regulated B-lymphopoiesis in a progeria mouse model. / 2013 / PubMed / Full text
TTN[править]
- LncRNA TTN-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/MBTD1 axis. / 10.10.2019 / PubMed / Full text
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
UBB[править]
- Different Expression Levels of Human Mutant Ubiquitin B (UBB ) Can Modify Chronological Lifespan or Stress Resistance of [i]Saccharomyces cerevisiae[/i]. / 2018 / PubMed / Full text
- Modeling non-hereditary mechanisms of Alzheimer disease during apoptosis in yeast. / 20.03.2015 / PubMed / Full text
UGT1A1[править]
- Expression of UDP-Glucuronosyltransferase 1 (UGT1) and Glucuronidation Activity toward Endogenous Substances in Humanized UGT1 Mouse Brain. / 07.2015 / PubMed / Full text
- Age-related changes in mRNA levels of hepatic transporters, cytochrome P450 and UDP-glucuronosyltransferase in female rats. / 06.2015 / PubMed / Full text
ULBP2[править]
- NKG2D ligands mediate immunosurveillance of senescent cells. / 02.2016 / PubMed / Full text
- Type 1 interferons contribute to the clearance of senescent cell. / 2015 / PubMed / Full text
UMOD[править]
- The relationships between markers of tubular injury and intrarenal haemodynamic function in adults with and without type 1 diabetes: Results from the Canadian Study of Longevity in Type 1 Diabetes. / 03.2019 / PubMed / Full text
- A roadmap for the genetic analysis of renal aging. / 10.2015 / PubMed / Full text
UNG[править]
- UNG-1 and APN-1 are the major enzymes to efficiently repair 5-hydroxymethyluracil DNA lesions in C. elegans. / 01.05.2018 / PubMed / Full text
- Caenorhabditis elegans EXO-3 contributes to longevity and reproduction: differential roles in somatic cells and germ cells. / 02.2015 / PubMed / Full text
USP10[править]
- The GID ubiquitin ligase complex is a regulator of AMPK activity and organismal lifespan. / 09.2020 / PubMed / Full text
- Long noncoding RNA H19 mediates melatonin inhibition of premature senescence of c-kit( ) cardiac progenitor cells by promoting miR-675. / 08.2016 / PubMed / Full text
USP14[править]
- Low expression of aging-related [[NRXN3]] is associated with Alzheimer disease: A systematic review and meta-analysis. / 07.2018 / PubMed / Full text
- Compensatory increase in USP14 activity accompanies impaired proteasomal proteolysis during aging. / 01-02.2013 / PubMed / Full text
VASH1[править]
- Double-Face of Vasohibin-1 for the Maintenance of Vascular Homeostasis and Healthy Longevity. / 01.06.2018 / PubMed / Full text
- Age-associated downregulation of vasohibin-1 in vascular endothelial cells. / 10.2016 / PubMed / Full text
VASP[править]
- Reversal of Aging-Induced Increases in Aortic Stiffness by Targeting Cytoskeletal Protein-Protein Interfaces. / 18.07.2018 / PubMed / Full text
- In vitro anti-platelet potency of ticagrelor in blood samples from infants and children. / 09.2015 / PubMed / Full text
VCAN[править]
- Deletion of miR-126a Promotes Hepatic Aging and Inflammation in a Mouse Model of Cholestasis. / 07.06.2019 / PubMed / Full text
- Exosomes from hyperglycemia-stimulated vascular endothelial cells contain versican that regulate calcification/senescence in vascular smooth muscle cells. / 2019 / PubMed / Full text
VGF[править]
- Voluntary Running Triggers VGF-Mediated Oligodendrogenesis to Prolong the Lifespan of Snf2h-Null Ataxic Mice. / 11.10.2016 / PubMed / Full text
- Age-related obesity and type 2 diabetes dysregulate neuronal associated genes and proteins in humans. / 06.10.2015 / PubMed / Full text
VGLL3[править]
- The vgll3 Locus Controls Age at Maturity in Wild and Domesticated Atlantic Salmon (Salmo salar L.) Males. / 11.2015 / PubMed / Full text
- Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon. / 17.12.2015 / PubMed / Full text
VGLL4[править]
- The lncRNA MEG3/miR-16-5p/VGLL4 regulatory axis is involved in etoposide-induced senescence of tumor cells. / 03.11.2020 / PubMed / Full text
- Acetylation of VGLL4 Regulates Hippo-YAP Signaling and Postnatal Cardiac Growth. / 21.11.2016 / PubMed / Full text
VIPR2[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
- Chromatin remodeling of human subtelomeres and TERRA promoters upon cellular senescence: commonalities and differences between chromosomes. / 05.2013 / PubMed / Full text
VPS29[править]
- Combined Proteomic and Metabolomic Profiling of the [i]Arabidopsis thaliana vps29[/i] Mutant Reveals Pleiotropic Functions of the Retromer in Seed Development. / 16.01.2019 / PubMed / Full text
- The retromer complex system in a transgenic mouse model of AD: influence of age. / 04.2017 / PubMed / Full text
VPS35[править]
- Combined Proteomic and Metabolomic Profiling of the [i]Arabidopsis thaliana vps29[/i] Mutant Reveals Pleiotropic Functions of the Retromer in Seed Development. / 16.01.2019 / PubMed / Full text
- Vps35 haploinsufficiency results in degenerative-like deficit in mouse retinal ganglion neurons and impairment of optic nerve injury-induced gliosis. / 11.02.2014 / PubMed / Full text
WFIKKN1[править]
- Relationship of Circulating Growth and Differentiation Factors 8 and 11 and Their Antagonists as Measured Using Liquid Chromatography-Tandem Mass Spectrometry With Age and Skeletal Muscle Strength in Healthy Adults. / 01.01.2019 / PubMed / Full text
- A targeted proteomic assay for the measurement of plasma proteoforms related to human aging phenotypes. / 08.2017 / PubMed / Full text
WFIKKN2[править]
- Relationship of Circulating Growth and Differentiation Factors 8 and 11 and Their Antagonists as Measured Using Liquid Chromatography-Tandem Mass Spectrometry With Age and Skeletal Muscle Strength in Healthy Adults. / 01.01.2019 / PubMed / Full text
- A targeted proteomic assay for the measurement of plasma proteoforms related to human aging phenotypes. / 08.2017 / PubMed / Full text
WFS1[править]
- Knockdown of wfs1, a fly homolog of Wolfram syndrome 1, in the nervous system increases susceptibility to age- and stress-induced neuronal dysfunction and degeneration in Drosophila. / 01.2018 / PubMed / Full text
- A nonsynonymous mutation in the WFS1 gene in a Finnish family with age-related hearing impairment. / 11.2017 / PubMed / Full text
WIPI2[править]
- Neuronal autophagy declines substantially with age and is rescued by overexpression of WIPI2. / 02.2020 / PubMed / Full text
- The ATG5-binding and coiled coil domains of ATG16L1 maintain autophagy and tissue homeostasis in mice independently of the WD domain required for LC3-associated phagocytosis. / 04.2019 / PubMed / Full text
WWP1[править]
- The ubiquitin ligase WWP1 contributes to shifts in matrix proteolytic profiles and a myocardial aging phenotype with diastolic heart. / 01.10.2020 / PubMed / Full text
- Overexpression of miR-584-5p inhibits proliferation and induces apoptosis by targeting WW domain-containing E3 ubiquitin protein ligase 1 in gastric cancer. / 21.04.2017 / PubMed / Full text
YY1[править]
- Distinct Age-Related Epigenetic Signatures in CD4 and CD8 T Cells. / 2020 / PubMed / Full text
- Low mitochondrial DNA content associates with familial longevity: the Leiden Longevity Study. / 06.2014 / PubMed / Full text
ZC3H12A[править]
- Keratinocyte-specific ablation of Mcpip1 impairs skin integrity and promotes local and systemic inflammation. / 12.2019 / PubMed / Full text
- Prediction and characterization of human ageing-related proteins by using machine learning. / 06.03.2018 / PubMed / Full text
ZEB2[править]
- miR-200b regulates cellular senescence and inflammatory responses by targeting ZEB2 in pulmonary emphysema. / 12.2020 / PubMed / Full text
- MicroRNA-145 induces the senescence of activated hepatic stellate cells through the activation of p53 pathway by ZEB2. / 05.2019 / PubMed / Full text
ZFX[править]
- ZFX knockdown inhibits growth and migration of non-small cell lung carcinoma cell line H1299. / 2013 / PubMed / Full text
- ZFX regulates glioma cell proliferation and survival in vitro and in vivo. / 03.2013 / PubMed / Full text
ZNF521[править]
- Reduced subcutaneous adipogenesis in human hypertrophic obesity is linked to senescent precursor cells. / 21.06.2019 / PubMed / Full text
- Zinc finger factor 521 enhances adipogenic differentiation of mouse multipotent cells and human bone marrow mesenchymal stem cells. / 20.06.2015 / PubMed / Full text
ZP2[править]
- Coenzyme Q10 ameliorates the quality of postovulatory aged oocytes by suppressing DNA damage and apoptosis. / 01.11.2019 / PubMed / Full text
- Melatonin improves the fertilization ability of post-ovulatory aged mouse oocytes by stabilizing ovastacin and Juno to promote sperm binding and fusion. / 01.03.2017 / PubMed / Full text
ZSCAN10[править]
- RNA Exosome Complex-Mediated Control of Redox Status in Pluripotent Stem Cells. / 10.10.2017 / PubMed / Full text
- ZSCAN10 expression corrects the genomic instability of iPSCs from aged donors. / 09.2017 / PubMed / Full text
ABCC1[править]
- Dual pathways mediate β-amyloid stimulated glutathione release from astrocytes. / 12.2015 / PubMed / Full text
ABCC3[править]
- Proteomic Analysis of the Developmental Trajectory of Human Hepatic Membrane Transporter Proteins in the First Three Months of Life. / 07.2016 / PubMed / Full text
ABCC8[править]
- A mouse model of human hyperinsulinism produced by the E1506K mutation in the sulphonylurea receptor SUR1. / 11.2013 / PubMed / Full text
ABCE1[править]
- Widespread Accumulation of Ribosome-Associated Isolated 3' UTRs in Neuronal Cell Populations of the Aging Brain. / 27.11.2018 / PubMed / Full text
ABHD12[править]
- Elevated Levels of Arachidonic Acid-Derived Lipids Including Prostaglandins and Endocannabinoids Are Present Throughout ABHD12 Knockout Brains: Novel Insights Into the Neurodegenerative Phenotype. / 2019 / PubMed / Full text
ABI3BP[править]
- Long noncoding RNA MALAT1 potentiates growth and inhibits senescence by antagonizing ABI3BP in gallbladder cancer cells. / 07.06.2019 / PubMed / Full text
ABL1[править]
- European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. / 04.2020 / PubMed / Full text
ABLIM3[править]
- Dentate granule cell recruitment of feedforward inhibition governs engram maintenance and remote memory generalization. / 05.2018 / PubMed / Full text
ABRA[править]
- LMX1B is essential for the maintenance of differentiated podocytes in adult kidneys. / 11.2013 / PubMed / Full text
ACAA2[править]
ACAD9[править]
- Identification of a novel mitochondrial complex I assembly factor ACDH-12 in Caenorhabditis elegans. / 05.2019 / PubMed / Full text
ACADM[править]
- High fat diet aggravates atrial and ventricular remodeling of hypertensive heart disease in aging rats. / 07.2018 / PubMed / Full text
ACER2[править]
ACKR2[править]
- Atypical chemokine receptor ACKR2 mediates chemokine scavenging by primary human trophoblasts and can regulate fetal growth, placental structure, and neonatal mortality in mice. / 15.11.2014 / PubMed / Full text
ACMSD[править]
- De novo NAD synthesis enhances mitochondrial function and improves health. / 11.2018 / PubMed / Full text
ACO2[править]
- Thioredoxin protects mitochondrial structure, function and biogenesis in myocardial ischemia-reperfusion via redox-dependent activation of AKT-CREB- PGC1α pathway in aged mice. / 13.10.2020 / PubMed / Full text
ACP2[править]
- Association of levels of fasting glucose and insulin with rare variants at the chromosome 11p11.2-MADD locus: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text
ACSL1[править]
- The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats. / 09.2020 / PubMed / Full text
ACSL5[править]
- Ageing sensitized by iPLA β deficiency induces liver fibrosis and intestinal atrophy involving suppression of homeostatic genes and alteration of intestinal lipids and bile acids. / 12.2017 / PubMed / Full text
ACTA2[править]
- Tissue Taurine Depletion Induces Profibrotic Pattern of Gene Expression and Causes Aging-Related Cardiac Fibrosis in Heart in Mice. / 2018 / PubMed / Full text
ACTL7B[править]
- Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. / 12.2017 / PubMed / Full text
ACTR3B[править]
- Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex. / 2018 / PubMed / Full text
ADA2[править]
- Manganese(II) Chloride Alters Nucleotide and Nucleoside Catabolism in Zebrafish (Danio rerio) Adult Brain. / 05.2018 / PubMed / Full text
ADAM19[править]
- ADAM19 and HTR4 variants and pulmonary function: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text
ADAM22[править]
- Expression of NgR1-antagonizing proteins decreases with aging and cognitive decline in rat hippocampus. / 05.2013 / PubMed / Full text
ADAM9[править]
- [The effect of PNS on the content and activity of alpha-secretase in the brains of SAMP8 mice with alzheimer's disease]. / 11.2012 / PubMed
ADAMTS1[править]
- Increased ADAMTS1 mediates SPARC-dependent collagen deposition in the aging myocardium. / 01.06.2016 / PubMed / Full text
ADAMTS10[править]
- Influence of Age on Ocular Biomechanical Properties in a Canine Glaucoma Model with ADAMTS10 Mutation. / 2016 / PubMed / Full text
ADAMTS3[править]
- Explorative results from multistep screening for potential genetic risk loci of Alzheimer's disease in the longitudinal VITA study cohort. / 01.2018 / PubMed / Full text
ADAMTS5[править]
- Endoplasmic reticulum stress participates in the progress of senescence and apoptosis of osteoarthritis chondrocytes. / 16.09.2017 / PubMed / Full text
ADAMTS7[править]
- Identification of cardiovascular health gene variants related to longevity in a Chinese population. / 07.09.2020 / PubMed / Full text
ADAR[править]
- Enoxacin extends lifespan of C. elegans by inhibiting miR-34-5p and promoting mitohormesis. / 09.2018 / PubMed / Full text
ADCK1[править]
- Functional analysis of Aarf domain-containing kinase 1 in Drosophila melanogaster. / 09.2019 / PubMed / Full text
ADD2[править]
- SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text
ADK[править]
- Deletion of pancreatic β-cell adenosine kinase improves glucose homeostasis in young mice and ameliorates streptozotocin-induced hyperglycaemia. / 07.2019 / PubMed / Full text
ADNP2[править]
- ADNP differentially interact with genes/proteins in correlation with aging: a novel marker for muscle aging. / 06.2019 / PubMed / Full text
ADORA2B[править]
- Adenosine A2B receptor: A pathogenic factor and a therapeutic target for sensorineural hearing loss. / 12.2020 / PubMed / Full text
ADRA2A[править]
- α2A-Adrenergic Receptor Inhibits the Progression of Cervical Cancer Through Blocking PI3K/AKT/mTOR Pathway. / 2020 / PubMed / Full text
ADRM1[править]
- Androgen receptor polyglutamine expansion drives age-dependent quality control defects and muscle dysfunction. / 01.08.2018 / PubMed / Full text
AGAP2[править]
- Exosomes derived from microRNA-199a-overexpressing mesenchymal stem cells inhibit glioma progression by down-regulating AGAP2. / 05.08.2019 / PubMed / Full text
AGO1[править]
- A transcriptome-wide study on the microRNA- and the Argonaute 1-enriched small RNA-mediated regulatory networks involved in plant leaf senescence. / 03.2016 / PubMed / Full text
AGRP[править]
- Influence of Aging and Gender Differences on Feeding Behavior and Ghrelin-Related Factors during Social Isolation in Mice. / 2015 / PubMed / Full text
AHNAK[править]
- A novel atlas of gene expression in human skeletal muscle reveals molecular changes associated with aging. / 2015 / PubMed / Full text
AHSP[править]
- Relationship between Sensory Perception and Frailty in a Community-Dwelling Elderly Population. / 2017 / PubMed / Full text
AIF1[править]
- Sirtuin 1-Chromatin-Binding Dynamics Points to a Common Mechanism Regulating Inflammatory Targets in SIV Infection and in the Aging Brain. / 06.2018 / PubMed / Full text
AK1[править]
- Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. / 2019 / PubMed / Full text
AKAP11[править]
- Genetic Burden Analyses of Phenotypes Relevant to Aging in the Berlin Aging Study II (BASE-II). / 2016 / PubMed / Full text
AKAP12[править]
- A-Kinase Anchor Protein 12 Is Required for Oligodendrocyte Differentiation in Adult White Matter. / 05.2018 / PubMed / Full text
AKAP17A[править]
- The transcript expression levels of HNRNPM, HNRNPA0 and AKAP17A splicing factors may be predictively associated with ageing phenotypes in human peripheral blood. / 10.2019 / PubMed / Full text
AKIP1[править]
- Expression of potato RNA-binding proteins StUBA2a/b and StUBA2c induces hypersensitive-like cell death and early leaf senescence in Arabidopsis. / 07.2015 / PubMed / Full text
AKR1B1[править]
- Bioinformatics analysis of proteomics profiles in senescent human primary proximal tubule epithelial cells. / 01.04.2016 / PubMed / Full text
AKR1C2[править]
- Identification of a gene signature of a pre-transformation process by senescence evasion in normal human epidermal keratinocytes. / 14.06.2014 / PubMed / Full text
AKR1C3[править]
- Identification of a gene signature of a pre-transformation process by senescence evasion in normal human epidermal keratinocytes. / 14.06.2014 / PubMed / Full text
AKR7A3[править]
- The aged testis. A good model to find proteins involved in age-related changes of testis by proteomic analysis. / 01-02.2014 / PubMed
ALAD[править]
- Lead-Related Genetic Loci, Cumulative Lead Exposure and Incident Coronary Heart Disease: The Normative Aging Study. / 2016 / PubMed / Full text
ALAS1[править]
- Heterozygous disruption of ALAS1 in mice causes an accelerated age-dependent reduction in free heme, but not total heme, in skeletal muscle and liver. / 08.12.2020 / PubMed / Full text
ALAS2[править]
- Gene transcripts associated with muscle strength: a CHARGE meta-analysis of 7,781 persons. / 01.2016 / PubMed / Full text
ALCAM[править]
- Zebrafish brain RNA sequencing reveals that cell adhesion molecules are critical in brain aging. / 10.2020 / PubMed / Full text
ALDH1L1[править]
- Review: Astrocytes in Alzheimer's disease and other age-associated dementias: a supporting player with a central role. / 06.2017 / PubMed / Full text
ALDH3A1[править]
- Hallmarks of the cancer cell of origin: Comparisons with "energetic" cancer stem cells (e-CSCs). / 13.02.2019 / PubMed / Full text
ALDH4A1[править]
- An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. / 12.2019 / PubMed / Full text
ALKBH1[править]
- ALKB-8, a 2-Oxoglutarate-Dependent Dioxygenase and S-Adenosine Methionine-Dependent Methyltransferase Modulates Metabolic Events Linked to Lysosome-Related Organelles and Aging in C. elegans. / 2018 / PubMed
ALKBH2[править]
- ALKB-8, a 2-Oxoglutarate-Dependent Dioxygenase and S-Adenosine Methionine-Dependent Methyltransferase Modulates Metabolic Events Linked to Lysosome-Related Organelles and Aging in C. elegans. / 2018 / PubMed
ALOX12[править]
- Arachidonate 12-lipoxygenase and 12-hydroxyeicosatetraenoic acid contribute to stromal aging-induced progression of pancreatic cancer. / 15.05.2020 / PubMed / Full text
ALOX15B[править]
- Monocytes present age-related changes in phospholipid concentration and decreased energy metabolism. / 04.2020 / PubMed / Full text
ALPL[править]
- Physiological blood-brain transport is impaired with age by a shift in transcytosis. / 07.2020 / PubMed / Full text
ALS2[править]
- Age-dependent deterioration of locomotion in Drosophila melanogaster deficient in the homologue of amyotrophic lateral sclerosis 2. / 06.2014 / PubMed / Full text
ALX4[править]
- Age-associated genes in human mammary gland drive human breast cancer progression. / 15.06.2020 / PubMed / Full text
AMBRA1[править]
- MiR-23a-depressed autophagy is a participant in PUVA- and UVB-induced premature senescence. / 21.06.2016 / PubMed / Full text
AMFR[править]
- Mice heterozygous for the Cdh23/Ahl1 mutation show age-related deficits in auditory temporal processing. / 09.2019 / PubMed / Full text
ANGPT1[править]
ANGPT2[править]
- Systemic analysis of gene expression profiles in porcine granulosa cells during aging. / 14.11.2017 / PubMed / Full text
ANGPTL4[править]
- Involvement of ERK1/2 activation in the gene expression of senescence-associated secretory factors in human hepatic stellate cells. / 05.2019 / PubMed / Full text
ANGPTL8[править]
- Angiopoietin-like protein 8 (ANGPTL8)/betatrophin overexpression does not increase beta cell proliferation in mice. / 07.2015 / PubMed / Full text
ANK2[править]
- SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text
ANKS1B[править]
- Explorative results from multistep screening for potential genetic risk loci of Alzheimer's disease in the longitudinal VITA study cohort. / 01.2018 / PubMed / Full text
ANPEP[править]
- Aminopeptidase N expression in the endometrium could affect endometrial receptivity. / 25.06.2019 / PubMed / Full text
ANXA1[править]
- Assessment of Human Skin Gene Expression by Different Blends of Plant Extracts with Implications to Periorbital Skin Aging. / 26.10.2018 / PubMed / Full text
ANXA2[править]
- Quantitative proteomic profiling of tumor cell response to telomere dysfunction using isotope-coded protein labeling (ICPL) reveals interaction network of candidate senescence markers. / 08.10.2013 / PubMed / Full text
AOC1[править]
- Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence. / 12.09.2013 / PubMed / Full text
AOX1[править]
APAF1[править]
- Sperm-associated antigen 9 (SPAG9) promotes the survival and tumor growth of triple-negative breast cancer cells. / 10.2016 / PubMed / Full text
APBB2[править]
- GSK3β Interactions with Amyloid Genes: An Autopsy Verification and Extension. / 10.2015 / PubMed / Full text
APLN[править]
- Relationship of age and body mass index to the expression of obesity and osteoarthritis-related genes in human meniscus. / 09.2013 / PubMed / Full text
APLNR[править]
- Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin's glucose-lowering effects. / 13.09.2017 / PubMed / Full text
APOA4[править]
- No Association between Variation in Longevity Candidate Genes and Aging-related Phenotypes in Oldest-old Danes. / 06.2016 / PubMed / Full text
APOBEC1[править]
- Loss of APOBEC1 RNA-editing function in microglia exacerbates age-related CNS pathophysiology. / 12.12.2017 / PubMed / Full text
APOC1[править]
- Genetics of Human Longevity From Incomplete Data: New Findings From the Long Life Family Study. / 08.10.2018 / PubMed / Full text
APOC2[править]
- Apoc2 loss-of-function zebrafish mutant as a genetic model of hyperlipidemia. / 01.08.2015 / PubMed / Full text
APOH[править]
- Genome-wide significant results identified for plasma apolipoprotein H levels in middle-aged and older adults. / 31.03.2016 / PubMed / Full text
APPL1[править]
- Insulin and adipokine signaling and their cross-regulation in postmortem human brain. / 12.2019 / PubMed / Full text
AQP9[править]
- Seasonal and Ageing-Depending Changes of Aquaporins 1 and 9 Expression in the Genital Tract of Buffalo Bulls (Bubalus bubalis). / 08.2016 / PubMed / Full text
AQR[править]
- Synergism between soluble guanylate cyclase signaling and neuropeptides extends lifespan in the nematode Caenorhabditis elegans. / 04.2017 / PubMed / Full text
ARG1[править]
- Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text
ARG2[править]
- Arginase-2, a miR-1299 target, enhances pigmentation in melasma by reducing melanosome degradation via senescence-induced autophagy inhibition. / 01.2017 / PubMed / Full text
ARHGAP1[править]
- Targeted sequencing of genome wide significant loci associated with bone mineral density (BMD) reveals significant novel and rare variants: the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) targeted sequencing study. / 01.12.2016 / PubMed / Full text
ARID5A[править]
- Differentially regulated gene expression in quiescence versus senescence and identification of ARID5A as a quiescence associated marker. / 05.2018 / PubMed / Full text
ARID5B[править]
- Monocytes present age-related changes in phospholipid concentration and decreased energy metabolism. / 04.2020 / PubMed / Full text
ARIH2[править]
- A novel feed-forward loop between ARIH2 E3-ligase and PABPN1 regulates aging-associated muscle degeneration. / 04.2014 / PubMed / Full text
ARL13B[править]
- ARL13B, a Joubert Syndrome-Associated Protein, Is Critical for Retinogenesis and Elaboration of Mouse Photoreceptor Outer Segments. / 20.02.2019 / PubMed / Full text
ARL4C[править]
- LMX1B is essential for the maintenance of differentiated podocytes in adult kidneys. / 11.2013 / PubMed / Full text
ARNTL2[править]
- Is the aging human ovary still ticking?: Expression of clock-genes in luteinized granulosa cells of young and older women. / 21.11.2018 / PubMed / Full text
ARRB2[править]
- Age-dependent effects of dopamine receptor inactivation on cocaine-induced behaviors in male rats: Evidence of dorsal striatal D2 receptor supersensitivity. / 12.2019 / PubMed / Full text
ARSA[править]
- Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of CSF1R and NOTCH3. / 06.2018 / PubMed / Full text
ASB3[править]
- Longitudinal analysis of bronchodilator response in asthmatics and effect modification of age-related trends by genotype. / 02.2019 / PubMed / Full text
ASB7[править]
- ASB7 Is a Novel Regulator of Cytoskeletal Organization During Oocyte Maturation. / 2020 / PubMed / Full text
ASF1A[править]
- Meta-analysis on blood transcriptomic studies identifies consistently coexpressed protein-protein interaction modules as robust markers of human aging. / 04.2014 / PubMed / Full text
ASIC2[править]
- Acidotoxicity and acid-sensing ion channels contribute to motoneuron degeneration. / 04.2013 / PubMed / Full text
ASIP[править]
- Efficacy of an agonist of α-MSH, the palmitoyl tetrapeptide-20, in hair pigmentation. / 10.2018 / PubMed / Full text
ASMT[править]
- The influence of ageing on the extrapineal melatonin synthetic pathway. / 09.2018 / PubMed / Full text
ASPN[править]
- The association between higher social support and lower depressive symptoms among aging services clients is attenuated at higher levels of functional impairment. / 10.2015 / PubMed / Full text
ATG10[править]
ATG13[править]
- Rapamycin reverses age-related increases in mitochondrial ROS production at complex I, oxidative stress, accumulation of mtDNA fragments inside nuclear DNA, and lipofuscin level, and increases autophagy, in the liver of middle-aged mice. / 10.2016 / PubMed / Full text
ATG16L1[править]
- The ATG5-binding and coiled coil domains of ATG16L1 maintain autophagy and tissue homeostasis in mice independently of the WD domain required for LC3-associated phagocytosis. / 04.2019 / PubMed / Full text
ATG16L2[править]
- Epigallocatechin-3-gallate increases autophagy signaling in resting and unloaded plantaris muscles but selectively suppresses autophagy protein abundance in reloaded muscles of aged rats. / 06.2017 / PubMed / Full text
ATG4B[править]
- Impaired autophagic activity and ATG4B deficiency are associated with increased endoplasmic reticulum stress-induced lung injury. / 27.08.2018 / PubMed / Full text
ATG4D[править]
- Reduction of Aging-Induced Oxidative Stress and Activation of Autophagy by Bilberry Anthocyanin Supplementation via the AMPK-mTOR Signaling Pathway in Aged Female Rats. / 17.07.2019 / PubMed / Full text
ATMIN[править]
ATP13A2[править]
- Atp13a2-deficient mice exhibit neuronal ceroid lipofuscinosis, limited α-synuclein accumulation and age-dependent sensorimotor deficits. / 15.05.2013 / PubMed / Full text
ATP1A3[править]
- The Influence of Na( ), K( )-ATPase on Glutamate Signaling in Neurodegenerative Diseases and Senescence. / 2016 / PubMed / Full text
ATP2B1[править]
- Reduced expression of PMCA1 is associated with increased blood pressure with age which is preceded by remodelling of resistance arteries. / 10.2017 / PubMed / Full text
ATP6V0C[править]
ATP6V1G1[править]
- Chemical screening identifies ATM as a target for alleviating senescence. / 06.2017 / PubMed / Full text
ATP7B[править]
- [Copper intoxication decreases lifespan and induces neurologic alterations in Drosophila melanogaster]. / 03.2013 / PubMed
ATXN1[править]
- Integrative Analysis of Hippocampus Gene Expression Profiles Identifies Network Alterations in Aging and Alzheimer's Disease. / 2018 / PubMed / Full text
AURKB[править]
- Aurora kinase mRNA expression is reduced with increasing gestational age and in severe early onset fetal growth restriction. / 06.2020 / PubMed / Full text
AURKC[править]
- Aurora kinase mRNA expression is reduced with increasing gestational age and in severe early onset fetal growth restriction. / 06.2020 / PubMed / Full text
AVPR1A[править]
- Introduction of the human AVPR1A gene substantially alters brain receptor expression patterns and enhances aspects of social behavior in transgenic mice. / 08.2014 / PubMed / Full text
BAALC[править]
- Relation of BAALC and ERG Gene Expression with Overall Survival in Acute Myeloid Leukemia Cases. / 2015 / PubMed / Full text
BAAT[править]
- Prevalence and associated metabolic factors of fatty liver disease in the elderly. / 08.2013 / PubMed / Full text
BACE2[править]
BAG2[править]
BAG5[править]
- miR-155 inhibits mitophagy through suppression of BAG5, a partner protein of PINK1. / 12.03.2020 / PubMed / Full text
BAP1[править]
- The BAP1/ASXL2 Histone H2A Deubiquitinase Complex Regulates Cell Proliferation and Is Disrupted in Cancer. / 27.11.2015 / PubMed / Full text
BAZ1A[править]
- Chromatin remodeling factor BAZ1A regulates cellular senescence in both cancer and normal cells. / 15.07.2019 / PubMed / Full text
BAZ2B[править]
BBC3[править]
- The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. / 29.09.2020 / PubMed / Full text
BBS5[править]
- Progressive Characterization of Visual Phenotype in Bardet-Biedl Syndrome Mutant Mice. / 01.03.2019 / PubMed / Full text
BCAS1[править]
- Hallmarks of the cancer cell of origin: Comparisons with "energetic" cancer stem cells (e-CSCs). / 13.02.2019 / PubMed / Full text
BCL2L11[править]
- miRNA expression profiling uncovers a role of miR-302b-3p in regulating skin fibroblasts senescence. / 01.2020 / PubMed / Full text
BCORL1[править]
- Age-related mutations associated with clonal hematopoietic expansion and malignancies. / 12.2014 / PubMed / Full text
BFSP1[править]
- The oxidized thiol proteome in aging and cataractous mouse and human lens revealed by ICAT labeling. / 04.2017 / PubMed / Full text
BHLHE40[править]
- Thyroid hormone induces cellular senescence in prostate cancer cells through induction of DEC1. / 07.2020 / PubMed / Full text
BICD1[править]
- Kidney Allograft Telomere Length Is Not Associated with Sex, Recipient Comorbid Conditions, Post-Transplant Infections, or CMV Reactivation. / 28.06.2016 / PubMed / Full text
BIRC5[править]
- Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text
BLVRA[править]
- Attenuation of epigenetic regulator SMARCA4 and ERK-ETS signaling suppresses aging-related dopaminergic degeneration. / 09.2020 / PubMed / Full text
BMP5[править]
BNC1[править]
- Basonuclin 1 deficiency causes testicular premature aging: BNC1 cooperates with TAF7L to regulate spermatogenesis. / 22.01.2020 / PubMed / Full text
BNC2[править]
- Genetic variants associated with skin aging in the Chinese Han population. / 04.2017 / PubMed / Full text
BOC[править]
- Protein Requirements of Elderly Chinese Adults Are Higher than Current Recommendations. / 01.05.2020 / PubMed / Full text
BOK[править]
- Comparative proteomic analysis of primordial follicles from ovaries of immature and aged rats. / 2015 / PubMed / Full text
BRD3[править]
- Neuroprotective effects of targeting BET proteins for degradation with dBET1 in aged mice subjected to ischemic stroke. / 07.2019 / PubMed / Full text
BRD7[править]
- XIAP-associating factor 1, a transcriptional target of BRD7, contributes to endothelial cell senescence. / 02.02.2016 / PubMed / Full text
BRINP1[править]
- Absence of BRINP1 in mice causes increase of hippocampal neurogenesis and behavioral alterations relevant to human psychiatric disorders. / 14.02.2014 / PubMed / Full text
BSG[править]
- Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients. / 03.09.2019 / PubMed / Full text
BTG3[править]
- Investigating the specific core genetic-and-epigenetic networks of cellular mechanisms involved in human aging in peripheral blood mononuclear cells. / 23.02.2016 / PubMed / Full text
BTG4[править]
- Age-related decrease of IF5/BTG4 in oral and respiratory cavities in mice. / 2015 / PubMed / Full text
BUB1[править]
- Links between nucleolar activity, rDNA stability, aneuploidy and chronological aging in the yeast Saccharomyces cerevisiae. / 06.2014 / PubMed / Full text
C1QA[править]
- APOE Stabilization by Exercise Prevents Aging Neurovascular Dysfunction and Complement Induction. / 10.2015 / PubMed / Full text
C2CD2[править]
- Genetic variants associated with physical performance and anthropometry in old age: a genome-wide association study in the ilSIRENTE cohort. / 20.11.2017 / PubMed / Full text
C4A[править]
- Investigation of complement component C4 copy number variation in human longevity. / 2014 / PubMed / Full text
C4B[править]
- Investigation of complement component C4 copy number variation in human longevity. / 2014 / PubMed / Full text
C8orf48[править]
- Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. / 07.2014 / PubMed / Full text
CA10[править]
- Genome wide association study of age at menarche in the Japanese population. / 2013 / PubMed / Full text
CABLES1[править]
- CABLES1 Deficiency Impairs Quiescence and Stress Responses of Hematopoietic Stem Cells in Intrinsic and Extrinsic Manners. / 13.08.2019 / PubMed / Full text
CACNA1B[править]
- Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. / 10.2019 / PubMed / Full text
CACNA1F[править]
- Amyloid Precursor-Like Protein 2 deletion-induced retinal synaptopathy related to congenital stationary night blindness: structural, functional and molecular characteristics. / 08.06.2016 / PubMed / Full text
CACNA1S[править]
CACNA2D1[править]
- Pregabalin can prevent, but not treat, cognitive dysfunction following abdominal surgery in aged rats. / 01.03.2016 / PubMed / Full text
CADM2[править]
- GWAS of longevity in CHARGE consortium confirms APOE and FOXO3 candidacy. / 01.2015 / PubMed / Full text
CALHM1[править]
- CALHM1 Deletion in Mice Affects Glossopharyngeal Taste Responses, Food Intake, Body Weight, and Life Span. / 07.2015 / PubMed / Full text
CAMK2A[править]
- Nodes and biological processes identified on the basis of network analysis in the brain of the senescence accelerated mice as an Alzheimer's disease animal model. / 2013 / PubMed / Full text
CAMKK2[править]
- The GID ubiquitin ligase complex is a regulator of AMPK activity and organismal lifespan. / 09.2020 / PubMed / Full text
CAMP[править]
- [Study on effect of astragali radix polysaccharides in improving learning and memory functions in aged rats and its mechanism]. / 06.2014 / PubMed
CAMSAP1[править]
- Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex. / 2018 / PubMed / Full text
CAP1[править]
- Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. / 2019 / PubMed / Full text
CAP2[править]
- Targeting MRTF/SRF in CAP2-dependent dilated cardiomyopathy delays disease onset. / 21.03.2019 / PubMed / Full text
CAPN1[править]
- Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans. / 28.06.2016 / PubMed / Full text
CAPRIN1[править]
- Reduced Levels of the Synaptic Functional Regulator FMRP in Dentate Gyrus of the Aging Sprague-Dawley Rat. / 2017 / PubMed / Full text
CARD14[править]
- Elderly-Onset Generalized Pustular Psoriasis without a Previous History of Psoriasis Vulgaris. / 05-08.2015 / PubMed / Full text
CARMIL1[править]
- Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. / 05.03.2020 / PubMed / Full text
CASP2[править]
- Dual role of the caspase enzymes in satellite cells from aged and young subjects. / 12.12.2013 / PubMed / Full text
CASP5[править]
- Gene expression of inflammasome components in peripheral blood mononuclear cells (PBMC) of vascular patients increases with age. / 2015 / PubMed / Full text
CASP6[править]
- Dual role of the caspase enzymes in satellite cells from aged and young subjects. / 12.12.2013 / PubMed / Full text
CASP9[править]
- Dual role of the caspase enzymes in satellite cells from aged and young subjects. / 12.12.2013 / PubMed / Full text
CBR1[править]
- Age-related changes in hepatic activity and expression of detoxification enzymes in male rats. / 2013 / PubMed / Full text
CBSL[править]
- Effect of a Community-Based Service Learning Experience in Geriatrics on Internal Medicine Residents and Community Participants. / 09.2017 / PubMed / Full text
CBX1[править]
- Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text
CBX2[править]
- Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text
CBX3[править]
- Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text
CBX5[править]
- The Ubiquitin-like with PHD and Ring Finger Domains 1 (UHRF1)/DNA Methyltransferase 1 (DNMT1) Axis Is a Primary Regulator of Cell Senescence. / 03.03.2017 / PubMed / Full text
CBX6[править]
- Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text
CCAR2[править]
- CCAR-1 is a negative regulator of the heat-shock response in Caenorhabditis elegans. / 10.2018 / PubMed / Full text
CCDC102B[править]
- Development of a methylation marker set for forensic age estimation using analysis of public methylation data and the Agena Bioscience EpiTYPER system. / 09.2016 / PubMed / Full text
CCDC17[править]
CCDC71L[править]
- Sequencing of 2 subclinical atherosclerosis candidate regions in 3669 individuals: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text
CCDC85A[править]
- Genome wide association study of age at menarche in the Japanese population. / 2013 / PubMed / Full text
CCDC88A[править]
- Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. / 02.2018 / PubMed / Full text
CCL18[править]
- Age-specific changes in the molecular phenotype of patients with moderate-to-severe atopic dermatitis. / 07.2019 / PubMed / Full text
CCL23[править]
- Systemic Inflammation and the Increased Risk of Inflamm-Aging and Age-Associated Diseases in People Living With HIV on Long Term Suppressive Antiretroviral Therapy. / 2019 / PubMed / Full text
CCL25[править]
- Age-related chemokine alterations affect IgA secretion and gut immunity in female mice. / 10.2020 / PubMed / Full text
CCL26[править]
- Dendritic cells from aged subjects contribute to chronic airway inflammation by activating bronchial epithelial cells under steady state. / 11.2014 / PubMed / Full text
CCL28[править]
- Age-related chemokine alterations affect IgA secretion and gut immunity in female mice. / 10.2020 / PubMed / Full text
CCL8[править]
- Human Monocyte Subsets Are Transcriptionally and Functionally Altered in Aging in Response to Pattern Recognition Receptor Agonists. / 15.08.2017 / PubMed / Full text
CCM2[править]
CCN4[править]
CCNA1[править]
- Age-dependent human β cell proliferation induced by glucagon-like peptide 1 and calcineurin signaling. / 02.10.2017 / PubMed / Full text
CCNB2[править]
- Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text
CCND2[править]
- Oxidative stress-induced miRNAs modulate AKT signaling and promote cellular senescence in uterine leiomyoma. / 10.2018 / PubMed / Full text
CCND3[править]
- The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. / 29.07.2020 / PubMed / Full text
CCNE1[править]
- Hepatoprotective effects of hydroxysafflor yellow A in D-galactose-treated aging mice. / 15.08.2020 / PubMed / Full text
CCNE2[править]
- Circular RNA CircCCNB1 sponges micro RNA-449a to inhibit cellular senescence by targeting CCNE2. / 25.11.2019 / PubMed / Full text
CCNI[править]
- Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. / 15.08.2013 / PubMed / Full text
CCNI2[править]
- Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. / 15.08.2013 / PubMed / Full text
CCR1[править]
- Myocardial Infarction Superimposed on Aging: MMP-9 Deletion Promotes M2 Macrophage Polarization. / 04.2016 / PubMed / Full text
CCR10[править]
- Cardiac aging is initiated by matrix metalloproteinase-9-mediated endothelial dysfunction. / 15.05.2014 / PubMed / Full text
CCR9[править]
- Attenuation of migration properties of CD4 T cells from aged mice correlates with decrease in chemokine receptor expression, response to retinoic acid, and RALDH expression compared to young mice. / 2014 / PubMed / Full text
CCT8[править]
- Somatic increase of CCT8 mimics proteostasis of human pluripotent stem cells and extends C. elegans lifespan. / 28.11.2016 / PubMed / Full text
CD207[править]
- Neurogenic factor-induced Langerhans cell activation in diabetic mice with mechanical allodynia. / 14.05.2013 / PubMed / Full text
CD226[править]
- T-cell Immunoglobulin and ITIM Domain Contributes to CD8 T-cell Immunosenescence. / 04.2018 / PubMed / Full text
CD244[править]
- Association of Epigenetic Age and p16INK4a With Markers of T-Cell Composition in a Healthy Cohort. / 13.11.2020 / PubMed / Full text
CD3G[править]
- Phenotypic characteristics of aged CD4 CD28 T lymphocytes are determined by changes in the whole-genome DNA methylation pattern. / 04.2017 / PubMed / Full text
CD48[править]
- Genetic overexpression of COMP-Ang1 impairs BM microenvironment and induces senescence of BM HSCs. / 15.05.2018 / PubMed / Full text
CD55[править]
- Loss of complement regulatory proteins on uninfected erythrocytes in vivax and falciparum malaria anemia. / 15.11.2018 / PubMed / Full text
CD59[править]
- Red Blood Cell Homeostasis and Altered Vesicle Formation in Patients With Paroxysmal Nocturnal Hemoglobinuria. / 2019 / PubMed / Full text
CD6[править]
- Epigenetic age predictions based on buccal swabs are more precise in combination with cell type-specific DNA methylation signatures. / 05.2016 / PubMed / Full text
CD72[править]
- Crucial Role of Increased Arid3a at the Pre-B and Immature B Cell Stages for B1a Cell Generation. / 2019 / PubMed / Full text
CD82[править]
- Cell-surface phenotyping identifies CD36 and CD97 as novel markers of fibroblast quiescence in lung fibrosis. / 01.11.2018 / PubMed / Full text
CD83[править]
- Human mesothelioma induces defects in dendritic cell numbers and antigen-processing function which predict survival outcomes. / 02.2016 / PubMed / Full text
CD8A[править]
- Systemic Inflammation and the Increased Risk of Inflamm-Aging and Age-Associated Diseases in People Living With HIV on Long Term Suppressive Antiretroviral Therapy. / 2019 / PubMed / Full text
CD8B[править]
- Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text
CDC20[править]
- Premature aging syndrome showing random chromosome number instabilities with CDC20 mutation. / 11.2020 / PubMed / Full text
CDC5L[править]
- Comparative transcriptome analysis of Parkinson's disease and Hutchinson-Gilford progeria syndrome reveals shared susceptible cellular network processes. / 18.08.2020 / PubMed / Full text
CDC6[править]
- A prototypical non-malignant epithelial model to study genome dynamics and concurrently monitor micro-RNAs and proteins in situ during oncogene-induced senescence. / 10.01.2018 / PubMed / Full text
CDC7[править]
- CHO cell culture longevity and recombinant protein yield are enhanced by depletion of miR-7 activity via sponge decoy vectors. / 03.2014 / PubMed / Full text
CDC73[править]
- Down-regulation of cancer-associated gene CDC73 contributes to cellular senescence. / 23.05.2018 / PubMed / Full text
CDCA3[править]
- Expression of CDCA3 Is a Prognostic Biomarker and Potential Therapeutic Target in Non-Small Cell Lung Cancer. / 07.2017 / PubMed / Full text
CDCA4[править]
- A multidimensional systems biology analysis of cellular senescence in aging and disease. / 07.04.2020 / PubMed / Full text
CDH2[править]
- CellBIC: bimodality-based top-down clustering of single-cell RNA sequencing data reveals hierarchical structure of the cell type. / 30.11.2018 / PubMed / Full text
CDH23[править]
- Compound heterozygosity of the functionally null Cdh23(v-ngt) and hypomorphic Cdh23(ahl) alleles leads to early-onset progressive hearing loss in mice. / 2013 / PubMed / Full text
CDK16[править]
- Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. / 15.08.2013 / PubMed / Full text
CDK18[править]
- Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. / 15.08.2013 / PubMed / Full text
CDK3[править]
- Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. / 15.08.2013 / PubMed / Full text
CDK8[править]
- Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. / 15.08.2013 / PubMed / Full text
CDK9[править]
- Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. / 15.08.2013 / PubMed / Full text
CDKN2C[править]
- Elevated circulating HtrA4 in preeclampsia may alter endothelial expression of senescence genes. / 15.01.2020 / PubMed / Full text
CDO1[править]
- The intervention effect of licorice in d-galactose induced aging rats by regulating the taurine metabolic pathway. / 19.09.2018 / PubMed / Full text
CDR2[править]
- Neuro-degeneration profile of Alzheimer's patients: A brain morphometry study. / 2017 / PubMed / Full text
CEACAM1[править]
- Aging-related carcinoembryonic antigen-related cell adhesion molecule 1 signaling promotes vascular dysfunction. / 12.2019 / PubMed / Full text
CEBPA[править]
- Permanent cystathionine-β-Synthase gene knockdown promotes inflammation and oxidative stress in immortalized human adipose-derived mesenchymal stem cells, enhancing their adipogenic capacity. / 02.08.2020 / PubMed / Full text
CEBPD[править]
- Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. / 10.2019 / PubMed / Full text
CEBPE[править]
- Identification and genomic analysis of pedigrees with exceptional longevity identifies candidate rare variants. / 09.2020 / PubMed / Full text
CELSR2[править]
- Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. / 10.2016 / PubMed / Full text
CEP55[править]
- Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text
CEP57[править]
- BubR1 allelic effects drive phenotypic heterogeneity in mosaic-variegated aneuploidy progeria syndrome. / 02.01.2020 / PubMed / Full text
CEP95[править]
- Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text
CERK[править]
- MicroRNA-34a causes ceramide accumulation and effects insulin signaling pathway by targeting ceramide kinase (CERK) in aging skeletal muscle. / 06.2020 / PubMed / Full text
CFL2[править]
- Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. / 2019 / PubMed / Full text
CFLAR[править]
- Senescence-secreted factors activate Myc and sensitize pretransformed cells to TRAIL-induced apoptosis. / 06.2014 / PubMed / Full text
CH25H[править]
- Atherosclerosis and Alzheimer--diseases with a common cause? Inflammation, oxysterols, vasculature. / 21.03.2014 / PubMed / Full text
CHMP1B[править]
- Overexpression of CHMP7 from rapeseed and Arabidopsis causes dwarfism and premature senescence in Arabidopsis. / 01.10.2016 / PubMed / Full text
CHMP2B[править]
- Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis. / 24.02.2016 / PubMed / Full text
CHMP4C[править]
- Silencing of human papillomavirus (HPV) E6/E7 oncogene expression affects both the contents and the amounts of extracellular microvesicles released from HPV-positive cancer cells. / 01.10.2013 / PubMed / Full text
CHMP7[править]
- Overexpression of CHMP7 from rapeseed and Arabidopsis causes dwarfism and premature senescence in Arabidopsis. / 01.10.2016 / PubMed / Full text
CHRDL1[править]
- Identification of Human Juvenile Chondrocyte-Specific Factors that Stimulate Stem Cell Growth. / 04.2016 / PubMed / Full text
CHRFAM7A[править]
- Acetylcholinesterase inhibitors targeting the cholinergic anti-inflammatory pathway: a new therapeutic perspective in aging-related disorders. / 03.10.2019 / PubMed / Full text
CHRM2[править]
- Aging-related changes in the gene expression profile of human lungs. / 09.11.2020 / PubMed / Full text
CHRM4[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
CHRNA7[править]
- Associations between genetic variations and global motion perception. / 10.2019 / PubMed / Full text
CHRNE[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
CHSY1[править]
- Loss of Chondroitin Sulfate Modification Causes Inflammation and Neurodegeneration in [i]skt[/i] Mice. / 01.2020 / PubMed / Full text
CIC[править]
- Cell-in-cell structures are more potent predictors of outcome than senescence or apoptosis in head and neck squamous cell carcinomas. / 18.01.2017 / PubMed / Full text
CILP[править]
- Fibrotic-like changes in degenerate human intervertebral discs revealed by quantitative proteomic analysis. / 03.2016 / PubMed / Full text
CILP2[править]
- Fibrotic-like changes in degenerate human intervertebral discs revealed by quantitative proteomic analysis. / 03.2016 / PubMed / Full text
CINP[править]
- Neuropathology-driven Whole-genome Sequencing Study Points to Novel Candidate Genes for Healthy Brain Aging. / 01-03.2019 / PubMed / Full text
CITED2[править]
- Downregulation of CITED2 contributes to TGFβ-mediated senescence of tendon-derived stem cells. / 04.2017 / PubMed / Full text
CIZ1[править]
CKAP2[править]
- A multidimensional systems biology analysis of cellular senescence in aging and disease. / 07.04.2020 / PubMed / Full text
CLCN6[править]
- DNA methylation levels at individual age-associated CpG sites can be indicative for life expectancy. / 02.2016 / PubMed / Full text
CLEC4E[править]
- Comparative analysis of microbial sensing molecules in mucosal tissues with aging. / 03.2018 / PubMed / Full text
CLPTM1[править]
- Two-stage Bayesian GWAS of 9576 individuals identifies SNP regions that are targeted by miRNAs inversely expressed in Alzheimer's and cancer. / 01.2020 / PubMed / Full text
CMA1[править]
- Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text
CMKLR1[править]
- Chemerin facilitates intervertebral disc degeneration via TLR4 and CMKLR1 and activation of NF-kB signaling pathway. / 11.06.2020 / PubMed / Full text
CNGA3[править]
- DNA methylation-based age prediction from saliva: High age predictability by combination of 7 CpG markers. / 07.2017 / PubMed / Full text
CNKSR3[править]
- Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. / 12.2019 / PubMed / Full text
CNOT6[править]
- miR-29c-3p promotes senescence of human mesenchymal stem cells by targeting CNOT6 through p53-p21 and p16-pRB pathways. / 04.2016 / PubMed / Full text
CNTNAP4[править]
- A common copy number variation (CNV) polymorphism in the CNTNAP4 gene: association with aging in females. / 2013 / PubMed / Full text
CNTRL[править]
- Antioxidant status, lipid and color stability of aged beef from grazing steers supplemented with corn grain and increasing levels of flaxseed. / 01.2016 / PubMed / Full text
COG1[править]
- PRX2 and PRX25, peroxidases regulated by COG1, are involved in seed longevity in Arabidopsis. / 02.2020 / PubMed / Full text
COL12A1[править]
COL13A1[править]
- [Alu insertion-deletion polymorphism of COL13A1 and LAMA2 genes: The analysis of association with longevity]. / 10.2016 / PubMed
COL15A1[править]
- Smooth muscle cell-specific deletion of [i]Col15a1[/i] unexpectedly leads to impaired development of advanced atherosclerotic lesions. / 01.05.2017 / PubMed / Full text
COL17A1[править]
- Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. / 05.02.2016 / PubMed / Full text
COL4A3[править]
- Frequency of COL4A3/COL4A4 mutations amongst families segregating glomerular microscopic hematuria and evidence for activation of the unfolded protein response. Focal and segmental glomerulosclerosis is a frequent development during ageing. / 2014 / PubMed / Full text
COL7A1[править]
- Biological Effects Induced by Specific Advanced Glycation End Products in the Reconstructed Skin Model of Aging. / 2015 / PubMed / Full text
COL9A1[править]
- Enhanced tissue regeneration potential of juvenile articular cartilage. / 11.2013 / PubMed / Full text
COQ5[править]
- Reduction in the levels of CoQ biosynthetic proteins is related to an increase in lifespan without evidence of hepatic mitohormesis. / 18.09.2018 / PubMed / Full text
COQ6[править]
- Reduction in the levels of CoQ biosynthetic proteins is related to an increase in lifespan without evidence of hepatic mitohormesis. / 18.09.2018 / PubMed / Full text
COQ9[править]
- Reduction in the levels of CoQ biosynthetic proteins is related to an increase in lifespan without evidence of hepatic mitohormesis. / 18.09.2018 / PubMed / Full text
COX5A[править]
- COX5A Plays a Vital Role in Memory Impairment Associated With Brain Aging [i]via[/i] the BDNF/ERK1/2 Signaling Pathway. / 2020 / PubMed / Full text
COX7A2[править]
- Proteomics Analysis to Identify and Characterize the Biomarkers and Physical Activities of Non-Frail and Frail Older Adults. / 2017 / PubMed / Full text
CPA3[править]
- Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text
CPB2[править]
- Characterization of Clostridium perfringens in the feces of adult horses and foals with acute enterocolitis. / 01.2014 / PubMed / Full text
CPSF1[править]
- Genome-wide association study for lactation persistency, female fertility, longevity, and lifetime profit index traits in Holstein dairy cattle. / 02.2017 / PubMed / Full text
CPT1A[править]
- Alteration of fatty acid oxidation by increased CPT1A on replicative senescence of placenta-derived mesenchymal stem cells. / 03.01.2020 / PubMed / Full text
CR2[править]
- Age-related but not longevity-related genes are found by weighted gene co-expression network analysis in the peripheral blood cells of humans. / 19.01.2019 / PubMed / Full text
CRB1[править]
- MPP3 regulates levels of PALS1 and adhesion between photoreceptors and Müller cells. / 10.2013 / PubMed / Full text
CRBN[править]
- Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity. / 24.04.2020 / PubMed / Full text
CREB1[править]
- Arginine Methyltransferase PRMT8 Provides Cellular Stress Tolerance in Aging Motoneurons. / 29.08.2018 / PubMed / Full text
CREBL2[править]
- Global Characteristics of CSIG-Associated Gene Expression Changes in Human HEK293 Cells and the Implications for CSIG Regulating Cell Proliferation and Senescence. / 2015 / PubMed / Full text
CREG1[править]
- CREG1 ameliorates myocardial fibrosis associated with autophagy activation and Rab7 expression. / 02.2015 / PubMed / Full text
CRIP2[править]
- Transcriptomics of cortical gray matter thickness decline during normal aging. / 15.11.2013 / PubMed / Full text
CRISPLD2[править]
- A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass. / 20.06.2019 / PubMed / Full text
CRK[править]
CRTC1[править]
- TRPV1 pain receptors regulate longevity and metabolism by neuropeptide signaling. / 22.05.2014 / PubMed / Full text
CRTC3[править]
- A nutrigenomics approach for the study of anti-aging interventions: olive oil phenols and the modulation of gene and microRNA expression profiles in mouse brain. / 03.2017 / PubMed / Full text
CRX[править]
- Transcription coactivators p300 and CBP are necessary for photoreceptor-specific chromatin organization and gene expression. / 2013 / PubMed / Full text
CRYAA[править]
- Polymorphism rs7278468 is associated with Age-related cataract through decreasing transcriptional activity of the CRYAA promoter. / 17.03.2016 / PubMed / Full text
CRYL1[править]
- Lipid and Alzheimer's disease genes associated with healthy aging and longevity in healthy oldest-old. / 28.03.2017 / PubMed / Full text
CSAD[править]
- The intervention effect of licorice in d-galactose induced aging rats by regulating the taurine metabolic pathway. / 19.09.2018 / PubMed / Full text
CSF1[править]
- Pleiotropic effects of extended blockade of CSF1R signaling in adult mice. / 08.2014 / PubMed / Full text
CSF3R[править]
- Both Granulocytic and Non-Granulocytic Blood Cells Are Affected in Patients with Severe Congenital Neutropenia and Their Non-Neutropenic Family Members: An Evaluation of Morphology, Function, and Cell Death / 13.11.2018 / PubMed / Full text
CSGALNACT1[править]
- Alterations in the chondroitin sulfate chain in human osteoarthritic cartilage of the knee. / 02.2014 / PubMed / Full text
CSN2[править]
- Autophagic homeostasis is required for the pluripotency of cancer stem cells. / 02.2017 / PubMed / Full text
CSNK1D[править]
- DNA methylation-based forensic age prediction using artificial neural networks and next generation sequencing. / 05.2017 / PubMed / Full text
CSNK1G2[править]
- Casein kinase 1G2 suppresses necroptosis-promoted testis aging by inhibiting receptor-interacting kinase 3. / 18.11.2020 / PubMed / Full text
CST3[править]
- Improved lipids, diastolic pressure and kidney function are potential contributors to familial longevity: a study on 60 Chinese centenarian families. / 25.02.2016 / PubMed / Full text
CST5[править]
- Systemic Inflammation and the Increased Risk of Inflamm-Aging and Age-Associated Diseases in People Living With HIV on Long Term Suppressive Antiretroviral Therapy. / 2019 / PubMed / Full text
CSTF2T[править]
- Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text
CTNS[править]
- Reducing INS-IGF1 signaling protects against non-cell autonomous vesicle rupture caused by SNCA spreading. / 05.2020 / PubMed / Full text
CTSA[править]
- A CTSA-based consultation service to advance research on special and underserved populations. / 16.01.2020 / PubMed / Full text
CTSC[править]
- Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis. / 24.02.2016 / PubMed / Full text
CTSK[править]
- Transcriptome Analysis of B Cell Immune Functions in Periodontitis: Mucosal Tissue Responses to the Oral Microbiome in Aging. / 2016 / PubMed / Full text
CTSS[править]
- SIRT6 histone deacetylase functions as a potential oncogene in human melanoma. / 09.2017 / PubMed / Full text
CTU2[править]
- Chromosomal alterations among age-related haematopoietic clones in Japan. / 08.2020 / PubMed / Full text
CTXND1[править]
- Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. / 03.2020 / PubMed / Full text
CUBN[править]
CUL3[править]
- KLHL22 activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing. / 05.2018 / PubMed / Full text
CUL4B[править]
- CUL4B impedes stress-induced cellular senescence by dampening a p53-reactive oxygen species positive feedback loop. / 02.2015 / PubMed / Full text
CUX1[править]
- Identification of key genes and transcription factors in aging mesenchymal stem cells by DNA microarray data. / 15.04.2019 / PubMed / Full text
CXCL14[править]
CXCL17[править]
- [Age-related aspects of the involvement of heat shock proteins in the pathogenesis of osteoarthritis]. / 2017 / PubMed
CXCR6[править]
- CXCR6 Inhibits Hepatocarcinogenesis by Promoting Natural Killer T- and CD4 T-Cell-Dependent Control of Senescence. / 05.2019 / PubMed / Full text
CXXC1[править]
- The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. / 29.09.2020 / PubMed / Full text
CXXC5[править]
- Length of paternal lifespan is manifested in the DNA methylome of their nonagenarian progeny. / 13.10.2015 / PubMed / Full text
CYB5R3[править]
- Overexpression of CYB5R3 and NQO1, two NAD -producing enzymes, mimics aspects of caloric restriction. / 08.2018 / PubMed / Full text
CYBA[править]
- [Association between 242C > T polymorphism of NADPH oxidase p22phox gene (CYBA) and longevity in Russian population]. / 03.2013 / PubMed / Full text
CYCS[править]
- The Impact of Age and Sex in DLBCL: Systems Biology Analyses Identify Distinct Molecular Changes and Signaling Networks. / 2015 / PubMed / Full text
CYP11B1[править]
- Intratumoral heterogeneity of the tumor cells based on in situ cortisol excess in cortisol-producing adenomas; ∼An association among morphometry, genotype and cellular senescence∼. / 11.2020 / PubMed / Full text
CYP26A1[править]
- Genetics of Human Longevity From Incomplete Data: New Findings From the Long Life Family Study. / 08.10.2018 / PubMed / Full text
CYP26B1[править]
- Increased Retinoic Acid Catabolism in Olfactory Sensory Neurons Activates Dormant Tissue-Specific Stem Cells and Accelerates Age-Related Metaplasia. / 20.05.2020 / PubMed / Full text
CYP2B6[править]
- Developmental Expression of CYP2B6: A Comprehensive Analysis of mRNA Expression, Protein Content and Bupropion Hydroxylase Activity and the Impact of Genetic Variation. / 07.2016 / PubMed / Full text
CYP2U1[править]
- Genetic variants associated with lung function: the long life family study. / 01.11.2014 / PubMed / Full text
CYP4X1[править]
- Sex- and age-dependent gene expression in human liver: An implication for drug-metabolizing enzymes. / 02.2017 / PubMed / Full text
CYP8B1[править]
- Synergic hypocholesterolaemic effect of n-3 PUFA and oestrogen by modulation of hepatic cholesterol metabolism in female rats. / 14.12.2015 / PubMed / Full text
CYSLTR2[править]
- Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. / 03.2020 / PubMed / Full text
DAPK2[править]
- SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text
DCAF17[править]
- Deletion of DDB1- and CUL4- associated factor-17 (Dcaf17) gene causes spermatogenesis defects and male infertility in mice. / 15.06.2018 / PubMed / Full text
DCAF7[править]
- Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text
DCHS1[править]
- The atypical cadherin Dachsous1 localizes to the base of the ciliary apparatus in airway epithelia. / 13.05.2016 / PubMed / Full text
DCLRE1C[править]
- Polymorphisms of the DNA repair gene EXO1 modulate cognitive aging in old adults in a Taiwanese population. / 06.2019 / PubMed / Full text
DCTN1[править]
- Alteration of Motor Protein Expression Involved in Bidirectional Transport in Peripheral Blood Mononuclear Cells of Patients with Amyotrophic Lateral Sclerosis. / 2016 / PubMed / Full text
DCTN2[править]
- Dynactin pathway-related gene expression is altered by aging, but not by vitrification. / 09.2019 / PubMed / Full text
DCTN6[править]
- Dynactin pathway-related gene expression is altered by aging, but not by vitrification. / 09.2019 / PubMed / Full text
DCXR[править]
- Dicarbonyl/l-xylulose reductase (DCXR): The multifunctional pentosuria enzyme. / 11.2013 / PubMed / Full text
DDI2[править]
- Androgen receptor polyglutamine expansion drives age-dependent quality control defects and muscle dysfunction. / 01.08.2018 / PubMed / Full text
DDIT3[править]
- Inhibition of glioma growth by flavokawain B is mediated through endoplasmic reticulum stress induced autophagy. / 2018 / PubMed / Full text
DDR1[править]
- Age-related modifications of type I collagen impair DDR1-induced apoptosis in non-invasive breast carcinoma cells. / 2018 / PubMed / Full text
DDX25[править]
- Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice. / 01.2020 / PubMed / Full text
DEFB1[править]
- Association of Polymorphisms in Innate Immunity Genes TLR9 and DEFB1 with Human Longevity. / 05.2015 / PubMed / Full text
DEFB4B[править]
- Different expression of Defensin-B gene in the endometrium of mares of different age during the breeding season. / 21.12.2019 / PubMed / Full text
DEK[править]
- Altered miRNA and mRNA Expression in Sika Deer Skeletal Muscle with Age. / 06.02.2020 / PubMed / Full text
DEPDC1[править]
- Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text
DEPDC5[править]
- KLHL22 activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing. / 05.2018 / PubMed / Full text
DEPTOR[править]
DGAT2[править]
- Expression of lipogenic markers is decreased in subcutaneous adipose tissue and adipocytes of older women and is negatively linked to GDF15 expression. / 08.2019 / PubMed / Full text
DHCR7[править]
- Environmental and genetic determinants of vitamin D status among older adults in London, UK. / 11.2016 / PubMed / Full text
DHRS2[править]
- Acute HSF1 depletion induces cellular senescence through the MDM2-p53-p21 pathway in human diploid fibroblasts. / 08.05.2018 / PubMed / Full text
DHX57[править]
- Genetic variants near MLST8 and DHX57 affect the epigenetic age of the cerebellum. / 02.02.2016 / PubMed / Full text
DIP2A[править]
DKK3[править]
- Phosphatase WIP1 regulates adult neurogenesis and WNT signaling during aging. / 07.2014 / PubMed / Full text
DLAT[править]
- Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. / 02.2018 / PubMed / Full text
DLG1[править]
- Altered expression of genes for Kir ion channels in dilated cardiomyopathy. / 08.2013 / PubMed / Full text
DLGAP2[править]
- Cross-Species Analyses Identify Dlgap2 as a Regulator of Age-Related Cognitive Decline and Alzheimer's Dementia. / 01.09.2020 / PubMed / Full text
DLK1[править]
- Dual role of delta-like 1 homolog (DLK1) in skeletal muscle development and adult muscle regeneration. / 09.2013 / PubMed / Full text
DLL1[править]
- MiR-34a Enhances Chondrocyte Apoptosis, Senescence and Facilitates Development of Osteoarthritis by Targeting DLL1 and Regulating PI3K/AKT Pathway. / 2018 / PubMed / Full text
DLL4[править]
- Dynamic regulation of NOTCH1 activation and Notch ligand expression in human thymus development. / 13.08.2018 / PubMed / Full text
DLX2[править]
- A gain-of-function senescence bypass screen identifies the homeobox transcription factor DLX2 as a regulator of ATM-p53 signaling. / 01.02.2016 / PubMed / Full text
DMPK[править]
- Expanded CUG Repeats Trigger Disease Phenotype and Expression Changes through the RNAi Machinery in C. elegans. / 19.04.2019 / PubMed / Full text
DMRT1[править]
- The Jak-STAT target Chinmo prevents sex transformation of adult stem cells in the Drosophila testis niche. / 24.11.2014 / PubMed / Full text
DNAJB9[править]
- DNAJB9 Inhibits p53-Dependent Oncogene-Induced Senescence and Induces Cell Transformation. / 30.04.2020 / PubMed / Full text
DNAJC2[править]
- ZRF1 is a novel S6 kinase substrate that drives the senescence programme. / 15.03.2017 / PubMed / Full text
DNM1[править]
- Increased Degradation Rates in the Components of the Mitochondrial Oxidative Phosphorylation Chain in the Cerebellum of Old Mice. / 2018 / PubMed / Full text
DNM1L[править]
- Aberrant mitochondrial morphology and function associated with impaired mitophagy and DNM1L-MAPK/ERK signaling are found in aged mutant Parkinsonian LRRK2 mice. / 10.12.2020 / PubMed / Full text
DNM2[править]
- Tamoxifen prolongs survival and alleviates symptoms in mice with fatal X-linked myotubular myopathy. / 19.11.2018 / PubMed / Full text
DNMT3L[править]
- Transient DNMT3L Expression Reinforces Chromatin Surveillance to Halt Senescence Progression in Mouse Embryonic Fibroblast. / 2020 / PubMed / Full text
DOCK7[править]
DPP6[править]
- A novel structure associated with aging is augmented in the DPP6-KO mouse brain. / 23.11.2020 / PubMed / Full text
DPYSL2[править]
- Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. / 2019 / PubMed / Full text
DRAM2[править]
- SIRT6 histone deacetylase functions as a potential oncogene in human melanoma. / 09.2017 / PubMed / Full text
DSC1[править]
DSC2[править]
- Age-dependent clinical and genetic characteristics in Japanese patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. / 2013 / PubMed / Full text
DSG1[править]
- Genetic effects on information processing speed are moderated by age--converging results from three samples. / 06.2014 / PubMed / Full text
DTL[править]
- Targeting DTL induces cell cycle arrest and senescence and suppresses cell growth and colony formation through TPX2 inhibition in human hepatocellular carcinoma cells. / 2018 / PubMed / Full text
DTNBP1[править]
DTX1[править]
- Analysis of diarrhetic shellfish poisoning toxins and pectenotoxin-2 in the bottlenose dolphin (Tursiops truncatus) by liquid chromatography-tandem mass spectrometry. / 16.10.2015 / PubMed / Full text
DTX2[править]
- Analysis of diarrhetic shellfish poisoning toxins and pectenotoxin-2 in the bottlenose dolphin (Tursiops truncatus) by liquid chromatography-tandem mass spectrometry. / 16.10.2015 / PubMed / Full text
DUOX1[править]
- Lifespan extension by peroxidase and dual oxidase-mediated ROS signaling through pyrroloquinoline quinone in [i]C. elegans[/i]. / 01.08.2017 / PubMed / Full text
DUOX2[править]
- Lifespan extension by peroxidase and dual oxidase-mediated ROS signaling through pyrroloquinoline quinone in [i]C. elegans[/i]. / 01.08.2017 / PubMed / Full text
DUSP1[править]
DUSP6[править]
- Protection of CD4 T cells from hepatitis C virus infection-associated senescence via ΔNp63-miR-181a-Sirt1 pathway. / 11.2016 / PubMed / Full text
DUSP8[править]
- MiR-21-5p/dual-specificity phosphatase 8 signalling mediates the anti-inflammatory effect of haem oxygenase-1 in aged intracerebral haemorrhage rats. / 12.2019 / PubMed / Full text
DUT[править]
- Simultaneous liquefaction, saccharification, and fermentation of L-lactic acid using aging paddy rice with hull by an isolated thermotolerant Enterococcus faecalis DUT1805. / 09.2020 / PubMed / Full text
DVL1[править]
- DNA methylation patterns associated with oxidative stress in an ageing population. / 25.11.2016 / PubMed / Full text
DYNC1H1[править]
- Dynein mutations associated with hereditary motor neuropathies impair mitochondrial morphology and function with age. / 10.2013 / PubMed / Full text
DYNC2H1[править]
- Role for intraflagellar transport in building a functional transition zone. / 12.2018 / PubMed / Full text
DYNLT3[править]
- Age-associated genes in human mammary gland drive human breast cancer progression. / 15.06.2020 / PubMed / Full text
ECE1[править]
- Ferulic Acid Suppresses Amyloid [i]β[/i] Production in the Human Lens Epithelial Cell Stimulated with Hydrogen Peroxide. / 2017 / PubMed / Full text
ECRG4[править]
ECSIT[править]
- Longevity-related molecular pathways are subject to midlife "switch" in humans. / 08.2019 / PubMed / Full text
EDAR[править]
- Pharmacological stimulation of Edar signaling in the adult enhances sebaceous gland size and function. / 02.2015 / PubMed / Full text
EDEM1[править]
- Expression of lipogenic markers is decreased in subcutaneous adipose tissue and adipocytes of older women and is negatively linked to GDF15 expression. / 08.2019 / PubMed / Full text
EDF1[править]
- Silencing of FOREVER YOUNG FLOWER Like Genes from Phalaenopsis Orchids Promotes Flower Senescence and Abscission. / 25.11.2020 / PubMed / Full text
EDNRA[править]
- Variation in genes in the endothelin pathway and endothelium-dependent and endothelium-independent vasodilation in an elderly population. / 05.2013 / PubMed / Full text
EEA1[править]
- Quantitative Immunoblotting Analyses Reveal that the Abundance of Actin, Tubulin, Synaptophysin and EEA1 Proteins is Altered in the Brains of Aged Mice. / 21.08.2020 / PubMed / Full text
EEF1A1[править]
- Bioinformatics analysis of proteomics profiles in senescent human primary proximal tubule epithelial cells. / 01.04.2016 / PubMed / Full text
EEF2[править]
- Bioinformatics analysis of proteomics profiles in senescent human primary proximal tubule epithelial cells. / 01.04.2016 / PubMed / Full text
EFCAB5[править]
- Genetic architecture of epigenetic and neuronal ageing rates in human brain regions. / 18.05.2017 / PubMed / Full text
EFNB1[править]
- Activation of EphA4 and EphB2 Reverse Signaling Restores the Age-Associated Reduction of Self-Renewal, Migration, and Actin Turnover in Human Tendon Stem/Progenitor Cells. / 2015 / PubMed / Full text
EFNB2[править]
- Cartilage-specific deletion of ephrin-B2 in mice results in early developmental defects and an osteoarthritis-like phenotype during aging in vivo. / 15.03.2016 / PubMed / Full text
EGFEM1P[править]
- Identifying blood-specific age-related DNA methylation markers on the Illumina MethylationEPIC® BeadChip. / 10.2019 / PubMed / Full text
EGR2[править]
- Age-related impairment of bones' adaptive response to loading in mice is associated with sex-related deficiencies in osteoblasts but no change in osteocytes. / 08.2014 / PubMed / Full text
EHMT1[править]
EID3[править]
- Upregulation of EID3 sensitizes breast cancer cells to ionizing radiation-induced cellular senescence. / 11.2018 / PubMed / Full text
EIF2AK3[править]
- The unfolded protein response is activated in disease-affected brain regions in progressive supranuclear palsy and Alzheimer's disease. / 06.07.2013 / PubMed / Full text
EIF2B2[править]
- Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of CSF1R and NOTCH3. / 06.2018 / PubMed / Full text
EIF2B3[править]
- Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of CSF1R and NOTCH3. / 06.2018 / PubMed / Full text
EIF2B4[править]
- Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of CSF1R and NOTCH3. / 06.2018 / PubMed / Full text
EIF4E[править]
- Transcriptomic evidence that insulin signalling pathway regulates the ageing of subterranean termite castes. / 18.05.2020 / PubMed / Full text
EIF4EBP1[править]
- Peripheral Circulating Exosomal miRNAs Potentially Contribute to the Regulation of Molecular Signaling Networks in Aging. / 11.03.2020 / PubMed / Full text
ELANE[править]
- Both Granulocytic and Non-Granulocytic Blood Cells Are Affected in Patients with Severe Congenital Neutropenia and Their Non-Neutropenic Family Members: An Evaluation of Morphology, Function, and Cell Death / 13.11.2018 / PubMed / Full text
ELK1[править]
- Tocotrienol-rich fraction prevents cellular aging by modulating cell proliferation signaling pathways. / 2015 / PubMed / Full text
ELL[править]
- Exceptional Longevity and Polygenic Risk for Cardiovascular Health. / 18.03.2019 / PubMed / Full text
ELN[править]
- Curcumin enhances the production of major structural components of elastic fibers, elastin, and fibrillin-1, in normal human fibroblast cells. / 2015 / PubMed / Full text
ELOVL6[править]
- An Adult Drosophila Glioma Model for Studying Pathometabolic Pathways of Gliomagenesis. / 06.2019 / PubMed / Full text
EMILIN2[править]
- Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text
EML6[править]
ENPEP[править]
- Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text
ENTPD1[править]
- Ecto-NTPDase CD39 is a negative checkpoint that inhibits follicular helper cell generation. / 01.07.2020 / PubMed / Full text
EPG5[править]
- Genome-wide scan of depressive symptomatology in two representative cohorts in the United States and the United Kingdom. / 05.2018 / PubMed / Full text
EPHA3[править]
- A high-content cellular senescence screen identifies candidate tumor suppressors, including EPHA3. / 15.02.2013 / PubMed / Full text
EPHA7[править]
ERAP1[править]
- Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. / 10.2019 / PubMed / Full text
ERBB3[править]
- [The expression of differential and matrix remodelling factors in human buccal epithelium in aging]. / 2013 / PubMed
ERBB4[править]
- Overexpression of ERBB4 rejuvenates aged mesenchymal stem cells and enhances angiogenesis via PI3K/AKT and MAPK/ERK pathways. / 03.2019 / PubMed / Full text
ERCC2[править]
- The genetic component of human longevity: New insights from the analysis of pathway-based SNP-SNP interactions. / 06.2018 / PubMed / Full text
ERCC5[править]
- Identification of a ERCC5 c.2333T>C (L778P) Variant in Two Tunisian Siblings With Mild Xeroderma Pigmentosum Phenotype. / 2019 / PubMed / Full text
ERCC8[править]
- Analysis of somatic mutations identifies signs of selection during in vitro aging of primary dermal fibroblasts. / 12.2019 / PubMed / Full text
EREG[править]
- Effects of aging on gene expression and mitochondrial DNA in the equine oocyte and follicle cells. / 07.2015 / PubMed / Full text
ERVK-7[править]
- Effect of aging on the transcriptomic changes associated with the expression of the HERV-K (HML-2) provirus at 1q22. / 2020 / PubMed / Full text
ESCO1[править]
- Global Characteristics of CSIG-Associated Gene Expression Changes in Human HEK293 Cells and the Implications for CSIG Regulating Cell Proliferation and Senescence. / 2015 / PubMed / Full text
ESPL1[править]
- Identification and genomic analysis of pedigrees with exceptional longevity identifies candidate rare variants. / 09.2020 / PubMed / Full text
ESRG[править]
- MYC Releases Early Reprogrammed Human Cells from Proliferation Pause via Retinoblastoma Protein Inhibition. / 10.04.2018 / PubMed / Full text
ETFA[править]
- Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone. / 07.2014 / PubMed / Full text
ETNK2[править]
- In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. / 12.2019 / PubMed / Full text
ETV1[править]
- Survival analyses in Holstein cows considering direct disease diagnoses and specific SNP marker effects. / 09.2020 / PubMed / Full text
ETV5[править]
- miR-19b-3p induces cell proliferation and reduces heterochromatin-mediated senescence through PLZF in goat male germline stem cells. / 06.2018 / PubMed / Full text
ETV6[править]
- FOXO1 and ETV6 genes may represent novel regulators of splicing factor expression in cellular senescence. / 01.2019 / PubMed / Full text
EVC[править]
- Decreased centrality of subcortical regions during the transition to adolescence: a functional connectivity study. / 01.01.2015 / PubMed / Full text
EVL[править]
- Health Years in Total: A New Health Objective Function for Cost-Effectiveness Analysis. / 01.2020 / PubMed / Full text
EXD2[править]
- EXD2 governs germ stem cell homeostasis and lifespan by promoting mitoribosome integrity and translation. / 02.2018 / PubMed / Full text
EXOC3L2[править]
- Gene-based aggregate SNP associations between candidate AD genes and cognitive decline. / 04.2016 / PubMed / Full text
EXOC7[править]
- PTBP1-Mediated Alternative Splicing Regulates the Inflammatory Secretome and the Pro-tumorigenic Effects of Senescent Cells. / 09.07.2018 / PubMed / Full text
EYA4[править]
- A Large Genome-Wide Association Study of Age-Related Hearing Impairment Using Electronic Health Records. / 10.2016 / PubMed / Full text
EYS[править]
- Ablation of EYS in zebrafish causes mislocalisation of outer segment proteins, F-actin disruption and cone-rod dystrophy. / 05.04.2017 / PubMed / Full text
EZH1[править]
- Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text
F10[править]
- Hydroalcoholic extract of Spartium junceum L. flowers inhibits growth and melanogenesis in B16-F10 cells by inducing senescence. / 15.07.2018 / PubMed / Full text
F11[править]
- A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. / 07.2013 / PubMed / Full text
F11R[править]
- [Adhesion molecule JAM-A, its function and mechanism of epigenetic regulation]. / 2015 / PubMed
F12[править]
- Multigenerational effects of carbendazim in Daphnia magna: From a subcellular to a population level. / 02.2019 / PubMed / Full text
FA2H[править]
- C. Elegans Fatty Acid Two-Hydroxylase Regulates Intestinal Homeostasis by Affecting Heptadecenoic Acid Production. / 2018 / PubMed / Full text
FADS2[править]
FAM13A[править]
- Trade-offs in aging lung diseases: a review on shared but opposite genetic risk variants in idiopathic pulmonary fibrosis, lung cancer and chronic obstructive pulmonary disease. / 05.2018 / PubMed / Full text
FANCC[править]
- Fanconi Anemia complementation group C protein in metabolic disorders. / 21.06.2018 / PubMed / Full text
FAT4[править]
- Neuron-specific knockdown of the Drosophila fat induces reduction of life span, deficient locomotive ability, shortening of motoneuron terminal branches and defects in axonal targeting. / 07.2017 / PubMed / Full text
FBXO28[править]
FBXO32[править]
- Endophilin-A Deficiency Induces the Foxo3a-Fbxo32 Network in the Brain and Causes Dysregulation of Autophagy and the Ubiquitin-Proteasome System. / 18.10.2016 / PubMed / Full text
FBXO33[править]
- Quantitative and Qualitative Role of Antagonistic Heterogeneity in Genetics of Blood Lipids. / 25.09.2020 / PubMed / Full text
FBXO46[править]
- The SCF ubiquitin ligase complex mediates degradation of the tumor suppressor FBXO31 and thereby prevents premature cellular senescence. / 19.10.2018 / PubMed / Full text
FBXO7[править]
- The FBXO7 homologue nutcracker and binding partner PI31 in Drosophila melanogaster models of Parkinson's disease. / 01.2017 / PubMed / Full text
FBXW7[править]
FCER1G[править]
- A Microglial Signature Directing Human Aging and Neurodegeneration-Related Gene Networks. / 2019 / PubMed / Full text
FCGR2A[править]
- Impact of C-reactive protein on osteo-/chondrogenic transdifferentiation and calcification of vascular smooth muscle cells. / 03.08.2019 / PubMed / Full text
FCGR3A[править]
- Genomic regulation of senescence and innate immunity signaling in the retinal pigment epithelium. / 06.2015 / PubMed / Full text
FDPS[править]
- Targeting the phospholipase A2 receptor ameliorates premature aging phenotypes. / 12.2018 / PubMed / Full text
FDXR[править]
- The aged testis. A good model to find proteins involved in age-related changes of testis by proteomic analysis. / 01-02.2014 / PubMed
FER[править]
- Tracking the recognition of static and dynamic facial expressions of emotion across the life span. / 04.09.2018 / PubMed / Full text
FER1L6[править]
- Genome-wide association study and annotating candidate gene networks affecting age at first calving in Nellore cattle. / 12.2017 / PubMed / Full text
FEZ1[править]
- Disruption to schizophrenia-associated gene Fez1 in the hippocampus of HDAC11 knockout mice. / 19.09.2017 / PubMed / Full text
FGB[править]
- [Clinical and genetic characteristics of long-livers in Moscow region]. / 2013 / PubMed
FGF14[править]
- Fibroblast Growth Factor 14 Modulates the Neurogenesis of Granule Neurons in the Adult Dentate Gyrus. / 12.2016 / PubMed / Full text
FGF7[править]
- Prostatic microenvironment in senescence: fibroblastic growth factors × hormonal imbalance. / 05.2014 / PubMed / Full text
FGF8[править]
- Prostatic microenvironment in senescence: fibroblastic growth factors × hormonal imbalance. / 05.2014 / PubMed / Full text
FGFBP1[править]
- Muscle Fibers Secrete FGFBP1 to Slow Degeneration of Neuromuscular Synapses during Aging and Progression of ALS. / 04.01.2017 / PubMed / Full text
FGFR3[править]
- New evidence for positive selection helps explain the paternal age effect observed in achondroplasia. / 15.10.2013 / PubMed / Full text
FGL2[править]
- Developmental expression of B cell molecules in equine lymphoid tissues. / 01.2017 / PubMed / Full text
FICD[править]
- Defining the limits of normal conjunctival fornix anatomy in a healthy South Asian population. / 02.2014 / PubMed / Full text
FIG4[править]
- Knockdown of the Drosophila FIG4 induces deficient locomotive behavior, shortening of motor neuron, axonal targeting aberration, reduction of life span and defects in eye development. / 03.2016 / PubMed / Full text
FIGNL1[править]
- Comparative proteomic analysis of primordial follicles from ovaries of immature and aged rats. / 2015 / PubMed / Full text
FKBP1A[править]
- The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. / 29.07.2020 / PubMed / Full text
FKBP1B[править]
- The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. / 29.07.2020 / PubMed / Full text
FKRP[править]
- Progressive Dystrophic Pathology in Diaphragm and Impairment of Cardiac Function in FKRP P448L Mutant Mice. / 2016 / PubMed / Full text
FLCN[править]
- Loss of the Birt-Hogg-Dubé gene product folliculin induces longevity in a hypoxia-inducible factor-dependent manner. / 08.2013 / PubMed / Full text
FLNA[править]
- SQSTM1/p62 mediates crosstalk between autophagy and the UPS in DNA repair. / 02.10.2016 / PubMed / Full text
FLT3[править]
FLT4[править]
- Impact of Aging on the Phenotype of Invariant Natural Killer T Cells in Mouse Thymus. / 2020 / PubMed / Full text
FMN2[править]
- Genomic regulation of senescence and innate immunity signaling in the retinal pigment epithelium. / 06.2015 / PubMed / Full text
FMO1[править]
- Functional analysis and transcriptional output of the Göttingen minipig genome. / 14.11.2015 / PubMed / Full text
FMO3[править]
- Genetic and Nongenetic Factors Associated with Protein Abundance of Flavin-Containing Monooxygenase 3 in Human Liver. / 11.2017 / PubMed / Full text
FNTA[править]
FOSL1[править]
- RNA-Seq analysis reveals new evidence for inflammation-related changes in aged kidney. / 24.05.2016 / PubMed / Full text
FOSL2[править]
- LncRNA GUARDIN suppresses cellular senescence through a LRP130-PGC1α-FOXO4-p21-dependent signaling axis. / 03.04.2020 / PubMed / Full text
FOXA3[править]
- Glucose restriction delays senescence and promotes proliferation of HUVECs via the AMPK/SIRT1-FOXA3-Beclin1 pathway. / 01.10.2020 / PubMed / Full text
FOXD1[править]
- MicroRNA-338-5p plays a tumor suppressor role in glioma through inhibition of the MAPK-signaling pathway by binding to FOXD1. / 12.2018 / PubMed / Full text
FOXP4[править]
- Identification of the neurotransmitter profile of AmFoxP expressing neurons in the honeybee brain using double-label in situ hybridization. / 06.11.2018 / PubMed / Full text
FRAS1[править]
- FRAS1-related extracellular matrix 3 (FREM3) single-nucleotide polymorphism effects on gene expression, amygdala reactivity and perceptual processing speed: An accelerated aging pathway of depression risk. / 2015 / PubMed / Full text
FREM3[править]
- FRAS1-related extracellular matrix 3 (FREM3) single-nucleotide polymorphism effects on gene expression, amygdala reactivity and perceptual processing speed: An accelerated aging pathway of depression risk. / 2015 / PubMed / Full text
FRG1[править]
- Intergenerational response of steroidogenesis-related genes to maternal malnutrition. / 10.2019 / PubMed / Full text
FRG2[править]
- Intergenerational response of steroidogenesis-related genes to maternal malnutrition. / 10.2019 / PubMed / Full text
FSHB[править]
- Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. / 29.09.2015 / PubMed / Full text
FSTL5[править]
- Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. / 12.2017 / PubMed / Full text
FTL[править]
- Noncoding variation of the gene for ferritin light chain in hereditary and age-related cataract. / 2013 / PubMed / Full text
FZD1[править]
FZD4[править]
- MiR-1292 Targets FZD4 to Regulate Senescence and Osteogenic Differentiation of Stem Cells in TE/SJ/Mesenchymal Tissue System via the Wnt/β-catenin Pathway. / 12.2018 / PubMed / Full text
G0S2[править]
- Investigating the specific core genetic-and-epigenetic networks of cellular mechanisms involved in human aging in peripheral blood mononuclear cells. / 23.02.2016 / PubMed / Full text
G3BP1[править]
- Dissecting the molecular mechanisms that impair stress granule formation in aging cells. / 03.2017 / PubMed / Full text
G6PC[править]
- Detection of a novel, primate-specific 'kill switch' tumor suppression mechanism that may fundamentally control cancer risk in humans: an unexpected twist in the basic biology of TP53. / 11.2018 / PubMed / Full text
G6PC2[править]
- Genome-wide association study identifies common loci influencing circulating glycated hemoglobin (HbA1c) levels in non-diabetic subjects: the Long Life Family Study (LLFS). / 04.2014 / PubMed / Full text
G6PC3[править]
- Both Granulocytic and Non-Granulocytic Blood Cells Are Affected in Patients with Severe Congenital Neutropenia and Their Non-Neutropenic Family Members: An Evaluation of Morphology, Function, and Cell Death / 13.11.2018 / PubMed / Full text
GAB2[править]
- Age-related gene expression changes, and transcriptome wide association study of physical and cognitive aging traits, in the Lothian Birth Cohort 1936. / 01.12.2017 / PubMed / Full text
GABRR3[править]
- Discovery of novel non-synonymous SNP variants in 988 candidate genes from 6 centenarians by target capture and next-generation sequencing. / 10.2013 / PubMed / Full text
GADD45B[править]
- Are There Common Mechanisms Between the Hutchinson-Gilford Progeria Syndrome and Natural Aging? / 2019 / PubMed / Full text
GADD45G[править]
- SIP1 is a downstream effector of GADD45G in senescence induction and growth inhibition of liver tumor cells. / 20.10.2015 / PubMed / Full text
GADD45GIP1[править]
- Nucleus accumbens-1/GADD45GIP1 axis mediates cisplatin resistance through cellular senescence in ovarian cancer. / 06.2017 / PubMed / Full text
GAGE10[править]
- An epigenome-wide association study of sex-specific chronological ageing. / 31.12.2019 / PubMed / Full text
GALNT18[править]
- Genome-wide association study identifies [i]SIAH3[/i] locus influencing the rate of ventricular enlargement in non-demented elders. / 11.11.2019 / PubMed / Full text
GAR1[править]
- Pseudouridylation defect due to [i]DKC1[/i] and [i]NOP10[/i] mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis. / 30.06.2020 / PubMed / Full text
GART[править]
- Maintaining the continuity of HIV-care records for patients transferring care between centers: challenges, workloads, needs and risks. / 08.2016 / PubMed / Full text
GAS2[править]
- Truncated HBx-dependent silencing of GAS2 promotes hepatocarcinogenesis through deregulation of cell cycle, senescence and p53-mediated apoptosis. / 09.2015 / PubMed / Full text
GAST[править]
- The effects of age and muscle contraction on AMPK activity and heterotrimer composition. / 07.2014 / PubMed / Full text
GATA1[править]
- Aging negatively impacts the ability of megakaryocytes to stimulate osteoblast proliferation and bone mass. / 10.2019 / PubMed / Full text
GBA2[править]
- Reduced sphingolipid hydrolase activities, substrate accumulation and ganglioside decline in Parkinson's disease. / 08.11.2019 / PubMed / Full text
GBF1[править]
- Phosphorylation Affects DNA-Binding of the Senescence-Regulating bZIP Transcription Factor GBF1. / 16.09.2015 / PubMed / Full text
GCGR[править]
- Population pharmacokinetics and pharmacodynamics of IONIS-GCGR , an antisense oligonucleotide for type 2 diabetes mellitus: a red blood cell lifespan model. / 06.2017 / PubMed / Full text
GCH1[править]
- Aging modifies the effect of GCH1 RS11158026 on DAT uptake and Parkinson's disease clinical severity. / 02.2017 / PubMed / Full text
GCNT2[править]
- Human iPSC-derived MSCs (iMSCs) from aged individuals acquire a rejuvenation signature. / 18.03.2019 / PubMed / Full text
GDA[править]
- Comparison of the Shear Bond Strength of Metal Orthodontic Brackets Bonded to Long-term Water-aged and Fresh Porcelain and Composite Surfaces. / 03.2019 / PubMed / Full text
GDF5[править]
- An embryonic CaVβ1 isoform promotes muscle mass maintenance via GDF5 signaling in adult mouse. / 06.11.2019 / PubMed / Full text
GEN1[править]
- US acculturation and poor sleep among an intergenerational cohort of adult Latinos in Sacramento, California. / 01.03.2019 / PubMed / Full text
GFRA1[править]
- Determination phase at transition of gonocytes to spermatogonial stem cells improves establishment efficiency of spermatogonial stem cells in domestic cats. / 2015 / PubMed / Full text
GFRAL[править]
- Growth differentiation factor 15 (GDF15): A survival protein with therapeutic potential in metabolic diseases. / 06.2019 / PubMed / Full text
GGA3[править]
- The pathological roles of NDRG2 in Alzheimer's disease, a study using animal models and APPwt-overexpressed cells. / 08.2017 / PubMed / Full text
GGCX[править]
- Multiple Modes of Vitamin K Actions in Aging-Related Musculoskeletal Disorders. / 11.06.2019 / PubMed / Full text
GGT1[править]
- Relation of size of seminal vesicles on ultrasound to premature ejaculation. / 09-10.2017 / PubMed / Full text
GIGYF1[править]
- Drosophila Gyf/GRB10 interacting GYF protein is an autophagy regulator that controls neuron and muscle homeostasis. / 2015 / PubMed / Full text
GIGYF2[править]
- Drosophila Gyf/GRB10 interacting GYF protein is an autophagy regulator that controls neuron and muscle homeostasis. / 2015 / PubMed / Full text
GJA3[править]
- Down-regulation of GJA3 is associated with lens epithelial cell apoptosis and age-related cataract. / 26.02.2017 / PubMed / Full text
GJA8[править]
GJB2[править]
- Reduced expression of Connexin26 and its DNA promoter hypermethylation in the inner ear of mimetic aging rats induced by d-galactose. / 26.09.2014 / PubMed / Full text
GJC2[править]
- Zebrafish brain RNA sequencing reveals that cell adhesion molecules are critical in brain aging. / 10.2020 / PubMed / Full text
GLP1R[править]
- A nutrigenomics approach for the study of anti-aging interventions: olive oil phenols and the modulation of gene and microRNA expression profiles in mouse brain. / 03.2017 / PubMed / Full text
GLRA1[править]
- Age-associated changes in DNA methylation across multiple tissues in an inbred mouse model. / 03.2016 / PubMed / Full text
GLRA2[править]
- Gene Expression Switching of Receptor Subunits in Human Brain Development. / 12.2015 / PubMed / Full text
GLRA3[править]
- Gene Expression Switching of Receptor Subunits in Human Brain Development. / 12.2015 / PubMed / Full text
GMDS[править]
- Validity and clinical utilization of the Chinese version of the Gotland Male Depression Scale at a men's health polyclinic. / 2014 / PubMed / Full text
GML[править]
- Age independently affects myelin integrity as detected by magnetization transfer magnetic resonance imaging in multiple sclerosis. / 2014 / PubMed / Full text
GNA11[править]
- GNAQ expression initiated in multipotent neural crest cells drives aggressive melanoma of the central nervous system. / 01.2020 / PubMed / Full text
GNA14[править]
- Genetic correlation and genome-wide association study (GWAS) of the length of productive life, days open, and 305-days milk yield in crossbred Holstein dairy cattle. / 29.06.2017 / PubMed / Full text
GNG11[править]
- GNG11 (G-protein subunit γ 11) suppresses cell growth with induction of reactive oxygen species and abnormal nuclear morphology in human SUSM-1 cells. / 08.2017 / PubMed / Full text
GNG4[править]
- Neurotransmitter Pathway Genes in Cognitive Decline During Aging: Evidence for GNG4 and KCNQ2 Genes. / 05.2018 / PubMed / Full text
GNPAT[править]
- Plasmalogens Inhibit Endocytosis of Toll-like Receptor 4 to Attenuate the Inflammatory Signal in Microglial Cells. / 05.2019 / PubMed / Full text
GNPDA2[править]
- The influence of obesity-related single nucleotide polymorphisms on BMI across the life course: the PAGE study. / 05.2013 / PubMed / Full text
GNRH2[править]
- Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus. / 2015 / PubMed / Full text
GORAB[править]
- Examining tissue composition, whole-bone morphology and mechanical behavior of Gorab mice tibiae: A mouse model of premature aging. / 08.12.2017 / PubMed / Full text
GOT1[править]
- Low expression of aging-related [[NRXN3]] is associated with Alzheimer disease: A systematic review and meta-analysis. / 07.2018 / PubMed / Full text
GOT2[править]
- An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. / 12.2019 / PubMed / Full text
GP1BA[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
GP9[править]
- Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text
GPBAR1[править]
- Activation of the bile acid receptor GPBAR1 (TGR5) ameliorates interleukin-1β (IL-1β)- induced chondrocytes senescence. / 10.2018 / PubMed / Full text
GPC1[править]
- Decreased expression of GPC1 in human skin keratinocytes and epidermis during ageing. / 15.10.2019 / PubMed / Full text
GPD1[править]
- The phenotype of a knockout mouse identifies flavin-containing monooxygenase 5 (FMO5) as a regulator of metabolic ageing. / 01.08.2015 / PubMed / Full text
GPD2[править]
- Switching off IMMP2L signaling drives senescence via simultaneous metabolic alteration and blockage of cell death. / 06.2018 / PubMed / Full text
GPR1[править]
- The Arabidopsis GPR1 Gene Negatively Affects Pollen Germination, Pollen Tube Growth, and Gametophyte Senescence. / 21.06.2017 / PubMed / Full text
GPR101[править]
- Regulation of Gonadotropin-Releasing Hormone-(1-5) Signaling Genes by Estradiol Is Age Dependent. / 2017 / PubMed / Full text
GPR173[править]
- Regulation of Gonadotropin-Releasing Hormone-(1-5) Signaling Genes by Estradiol Is Age Dependent. / 2017 / PubMed / Full text
GPR19[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
GPR37[править]
- Prosaposin and its receptors are differentially expressed in the salivary glands of male and female rats. / 08.2018 / PubMed / Full text
GPR37L1[править]
- Prosaposin and its receptors are differentially expressed in the salivary glands of male and female rats. / 08.2018 / PubMed / Full text
GPR4[править]
- The proton-activated receptor GPR4 modulates glucose homeostasis by increasing insulin sensitivity. / 2013 / PubMed / Full text
GPR6[править]
- Accelerated Epigenetic Aging and Methylation Disruptions Occur in Human Immunodeficiency Virus Infection Prior to Antiretroviral Therapy. / 22.09.2020 / PubMed / Full text
GPR78[править]
- A meta-analysis of genome-wide association studies identifies multiple longevity genes. / 14.08.2019 / PubMed / Full text
GPRC5C[править]
- Anti-diabetic action of all-trans retinoic acid and the orphan G protein coupled receptor GPRC5C in pancreatic β-cells. / 31.03.2017 / PubMed / Full text
GPX3[править]
- Long noncoding RNA glutathione peroxidase 3-antisense inhibits lens epithelial cell apoptosis by upregulating glutathione peroxidase 3 expression in age-related cataract. / 2019 / PubMed / Full text
GPX7[править]
- Metformin alleviates human cellular aging by upregulating the endoplasmic reticulum glutathione peroxidase 7. / 08.2018 / PubMed / Full text
GREM1[править]
- GREM1 inhibits osteogenic differentiation, senescence and BMP transcription of adipose-derived stem cells. / 09.03.2020 / PubMed / Full text
GREM2[править]
- Increase of gremlin 2 with age in human adipose-derived stromal/stem cells and its inhibitory effect on adipogenesis. / 12.2019 / PubMed / Full text
GRIA1[править]
- Hippocampal proteomics defines pathways associated with memory decline and resilience in normal aging and Alzheimer's disease mouse models. / 30.03.2017 / PubMed / Full text
GRID1[править]
- Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. / 03.2020 / PubMed / Full text
GRIN2A[править]
- Gene Expression Switching of Receptor Subunits in Human Brain Development. / 12.2015 / PubMed / Full text
GRINA[править]
- Genome-wide association study for lactation persistency, female fertility, longevity, and lifetime profit index traits in Holstein dairy cattle. / 02.2017 / PubMed / Full text
GRK4[править]
- G protein-coupled receptor kinase 4-induced cellular senescence and its senescence-associated gene expression profiling. / 15.11.2017 / PubMed / Full text
GRK6[править]
- Age-dependent effects of dopamine receptor inactivation on cocaine-induced behaviors in male rats: Evidence of dorsal striatal D2 receptor supersensitivity. / 12.2019 / PubMed / Full text
GRM2[править]
- Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. / 11.2017 / PubMed / Full text
GRM6[править]
- Amyloid Precursor-Like Protein 2 deletion-induced retinal synaptopathy related to congenital stationary night blindness: structural, functional and molecular characteristics. / 08.06.2016 / PubMed / Full text
GRP[править]
- A new approach to quantifying the EEG during walking: Initial evidence of gait related potentials and their changes with aging and dual tasking. / 15.10.2019 / PubMed / Full text
GRPR[править]
- Gastrin-Releasing Peptide Receptor Knockdown Induces Senescence in Glioblastoma Cells. / 03.2017 / PubMed / Full text
GSN[править]
- Oral administration of alcalase potato protein hydrolysate-APPH attenuates high fat diet-induced cardiac complications via TGF-β/GSN axis in aging rats. / 01.2019 / PubMed / Full text
GSTA3[править]
- Effects of insulin-like growth factor 1 on glutathione S-transferases and thioredoxin in growth hormone receptor knockout mice. / 2014 / PubMed / Full text
GSTM2[править]
- Small Extracellular Vesicles Have GST Activity and Ameliorate Senescence-Related Tissue Damage. / 07.07.2020 / PubMed / Full text
GSTO1[править]
- Age-associated changes in GSH S-transferase gene/proteins in livers of rats. / 12.2018 / PubMed / Full text
GSTT2[править]
- Age-associated changes in GSH S-transferase gene/proteins in livers of rats. / 12.2018 / PubMed / Full text
GTF3C4[править]
- A multidimensional systems biology analysis of cellular senescence in aging and disease. / 07.04.2020 / PubMed / Full text
GTSF1[править]
- Postovulatory aging affects dynamics of mRNA, expression and localization of maternal effect proteins, spindle integrity and pericentromeric proteins in mouse oocytes. / 01.2016 / PubMed / Full text
GUK1[править]
- Characterization of the impact of GMP/GDP synthesis inhibition on replicative lifespan extension in yeast. / 08.2020 / PubMed / Full text
GUSB[править]
- Identification of reference genes for RT-qPCR data normalisation in aging studies. / 27.09.2019 / PubMed / Full text
GYS2[править]
- In ovo feeding of creatine pyruvate modulates growth performance, energy reserves and mRNA expression levels of gluconeogenesis and glycogenesis enzymes in liver of embryos and neonatal broilers. / 04.2018 / PubMed / Full text
GZMH[править]
- Age-related profiling of DNA methylation in CD8 T cells reveals changes in immune response and transcriptional regulator genes. / 19.08.2015 / PubMed / Full text
GZMK[править]
- Comprehensive Profiling of an Aging Immune System Reveals Clonal GZMK CD8 T Cells as Conserved Hallmark of Inflammaging. / 21.11.2020 / PubMed / Full text
HABP4[править]
- Microneedle fractional radiofrequency increases epidermal hyaluronan and reverses age-related epidermal dysfunction. / 02.2016 / PubMed / Full text
HACE1[править]
- HACE1 reduces oxidative stress and mutant Huntingtin toxicity by promoting the NRF2 response. / 25.02.2014 / PubMed / Full text
HADH[править]
- Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone. / 07.2014 / PubMed / Full text
HADHA[править]
- Exosomes from hyperglycemia-stimulated vascular endothelial cells contain versican that regulate calcification/senescence in vascular smooth muscle cells. / 2019 / PubMed / Full text
HAMP[править]
- A potent tilapia secreted granulin peptide enhances the survival of transgenic zebrafish infected by Vibrio vulnificus via modulation of innate immunity. / 04.2018 / PubMed / Full text
HAP1[править]
- The longevity SNP rs2802292 uncovered: HSF1 activates stress-dependent expression of FOXO3 through an intronic enhancer. / 20.06.2018 / PubMed / Full text
HAUS4[править]
- A multidimensional systems biology analysis of cellular senescence in aging and disease. / 07.04.2020 / PubMed / Full text
HAX1[править]
- Both Granulocytic and Non-Granulocytic Blood Cells Are Affected in Patients with Severe Congenital Neutropenia and Their Non-Neutropenic Family Members: An Evaluation of Morphology, Function, and Cell Death / 13.11.2018 / PubMed / Full text
HBM[править]
- The effects of dietary fatty acids on bone, hematopoietic marrow and marrow adipose tissue in a murine model of senile osteoporosis. / 25.09.2019 / PubMed / Full text
HBZ[править]
- HTLV-1 Infection and Adult T-Cell Leukemia/Lymphoma-A Tale of Two Proteins: Tax and HBZ. / 16.06.2016 / PubMed / Full text
HDAC10[править]
- Middle-aged female rats lack changes in histone H3 acetylation in the anterior hypothalamus observed in young females on the day of a luteinizing hormone surge. / 17.09.2019 / PubMed / Full text
HDAC11[править]
- Disruption to schizophrenia-associated gene Fez1 in the hippocampus of HDAC11 knockout mice. / 19.09.2017 / PubMed / Full text
HDAC8[править]
- Histone deacetylase 1 expression is inversely correlated with age in the short-lived fish Nothobranchius furzeri. / 09.2018 / PubMed / Full text
HDC[править]
- Induced pluripotency and spontaneous reversal of cellular aging in supercentenarian donor cells. / 07.05.2020 / PubMed / Full text
HDX[править]
- Pathways of aging: comparative analysis of gene signatures in replicative senescence and stress induced premature senescence. / 28.12.2016 / PubMed / Full text
HEPN1[править]
- Functional analysis and transcriptional output of the Göttingen minipig genome. / 14.11.2015 / PubMed / Full text
HERC2[править]
- Endothelial SIRT1 prevents adverse arterial remodeling by facilitating HERC2-mediated degradation of acetylated LKB1. / 28.06.2016 / PubMed / Full text
HGSNAT[править]
- Progressive neurologic and somatic disease in a novel mouse model of human mucopolysaccharidosis type IIIC. / 01.09.2016 / PubMed / Full text
HHIP[править]
HHLA2[править]
- Impaired Cytolytic Activity and Loss of Clonal Neoantigens in Elderly Patients With Lung Adenocarcinoma. / 05.2019 / PubMed / Full text
HIF3A[править]
- Hypoxia-inducible transcription factors, HIF1A and HIF2A, increase in aging mucosal tissues. / 07.2018 / PubMed / Full text
HIP1[править]
- Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text
HIPK2[править]
HJURP[править]
- HJURP regulates cellular senescence in human fibroblasts and endothelial cells via a p53-dependent pathway. / 08.2013 / PubMed / Full text
HJV[править]
- Hemojuvelin is a novel suppressor for Duchenne muscular dystrophy and age-related muscle wasting. / 06.2019 / PubMed / Full text
HLA-DMA[править]
- Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. / 10.2019 / PubMed / Full text
HLA-DPA1[править]
HLA-DRA[править]
- Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis. / 24.02.2016 / PubMed / Full text
HLA-DRB4[править]
- Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text
HLA-DRB5[править]
- Late Onset Alzheimer's Disease Risk Variants in Cognitive Decline: The PATH Through Life Study. / 2017 / PubMed / Full text
HLA-E[править]
- Senescent cells evade immune clearance via HLA-E-mediated NK and CD8 T cell inhibition. / 03.06.2019 / PubMed / Full text
HLA-F[править]
- Extended lifespan and reduced adiposity in mice lacking the FAT10 gene. / 08.04.2014 / PubMed / Full text
HLF[править]
- Healthy lifestyle and normal waist circumference are associated with a lower 5-year risk of type 2 diabetes in middle-aged and elderly individuals: Results from the healthy aging longitudinal study in Taiwan (HALST). / 02.2017 / PubMed / Full text
HMGCS2[править]
- The aged testis. A good model to find proteins involved in age-related changes of testis by proteomic analysis. / 01-02.2014 / PubMed
HMGN2[править]
HMMR[править]
- The Naked Mole Rat Genome Resource: facilitating analyses of cancer and longevity-related adaptations. / 15.12.2014 / PubMed / Full text
HMX1[править]
- Pathways of aging: comparative analysis of gene signatures in replicative senescence and stress induced premature senescence. / 28.12.2016 / PubMed / Full text
HNF1A[править]
- The Impact of Biomarker Screening and Cascade Genetic Testing on the Cost-Effectiveness of MODY Genetic Testing. / 12.2019 / PubMed / Full text
HNMT[править]
- Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text
HNRNPA0[править]
- The transcript expression levels of HNRNPM, HNRNPA0 and AKAP17A splicing factors may be predictively associated with ageing phenotypes in human peripheral blood. / 10.2019 / PubMed / Full text
HNRNPA2B1[править]
- Changes in the expression of splicing factor transcripts and variations in alternative splicing are associated with lifespan in mice and humans. / 10.2016 / PubMed / Full text
HNRNPF[править]
- Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text
HNRNPM[править]
- The transcript expression levels of HNRNPM, HNRNPA0 and AKAP17A splicing factors may be predictively associated with ageing phenotypes in human peripheral blood. / 10.2019 / PubMed / Full text
HOXA3[править]
- DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. / 25.07.2018 / PubMed / Full text
HOXA4[править]
- Epigenetic signatures of Werner syndrome occur early in life and are distinct from normal epigenetic aging processes. / 10.2019 / PubMed / Full text
HOXA9[править]
- Co-regulation of senescence-associated genes by oncogenic homeobox proteins and polycomb repressive complexes. / 15.07.2013 / PubMed / Full text
HOXB7[править]
- Impact of HOXB7 overexpression on human adipose-derived mesenchymal progenitors. / 19.03.2019 / PubMed / Full text
HOXC13[править]
- Pathways of aging: comparative analysis of gene signatures in replicative senescence and stress induced premature senescence. / 28.12.2016 / PubMed / Full text
HOXD8[править]
- Single-Cell Transcriptome Analysis Reveals Six Subpopulations Reflecting Distinct Cellular Fates in Senescent Mouse Embryonic Fibroblasts. / 2020 / PubMed / Full text
HP1BP3[править]
- Systems genetics identifies Hp1bp3 as a novel modulator of cognitive aging. / 10.2016 / PubMed / Full text
HPDL[править]
- Characterization and cytological effects of a novel glycated gelatine substrate. / 04.2014 / PubMed / Full text
HPSE[править]
- Distribution of heparan sulfate correlated with the expression of heparanase-1 and matrix metalloproteinase-9 in an ovariectomized rats skin. / 07.2020 / PubMed / Full text
HRC[править]
- Differences in false recollection according to the cognitive reserve of healthy older people. / 09.2016 / PubMed / Full text
HRH4[править]
- Histamime Receptor H4 as a New Therapeutic Target for Age-related Macular Degeneration. / 11.2016 / PubMed
HS2ST1[править]
- Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text
HSD17B1[править]
- Genetic Basis of the Relationship Between Reproduction and Longevity: A Study on Common Variants of Three Genes in Steroid Hormone Metabolism--CYP17, HSD17B1, and COMT. / 10.2015 / PubMed / Full text
HSD17B14[править]
- Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. / 04.2018 / PubMed / Full text
HSD17B4[править]
- Autonomous Purkinje cell axonal dystrophy causes ataxia in peroxisomal multifunctional protein-2 deficiency. / 09.2018 / PubMed / Full text
HSPA13[править]
HSPA1L[править]
- Melatonin suppresses senescence-derived mitochondrial dysfunction in mesenchymal stem cells via the HSPA1L-mitophagy pathway. / 03.2020 / PubMed / Full text
HSPA4[править]
- Assessment of the risk of blastomere biopsy during preimplantation genetic diagnosis in a mouse model: reducing female ovary function with an increase in age by proteomics method. / 06.12.2013 / PubMed / Full text
HSPA5[править]
- Expression of lipogenic markers is decreased in subcutaneous adipose tissue and adipocytes of older women and is negatively linked to GDF15 expression. / 08.2019 / PubMed / Full text
HSPBP1[править]
HSPG2[править]
- Proteomic profiling of follicle fluids after superstimulation in one-month-old lambs. / 02.2018 / PubMed / Full text
HTR1A[править]
- Gene Expression Switching of Receptor Subunits in Human Brain Development. / 12.2015 / PubMed / Full text
HTR1B[править]
- Polymorphic variants of neurotransmitter receptor genes may affect sexual function in aging males: data from the HALS study. / 2013 / PubMed / Full text
HTR2A[править]
- Region-specific regulation of the serotonin 2A receptor expression in development and ageing in post mortem human brain. / 06.2015 / PubMed / Full text
HTR2B[править]
- Up-regulation of serotonin receptor 2B mRNA and protein in the peri-infarcted area of aged rats and stroke patients. / 05.04.2016 / PubMed / Full text
HTR4[править]
- ADAM19 and HTR4 variants and pulmonary function: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text
HTR5A[править]
- Gene Expression Switching of Receptor Subunits in Human Brain Development. / 12.2015 / PubMed / Full text
HTRA2[править]
HYOU1[править]
- Expression of lipogenic markers is decreased in subcutaneous adipose tissue and adipocytes of older women and is negatively linked to GDF15 expression. / 08.2019 / PubMed / Full text
IBSP[править]
ICAM5[править]
- A reverse genetics cell-based evaluation of genes linked to healthy human tissue age. / 01.2017 / PubMed / Full text
ICE1[править]
- ATBS1-INTERACTING FACTOR 2 negatively regulates dark- and brassinosteroid-induced leaf senescence through interactions with INDUCER OF CBF EXPRESSION 1. / 19.02.2020 / PubMed / Full text
IFI27[править]
- Ultraviolet B irradiation-induced keratinocyte senescence and impaired development of 3D epidermal reconstruct. / 01.06.2021 / PubMed / Full text
IFIH1[править]
- Comparative analysis of microbial sensing molecules in mucosal tissues with aging. / 03.2018 / PubMed / Full text
IFNAR2[править]
- Type I interferon receptors in goose: molecular cloning, structural identification, evolutionary analysis and age-related tissue expression profile. / 25.04.2015 / PubMed / Full text
IFNB1[править]
- Effects of aging in the expression of NOD-like receptors and inflammasome-related genes in oral mucosa. / 02.2016 / PubMed / Full text
IFNGR2[править]
- Lifespan of mice and primates correlates with immunoproteasome expression. / 05.2015 / PubMed / Full text
IFT140[править]
IGF2BP2[править]
- Gene transcripts associated with muscle strength: a CHARGE meta-analysis of 7,781 persons. / 01.2016 / PubMed / Full text
IGF2BP3[править]
- Avenanthramide A Induces Cellular Senescence via miR-129-3p/Pirh2/p53 Signaling Pathway To Suppress Colon Cancer Growth. / 01.05.2019 / PubMed / Full text
IGFBP6[править]
- Proteomic profiling of follicle fluids after superstimulation in one-month-old lambs. / 02.2018 / PubMed / Full text
IGHG2[править]
- Human IgG2- and IgG4-expressing memory B cells display enhanced molecular and phenotypic signs of maturity and accumulate with age. / 10.2017 / PubMed / Full text
IGHM[править]
- Developmental expression of B cell molecules in equine lymphoid tissues. / 01.2017 / PubMed / Full text
IGLL5[править]
- Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution. / 07.12.2015 / PubMed / Full text
IKBKB[править]
- Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats. / 02.2019 / PubMed / Full text
IL10RA[править]
- Exome sequencing analysis reveals variants in primary immunodeficiency genes in patients with very early onset inflammatory bowel disease. / 11.2015 / PubMed / Full text
IL11[править]
- Myocardial Infarction Superimposed on Aging: MMP-9 Deletion Promotes M2 Macrophage Polarization. / 04.2016 / PubMed / Full text
IL12B[править]
- Association and Interaction Effects of Interleukin-12 Related Genes and Physical Activity on Cognitive Aging in Old Adults in the Taiwanese Population. / 2019 / PubMed / Full text
IL13RA1[править]
- Genetic correlation and genome-wide association study (GWAS) of the length of productive life, days open, and 305-days milk yield in crossbred Holstein dairy cattle. / 29.06.2017 / PubMed / Full text
IL17C[править]
- Age-dependent changes in inflammation and extracellular matrix in bovine oviduct epithelial cells during the post-ovulatory phase. / 09.2016 / PubMed / Full text
IL17D[править]
IL17RA[править]
- Chronic disruptions of circadian sleep regulation induce specific proinflammatory responses in the rat colon. / 2017 / PubMed / Full text
IL17RB[править]
IL17RC[править]
- Overstimulation can create health problems due to increases in PI3K/Akt/GSK3 insensitivity and GSK3 activity. / 2014 / PubMed / Full text
IL18RAP[править]
- Age and pro-inflammatory gene polymorphisms influence adjacent segment disc degeneration more than fusion does in patients treated for chronic low back pain. / 01.2016 / PubMed / Full text
IL1R2[править]
- Lower levels of interleukin-1β gene expression are associated with impaired Langerhans' cell migration in aged human skin. / 01.2018 / PubMed / Full text
IL1RN[править]
- Transcriptomic and epigenetic analyses reveal a gender difference in aging-associated inflammation: the Vitality 90 study. / 08.2015 / PubMed / Full text
IL21[править]
- The expression of IL6 and 21 in crossbred calves upregulated by inactivated trivalent FMD vaccine. / 03.04.2014 / PubMed / Full text
IL22[править]
- Age-specific changes in the molecular phenotype of patients with moderate-to-severe atopic dermatitis. / 07.2019 / PubMed / Full text
IL2RA[править]
- Dynamic demethylation of the IL2RA promoter during in vitro CD4 T cell activation in association with IL2RA expression. / 2018 / PubMed / Full text
IL2RG[править]
- Generation of a Nonhuman Primate Model of Severe Combined Immunodeficiency Using Highly Efficient Genome Editing. / 07.07.2016 / PubMed / Full text
IL33[править]
- Interleukin33 deficiency causes tau abnormality and neurodegeneration with Alzheimer-like symptoms in aged mice. / 04.07.2017 / PubMed / Full text
IL36RN[править]
- Elderly-Onset Generalized Pustular Psoriasis without a Previous History of Psoriasis Vulgaris. / 05-08.2015 / PubMed / Full text
IL5[править]
- Low Molecular Weight Hyaluronan Induces an Inflammatory Response in Ovarian Stromal Cells and Impairs Gamete Development In Vitro. / 04.02.2020 / PubMed / Full text
IL6ST[править]
- The senescent status of endothelial cells affects proliferation, inflammatory profile and SOX2 expression in bone marrow-derived mesenchymal stem cells. / 06.2019 / PubMed / Full text
IMMP2L[править]
- Switching off IMMP2L signaling drives senescence via simultaneous metabolic alteration and blockage of cell death. / 06.2018 / PubMed / Full text
IMMT[править]
- A multidimensional systems biology analysis of cellular senescence in aging and disease. / 07.04.2020 / PubMed / Full text
IMPA1[править]
- Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text
IMPA2[править]
- Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text
INHBA[править]
- Proteomic profiling of follicle fluids after superstimulation in one-month-old lambs. / 02.2018 / PubMed / Full text
INHBE[править]
- Human iPSC-derived MSCs (iMSCs) from aged individuals acquire a rejuvenation signature. / 18.03.2019 / PubMed / Full text
INO80D[править]
- Whole exome sequencing implicates an INO80D mutation in a syndrome of aortic hypoplasia, premature atherosclerosis, and arterial stiffness. / 10.2014 / PubMed / Full text
INPP4B[править]
- [Target protein candidates of hypothalamus in aging rats with intervention by Qiongyugao]. / 04.2016 / PubMed / Full text
INPPL1[править]
- Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text
IP6K1[править]
- The Role of the IGF-1 Signaling Cascade in Muscle Protein Synthesis and Anabolic Resistance in Aging Skeletal Muscle. / 2019 / PubMed / Full text
IP6K3[править]
- Inositol Hexakisphosphate Kinase 3 Regulates Metabolism and Lifespan in Mice. / 31.08.2016 / PubMed / Full text
IPMK[править]
- Inositol Polyphosphate Multikinase ([i]IPMK[/i]), a Gene Coding for a Potential Moonlighting Protein, Contributes to Human Female Longevity. / 08.02.2019 / PubMed / Full text
IRAK1[править]
- Age-associated changes in microRNA expression in bone marrow derived dendritic cells. / 2013 / PubMed / Full text
IRAK4[править]
IRF1[править]
- Sirtuin 1-Chromatin-Binding Dynamics Points to a Common Mechanism Regulating Inflammatory Targets in SIV Infection and in the Aging Brain. / 06.2018 / PubMed / Full text
IRF5[править]
- Age-related differences in interferon regulatory factor-4 and -5 signaling in ischemic brains of mice. / 11.2017 / PubMed / Full text
IRF9[править]
- Bioinformatic characterization of angiotensin-converting enzyme 2, the entry receptor for SARS-CoV-2. / 2020 / PubMed / Full text
IRX2[править]
- Pathways of aging: comparative analysis of gene signatures in replicative senescence and stress induced premature senescence. / 28.12.2016 / PubMed / Full text
ISG20[править]
- A Large Genome-Wide Association Study of Age-Related Hearing Impairment Using Electronic Health Records. / 10.2016 / PubMed / Full text
ISYNA1[править]
- Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text
ITCH[править]
- Selective multifaceted E3 ubiquitin ligases barricade extreme defense: Potential therapeutic targets for neurodegeneration and ageing. / 11.2015 / PubMed / Full text
ITGA2[править]
- [Clinical and genetic characteristics of long-livers in Moscow region]. / 2013 / PubMed
ITGA3[править]
- A transcriptomic analysis of serial-cultured, tonsil-derived mesenchymal stem cells reveals decreased integrin α3 protein as a potential biomarker of senescent cells. / 17.08.2020 / PubMed / Full text
ITGA5[править]
- Kaempferol alleviates the reduction of developmental competence during aging of porcine oocytes. / 11.2019 / PubMed / Full text
ITGA6[править]
- Selective molecular biomarkers to predict biologic behavior in pituitary tumors. / 05.2017 / PubMed / Full text
ITGA8[править]
- Comparative Analysis of Gene Expression Patterns for Oral Epithelium-Related Functions with Aging. / 2019 / PubMed / Full text
ITGB1[править]
- Switch in Laminin β2 to Laminin β1 Isoforms During Aging Controls Endothelial Cell Functions-Brief Report. / 05.2018 / PubMed / Full text
ITGB4[править]
- ITGB4 deficiency induces senescence of airway epithelial cells through p53 activation. / 03.2019 / PubMed / Full text
ITGB5[править]
- Differential DNA Methylation in Relation to Age and Health Risks of Obesity. / 24.07.2015 / PubMed / Full text
ITM2B[править]
ITPKB[править]
- Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text
ITPR1[править]
- Age-associated repression of type 1 inositol 1, 4, 5-triphosphate receptor impairs muscle regeneration. / 21.09.2016 / PubMed / Full text
ITPR2[править]
- The nuclear receptor RXRA controls cellular senescence by regulating calcium signaling. / 12.2018 / PubMed / Full text
JAG1[править]
- Targeted sequencing of genome wide significant loci associated with bone mineral density (BMD) reveals significant novel and rare variants: the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) targeted sequencing study. / 01.12.2016 / PubMed / Full text
JAGN1[править]
- Both Granulocytic and Non-Granulocytic Blood Cells Are Affected in Patients with Severe Congenital Neutropenia and Their Non-Neutropenic Family Members: An Evaluation of Morphology, Function, and Cell Death / 13.11.2018 / PubMed / Full text
JAM3[править]
- Selective molecular biomarkers to predict biologic behavior in pituitary tumors. / 05.2017 / PubMed / Full text
JARID2[править]
- Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. / 02.2018 / PubMed / Full text
JDP2[править]
- Jun dimerization protein 2 controls hypoxia-induced replicative senescence via both the p16 -pRb and Arf-p53 pathways. / 11.2017 / PubMed / Full text
JHY[править]
- Disruption of the mouse Jhy gene causes abnormal ciliary microtubule patterning and juvenile hydrocephalus. / 01.10.2013 / PubMed / Full text
JMJD1C[править]
- JMJD1C, a JmjC domain-containing protein, is required for long-term maintenance of male germ cells in mice. / 10.2013 / PubMed / Full text
JUNB[править]
- Promotion of cellular senescence by THG-1/TSC22D4 knockout through activation of JUNB. / 19.02.2020 / PubMed / Full text
JUP[править]
- From comorbidities of chronic obstructive pulmonary disease to identification of shared molecular mechanisms by data integration. / 22.11.2016 / PubMed / Full text
KALRN[править]
- Age-dependent increase in Kalirin-9 and Kalirin-12 transcripts in human orbitofrontal cortex. / 10.2016 / PubMed / Full text
KANSL1[править]
- Koolen-de Vries Syndrome: Clinical Report of an Adult and Literature Review. / 2016 / PubMed / Full text
KAT6B[править]
- Aging-associated decrease in the histone acetyltransferase KAT6B is linked to altered hematopoietic stem cell differentiation. / 02.2020 / PubMed / Full text
KCNAB3[править]
KCNC3[править]
- DNA methylation levels in candidate genes associated with chronological age in mammals are not conserved in a long-lived seabird. / 2017 / PubMed / Full text
KCNC4[править]
- Targeted deletion of [i]Kcne3[/i] impairs skeletal muscle function in mice. / 07.2017 / PubMed / Full text
KCND3[править]
KCNE1[править]
- Delayed pharyngeal repolarization promotes abnormal calcium buildup in aging muscle. / 12.04.2013 / PubMed / Full text
KCNE3[править]
- Targeted deletion of [i]Kcne3[/i] impairs skeletal muscle function in mice. / 07.2017 / PubMed / Full text
KCNE4[править]
- Kcne4 deletion sex-specifically predisposes to cardiac arrhythmia via testosterone-dependent impairment of RISK/SAFE pathway induction in aged mice. / 29.05.2018 / PubMed / Full text
KCNH2[править]
- Targeted deletion of [i]Kcne3[/i] impairs skeletal muscle function in mice. / 07.2017 / PubMed / Full text
KCNJ10[править]
- Compromised potassium recycling in the cochlea contributes to conservation of endocochlear potential in a mouse model of age-related hearing loss. / 25.10.2013 / PubMed / Full text
KCNJ11[править]
- A mouse model of human hyperinsulinism produced by the E1506K mutation in the sulphonylurea receptor SUR1. / 11.2013 / PubMed / Full text
KCNJ12[править]
- Altered expression of genes for Kir ion channels in dilated cardiomyopathy. / 08.2013 / PubMed / Full text
KCNJ14[править]
- Altered expression of genes for Kir ion channels in dilated cardiomyopathy. / 08.2013 / PubMed / Full text
KCNJ2[править]
- Altered expression of genes for Kir ion channels in dilated cardiomyopathy. / 08.2013 / PubMed / Full text
KCNJ4[править]
- Altered expression of genes for Kir ion channels in dilated cardiomyopathy. / 08.2013 / PubMed / Full text
KCNJ6[править]
- Genetic correlates of the development of theta event related oscillations in adolescents and young adults. / 05.2017 / PubMed / Full text
KCNK2[править]
- Brain age prediction using deep learning uncovers associated sequence variants. / 27.11.2019 / PubMed / Full text
KCNK4[править]
- Targeted deletion of [i]Kcne3[/i] impairs skeletal muscle function in mice. / 07.2017 / PubMed / Full text
KCNQ1[править]
- Compromised potassium recycling in the cochlea contributes to conservation of endocochlear potential in a mouse model of age-related hearing loss. / 25.10.2013 / PubMed / Full text
KCNQ1DN[править]
- The EpiTect Methyl qPCR Assay as novel age estimation method in forensic biology. / 07.2016 / PubMed / Full text
KCNQ2[править]
- Neurotransmitter Pathway Genes in Cognitive Decline During Aging: Evidence for GNG4 and KCNQ2 Genes. / 05.2018 / PubMed / Full text
KCNQ4[править]
- Guanylyl Cyclase A/cGMP Signaling Slows Hidden, Age- and Acoustic Trauma-Induced Hearing Loss. / 2020 / PubMed / Full text
KCNS3[править]
- Vitamin D-responsive SGPP2 variants associated with lung cell expression and lung function. / 25.11.2013 / PubMed / Full text
KCP[править]
- The kielin/chordin-like protein KCP attenuates nonalcoholic fatty liver disease in mice. / 01.10.2016 / PubMed / Full text
KCTD12[править]
- The association between poverty and gene expression within peripheral blood mononuclear cells in a diverse Baltimore City cohort. / 2020 / PubMed / Full text
KDF1[править]
- The histological characteristics, age-related thickness change of skin, and expression of the HSPs in the skin during hair cycle in yak (Bos grunniens). / 2017 / PubMed / Full text
KDM1A[править]
- Modulation of KDM1A with vafidemstat rescues memory deficit and behavioral alterations. / 2020 / PubMed / Full text
KDM2A[править]
- SIRT6 mono-ADP ribosylates KDM2A to locally increase H3K36me2 at DNA damage sites to inhibit transcription and promote repair. / 25.06.2020 / PubMed / Full text
KDM4A[править]
- Structure-Based Discovery of a Selective KDM5A Inhibitor that Exhibits Anti-Cancer Activity via Inducing Cell Cycle Arrest and Senescence in Breast Cancer Cell Lines. / 15.01.2019 / PubMed / Full text
KDM5A[править]
- Structure-Based Discovery of a Selective KDM5A Inhibitor that Exhibits Anti-Cancer Activity via Inducing Cell Cycle Arrest and Senescence in Breast Cancer Cell Lines. / 15.01.2019 / PubMed / Full text
KDM5B[править]
- Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases. / 03.2016 / PubMed / Full text
KDR[править]
- Regulation of endothelial progenitor cell differentiation and function by dimethylarginine dimethylaminohydrolase 2 in an asymmetric dimethylarginine-independent manner. / 09.2014 / PubMed / Full text
KIAA0319[править]
- The Dyslexia-susceptibility Protein KIAA0319 Inhibits Axon Growth Through Smad2 Signaling. / 01.03.2017 / PubMed / Full text
KIAA0930[править]
- Genetics of facial telangiectasia in the Rotterdam Study: a genome-wide association study and candidate gene approach. / 23.10.2020 / PubMed / Full text
KIAA1755[править]
- Identifying blood-specific age-related DNA methylation markers on the Illumina MethylationEPIC® BeadChip. / 10.2019 / PubMed / Full text
KIF11[править]
- Bmk-1 regulates lifespan in Caenorhabditis elegans by activating hsp-16. / 07.08.2015 / PubMed / Full text
KIF1A[править]
- SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text
KIF3A[править]
- Progressive axonal transport and synaptic protein changes correlate with behavioral and neuropathological abnormalities in the heterozygous Q175 KI mouse model of Huntington's disease. / 01.09.2014 / PubMed / Full text
KIF4A[править]
- Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text
KIF5C[править]
- Alteration of Motor Protein Expression Involved in Bidirectional Transport in Peripheral Blood Mononuclear Cells of Patients with Amyotrophic Lateral Sclerosis. / 2016 / PubMed / Full text
KIF6[править]
- Gene variants at FTO, 9p21, and 2q36.3 are age-independently associated with myocardial infarction in Czech men. / 15.02.2016 / PubMed / Full text
KIR3DL2[править]
- Expression of aberrant HLA-B27 molecules is dependent on B27 dosage and peptide supply. / 04.2014 / PubMed / Full text
KLB[править]
- Infants Uniquely Express High Levels of RBM3 and Other Cold-Adaptive Neuroprotectant Proteins in the Human Brain. / 2018 / PubMed / Full text
KLF1[править]
- Mutant KLF1 in Adult Anemic Nan Mice Leads to Profound Transcriptome Changes and Disordered Erythropoiesis. / 24.08.2018 / PubMed / Full text
KLF10[править]
- Polymorphism rs7278468 is associated with Age-related cataract through decreasing transcriptional activity of the CRYAA promoter. / 17.03.2016 / PubMed / Full text
KLF2[править]
- KLF2 induces the senescence of pancreatic cancer cells by cooperating with FOXO4 to upregulate p21. / 01.03.2020 / PubMed / Full text
KLHL13[править]
- Genetic correlation and genome-wide association study (GWAS) of the length of productive life, days open, and 305-days milk yield in crossbred Holstein dairy cattle. / 29.06.2017 / PubMed / Full text
KLHL22[править]
- KLHL22 activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing. / 05.2018 / PubMed / Full text
KPNA5[править]
- Global Characteristics of CSIG-Associated Gene Expression Changes in Human HEK293 Cells and the Implications for CSIG Regulating Cell Proliferation and Senescence. / 2015 / PubMed / Full text
KRR1[править]
- Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. / 29.09.2015 / PubMed / Full text
KRT15[править]
- Extracellular proteoglycan decorin maintains human hair follicle stem cells. / 12.2018 / PubMed / Full text
KRT18[править]
- Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. / 11.2018 / PubMed / Full text
KRT19[править]
- Characterization of Krt19 allele for targeting the nucleus pulposus cells in the postnatal mouse intervertebral disc. / 01.2020 / PubMed / Full text
KRT5[править]
- Alternative Progenitor Lineages Regenerate the Adult Lung Depleted of Alveolar Epithelial Type 2 Cells. / 04.2017 / PubMed / Full text
KTN1[править]
- Common genetic variants influence human subcortical brain structures. / 09.04.2015 / PubMed / Full text
KY[править]
- Combination of acupuncture and Chinese herbal formula for elderly adults with mild cognitive impairment: protocol for a randomized controlled trial. / 11.02.2019 / PubMed / Full text
L3MBTL1[править]
- Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. / 12.2015 / PubMed / Full text
LAGE3[править]
- Novel homozygous OSGEP gene pathogenic variants in two unrelated patients with Galloway-Mowat syndrome: case report and review of the literature. / 11.04.2019 / PubMed / Full text
LAMA1[править]
- Laminin α1 regulates age-related mesangial cell proliferation and mesangial matrix accumulation through the TGF-β pathway. / 06.2014 / PubMed / Full text
LAMA2[править]
- [Alu insertion-deletion polymorphism of COL13A1 and LAMA2 genes: The analysis of association with longevity]. / 10.2016 / PubMed
LATS1[править]
- Impaired liver regeneration in aged mice can be rescued by silencing Hippo core kinases MST1 and MST2. / 01.2017 / PubMed / Full text
LDB2[править]
- Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. / 11.2017 / PubMed / Full text
LDHC[править]
- The aged testis. A good model to find proteins involved in age-related changes of testis by proteomic analysis. / 01-02.2014 / PubMed
LDLRAD4[править]
- Epigenetics of neuroinflammation: Immune response, inflammatory response and cholinergic synaptic involvement evidenced by genome-wide DNA methylation analysis of delirious inpatients. / 10.2020 / PubMed / Full text
LEF1[править]
- LncRNA H19 targets miR-22 to modulate H O -induced deregulation in nucleus pulposus cell senescence, proliferation, and ECM synthesis through Wnt signaling. / 06.2018 / PubMed / Full text
LGALS1[править]
- Quantitative proteomic profiling of tumor cell response to telomere dysfunction using isotope-coded protein labeling (ICPL) reveals interaction network of candidate senescence markers. / 08.10.2013 / PubMed / Full text
LGALS3[править]
- Tissue Taurine Depletion Induces Profibrotic Pattern of Gene Expression and Causes Aging-Related Cardiac Fibrosis in Heart in Mice. / 2018 / PubMed / Full text
LGR6[править]
- Effect of defensins-containing eye cream on periocular rhytids and skin quality. / 08.2020 / PubMed / Full text
LIMK2[править]
- Reduced corporal fibrosis to protect erectile function by inhibiting the Rho-kinase/LIM-kinase/cofilin pathway in the aged transgenic rat harboring human tissue kallikrein 1. / 01-02.2017 / PubMed / Full text
LINC00862[править]
- Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. / 12.2017 / PubMed / Full text
LIPC[править]
- Quantitative and Qualitative Role of Antagonistic Heterogeneity in Genetics of Blood Lipids. / 25.09.2020 / PubMed / Full text
LIPG[править]
- Quantitative and Qualitative Role of Antagonistic Heterogeneity in Genetics of Blood Lipids. / 25.09.2020 / PubMed / Full text
LMNB2[править]
- Physiological and Pathological Aging Affects Chromatin Dynamics, Structure and Function at the Nuclear Edge. / 2016 / PubMed / Full text
LMO2[править]
- Aging-dependent DNA hypermethylation and gene expression of GSTM1 involved in T cell differentiation. / 25.07.2017 / PubMed / Full text
LMX1A[править]
- Phenotypic Reprogramming of Striatal Neurons into Dopaminergic Neuron-like Cells in the Adult Mouse Brain. / 13.11.2018 / PubMed / Full text
LMX1B[править]
- LMX1B is essential for the maintenance of differentiated podocytes in adult kidneys. / 11.2013 / PubMed / Full text
LOXL4[править]
- Blood Vessel Basement Membrane Alterations in Human Retinal Microaneurysms During Aging. / 01.02.2017 / PubMed / Full text
LPAR3[править]
- Upregulated microRNA-15b alleviates ovarian cancer through inhitbition of the PI3K/Akt pathway by targeting LPAR3. / 12.2019 / PubMed / Full text
LRAT[править]
- Oxidative stress induces mitochondrial dysfunction and a protective unfolded protein response in RPE cells. / 04.2014 / PubMed / Full text
LRCH1[править]
LRP2[править]
- Single-Cell Transcriptomics Characterizes Cell Types in the Subventricular Zone and Uncovers Molecular Defects Impairing Adult Neurogenesis. / 27.11.2018 / PubMed / Full text
LRP8[править]
- SFRS11 Loss Leads to Aging-Associated Cognitive Decline by Modulating LRP8 and ApoE. / 02.07.2019 / PubMed / Full text
LRRC23[править]
- Common genetic variants in ARNTL and NPAS2 and at chromosome 12p13 are associated with objectively measured sleep traits in the elderly. / 01.03.2013 / PubMed / Full text
LRRC34[править]
- The polygenic nature of telomere length and the anti-ageing properties of lithium. / 03.2019 / PubMed / Full text
LRRC8B[править]
- DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. / 25.07.2018 / PubMed / Full text
LRRK1[править]
- Age-Dependent Dopaminergic Neurodegeneration and Impairment of the Autophagy-Lysosomal Pathway in LRRK-Deficient Mice. / 15.11.2017 / PubMed / Full text
LTBP4[править]
- Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text
LY6D[править]
- LY6D-induced macropinocytosis as a survival mechanism of senescent cells. / 09.11.2020 / PubMed / Full text
LY86[править]
- Identification of age- and gender-associated long noncoding RNAs in the human brain with Alzheimer's disease. / 09.2019 / PubMed / Full text
LYG1[править]
- Uncovering genetic mechanisms of kidney aging through transcriptomics, genomics, and epigenomics. / 03.2019 / PubMed / Full text
LYST[править]
MACROD2[править]
- Survival analyses in Holstein cows considering direct disease diagnoses and specific SNP marker effects. / 09.2020 / PubMed / Full text
MADD[править]
- Association of levels of fasting glucose and insulin with rare variants at the chromosome 11p11.2-MADD locus: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text
MAFB[править]
- Age-dependent skeletal muscle transcriptome response to bed rest-induced atrophy. / 01.04.2019 / PubMed / Full text
MAGOHB[править]
- Proteomic analysis reveals novel common genes modulated in both replicative and stress-induced senescence. / 14.10.2015 / PubMed / Full text
MAK[править]
- Age-dependent autophagy induction after injury promotes axon regeneration by limiting NOTCH. / 11.2020 / PubMed / Full text
MANBA[править]
- A meta-analysis of genome-wide association studies of epigenetic age acceleration. / 11.2019 / PubMed / Full text
MANF[править]
- Age-dependent decrease in chaperone activity impairs MANF expression, leading to Purkinje cell degeneration in inducible SCA17 mice. / 22.01.2014 / PubMed / Full text
MAOB[править]
- Modulation of KDM1A with vafidemstat rescues memory deficit and behavioral alterations. / 2020 / PubMed / Full text
MAP2K3[править]
- Associations of [i]MAP2K3[/i] Gene Variants With Superior Memory in SuperAgers. / 2018 / PubMed / Full text
MAP3K11[править]
MAP3K5[править]
- Analysis of Polymorphisms in 59 Potential Candidate Genes for Association With Human Longevity. / 08.10.2018 / PubMed / Full text
MAP4K3[править]
MAPK10[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
MAPK11[править]
- lncRNA ENSMUST00000134285 Increases MAPK11 Activity, Regulating Aging-Related Myocardial Apoptosis. / 09.07.2018 / PubMed / Full text
MAPK13[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
MAPK8[править]
- Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats. / 02.2019 / PubMed / Full text
MARCKSL1[править]
- MARCKSL1 Regulates Spine Formation in the Amygdala and Controls the Hypothalamic-Pituitary-Adrenal Axis and Anxiety-Like Behaviors. / 04.2018 / PubMed / Full text
MARK1[править]
- SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text
MARK4[править]
- Two-stage Bayesian GWAS of 9576 individuals identifies SNP regions that are targeted by miRNAs inversely expressed in Alzheimer's and cancer. / 01.2020 / PubMed / Full text
MAS1[править]
- AVE0991, a nonpeptide analogue of Ang-(1-7), attenuates aging-related neuroinflammation. / 17.04.2018 / PubMed / Full text
MASP1[править]
- Polymorphisms in the MASP1 gene are associated with serum levels of MASP-1, MASP-3, and MAp44. / 2013 / PubMed / Full text
MATN2[править]
- Mice Lacking the Matrilin Family of Extracellular Matrix Proteins Develop Mild Skeletal Abnormalities and Are Susceptible to Age-Associated Osteoarthritis. / 19.01.2020 / PubMed / Full text
MATN3[править]
- Mice Lacking the Matrilin Family of Extracellular Matrix Proteins Develop Mild Skeletal Abnormalities and Are Susceptible to Age-Associated Osteoarthritis. / 19.01.2020 / PubMed / Full text
MATN4[править]
- Mice Lacking the Matrilin Family of Extracellular Matrix Proteins Develop Mild Skeletal Abnormalities and Are Susceptible to Age-Associated Osteoarthritis. / 19.01.2020 / PubMed / Full text
MATR3[править]
- Heterogeneity of Matrin 3 in the developing and aging murine central nervous system. / 01.10.2016 / PubMed / Full text
MBD2[править]
- Age-related Changes in the Global DNA Methylation Profile of Oligodendrocyte Progenitor Cells Derived from Rat Spinal Cords. / 02.2019 / PubMed / Full text
MBOAT2[править]
- Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. / 03.2020 / PubMed / Full text
MBTD1[править]
- LncRNA TTN-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/MBTD1 axis. / 10.10.2019 / PubMed / Full text
MCF2L[править]
- DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. / 25.07.2018 / PubMed / Full text
MCM3AP[править]
- Nodes and biological processes identified on the basis of network analysis in the brain of the senescence accelerated mice as an Alzheimer's disease animal model. / 2013 / PubMed / Full text
MCM5[править]
MCM6[править]
MCUR1[править]
- Cytosolic and mitochondrial Ca concentrations in primary hepatocytes change with ageing and in consequence of an mtDNA mutation. / 09.2019 / PubMed / Full text
MDK[править]
- A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass. / 20.06.2019 / PubMed / Full text
MDN1[править]
ME3[править]
- Acceleration of age-associated methylation patterns in HIV-1-infected adults. / 2015 / PubMed / Full text
MECOM[править]
- Clinical and genetic risk factors for decreased bone mineral density in Japanese patients with inflammatory bowel disease. / 11.2018 / PubMed / Full text
MED25[править]
- The [i]HAC1[/i] histone acetyltransferase promotes leaf senescence and regulates the expression of [i]ERF022[/i]. / 08.2019 / PubMed / Full text
MED28[править]
- Redox regulation of the MED28 and MED32 mediator subunits is important for development and senescence. / 05.2016 / PubMed / Full text
MEIS2[править]
MEPE[править]
- Remodeling process in bone of aged rats in response to resistance training. / 01.09.2020 / PubMed / Full text
MERTK[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
MESP1[править]
- Simulated Microgravity Exerts an Age-Dependent Effect on the Differentiation of Cardiovascular Progenitors Isolated from the Human Heart. / 2015 / PubMed / Full text
MEST[править]
- Improving specific autobiographical memory in older adults: impacts on mood, social problem solving, and functional limitations. / 09.2018 / PubMed / Full text
MFAP4[править]
- The role of microfibrillar-associated protein 4 (MFAP4) in the formation and function of splenic compartments during embryonic and adult life. / 07.2016 / PubMed / Full text
MFSD2A[править]
- Decreased Blood Level of MFSD2a as a Potential Biomarker of Alzheimer's Disease. / 20.12.2019 / PubMed / Full text
MICB[править]
MICU1[править]
- Cytosolic and mitochondrial Ca concentrations in primary hepatocytes change with ageing and in consequence of an mtDNA mutation. / 09.2019 / PubMed / Full text
MIPEP[править]
- [Metabolic Alteration in Aging Process: Metabolic Remodeling in White Adipose Tissue by Caloric Restriction]. / 2020 / PubMed / Full text
MKRN1[править]
- Endothelial senescence-associated secretory phenotype (SASP) is regulated by Makorin-1 ubiquitin E3 ligase. / 11.2019 / PubMed / Full text
MLH3[править]
- Age-Dependent Alterations in Meiotic Recombination Cause Chromosome Segregation Errors in Spermatocytes. / 19.10.2017 / PubMed / Full text
MLST8[править]
- Genetic variants near MLST8 and DHX57 affect the epigenetic age of the cerebellum. / 02.02.2016 / PubMed / Full text
MMP20[править]
- Identification of the effects of aging-related gene-matrix metalloproteinase on allograft outcomes in kidney transplantation. / 07-08.2013 / PubMed / Full text
MOB1B[править]
- Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. / 05.03.2020 / PubMed / Full text
MOG[править]
- Efficacy of vitamin D in treating multiple sclerosis-like neuroinflammation depends on developmental stage. / 11.2013 / PubMed / Full text
MORF4L1[править]
- A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass. / 20.06.2019 / PubMed / Full text
MPC1[править]
- Age-related impairments in skeletal muscle PDH phosphorylation and plasma lactate are indicative of metabolic inflexibility and the effects of exercise training. / 01.07.2016 / PubMed / Full text
MPG[править]
- Menoprogen, a TCM Herbal Formula for Menopause, Increases Endogenous E2 in an Aged Rat Model of Menopause by Reducing Ovarian Granulosa Cell Apoptosis. / 2016 / PubMed / Full text
MPHOSPH6[править]
- Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. / 05.03.2020 / PubMed / Full text
MPL[править]
- Molecular Pathogenesis of Myeloproliferative Neoplasms: Influence of Age and Gender. / 10.2017 / PubMed / Full text
MPP3[править]
- MPP3 regulates levels of PALS1 and adhesion between photoreceptors and Müller cells. / 10.2013 / PubMed / Full text
MPP4[править]
- DNA damage tolerance in hematopoietic stem and progenitor cells in mice. / 15.08.2017 / PubMed / Full text
MPST[править]
- Methionine restriction leads to hyperhomocysteinemia and alters hepatic H S production capacity in Fischer-344 rats. / 12.2018 / PubMed / Full text
MPV17[править]
- The Human Mitochondrial DNA Depletion Syndrome Gene MPV17 Encodes a Non-selective Channel That Modulates Membrane Potential. / 29.05.2015 / PubMed / Full text
MR1[править]
MRC1[править]
- Myocardial Infarction Superimposed on Aging: MMP-9 Deletion Promotes M2 Macrophage Polarization. / 04.2016 / PubMed / Full text
MRO[править]
- [Effects of different intensities exercise combined with resveratrol on RBP4 in aged obese rats]. / 08.05.2017 / PubMed / Full text
MRTFA[править]
- Endothelial progerin expression causes cardiovascular pathology through an impaired mechanoresponse. / 01.02.2019 / PubMed / Full text
MS4A1[править]
- Age-related but not longevity-related genes are found by weighted gene co-expression network analysis in the peripheral blood cells of humans. / 19.01.2019 / PubMed / Full text
MS4A4A[править]
- Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text
MS4A6A[править]
- Recent studies on cellular and molecular mechanisms in Alzheimer's disease: focus on epigenetic factors and histone deacetylase. / 28.03.2018 / PubMed / Full text
MSH3[править]
- RNA-Seq analysis of differentially expressed genes relevant to mismatch repair in aging hematopoietic stem-progenitor cells. / 25.02.2019 / PubMed / Full text
MSH5[править]
- Exome sequencing analysis reveals variants in primary immunodeficiency genes in patients with very early onset inflammatory bowel disease. / 11.2015 / PubMed / Full text
MSN[править]
- The sigma-1 receptor mediates the beneficial effects of pridopidine in a mouse model of Huntington disease. / 01.2017 / PubMed / Full text
MSR1[править]
MSRA[править]
- Temporal pattern of neuronal insulin release during Caenorhabditis elegans aging: Role of redox homeostasis. / 02.2019 / PubMed / Full text
MT1B[править]
- Pharmacological advantages of melatonin in immunosenescence by improving activity of T lymphocytes. / 07.2016 / PubMed / Full text
MT1M[править]
- A novel strain of Lactobacillus mucosae isolated from a Gaotian villager improves in vitro and in vivo antioxidant as well as biological properties in D-galactose-induced aging mice. / 02.2016 / PubMed / Full text
MT3[править]
- Age-related changes of metallothionein 1/2 and metallothionein 3 expression in rat brain. / 01.2017 / PubMed / Full text
MTBP[править]
- Multiomics Approach to Novel Therapeutic Targets for Cancer and Aging-Related Diseases: Role of Sld7 in Yeast Aging Network. / 02.2017 / PubMed / Full text
MTCH2[править]
- The influence of obesity-related single nucleotide polymorphisms on BMI across the life course: the PAGE study. / 05.2013 / PubMed / Full text
MTHFD2[править]
- A multidimensional systems biology analysis of cellular senescence in aging and disease. / 07.04.2020 / PubMed / Full text
MTNR1A[править]
- Influence of melatonin receptor 1A gene polymorphisms on seasonal reproduction in Sarda ewes with different body condition scores and ages. / 10.2014 / PubMed / Full text
MTTP[править]
- Active vitamin D supplementation alleviates initiation and progression of nonalcoholic fatty liver disease by repressing the p53 pathway. / 15.01.2020 / PubMed / Full text
MUC7[править]
- Reduced Salivary Mucin Binding and Glycosylation in Older Adults Influences Taste in an In Vitro Cell Model. / 24.09.2019 / PubMed / Full text
MUL1[править]
- Effects of MUL1 and PARKIN on the circadian clock, brain and behaviour in Drosophila Parkinson's disease models. / 28.05.2019 / PubMed / Full text
MUTYH[править]
- Cholangiocyte senescence caused by lysophosphatidylcholine as a potential implication in carcinogenesis. / 09.2015 / PubMed / Full text
MVP[править]
- Reexamining the minimum viable population concept for long-lived species. / 06.2013 / PubMed / Full text
MYBBP1A[править]
- The protein-interaction network with functional roles in tumorigenesis, neurodegeneration, and aging. / 12.2016 / PubMed / Full text
MYBPC1[править]
- Myosin Binding Protein-C Slow Phosphorylation is Altered in Duchenne Dystrophy and Arthrogryposis Myopathy in Fast-Twitch Skeletal Muscles. / 19.08.2015 / PubMed / Full text
MYCN[править]
- Silencing of AURKA augments the antitumor efficacy of the AURKA inhibitor MLN8237 on neuroblastoma cells. / 2020 / PubMed / Full text
MYCNOS[править]
- Insights into the Function of Long Noncoding RNAs in Sepsis Revealed by Gene Co-Expression Network Analysis. / 26.01.2017 / PubMed / Full text
MYH10[править]
- Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. / 10.2019 / PubMed / Full text
MYH9[править]
- Estimated glomerular filtration rate (eGFR), 25(OH) D3, chronic kidney disease (CKD), the MYH9 (myosin heavy chain 9) gene in old and very elderly people. / 08.2015 / PubMed / Full text
MYLPF[править]
- Explaining meat quality of bulls and steers by differential proteome and phosphoproteome analysis of skeletal muscle. / 15.05.2019 / PubMed / Full text
MYNN[править]
- Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text
MYO18B[править]
- A common variant in myosin-18B contributes to mathematical abilities in children with dyslexia and intraparietal sulcus variability in adults. / 19.02.2013 / PubMed / Full text
MYO1F[править]
- A Microglial Signature Directing Human Aging and Neurodegeneration-Related Gene Networks. / 2019 / PubMed / Full text
MYO5B[править]
- Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. / 12.2017 / PubMed / Full text
MYOC[править]
- Binding of a glaucoma-associated myocilin variant to the αB-crystallin chaperone impedes protein clearance in trabecular meshwork cells. / 28.12.2018 / PubMed / Full text
MYOF[править]
- Genetics of Human Longevity From Incomplete Data: New Findings From the Long Life Family Study. / 08.10.2018 / PubMed / Full text
MYOG[править]
- Low Six4 and Six5 gene dosage improves dystrophic phenotype and prolongs life span of mdx mice. / 08.2016 / PubMed / Full text
MYSM1[править]
- MYSM1 Suppresses Cellular Senescence and the Aging Process to Prolong Lifespan. / 11.2020 / PubMed / Full text
MYT1[править]
- ESC-sEVs Rejuvenate Aging Hippocampal NSCs by Transferring SMADs to Regulate the MYT1-Egln3-Sirt1 Axis. / 01.10.2020 / PubMed / Full text
NACA[править]
- Age and Sex Are Strongly Correlated to the Rate and Type of Mountain Injuries Requiring Search and Rescue Missions. / 12.2019 / PubMed / Full text
NAF1[править]
- Telomere length and aging-related outcomes in humans: A Mendelian randomization study in 261,000 older participants. / 12.2019 / PubMed / Full text
NAIP[править]
NBPF6[править]
- Genomewide Association Scan of a Mortality Associated Endophenotype for a Long and Healthy Life in the Long Life Family Study. / 01.10.2017 / PubMed / Full text
NCAPD2[править]
- KDM3A and KDM4C Regulate Mesenchymal Stromal Cell Senescence and Bone Aging via Condensin-mediated Heterochromatin Reorganization. / 22.11.2019 / PubMed / Full text
NCAPG2[править]
- KDM3A and KDM4C Regulate Mesenchymal Stromal Cell Senescence and Bone Aging via Condensin-mediated Heterochromatin Reorganization. / 22.11.2019 / PubMed / Full text
NCK2[править]
NCOR2[править]
- DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. / 25.07.2018 / PubMed / Full text
NCSTN[править]
- The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. / 29.07.2020 / PubMed / Full text
NDN[править]
- The Changing Landscape of Naive T Cell Receptor Repertoire With Human Aging. / 2018 / PubMed / Full text
NDP[править]
- Association between Cognitive Status before Surgery and Outcomes in Elderly Patients with Hip Fracture in a Dedicated Orthogeriatric Care Pathway. / 2017 / PubMed / Full text
NDUFA8[править]
- Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text
NDUFA9[править]
- Preservation of skeletal muscle mitochondrial content in older adults: relationship between mitochondria, fibre type and high-intensity exercise training. / 01.06.2017 / PubMed / Full text
NDUFAB1[править]
- Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. / 02.2018 / PubMed / Full text
NDUFS4[править]
- Low abundance of NDUFV2 and NDUFS4 subunits of the hydrophilic complex I domain and VDAC1 predicts mammalian longevity. / 07.2020 / PubMed / Full text
NDUFS7[править]
- Nod-like receptor pyrin containing 3 (NLRP3) in the post-mortem frontal cortex from patients with bipolar disorder: A potential mediator between mitochondria and immune-activation. / 01.2016 / PubMed / Full text
NDUFS8[править]
- Mitochondrial Complex I Mutations Predispose Drosophila to Isoflurane Neurotoxicity. / 01.10.2020 / PubMed / Full text
NDUFV1[править]
- Contribution of genetic polymorphisms on functional status at very old age: a gene-based analysis of 38 genes (311 SNPs) in the oxidative stress pathway. / 04.2014 / PubMed / Full text
NEBL[править]
- Isolation and characterization of the human immature osteoblast culture system from the alveolar bones of aged donors for bone regeneration therapy. / 12.2014 / PubMed / Full text
NEDD4L[править]
- DP1 Activation Reverses Age-Related Hypertension Via NEDD4L-Mediated T-Bet Degradation in T Cells. / 25.02.2020 / PubMed / Full text
NEGR1[править]
- The influence of obesity-related single nucleotide polymorphisms on BMI across the life course: the PAGE study. / 05.2013 / PubMed / Full text
NEIL3[править]
- Age-Related Oxidative Changes in Primary Porcine Fibroblasts Expressing Mutated Huntingtin. / 2019 / PubMed / Full text
NEK9[править]
- Effect of sex, age and genetics on crossover interference in cattle. / 28.11.2016 / PubMed / Full text
NELL1[править]
- Pharmacogenomics study of thiazide diuretics and QT interval in multi-ethnic populations: the cohorts for heart and aging research in genomic epidemiology. / 04.2018 / PubMed / Full text
NEU1[править]
- Sialylation regulates myofibroblast differentiation of human skin fibroblasts. / 18.04.2017 / PubMed / Full text
NF2[править]
- Rac1-Mediated DNA Damage and Inflammation Promote Nf2 Tumorigenesis but Also Limit Cell-Cycle Progression. / 21.11.2016 / PubMed / Full text
NFIA[править]
- Cell-type-specific expression of NFIX in the developing and adult cerebellum. / 07.2017 / PubMed / Full text
NFIL3[править]
- [Identification of single nucleotide polymorphisms in centenarians]. / 05-06.2016 / PubMed / Full text
NFIX[править]
- Cell-type-specific expression of NFIX in the developing and adult cerebellum. / 07.2017 / PubMed / Full text
NFKB2[править]
- Partial sleep deprivation activates the DNA damage response (DDR) and the senescence-associated secretory phenotype (SASP) in aged adult humans. / 01.2016 / PubMed / Full text
NFKBIA[править]
- Analysis of molecular networks and targets mining of Chinese herbal medicines on anti-aging. / 28.12.2016 / PubMed / Full text
NHP2[править]
- Pseudouridylation defect due to [i]DKC1[/i] and [i]NOP10[/i] mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis. / 30.06.2020 / PubMed / Full text
NIN[править]
- Increased macromolecular damage due to oxidative stress in the neocortex and hippocampus of WNIN/Ob, a novel rat model of premature aging. / 06.06.2014 / PubMed / Full text
NIPA2[править]
- A multidimensional systems biology analysis of cellular senescence in aging and disease. / 07.04.2020 / PubMed / Full text
NKAP[править]
- NKAP Regulates Senescence and Cell Death Pathways in Hematopoietic Progenitors. / 2019 / PubMed / Full text
NKIRAS2[править]
- Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. / 11.2017 / PubMed / Full text
NKX2-1[править]
- Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. / 03.2015 / PubMed / Full text
NKX2-5[править]
- Isolation, Characterization, and Differentiation of Cardiac Stem Cells from the Adult Mouse Heart. / 07.01.2019 / PubMed / Full text
NKX6-1[править]
NLRP5[править]
- Effects of aging in the expression of NOD-like receptors and inflammasome-related genes in oral mucosa. / 02.2016 / PubMed / Full text
NLRP6[править]
- LRP6 targeting suppresses gastric tumorigenesis via P14 -Mdm2-P53-dependent cellular senescence. / 19.12.2017 / PubMed / Full text
NMI[править]
- Age-Dependent Control of Shoulder Muscles During a Reach-and-Lift Task. / 10.12.2019 / PubMed / Full text
NMNAT3[править]
- Restoration of Mitochondrial NAD Levels Delays Stem Cell Senescence and Facilitates Reprogramming of Aged Somatic Cells. / 12.2016 / PubMed / Full text
NMRK2[править]
- Aged Nicotinamide Riboside Kinase 2 Deficient Mice Present an Altered Response to Endurance Exercise Training. / 2018 / PubMed / Full text
NMU[править]
- [Medicinal Chemistry Focused on Mid-sized Peptides Derived from Biomolecules]. / 2019 / PubMed / Full text
NMUR1[править]
- [Medicinal Chemistry Focused on Mid-sized Peptides Derived from Biomolecules]. / 2019 / PubMed / Full text
NMUR2[править]
- [Medicinal Chemistry Focused on Mid-sized Peptides Derived from Biomolecules]. / 2019 / PubMed / Full text
NOBOX[править]
- Observation of the influences of diosgenin on aging ovarian reserve and function in a mouse model. / 18.10.2017 / PubMed / Full text
NOD2[править]
- Molecular modeling in the age of clinical genomics, the enterprise of the next generation. / 03.2017 / PubMed / Full text
NOL12[править]
- NOL12 Repression Induces Nucleolar Stress-Driven Cellular Senescence and Is Associated with Normative Aging. / 15.06.2019 / PubMed / Full text
NOLC1[править]
- Enhanced NOLC1 promotes cell senescence and represses hepatocellular carcinoma cell proliferation by disturbing the organization of nucleolus. / 08.2017 / PubMed / Full text
NOTCH4[править]
- Age-dependent autophagy induction after injury promotes axon regeneration by limiting NOTCH. / 11.2020 / PubMed / Full text
NPB[править]
- The Role of the IGF-1 Signaling Cascade in Muscle Protein Synthesis and Anabolic Resistance in Aging Skeletal Muscle. / 2019 / PubMed / Full text
NPBWR1[править]
- Genome-wide association study and annotating candidate gene networks affecting age at first calving in Nellore cattle. / 12.2017 / PubMed / Full text
NPFFR2[править]
- Genome-wide association study for longevity with whole-genome sequencing in 3 cattle breeds. / 09.2016 / PubMed / Full text
NPPB[править]
- Chloride channels are involved in sperm motility and are downregulated in spermatozoa from patients with asthenozoospermia. / 07-08.2017 / PubMed / Full text
NPRL2[править]
- KLHL22 activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing. / 05.2018 / PubMed / Full text
NPRL3[править]
- KLHL22 activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing. / 05.2018 / PubMed / Full text
NPSR1[править]
- Variants of asthma and chronic obstructive pulmonary disease genes and lung function decline in aging. / 07.2014 / PubMed / Full text
NPY2R[править]
- Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus. / 2015 / PubMed / Full text
NQO2[править]
- The ontogeny and population variability of human hepatic dihydronicotinamide riboside:quinone oxidoreductase (NQO2). / 08.2017 / PubMed / Full text
NR1D1[править]
- Quercetin, caffeic acid and resveratrol regulate circadian clock genes and aging-related genes in young and old human lung fibroblast cells. / 02.2020 / PubMed / Full text
NR1H3[править]
- Association of levels of fasting glucose and insulin with rare variants at the chromosome 11p11.2-MADD locus: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text
NR2C2[править]
- Minireview: Pathophysiological roles of the TR4 nuclear receptor: lessons learned from mice lacking TR4. / 06.2014 / PubMed / Full text
NR2F2[править]
- Fine mapping genetic variants associated with age at puberty and sow fertility using SowPro90 genotyping array. / 01.10.2020 / PubMed / Full text
NR5A2[править]
- Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. / 12.2017 / PubMed / Full text
NRARP[править]
- Low dose Emodin induces tumor senescence for boosting breast cancer chemotherapy via silencing NRARP. / 10.11.2018 / PubMed / Full text
NRSN2[править]
- Down-Regulated NRSN2 Promotes Cell Proliferation and Survival Through PI3K/Akt/mTOR Pathway in Hepatocellular Carcinoma. / 10.2015 / PubMed / Full text
NRXN2[править]
- Neurexins 1-3 Each Have a Distinct Pattern of Expression in the Early Developing Human Cerebral Cortex. / 01.01.2017 / PubMed / Full text
NSD1[править]
- Screening for genes that accelerate the epigenetic aging clock in humans reveals a role for the H3K36 methyltransferase NSD1. / 14.08.2019 / PubMed / Full text
NSF[править]
- Effects of air pollution on children from a socioecological perspective. / 15.11.2019 / PubMed / Full text
NSMCE2[править]
- NSMCE2 suppresses cancer and aging in mice independently of its SUMO ligase activity. / 03.11.2015 / PubMed / Full text
NSUN2[править]
- RNA methyltransferase NSUN2 promotes stress-induced HUVEC senescence. / 12.04.2016 / PubMed / Full text
NSUN5[править]
- Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan. / 30.01.2015 / PubMed / Full text
NT5E[править]
- The NT5E gene variant strongly affects the degradation rate of inosine 5'-monophosphate under postmortem conditions in Japanese Black beef. / 12.2019 / PubMed / Full text
NTHL1[править]
- Mitochondrial base excision repair positively correlates with longevity in the liver and heart of mammals. / 04.2020 / PubMed / Full text
NTM[править]
- Attenuated heme oxygenase-1 responses predispose the elderly to pulmonary nontuberculous mycobacterial infections. / 01.11.2016 / PubMed / Full text
NTN4[править]
- EGF/EGFR upregulates and cooperates with Netrin-4 to protect glioblastoma cells from DNA damage-induced senescence. / 04.12.2018 / PubMed / Full text
NTNG2[править]
- Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. / 03.2020 / PubMed / Full text
NUBP2[править]
- Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. / 10.2016 / PubMed / Full text
NUCB2[править]
- Ontogenetic Pattern Changes of Nucleobindin-2/Nesfatin-1 in the Brain and Intestinal Bulb of the Short Lived African Turquoise Killifish. / 31.12.2019 / PubMed / Full text
NUDT12[править]
- Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text
NUPR1[править]
- NUPR1 maintains autolysosomal efflux by activating SNAP25 transcription in cancer cells. / 2018 / PubMed / Full text
NUSAP1[править]
- Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text
NVL[править]
- [The effectiveness of non-invasive lung ventilation in lateral amyotrophic sclerosis]. / 2014 / PubMed
NXF1[править]
- WRN modulates translation by influencing nuclear mRNA export in HeLa cancer cells. / 14.10.2020 / PubMed / Full text
OAS1[править]
- Fine mapping genetic variants associated with age at puberty and sow fertility using SowPro90 genotyping array. / 01.10.2020 / PubMed / Full text
OASL[править]
- Effect of age on the pathogenesis of DHV-1 in Pekin ducks and on the innate immune responses of ducks to infection. / 05.2014 / PubMed / Full text
OAZ1[править]
- Identification of reference genes for RT-qPCR data normalisation in aging studies. / 27.09.2019 / PubMed / Full text
OCLN[править]
- Reduction of Aging-Induced Oxidative Stress and Activation of Autophagy by Bilberry Anthocyanin Supplementation via the AMPK-mTOR Signaling Pathway in Aged Female Rats. / 17.07.2019 / PubMed / Full text
OCRL[править]
- Decreased urinary excretion of the ectodomain form of megalin (A-megalin) in children with OCRL gene mutations. / 04.2017 / PubMed / Full text
ODC1[править]
- The curious case of polyamines: spermidine drives reversal of B cell senescence. / 03.2020 / PubMed / Full text
OGDH[править]
- An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. / 12.2019 / PubMed / Full text
OGFOD1[править]
- 2-Oxoglutarate-dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process. / 10.2015 / PubMed / Full text
OLFML3[править]
- Dexamethasone Induces a Specific Form of Ramified Dysfunctional Microglia. / 02.2019 / PubMed / Full text
OMA1[править]
ONECUT1[править]
- Survival analyses in Holstein cows considering direct disease diagnoses and specific SNP marker effects. / 09.2020 / PubMed / Full text
OOEP[править]
- Maternal gene [i]Ooep[/i] may participate in homologous recombination-mediated DNA double-strand break repair in mouse oocytes. / 18.11.2018 / PubMed / Full text
OPLAH[править]
- An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. / 12.2019 / PubMed / Full text
OPRD1[править]
- A commonly carried genetic variant in the delta opioid receptor gene, OPRD1, is associated with smaller regional brain volumes: replication in elderly and young populations. / 04.2014 / PubMed / Full text
OR2AG1[править]
- The activation of OR51E1 causes growth suppression of human prostate cancer cells. / 26.07.2016 / PubMed / Full text
OR51E1[править]
- The activation of OR51E1 causes growth suppression of human prostate cancer cells. / 26.07.2016 / PubMed / Full text
OR51E2[править]
- The activation of OR51E1 causes growth suppression of human prostate cancer cells. / 26.07.2016 / PubMed / Full text
ORC1[править]
ORMDL3[править]
- Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. / 12.2019 / PubMed / Full text
OSCAR[править]
- Awareness tool for safe and responsible driving (OSCAR): a potential educational intervention for increasing interest, openness and knowledge about the abilities required and compensatory strategies among older drivers. / 2015 / PubMed / Full text
OSGEP[править]
- Novel homozygous OSGEP gene pathogenic variants in two unrelated patients with Galloway-Mowat syndrome: case report and review of the literature. / 11.04.2019 / PubMed / Full text
OTUD7A[править]
- A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. / 07.2013 / PubMed / Full text
OXT[править]
- Medial amygdala lesions modify aggressive behavior and immediate early gene expression in oxytocin and vasopressin neurons during intermale exposure. / 15.05.2013 / PubMed / Full text
P2RX3[править]
- Fine mapping genetic variants associated with age at puberty and sow fertility using SowPro90 genotyping array. / 01.10.2020 / PubMed / Full text
P2RX4[править]
- A rare functional haplotype of the P2RX4 and P2RX7 genes leads to loss of innate phagocytosis and confers increased risk of age-related macular degeneration. / 04.2013 / PubMed / Full text
P2RY10[править]
- Divergent age-dependent peripheral immune transcriptomic profile following traumatic brain injury. / 12.06.2019 / PubMed / Full text
P4HA2[править]
- Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients. / 03.09.2019 / PubMed / Full text
P4HA3[править]
- Age-associated genes in human mammary gland drive human breast cancer progression. / 15.06.2020 / PubMed / Full text
PABPC1[править]
- Comprehensive Analysis of Interaction Networks of Telomerase Reverse Transcriptase with Multiple Bioinformatic Approaches: Deep Mining the Potential Functions of Telomere and Telomerase. / 08.2017 / PubMed / Full text
PACSIN1[править]
- GluN3A promotes dendritic spine pruning and destabilization during postnatal development. / 09.07.2014 / PubMed / Full text
PAFAH2[править]
- Elevated truncated oxidized phospholipids as a factor exacerbating ALI in the aging lungs. / 03.2019 / PubMed / Full text
PAK2[править]
- Targeting genes in insulin-associated signalling pathway, DNA damage, cell proliferation and cell differentiation pathways by tocotrienol-rich fraction in preventing cellular senescence of human diploid fibroblasts. / 11-12.2015 / PubMed / Full text
PALM[править]
- Signatures of malaria vaccine efficacy in ageing murine immune memory. / 05.2014 / PubMed / Full text
PAPSS1[править]
- Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text
PARN[править]
- CD8 T-cell senescence and skewed lymphocyte subsets in young Dyskeratosis Congenita patients with PARN and DKC1 mutations. / 09.2020 / PubMed / Full text
PARP2[править]
- Molecular evolutionary patterns of NAD /Sirtuin aging signaling pathway across taxa. / 2017 / PubMed / Full text
PATE1[править]
- Aged men share the sperm protein PATE1 defect with young asthenozoospermia patients. / 04.2015 / PubMed / Full text
PAX1[править]
- Co-culturing nucleus pulposus mesenchymal stem cells with notochordal cell-rich nucleus pulposus explants attenuates tumor necrosis factor-α-induced senescence. / 26.06.2018 / PubMed / Full text
PAX4[править]
- Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. / 03.2015 / PubMed / Full text
PAX7[править]
- Muscle health and performance in monozygotic twins with 30 years of discordant exercise habits. / 10.2018 / PubMed / Full text
PAX8[править]
- Inadequate control of thyroid hormones sensitizes to hepatocarcinogenesis and unhealthy aging. / 13.09.2019 / PubMed / Full text
PBX4[править]
- Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. / 12.2019 / PubMed / Full text
PCBP2[править]
- RNA-binding Protein PCBP2 Regulates p73 Expression and p73-dependent Antioxidant Defense. / 29.04.2016 / PubMed / Full text
PCCA[править]
- Propionyl-CoA carboxylase pcca-1 and pccb-1 gene deletions in Caenorhabditis elegans globally impair mitochondrial energy metabolism. / 03.2018 / PubMed / Full text
PCCB[править]
- Propionyl-CoA carboxylase pcca-1 and pccb-1 gene deletions in Caenorhabditis elegans globally impair mitochondrial energy metabolism. / 03.2018 / PubMed / Full text
PCDH9[править]
- A reverse genetics cell-based evaluation of genes linked to healthy human tissue age. / 01.2017 / PubMed / Full text
PCDHGA3[править]
PCGF2[править]
- Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text
PCGF3[править]
- Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text
PCGF5[править]
- Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. / 24.09.2020 / PubMed / Full text
PCK1[править]
- PCK1 is negatively regulated by bta-miR-26a, and a single-nucleotide polymorphism in the 3' untranslated region is involved in semen quality and longevity of Holstein bulls. / 03.2016 / PubMed / Full text
PCMTD1[править]
- Genome-wide association study and annotating candidate gene networks affecting age at first calving in Nellore cattle. / 12.2017 / PubMed / Full text
PCP4[править]
- Specific age-related molecular alterations in the cerebellum of Down syndrome mouse models. / 01.09.2016 / PubMed / Full text
PDE11A[править]
- Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text
PDE1B[править]
- Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text
PDE3B[править]
- Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text
PDE4A[править]
- Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text
PDE7A[править]
- Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text
PDE7B[править]
- Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text
PDE8A[править]
- Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text
PDE8B[править]
- Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. / 02.2014 / PubMed / Full text
PDGFRA[править]
- GBM-associated mutations and altered protein expression are more common in young patients. / 25.10.2016 / PubMed / Full text
PDP1[править]
- Age-related impairments in skeletal muscle PDH phosphorylation and plasma lactate are indicative of metabolic inflexibility and the effects of exercise training. / 01.07.2016 / PubMed / Full text
PDP2[править]
- Age-related impairments in skeletal muscle PDH phosphorylation and plasma lactate are indicative of metabolic inflexibility and the effects of exercise training. / 01.07.2016 / PubMed / Full text
PEBP1[править]
- [i]Drosophila[/i] PEBP1 inhibits intestinal stem cell aging via suppression of ERK pathway. / 06.04.2018 / PubMed / Full text
PER3[править]
- Effects of PER3 clock gene polymorphisms on aging-related changes of the cerebral cortex. / 03.2018 / PubMed / Full text
PEX1[править]
- Transcription factor PEX1 modulates extracellular matrix turnover through regulation of MMP-9 expression. / 02.2017 / PubMed / Full text
PEX19[править]
- A genome-wide screen identifies genes that suppress the accumulation of spontaneous mutations in young and aged yeast cells. / 02.2020 / PubMed / Full text
PEX5[править]
- Aging lowers PEX5 levels in cortical neurons in male and female mouse brains. / 09.2020 / PubMed / Full text
PF4V1[править]
- Involvement of ERK1/2 activation in the gene expression of senescence-associated secretory factors in human hepatic stellate cells. / 05.2019 / PubMed / Full text
PFKL[править]
- Developmental changes in hepatic glucose metabolism in a newborn piglet model: A comparative analysis for suckling period and early weaning period. / 19.02.2016 / PubMed / Full text
PGAP1[править]
- Hypoxia-inducible transcription factors, HIF1A and HIF2A, increase in aging mucosal tissues. / 07.2018 / PubMed / Full text
PGK2[править]
- Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice. / 01.2020 / PubMed / Full text
PGLS[править]
- 547 transcriptomes from 44 brain areas reveal features of the aging brain in non-human primates. / 28.11.2019 / PubMed / Full text
PGLYRP1[править]
- PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan. / 16.01.2014 / PubMed / Full text
PGLYRP2[править]
- Innate immune response to LPS in airway epithelium is dependent on chronological age and antecedent exposures. / 11.2013 / PubMed / Full text
PGM1[править]
- Explaining meat quality of bulls and steers by differential proteome and phosphoproteome analysis of skeletal muscle. / 15.05.2019 / PubMed / Full text
PHAX[править]
- Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text
PHF19[править]
- A reverse genetics cell-based evaluation of genes linked to healthy human tissue age. / 01.2017 / PubMed / Full text
PHF6[править]
- miR-128 regulates neuronal migration, outgrowth and intrinsic excitability via the intellectual disability gene Phf6. / 03.01.2015 / PubMed / Full text
PHGDH[править]
- Tanshinone prevents alveolar bone loss in ovariectomized osteoporosis rats by up-regulating phosphoglycerate dehydrogenase. / 01.08.2019 / PubMed / Full text
PHLPP1[править]
- Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans. / 28.06.2016 / PubMed / Full text
PHOSPHO1[править]
- Phospho1 deficiency transiently modifies bone architecture yet produces consistent modification in osteocyte differentiation and vascular porosity with ageing. / 12.2015 / PubMed / Full text
PI4KA[править]
- Combined aerobic exercise and enzyme replacement therapy rejuvenates the mitochondrial-lysosomal axis and alleviates autophagic blockage in Pompe disease. / 10.2015 / PubMed / Full text
PIAS1[править]
- Age-Dependent and -Independent Effects of Perivascular Adipose Tissue and Its Paracrine Activities during Neointima Formation. / 31.12.2019 / PubMed / Full text
PICK1[править]
- Development- and age-related alterations in the expression of AMPA receptor subunit GluR2 and its trafficking proteins in the hippocampus of male mouse brain. / 06.2015 / PubMed / Full text
PIGR[править]
- Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. / 02.2018 / PubMed / Full text
PIK3C2A[править]
- Identification of key genes and transcription factors in aging mesenchymal stem cells by DNA microarray data. / 15.04.2019 / PubMed / Full text
PIK3C2B[править]
- In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. / 12.2019 / PubMed / Full text
PIK3C3[править]
- Metabolomic analyses reveal that anti-aging metabolites are depleted by palmitate but increased by oleate in vivo. / 03.08.2015 / PubMed / Full text
PIK3CB[править]
- Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text
PIK3R1[править]
- Analysis of Polymorphisms in 59 Potential Candidate Genes for Association With Human Longevity. / 08.10.2018 / PubMed / Full text
PIK3R3[править]
- Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text
PIM1[править]
- PIM1-catalyzed CBX8 phosphorylation promotes the oncogene-induced senescence of human diploid fibroblast. / 27.06.2018 / PubMed / Full text
PIP5K1C[править]
- [Target protein candidates of hypothalamus in aging rats with intervention by Qiongyugao]. / 04.2016 / PubMed / Full text
PIPOX[править]
- Aging related methylation influences the gene expression of key control genes in colorectal cancer and adenoma. / 21.12.2016 / PubMed / Full text
PKD1[править]
- The protein kinase D1-mediated classical protein secretory pathway regulates the Ras oncogene-induced senescence response. / 16.03.2018 / PubMed / Full text
PKHD1L1[править]
PKLR[править]
- Developmental changes in hepatic glucose metabolism in a newborn piglet model: A comparative analysis for suckling period and early weaning period. / 19.02.2016 / PubMed / Full text
PKNOX1[править]
- The effects of environmental stressors on candidate aging associated genes. / 08.2020 / PubMed / Full text
PLA2G4A[править]
- Coordination of gene expression of arachidonic and docosahexaenoic acid cascade enzymes during human brain development and aging. / 2014 / PubMed / Full text
PLA2G4B[править]
- Monocytes present age-related changes in phospholipid concentration and decreased energy metabolism. / 04.2020 / PubMed / Full text
PLA2G7[править]
- Elevated PLA2G7 gene promoter methylation as a gender-specific marker of aging increases the risk of coronary heart disease in females. / 2013 / PubMed / Full text
PLAGL1[править]
- Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. / 12.2015 / PubMed / Full text
PLAT[править]
PLCB1[править]
- Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text
PLCD1[править]
- Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text
PLCG2[править]
- A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer's disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity. / 08.2019 / PubMed / Full text
PLEC[править]
- Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. / 07.2014 / PubMed / Full text
PLEKHA6[править]
- In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. / 12.2019 / PubMed / Full text
PLEKHO1[править]
- Increased PLEKHO1 within osteoblasts suppresses Smad-dependent BMP signaling to inhibit bone formation during aging. / 04.2017 / PubMed / Full text
PLIN1[править]
- Determination of the Mechanisms that Cause Sarcopenia through cDNA Microarray. / 2017 / PubMed / Full text
PLK2[править]
- Age- and brain region-dependent α-synuclein oligomerization is attributed to alterations in intrinsic enzymes regulating α-synuclein phosphorylation in aging monkey brains. / 23.02.2016 / PubMed / Full text
PLP1[править]
- Age-related changes in a patient with Pelizaeus-Merzbacher disease determined by repeated 1H-magnetic resonance spectroscopy. / 02.2014 / PubMed / Full text
PLTP[править]
- PLTP deficiency impairs learning and memory capabilities partially due to alteration of amyloid-β metabolism in old mice. / 2014 / PubMed / Full text
PLXNA4[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
PMM2[править]
- Synaptic roles for phosphomannomutase type 2 in a new Drosophila congenital disorder of glycosylation disease model. / 01.05.2016 / PubMed / Full text
PMS1[править]
- RNA-Seq analysis of differentially expressed genes relevant to mismatch repair in aging hematopoietic stem-progenitor cells. / 25.02.2019 / PubMed / Full text
PNPLA6[править]
- Delayed Induction of Human NTE (PNPLA6) Rescues Neurodegeneration and Mobility Defects of Drosophila swiss cheese (sws) Mutants. / 2015 / PubMed / Full text
PODXL[править]
- Induced Pluripotent Stem Cell-Derived Dopaminergic Neurons from Adult Common Marmoset Fibroblasts. / 01.09.2017 / PubMed / Full text
POLDIP2[править]
- Essential role of POLDIP2 in Tau aggregation and neurotoxicity via autophagy/proteasome inhibition. / 26.06.2015 / PubMed / Full text
POLL[править]
- Temporal trends in loss of life expectancy after a cancer diagnosis among the Australian population. / 04.2020 / PubMed / Full text
POLN[править]
- Analysis of DNA polymerase ν function in meiotic recombination, immunoglobulin class-switching, and DNA damage tolerance. / 06.2017 / PubMed / Full text
POLR3A[править]
- Nucleolar disruption, activation of P53 and premature senescence in POLR3A-mutated Wiedemann-Rautenstrauch syndrome fibroblasts. / 12.2020 / PubMed / Full text
POU2F1[править]
- Methyl CpG level at distal part of heat-shock protein promoter HSP70 exhibits epigenetic memory for heat stress by modulating recruitment of POU2F1-associated nucleosome-remodeling deacetylase (NuRD) complex. / 05.2017 / PubMed / Full text
POU3F2[править]
- POU3F2 participates in cognitive function and adult hippocampal neurogenesis via mammalian-characteristic amino acid repeats. / 02.2018 / PubMed / Full text
POU4F3[править]
- In Vivo Interplay between p27 , GATA3, ATOH1, and POU4F3 Converts Non-sensory Cells to Hair Cells in Adult Mice. / 11.04.2017 / PubMed / Full text
PPA2[править]
- Characterization of long living yeast deletion mutants that lack mitochondrial metabolism genes DSS1, PPA2 and AFG3. / 20.07.2019 / PubMed / Full text
PPARA[править]
- [Genotype and allele frequencies of UCP and PPAR gene families in residents of besieged Leningrad and in the control group]. / 2014 / PubMed
PPCDC[править]
- Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text
PPFIA1[править]
- Explorative results from multistep screening for potential genetic risk loci of Alzheimer's disease in the longitudinal VITA study cohort. / 01.2018 / PubMed / Full text
PPM1A[править]
- The TGF-β1/p53/PAI-1 Signaling Axis in Vascular Senescence: Role of Caveolin-1. / 03.08.2019 / PubMed / Full text
PPM1B[править]
- PPM1B depletion induces premature senescence in human IMR-90 fibroblasts. / 06.2014 / PubMed / Full text
PPP1R12B[править]
- BDA-410 Treatment Reduces Body Weight and Fat Content by Enhancing Lipolysis in Sedentary Senescent Mice. / 01.08.2017 / PubMed / Full text
PPP1R15B[править]
- In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. / 12.2019 / PubMed / Full text
PPP1R1B[править]
- Effects of PPP1R1B (DARPP-32) Polymorphism on Feedback-Related Brain Potentials Across the Life Span. / 2013 / PubMed / Full text
PPP1R3C[править]
- Uncovering genetic mechanisms of kidney aging through transcriptomics, genomics, and epigenomics. / 03.2019 / PubMed / Full text
PPP2R1A[править]
- Identification of key genes and transcription factors in aging mesenchymal stem cells by DNA microarray data. / 15.04.2019 / PubMed / Full text
PPP2R2B[править]
- Germline genetics of the p53 pathway affect longevity in a gender specific manner. / 2014 / PubMed / Full text
PPP2R3C[править]
- The mir-465 family is upregulated with age and attenuates growth hormone signaling in mouse liver. / 04.2019 / PubMed / Full text
PPT1[править]
- Neuroprotection and lifespan extension in Ppt1(-/-) mice by NtBuHA: therapeutic implications for INCL. / 11.2013 / PubMed / Full text
PRDM1[править]
- Age-related changes in the BACH2 and PRDM1 genes in lymphocytes from healthy donors and chronic lymphocytic leukemia patients. / 17.01.2019 / PubMed / Full text
PRDM8[править]
- PRDM8 reveals aberrant DNA methylation in aging syndromes and is relevant for hematopoietic and neuronal differentiation. / 20.08.2020 / PubMed / Full text
PRDX2[править]
PRDX5[править]
- The antioxidant icariin protects porcine oocytes from age-related damage in vitro. / 12.05.2020 / PubMed / Full text
PRG2[править]
- Peritoneal carcinomatosis of colorectal cancer is characterized by structural and functional reorganization of the tumor microenvironment inducing senescence and proliferation arrest in cancer cells. / 2016 / PubMed / Full text
PRKAA1[править]
- Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats. / 02.2019 / PubMed / Full text
PRKACA[править]
- Intratumoral heterogeneity of the tumor cells based on in situ cortisol excess in cortisol-producing adenomas; ∼An association among morphometry, genotype and cellular senescence∼. / 11.2020 / PubMed / Full text
PRKCB[править]
- MEF2A alters the proliferation, inflammation-related gene expression profiles and its silencing induces cellular senescence in human coronary endothelial cells. / 18.03.2019 / PubMed / Full text
PRKCD[править]
- Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. / 05.2017 / PubMed / Full text
PRKCH[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
PRKDC[править]
- DNA-PKcs modulates progenitor cell proliferation and fibroblast senescence in idiopathic pulmonary fibrosis. / 29.08.2019 / PubMed / Full text
PRKN[править]
- PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. / 03.2019 / PubMed / Full text
PRLR[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
PRM1[править]
PRM2[править]
PRODH[править]
- Proline dehydrogenase promotes senescence through the generation of reactive oxygen species. / 15.04.2017 / PubMed / Full text
PRR9[править]
- Circadian control of [i]ORE1[/i] by PRR9 positively regulates leaf senescence in [i]Arabidopsis[/i]. / 14.08.2018 / PubMed / Full text
PRRC2A[править]
- Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. / 05.03.2020 / PubMed / Full text
PRRX1[править]
- A SIRT1-centered circuitry regulates breast cancer stemness and metastasis. / 12.2018 / PubMed / Full text
PRSS16[править]
- The complex genetics of gait speed: genome-wide meta-analysis approach. / 10.01.2017 / PubMed / Full text
PSAP[править]
- Prosaposin and its receptors are differentially expressed in the salivary glands of male and female rats. / 08.2018 / PubMed / Full text
PSMA7[править]
- Role of the Ubiquitin C-Terminal Hydrolase L1-Modulated Ubiquitin Proteasome System in Auditory Cortex Senescence. / 2017 / PubMed / Full text
PSMB10[править]
- Identification of the activating cytotoxicity receptor NKG2D as a senescence marker in zero-hour kidney biopsies is indicative for clinical outcome. / 06.2017 / PubMed / Full text
PSMB5[править]
- Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression. / 24.01.2014 / PubMed / Full text
PSMB9[править]
- Identification of the activating cytotoxicity receptor NKG2D as a senescence marker in zero-hour kidney biopsies is indicative for clinical outcome. / 06.2017 / PubMed / Full text
PSMD11[править]
- The effect and mechanism of 19S proteasome PSMD11/Rpn6 subunit in D-Galactose induced mimetic aging models. / 01.09.2020 / PubMed / Full text
PSMD13[править]
- Lifelong Football Training: Effects on Autophagy and Healthy Longevity Promotion. / 2019 / PubMed / Full text
PSMD14[править]
- Upregulation of deubiquitinase PSMD14 in lung adenocarcinoma (LUAD) and its prognostic significance. / 2020 / PubMed / Full text
PSMG1[править]
- Long-lived rodents reveal signatures of positive selection in genes associated with lifespan. / 03.2018 / PubMed / Full text
PSTK[править]
- Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text
PTCH1[править]
- Sonic hedgehog regulation of cavernous nerve regeneration and neurite formation in aged pelvic plexus. / 02.2019 / PubMed / Full text
PTGDR[править]
PTGDS[править]
PTGER2[править]
- Molecular cloning and expression analysis of prostaglandin E receptor 2 gene in cashmere goat (Capra hircus) skin during hair follicle development. / 03.04.2014 / PubMed / Full text
PTH2R[править]
- Variation in the [[PTH2R]] gene is associated with age-related degenerative changes in the lumbar spine. / 01.2015 / PubMed / Full text
PTHLH[править]
- Variation in the [[PTH2R]] gene is associated with age-related degenerative changes in the lumbar spine. / 01.2015 / PubMed / Full text
PTK2[править]
- PTK2 rs7460 and rs7843014 polymorphisms and exceptional longevity: a functional replication study. / 10.2014 / PubMed / Full text
PTP4A3[править]
- Transcriptional and Functional Changes of the Human Microvasculature during Physiological Aging and Alzheimer Disease. / 05.2020 / PubMed / Full text
PTPN7[править]
- DNA methylation-based age prediction from saliva: High age predictability by combination of 7 CpG markers. / 07.2017 / PubMed / Full text
PTPRC[править]
- Selective molecular biomarkers to predict biologic behavior in pituitary tumors. / 05.2017 / PubMed / Full text
PTPRD[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
PTPRR[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
PTPRT[править]
- The complex genetics of gait speed: genome-wide meta-analysis approach. / 10.01.2017 / PubMed / Full text
PUM1[править]
- Identification of reference genes for RT-qPCR data normalisation in aging studies. / 27.09.2019 / PubMed / Full text
PXN[править]
- pxn-1 and pxn-2 May Interact Negatively during Neuronal Development and Aging in C. elegans. / 08.2015 / PubMed / Full text
QRFPR[править]
- Explorative results from multistep screening for potential genetic risk loci of Alzheimer's disease in the longitudinal VITA study cohort. / 01.2018 / PubMed / Full text
RAB10[править]
- Aberrant mitochondrial morphology and function associated with impaired mitophagy and DNM1L-MAPK/ERK signaling are found in aged mutant Parkinsonian LRRK2 mice. / 10.12.2020 / PubMed / Full text
RAB1B[править]
- Lifelong Football Training: Effects on Autophagy and Healthy Longevity Promotion. / 2019 / PubMed / Full text
RAB27A[править]
- Reduced expression level of the cyclic adenosine monophosphate response element-binding protein contributes to lung aging. / 01.2014 / PubMed / Full text
RAC3[править]
- RAC3 more than a nuclear receptor coactivator: a key inhibitor of senescence that is downregulated in aging. / 15.10.2015 / PubMed / Full text
RAD21[править]
- Suppression of RAD21 Induces Senescence of MDA-MB-231 Human Breast Cancer Cells Through RB1 Pathway Activation Via c-Myc Downregulation. / 06.2016 / PubMed / Full text
RAD23A[править]
- Lifelong Football Training: Effects on Autophagy and Healthy Longevity Promotion. / 2019 / PubMed / Full text
RAD51C[править]
- Polymorphisms of the DNA repair gene EXO1 modulate cognitive aging in old adults in a Taiwanese population. / 06.2019 / PubMed / Full text
RAD9A[править]
- Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. / 02.2018 / PubMed / Full text
RAI1[править]
- DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. / 25.07.2018 / PubMed / Full text
RAMP1[править]
- Depressed perivascular sensory innervation of mouse mesenteric arteries with advanced age. / 15.04.2016 / PubMed / Full text
RAMP2[править]
- Vascular endothelial adrenomedullin-RAMP2 system is essential for vascular integrity and organ homeostasis. / 19.02.2013 / PubMed / Full text
RAPGEF2[править]
- Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. / 12.2017 / PubMed / Full text
RARB[править]
- Genome-wide meta-analysis of macronutrient intake of 91,114 European ancestry participants from the cohorts for heart and aging research in genomic epidemiology consortium. / 12.2019 / PubMed / Full text
RASEF[править]
- Near-genomewide RNAi screening for regulators of BRAF(V600E) -induced senescence identifies RASEF, a gene epigenetically silenced in melanoma. / 07.2014 / PubMed / Full text
RASGEF1A[править]
- Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text
RASGRF2[править]
- A single nucleotide polymorphism associated with reduced alcohol intake in the RASGRF2 gene predicts larger cortical volumes but faster longitudinal ventricular expansion in the elderly. / 2013 / PubMed / Full text
RB1CC1[править]
- Tumor-suppressive functions of 15-Lipoxygenase-2 and RB1CC1 in prostate cancer. / 2014 / PubMed / Full text
RBBP4[править]
- Retinoblastoma-binding Protein 4-regulated Classical Nuclear Transport Is Involved in Cellular Senescence. / 04.12.2015 / PubMed / Full text
RBFOX1[править]
- Genetics of Gene Expression in the Aging Human Brain Reveal TDP-43 Proteinopathy Pathophysiology. / 05.08.2020 / PubMed / Full text
RBL1[править]
- Deregulation of hsa-miR-20b expression in TNF-α-induced premature senescence of human pulmonary microvascular endothelial cells. / 11.2017 / PubMed / Full text
RBM25[править]
- HPV shapes tumor transcriptome by globally modifying the pool of RNA binding protein-binding motif. / 29.04.2019 / PubMed / Full text
RBM3[править]
- Infants Uniquely Express High Levels of RBM3 and Other Cold-Adaptive Neuroprotectant Proteins in the Human Brain. / 2018 / PubMed / Full text
RBM34[править]
- The association between poverty and gene expression within peripheral blood mononuclear cells in a diverse Baltimore City cohort. / 2020 / PubMed / Full text
RBM38[править]
- Genetic Ablation of [i]Rbm38[/i] Promotes Lymphomagenesis in the Context of Mutant p53 by Downregulating PTEN. / 15.03.2018 / PubMed / Full text
RBM6[править]
- Bayesian association scan reveals loci associated with human lifespan and linked biomarkers. / 27.07.2017 / PubMed / Full text
RBMXL1[править]
RBP1[править]
- The SR proteins SF2 and RBP1 regulate triglyceride storage in the fat body of Drosophila. / 27.08.2019 / PubMed / Full text
RC3H2[править]
- The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. / 29.07.2020 / PubMed / Full text
RDX[править]
- Toxicity of the conventional energetics TNT and RDX relative to new insensitive munitions constituents DNAN and NTO in Rana pipiens tadpoles. / 04.2015 / PubMed / Full text
REEP4[править]
- Chromosome Missegregation in Single Human Oocytes Is Related to the Age and Gene Expression Profile. / 12.03.2020 / PubMed / Full text
REL[править]
- Impact of loss of NF-κB1, NF-κB2 or c-REL on SLE-like autoimmune disease and lymphadenopathy in Fas(lpr/lpr) mutant mice. / 01.2016 / PubMed / Full text
RELB[править]
REV1[править]
- REV1 inhibitor JH-RE-06 enhances tumor cell response to chemotherapy by triggering senescence hallmarks. / 17.11.2020 / PubMed / Full text
RFWD3[править]
- Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. / 05.03.2020 / PubMed / Full text
RGL1[править]
- Arabidopsis WRKY45 Interacts with the DELLA Protein RGL1 to Positively Regulate Age-Triggered Leaf Senescence. / 12.09.2017 / PubMed / Full text
RGS10[править]
- Age-related changes in regulator of G-protein signaling (RGS)-10 expression in peripheral and central immune cells may influence the risk for age-related degeneration. / 05.2015 / PubMed / Full text
RGS14[править]
- Enhanced longevity and metabolism by brown adipose tissue with disruption of the regulator of G protein signaling 14. / 08.2018 / PubMed / Full text
RGS3[править]
- The roles of ribosomal protein S19 C-terminus in a shortened neutrophil lifespan through delta lactoferrin. / 09.2015 / PubMed / Full text
RHCG[править]
- Rh type C-glycoprotein functions as a novel tumor suppressor gene by inhibiting tumorigenicity and metastasis in head and neck squamous cell carcinoma. / 06.06.2019 / PubMed / Full text
RHD[править]
- Suppression and narrative time shifts in adults with right-hemisphere brain damage. / 05.2013 / PubMed / Full text
RHEBL1[править]
- Long-lived rodents reveal signatures of positive selection in genes associated with lifespan. / 03.2018 / PubMed / Full text
RHOB[править]
- Regulation of RhoB Gene Expression during Tumorigenesis and Aging Process and Its Potential Applications in These Processes. / 13.06.2019 / PubMed / Full text
RIC3[править]
RIF1[править]
- 53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination. / 02.01.2020 / PubMed / Full text
RIMS2[править]
- Age-related gene and miRNA expression changes in airways of healthy individuals. / 06.03.2019 / PubMed / Full text
RIN3[править]
- Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text
RNASEL[править]
- Age-related methylation profiles of equine blood leukocytes in the RNASEL locus. / 08.2016 / PubMed / Full text
RNF10[править]
- Reduced RING finger protein 10 expression in macrophages is associated with aging-related inflammation. / 28.11.2020 / PubMed / Full text
RNF111[править]
- Global-genome Nucleotide Excision Repair Controlled by Ubiquitin/Sumo Modifiers. / 2016 / PubMed / Full text
RNF13[править]
- The effects of environmental stressors on candidate aging associated genes. / 08.2020 / PubMed / Full text
RNF144A[править]
- Identification of age- and gender-associated long noncoding RNAs in the human brain with Alzheimer's disease. / 09.2019 / PubMed / Full text
RORB[править]
- Effects of circadian clock genes and environmental factors on cognitive aging in old adults in a Taiwanese population. / 11.04.2017 / PubMed / Full text
ROS1[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
RPA1[править]
- Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. / 31.01.2020 / PubMed / Full text
RPA2[править]
- Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. / 11.2017 / PubMed / Full text
RPL13[править]
- Selection of a Real-Time PCR Housekeeping Gene Panel in Human Endothelial Colony Forming Cells for Cellular Senescence Studies. / 2019 / PubMed / Full text
RPL18[править]
- Comprehensive analysis of the ubiquitinome during oncogene-induced senescence in human fibroblasts. / 2015 / PubMed / Full text
RPL30[править]
- Selection of a Real-Time PCR Housekeeping Gene Panel in Human Endothelial Colony Forming Cells for Cellular Senescence Studies. / 2019 / PubMed / Full text
RPL31[править]
- Selection of a Real-Time PCR Housekeeping Gene Panel in Human Endothelial Colony Forming Cells for Cellular Senescence Studies. / 2019 / PubMed / Full text
RPL36[править]
- Lifelong Football Training: Effects on Autophagy and Healthy Longevity Promotion. / 2019 / PubMed / Full text
RPL37[править]
- Selection of a Real-Time PCR Housekeeping Gene Panel in Human Endothelial Colony Forming Cells for Cellular Senescence Studies. / 2019 / PubMed / Full text
RPL4[править]
- Lifelong Football Training: Effects on Autophagy and Healthy Longevity Promotion. / 2019 / PubMed / Full text
RPS11[править]
- Comprehensive analysis of the ubiquitinome during oncogene-induced senescence in human fibroblasts. / 2015 / PubMed / Full text
RPS19BP1[править]
- Material basis, effect, and mechanism of ethanol extract of Pinellia ternata tubers on oxidative stress-induced cell senescence. / 10.2020 / PubMed / Full text
RPS6KA1[править]
- Genetic analysis of TOR complex gene variation with human longevity: a nested case-control study of American men of Japanese ancestry. / 02.2015 / PubMed / Full text
RPS6KB1[править]
- Inhibition of glioma growth by flavokawain B is mediated through endoplasmic reticulum stress induced autophagy. / 2018 / PubMed / Full text
RPS7[править]
- Comprehensive analysis of the ubiquitinome during oncogene-induced senescence in human fibroblasts. / 2015 / PubMed / Full text
RRAD[править]
- Pan-senescence transcriptome analysis identified RRAD as a marker and negative regulator of cellular senescence. / 01.2019 / PubMed / Full text
RRM2B[править]
- Troponin T3 associates with DNA consensus sequence that overlaps with p53 binding motifs. / 15.07.2018 / PubMed / Full text
RS1[править]
- Retinoschisin gene therapy in photoreceptors, Müller glia or all retinal cells in the Rs1h-/- mouse. / 06.2014 / PubMed / Full text
RSAD2[править]
- Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation. / 02.08.2017 / PubMed / Full text
RSF1[править]
- The SR proteins SF2 and RBP1 regulate triglyceride storage in the fat body of Drosophila. / 27.08.2019 / PubMed / Full text
RSL1D1[править]
- Ribosomal L1 domain and lysine-rich region are essential for CSIG/ RSL1D1 to regulate proliferation and senescence. / 15.01.2016 / PubMed / Full text
RTN3[править]
- Dysfunctional tubular endoplasmic reticulum constitutes a pathological feature of Alzheimer's disease. / 09.2016 / PubMed / Full text
RTN4[править]
RUNX3[править]
- circLARP4 induces cellular senescence through regulating miR-761/RUNX3/p53/p21 signaling in hepatocellular carcinoma. / 02.2019 / PubMed / Full text
RUVBL2[править]
- Proton irradiation impacts age-driven modulations of cancer progression influenced by immune system transcriptome modifications from splenic tissue. / 09.2015 / PubMed / Full text
RXFP1[править]
- Sex- and age-specific differences in relaxin family peptide receptor expression within the hippocampus and amygdala in rats. / 22.01.2015 / PubMed / Full text
RXFP3[править]
- The RXFP3 receptor is functionally associated with cellular responses to oxidative stress and DNA damage. / 03.12.2019 / PubMed / Full text
RXRA[править]
- The nuclear receptor RXRA controls cellular senescence by regulating calcium signaling. / 12.2018 / PubMed / Full text
RYR3[править]
- Association of the RYR3 gene polymorphisms with atherosclerosis in elderly Japanese population. / 14.01.2014 / PubMed / Full text
S100A10[править]
- Age-related and depot-specific changes in white adipose tissue of growth hormone receptor-null mice. / 01.2014 / PubMed / Full text
S100A13[править]
- S100A13 promotes senescence-associated secretory phenotype and cellular senescence via modulation of non-classical secretion of IL-1α. / 23.01.2019 / PubMed / Full text
S100A7[править]
- The secreted protein S100A7 (psoriasin) is induced by telomere dysfunction in human keratinocytes independently of a DNA damage response and cell cycle regulators. / 2014 / PubMed / Full text
S100P[править]
- Cancer-associated S100P protein binds and inactivates p53, permits therapy-induced senescence and supports chemoresistance. / 19.04.2016 / PubMed / Full text
SAA2[править]
- Naturally occurring antibodies against serum amyloid A reduce IL-6 release from peripheral blood mononuclear cells. / 2018 / PubMed / Full text
SACM1L[править]
- Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. / 2015 / PubMed / Full text
SAMD10[править]
- Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. / 11.2017 / PubMed / Full text
SAMD12[править]
- Genome-wide scan of depressive symptomatology in two representative cohorts in the United States and the United Kingdom. / 05.2018 / PubMed / Full text
SAMHD1[править]
- Gut microbiota lipopolysaccharide accelerates inflamm-aging in mice. / 16.01.2016 / PubMed / Full text
SARM1[править]
- Sarm1 Deletion, but Not Wld , Confers Lifelong Rescue in a Mouse Model of Severe Axonopathy. / 03.10.2017 / PubMed / Full text
SAT1[править]
- Triethylenetetramine (trientine): a caloric restriction mimetic with a new mode of action. / 08.2020 / PubMed / Full text
SCAMP1[править]
- Secretory Carrier Membrane Protein (SCAMP) deficiency influences behavior of adult flies. / 2014 / PubMed / Full text
SCAMP4[править]
SCD5[править]
- Bovine brain region-specific stearoyl-CoA desaturase expression and fatty acid composition. / 06.2015 / PubMed / Full text
SCGB1A1[править]
- Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. / 03.2015 / PubMed / Full text
SCGB2A2[править]
- Sensitivity of neoplastic cells to senescence unveiled under standard cell culture conditions. / 05.2015 / PubMed
SCGB3A2[править]
- Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. / 03.2015 / PubMed / Full text
SCN1A[править]
- Effects of normal aging and SCN1A risk-gene expression on brain metabolites: evidence for an association between SCN1A and myo-inositol. / 02.2014 / PubMed / Full text
SCN2A[править]
- Na 1.2 haploinsufficiency in Scn2a knock-out mice causes an autistic-like phenotype attenuated with age. / 09.09.2019 / PubMed / Full text
SCN9A[править]
- The SCN9A channel and plasma membrane depolarization promote cellular senescence through Rb pathway. / 06.2018 / PubMed / Full text
SCNN1B[править]
- Bitter, Sweet, Salty, Sour and Umami Taste Perception Decreases with Age: Sex-Specific Analysis, Modulation by Genetic Variants and Taste-Preference Associations in 18 to 80 Year-Old Subjects. / 18.10.2018 / PubMed / Full text
SCO1[править]
- Real-Time PCR Analysis of Metabolism-Related Genes in a Long-Lived Model of C. elegans. / 2020 / PubMed / Full text
SCPEP1[править]
- Structural and kinetic evidence of aging after organophosphate inhibition of human Cathepsin A. / 07.2020 / PubMed / Full text
SCRIB[править]
- Scribble is required for pregnancy-induced alveologenesis in the adult mammary gland. / 15.06.2016 / PubMed / Full text
SCX[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
SDC2[править]
- Alterations in Corneal Sensory Nerves During Homeostasis, Aging, and After Injury in Mice Lacking the Heparan Sulfate Proteoglycan Syndecan-1. / 01.10.2017 / PubMed / Full text
SDC3[править]
- Alterations in Corneal Sensory Nerves During Homeostasis, Aging, and After Injury in Mice Lacking the Heparan Sulfate Proteoglycan Syndecan-1. / 01.10.2017 / PubMed / Full text
SDHAF2[править]
SDHD[править]
SEC23A[править]
- Pancreatic SEC23B deficiency is sufficient to explain the perinatal lethality of germline SEC23B deficiency in mice. / 14.06.2016 / PubMed / Full text
SEC23B[править]
- Pancreatic SEC23B deficiency is sufficient to explain the perinatal lethality of germline SEC23B deficiency in mice. / 14.06.2016 / PubMed / Full text
SELENBP1[править]
- A Caenorhabditis elegans ortholog of human selenium-binding protein 1 is a pro-aging factor protecting against selenite toxicity. / 01.2020 / PubMed / Full text
SELENOH[править]
- The Thioredoxin-Like Family of Selenoproteins: Implications in Aging and Age-Related Degeneration. / 03.2019 / PubMed / Full text
SELENOK[править]
- Dietary selenium deficiency and supplementation differentially modulate the expression of two ER-resident selenoproteins (selenoprotein K and selenoprotein M) in the ovaries of aged mice: Preliminary data. / 09.2020 / PubMed / Full text
SELENOP[править]
- Analyses of Selenotranscriptomes and Selenium Concentrations in Response to Dietary Selenium Deficiency and Age Reveal Common and Distinct Patterns by Tissue and Sex in Telomere-Dysfunctional Mice. / 10.2017 / PubMed / Full text
SELENOT[править]
- The Thioredoxin-Like Family of Selenoproteins: Implications in Aging and Age-Related Degeneration. / 03.2019 / PubMed / Full text
SELENOV[править]
- The Thioredoxin-Like Family of Selenoproteins: Implications in Aging and Age-Related Degeneration. / 03.2019 / PubMed / Full text
SELENOW[править]
- The Thioredoxin-Like Family of Selenoproteins: Implications in Aging and Age-Related Degeneration. / 03.2019 / PubMed / Full text
SELP[править]
- Effect of age on expression of spermatogonial markers in bovine testis and isolated cells. / 07.2016 / PubMed / Full text
SEMA3A[править]
- Autoregulation of Osteocyte Sema3A Orchestrates Estrogen Action and Counteracts Bone Aging. / 05.03.2019 / PubMed / Full text
SEMA6C[править]
- Suppression of SEMA6C promotes preantral follicles atresia with decreased cell junctions in mice ovaries. / 04.2019 / PubMed / Full text
SENP1[править]
- Aging-related SUMOylation pattern in the cortex and blood plasma of wild type mice. / 06.03.2018 / PubMed / Full text
SENP6[править]
- Molecular signature for senile and complicated cataracts derived from analysis of sumoylation enzymes and their substrates in human cataract lenses. / 10.2020 / PubMed / Full text
SENP7[править]
- Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. / 05.03.2020 / PubMed / Full text
SERPINA1[править]
- Proteomic profiling of follicle fluids after superstimulation in one-month-old lambs. / 02.2018 / PubMed / Full text
SERPINB3[править]
SESN1[править]
- Sestrins are differentially expressed with age in the skeletal muscle of men: A cross-sectional analysis. / 09.2018 / PubMed / Full text
SETX[править]
- Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae. / 11.2016 / PubMed / Full text
SFPQ[править]
- Downregulation of LncRNA NORAD promotes Ox-LDL-induced vascular endothelial cell injury and atherosclerosis. / 08.04.2020 / PubMed / Full text
SFRP5[править]
- SFRP5 serves a beneficial role in arterial aging by inhibiting the proliferation, migration and inflammation of smooth muscle cells. / 11.2018 / PubMed / Full text
SFTPA1[править]
- Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. / 03.2015 / PubMed / Full text
SGCE[править]
- Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. / 12.2015 / PubMed / Full text
SGPP2[править]
- Vitamin D-responsive SGPP2 variants associated with lung cell expression and lung function. / 25.11.2013 / PubMed / Full text
SGSH[править]
SH2B1[править]
- The Dyslexia-susceptibility Protein KIAA0319 Inhibits Axon Growth Through Smad2 Signaling. / 01.03.2017 / PubMed / Full text
SH2B3[править]
- Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity. / 13.10.2017 / PubMed / Full text
SHC1[править]
- Docosahexaenoic acid prevented tumor necrosis factor alpha-induced endothelial dysfunction and senescence. / 01.2016 / PubMed / Full text
SHCBP1[править]
- Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text
SHD[править]
- Does self-reported hearing difficulty decrease older adults' cognitive and physical functioning? The mediating role of social isolation. / 11.2020 / PubMed / Full text
SHMT2[править]
- Epigenetic regulation of the nuclear-coded GCAT and SHMT2 genes confers human age-associated mitochondrial respiration defects. / 22.05.2015 / PubMed / Full text
SHOX2[править]
- Role of SHOX2 in the development of intervertebral disc degeneration. / 05.2017 / PubMed / Full text
SHROOM3[править]
SIGIRR[править]
- Anti-Inflamm-Aging Effects of Long-Term Caloric Restriction via Overexpression of SIGIRR to Inhibit NF-κB Signaling Pathway. / 2015 / PubMed / Full text
SIK3[править]
- Quantitative and Qualitative Role of Antagonistic Heterogeneity in Genetics of Blood Lipids. / 25.09.2020 / PubMed / Full text
SIL1[править]
- SIL1, the endoplasmic-reticulum-localized BiP co-chaperone, plays a crucial role in maintaining skeletal muscle proteostasis and physiology. / 10.05.2018 / PubMed / Full text
SIX1[править]
- Low Six4 and Six5 gene dosage improves dystrophic phenotype and prolongs life span of mdx mice. / 08.2016 / PubMed / Full text
SIX2[править]
- Age-Dependent Pancreatic Gene Regulation Reveals Mechanisms Governing Human β Cell Function. / 10.05.2016 / PubMed / Full text
SIX4[править]
- Low Six4 and Six5 gene dosage improves dystrophic phenotype and prolongs life span of mdx mice. / 08.2016 / PubMed / Full text
SIX5[править]
- Low Six4 and Six5 gene dosage improves dystrophic phenotype and prolongs life span of mdx mice. / 08.2016 / PubMed / Full text
SKAP2[править]
- Longevity-related molecular pathways are subject to midlife "switch" in humans. / 08.2019 / PubMed / Full text
SKI[править]
- Preventive effect of Shenkang injection against high glucose-induced senescence of renal tubular cells. / 04.2019 / PubMed / Full text
SKP1[править]
- Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and abscisic acid. / 01.2016 / PubMed / Full text
SLAMF1[править]
- Systemic Inflammation and the Increased Risk of Inflamm-Aging and Age-Associated Diseases in People Living With HIV on Long Term Suppressive Antiretroviral Therapy. / 2019 / PubMed / Full text
SLAMF7[править]
- Age-related differences in neuroinflammatory responses associated with a distinct profile of regulatory markers on neonatal microglia. / 04.04.2014 / PubMed / Full text
SLC11A1[править]
- The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. / 29.07.2020 / PubMed / Full text
SLC12A5[править]
- DNA methylation-based age prediction from saliva: High age predictability by combination of 7 CpG markers. / 07.2017 / PubMed / Full text
SLC12A8[править]
- Identifying blood-specific age-related DNA methylation markers on the Illumina MethylationEPIC® BeadChip. / 10.2019 / PubMed / Full text
SLC15A1[править]
- Molecular changes to the rat renal cotransporters PEPT1 and PEPT2 due to ageing. / 02.2019 / PubMed / Full text
SLC15A2[править]
- Molecular changes to the rat renal cotransporters PEPT1 and PEPT2 due to ageing. / 02.2019 / PubMed / Full text
SLC16A10[править]
- The SLC16 gene family - structure, role and regulation in health and disease. / 04-06.2013 / PubMed / Full text
SLC16A2[править]
- The SLC16 gene family - structure, role and regulation in health and disease. / 04-06.2013 / PubMed / Full text
SLC16A3[править]
- The SLC16 gene family - structure, role and regulation in health and disease. / 04-06.2013 / PubMed / Full text
SLC17A3[править]
- Sequencing of 2 subclinical atherosclerosis candidate regions in 3669 individuals: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text
SLC17A4[править]
- Sequencing of 2 subclinical atherosclerosis candidate regions in 3669 individuals: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text
SLC1A5[править]
- SLC1A5 glutamine transporter is a target of MYC and mediates reduced mTORC1 signaling and increased fatty acid oxidation in long-lived Myc hypomorphic mice. / 06.2019 / PubMed / Full text
SLC22A12[править]
- ABCG2 rs2231142 variant in hyperuricemia is modified by SLC2A9 and SLC22A12 polymorphisms and cardiovascular risk factors in an elderly community-dwelling population. / 17.03.2020 / PubMed / Full text
SLC22A14[править]
- Explorative results from multistep screening for potential genetic risk loci of Alzheimer's disease in the longitudinal VITA study cohort. / 01.2018 / PubMed / Full text
SLC22A23[править]
- Clinical and genetic risk factors for decreased bone mineral density in Japanese patients with inflammatory bowel disease. / 11.2018 / PubMed / Full text
SLC24A5[править]
SLC25A15[править]
SLC27A1[править]
- EPRS is a critical mTORC1-S6K1 effector that influences adiposity in mice. / 16.02.2017 / PubMed / Full text
SLC2A4RG[править]
- Genome-wide association study for lactation persistency, female fertility, longevity, and lifetime profit index traits in Holstein dairy cattle. / 02.2017 / PubMed / Full text
SLC30A1[править]
- Changes in Zn homeostasis during long term culture of primary endothelial cells and effects of Zn on endothelial cell senescence. / 01.12.2017 / PubMed / Full text
SLC30A10[править]
- Changes in Zn homeostasis during long term culture of primary endothelial cells and effects of Zn on endothelial cell senescence. / 01.12.2017 / PubMed / Full text
SLC30A3[править]
- SLC30A3 and SEP15 gene polymorphisms influence the serum concentrations of zinc and selenium in mature adults. / 09.2014 / PubMed / Full text
SLC30A5[править]
- Changes in Zn homeostasis during long term culture of primary endothelial cells and effects of Zn on endothelial cell senescence. / 01.12.2017 / PubMed / Full text
SLC36A4[править]
- The amino acid transporter SLC36A4 regulates the amino acid pool in retinal pigmented epithelial cells and mediates the mechanistic target of rapamycin, complex 1 signaling. / 04.2017 / PubMed / Full text
SLC39A5[править]
- Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients. / 03.09.2019 / PubMed / Full text
SLC39A6[править]
- Changes in Zn homeostasis during long term culture of primary endothelial cells and effects of Zn on endothelial cell senescence. / 01.12.2017 / PubMed / Full text
SLC41A1[править]
- Magnesium transporter protein solute carrier family 41 member 1 suppresses human pancreatic ductal adenocarcinoma through magnesium-dependent Akt/mTOR inhibition and bax-associated mitochondrial apoptosis. / 08.05.2019 / PubMed / Full text
SLC4A7[править]
- Multivariate genomic scan implicates novel loci and haem metabolism in human ageing. / 16.07.2020 / PubMed / Full text
SLC52A2[править]
- Clinical, pathological and functional characterization of riboflavin-responsive neuropathy. / 01.11.2017 / PubMed / Full text
SLC52A3[править]
- Clinical, pathological and functional characterization of riboflavin-responsive neuropathy. / 01.11.2017 / PubMed / Full text
SLCO1B1[править]
- The SLCO1B1 c.521T>C polymorphism is associated with dose decrease or switching during statin therapy in the Rotterdam Study. / 01.2014 / PubMed / Full text
SLCO1B3[править]
- Paclitaxel-induced sensory peripheral neuropathy is associated with an ABCB1 single nucleotide polymorphism and older age in Japanese. / 06.2017 / PubMed / Full text
SLCO1C1[править]
- Genomics and CSF analyses implicate thyroid hormone in hippocampal sclerosis of aging. / 12.2016 / PubMed / Full text
SLIT2[править]
- Analysis of gene expression during aging of CGNs in culture: implication of SLIT2 and NPY in senescence. / 06.2015 / PubMed / Full text
SLPI[править]
- Human buccal epithelium acquires microbial hyporesponsiveness at birth, a role for secretory leukocyte protease inhibitor. / 06.2015 / PubMed / Full text
SMAP[править]
- DNA integrity-protecting and survival-promoting activity of serotonergic system in sturgeon juveniles and sazans. / 08.2017 / PubMed / Full text
SMARCA5[править]
- The epigenetic regulator SIRT7 guards against mammalian cellular senescence induced by ribosomal DNA instability. / 13.07.2018 / PubMed / Full text
SMARCB1[править]
- High-Throughput Functional Genetic and Compound Screens Identify Targets for Senescence Induction in Cancer. / 17.10.2017 / PubMed / Full text
SMARCD1[править]
- Delphinidin-3-glucoside suppresses lipid accumulation in HepG2 cells. / 12.2018 / PubMed / Full text
SMC1A[править]
SMC1B[править]
SMC2[править]
- The proteomic study of serially passaged human skin fibroblast cells uncovers down-regulation of the chromosome condensin complex proteins involved in replicative senescence. / 10.11.2018 / PubMed / Full text
SMC4[править]
- The proteomic study of serially passaged human skin fibroblast cells uncovers down-regulation of the chromosome condensin complex proteins involved in replicative senescence. / 10.11.2018 / PubMed / Full text
SMC5[править]
- SMC5/6 is required for the formation of segregation-competent bivalent chromosomes during meiosis I in mouse oocytes. / 01.05.2017 / PubMed / Full text
SMG1[править]
- SMG1 heterozygosity exacerbates haematopoietic cancer development in Atm null mice by increasing persistent DNA damage and oxidative stress. / 12.2019 / PubMed / Full text
SMG6[править]
- Genetic Burden Analyses of Phenotypes Relevant to Aging in the Berlin Aging Study II (BASE-II). / 2016 / PubMed / Full text
SMPD3[править]
- Endoplasmic Reticulum Stress Mediates Vascular Smooth Muscle Cell Calcification via Increased Release of Grp78-Loaded Extracellular Vesicles. / 10.12.2020 / PubMed / Full text
SMURF2[править]
- Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study. / 2013 / PubMed / Full text
SMYD2[править]
- Collaboration of MYC and RUNX2 in lymphoma simulates T-cell receptor signaling and attenuates p53 pathway activity. / 10.2019 / PubMed / Full text
SNAI2[править]
- Reawakening of dormant estrogen-dependent human breast cancer cells by bone marrow stroma secretory senescence. / 17.08.2018 / PubMed / Full text
SNAP23[править]
- Effects of immobilization and aerobic training on proteins related to intramuscular substrate storage and metabolism in young and older men. / 03.2016 / PubMed / Full text
SND1[править]
- [Downregulation of SND1 Expression Accelerates Cell Senescence of Human Diploid Fibroblasts 2BS via Modulating the SASP]. / 05.2020 / PubMed / Full text
SNN[править]
SNRPE[править]
- In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. / 12.2019 / PubMed / Full text
SNRPN[править]
SNX15[править]
SOBP[править]
- Lifetime increased cancer risk in mice following exposure to clinical proton beam-generated neutrons. / 01.05.2014 / PubMed / Full text
SORCS2[править]
- Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. / 10.2016 / PubMed / Full text
SORT1[править]
- Soluble sortilin is present in excess and positively correlates with progranulin in CSF of aging individuals. / 11.2016 / PubMed / Full text
SOS1[править]
- Fucoidan⁻Fucoxanthin Ameliorated Cardiac Function via IRS1/GRB2/ SOS1, GSK3β/CREB Pathways and Metabolic Pathways in Senescent Mice. / 21.01.2019 / PubMed / Full text
SOX1[править]
- The APOE gene cluster responds to air pollution factors in mice with coordinated expression of genes that differs by age in humans. / 20.11.2020 / PubMed / Full text
SOX10[править]
- SOX10 Distinguishes Pilocytic and Pilomyxoid Astrocytomas From Ependymomas but Shows No Differences in Expression Level in Ependymomas From Infants Versus Older Children or Among Molecular Subgroups. / 04.2016 / PubMed / Full text
SOX11[править]
- A lowered 26S proteasome activity correlates with mantle lymphoma cell lines resistance to genotoxic stress. / 10.08.2017 / PubMed / Full text
SOX13[править]
- In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. / 12.2019 / PubMed / Full text
SOX17[править]
- SOX17 Regulates Conversion of Human Fibroblasts Into Endothelial Cells and Erythroblasts by Dedifferentiation Into CD34 Progenitor Cells. / 20.06.2017 / PubMed / Full text
SOX6[править]
- Gene expression markers in horse articular chondrocytes: Chondrogenic differentiaton IN VITRO depends on the proliferative potential and ageing. Implication for tissue engineering of cartilage. / 02.2020 / PubMed / Full text
SP2[править]
- Influence of season, age and management on scrotal thermal profile in Murrah bulls using scrotal infrared digital thermography. / 12.2017 / PubMed / Full text
SP7[править]
- microRNA-31 inhibition partially ameliorates the deficiency of bone marrow stromal cells from cleidocranial dysplasia. / 06.2019 / PubMed / Full text
SP8[править]
- Molecular control of two novel migratory paths for CGE-derived interneurons in the developing mouse brain. / 15.05.2016 / PubMed / Full text
SPAG9[править]
- Sperm-associated antigen 9 (SPAG9) promotes the survival and tumor growth of triple-negative breast cancer cells. / 10.2016 / PubMed / Full text
SPATS2L[править]
- Longitudinal analysis of bronchodilator response in asthmatics and effect modification of age-related trends by genotype. / 02.2019 / PubMed / Full text
SPG11[править]
SPG21[править]
- Loss of Maspardin Attenuates the Growth and Maturation of Mouse Cortical Neurons. / 2016 / PubMed / Full text
SPG7[править]
- Loss of the Drosophila m-AAA mitochondrial protease paraplegin results in mitochondrial dysfunction, shortened lifespan, and neuronal and muscular degeneration. / 21.02.2018 / PubMed / Full text
SPHK1[править]
- Sphingosine Kinase-1 Is Essential for Maintaining External/Outer Limiting Membrane and Associated Adherens Junctions in the Aging Retina. / 10.2019 / PubMed / Full text
SPHK2[править]
- Loss of genomic integrity induced by lysosphingolipid imbalance drives ageing in the heart. / 04.2019 / PubMed / Full text
SPI1[править]
- Association of levels of fasting glucose and insulin with rare variants at the chromosome 11p11.2-MADD locus: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. / 06.2014 / PubMed / Full text
SPO11[править]
- "Mitotic Slippage" and Extranuclear DNA in Cancer Chemoresistance: A Focus on Telomeres. / 16.04.2020 / PubMed / Full text
SPX[править]
- Phosphorus remobilization from rice flag leaves during grain filling: an RNA-seq study. / 01.2017 / PubMed / Full text
SREBF1[править]
- The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. / 29.09.2020 / PubMed / Full text
SRI[править]
- The Role of Aging, Drug Dependence, and Hepatitis C Comorbidity in Alcoholism Cortical Compromise. / 01.05.2018 / PubMed / Full text
SRL[править]
- Income dividends and subjective survival in a Cherokee Indian cohort: a quasi-experiment. / 04-06.2020 / PubMed / Full text
SRPK1[править]
- [Age-related changes in the content of serine-arginine protein kinase 1 (SRPK1) in human dermis.] / 2017 / PubMed
SRSF1[править]
- Cellular stress and AMPK activation as a common mechanism of action linking the effects of metformin and diverse compounds that alleviate accelerated aging defects in Hutchinson-Gilford progeria syndrome. / 09.2018 / PubMed / Full text
SRSF10[править]
- Inflammation and hyperglycemia mediate Deaf1 splicing in the pancreatic lymph nodes via distinct pathways during type 1 diabetes. / 02.2015 / PubMed / Full text
SRSF2[править]
- Insight into the molecular pathophysiology of myelodysplastic syndromes: targets for novel therapy. / 10.2016 / PubMed / Full text
SRSF3[править]
- Alternative polyadenylation dependent function of splicing factor SRSF3 contributes to cellular senescence. / 04.03.2019 / PubMed / Full text
SSBP2[править]
SSTR3[править]
- Type 3 Adenylyl Cyclase and Somatostatin Receptor 3 Expression Persists in Aged Rat Neocortical and Hippocampal Neuronal Cilia. / 2016 / PubMed / Full text
SSX2[править]
- Ectopic expression of cancer/testis antigen SSX2 induces DNA damage and promotes genomic instability. / 02.2015 / PubMed / Full text
ST18[править]
- [Target protein candidates of hypothalamus in aging rats with intervention by Qiongyugao]. / 04.2016 / PubMed / Full text
STAT5B[править]
STC1[править]
- Proteomic profiling of follicle fluids after superstimulation in one-month-old lambs. / 02.2018 / PubMed / Full text
STC2[править]
- Genome-wide Associations Reveal Human-Mouse Genetic Convergence and Modifiers of Myogenesis, CPNE1 and STC2. / 05.12.2019 / PubMed / Full text
STIP1[править]
- The E3 ubiquitin ligase STUB1 attenuates cell senescence by promoting the ubiquitination and degradation of the core circadian regulator BMAL1. / 03.04.2020 / PubMed / Full text
STK11[править]
- A Multigene Test Could Cost-Effectively Help Extend Life Expectancy for Women at Risk of Hereditary Breast Cancer. / 04.2017 / PubMed / Full text
STK32C[править]
- DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. / 25.07.2018 / PubMed / Full text
STK38L[править]
STOML2[править]
STRA6[править]
- Transport of vitamin A across blood-tissue barriers is facilitated by STRA6. / 08.2016 / PubMed / Full text
STX16[править]
- Clinical characterization and molecular classification of 12 Korean patients with pseudohypoparathyroidism and pseudopseudohypoparathyroidism. / 10.2013 / PubMed / Full text
STX17[править]
- Directed elimination of senescent cells attenuates development of osteoarthritis by inhibition of c-IAP and XIAP. / 01.10.2019 / PubMed / Full text
SUCLA2[править]
- An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. / 12.2019 / PubMed / Full text
SUCNR1[править]
- [The effect of Mexidol on cerebral mitochondriogenesis at a young age and during aging]. / 2020 / PubMed / Full text
SUGCT[править]
- Knockout of the non-essential gene SUGCT creates diet-linked, age-related microbiome disbalance with a diabetes-like metabolic syndrome phenotype. / 09.2020 / PubMed / Full text
SULT1A1[править]
- Bayesian association scan reveals loci associated with human lifespan and linked biomarkers. / 27.07.2017 / PubMed / Full text
SULT1E1[править]
- Sex- and age-dependent gene expression in human liver: An implication for drug-metabolizing enzymes. / 02.2017 / PubMed / Full text
SULT2A1[править]
- Sex-, age-, and race/ethnicity-dependent variations in drug-processing and NRF2-regulated genes in human livers. / 08.11.2020 / PubMed / Full text
SUMO1[править]
- SUMO1-conjugation is altered during normal aging but not by increased amyloid burden. / 08.2018 / PubMed / Full text
SUMO2[править]
SUN1[править]
- Imbalanced nucleocytoskeletal connections create common polarity defects in progeria and physiological aging. / 26.02.2019 / PubMed / Full text
SUN2[править]
- Imbalanced nucleocytoskeletal connections create common polarity defects in progeria and physiological aging. / 26.02.2019 / PubMed / Full text
SUSD1[править]
- A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. / 07.2013 / PubMed / Full text
SUSD2[править]
- Comparing the Effect of TGF-β Receptor Inhibition on Human Perivascular Mesenchymal Stromal Cells Derived from Endometrium, Bone Marrow and Adipose Tissues. / 01.12.2020 / PubMed / Full text
SV2B[править]
- Mutant Huntingtin Causes a Selective Decrease in the Expression of Synaptic Vesicle Protein 2C. / 10.2018 / PubMed / Full text
SV2C[править]
- Mutant Huntingtin Causes a Selective Decrease in the Expression of Synaptic Vesicle Protein 2C. / 10.2018 / PubMed / Full text
SYCP2[править]
- Accelerated reproductive aging in females lacking a novel centromere protein [[SYCP2L]]. / 15.11.2015 / PubMed / Full text
SYCP2L[править]
- Accelerated reproductive aging in females lacking a novel centromere protein [[SYCP2L]]. / 15.11.2015 / PubMed / Full text
SYCP3[править]
- Effects of Saikokaryukotsuboreito on Spermatogenesis and Fertility in Aging Male Mice. / 05.04.2016 / PubMed / Full text
SYNE1[править]
SYNE2[править]
- Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. / 03.2020 / PubMed / Full text
SYNJ2[править]
- DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. / 25.07.2018 / PubMed / Full text
SYT1[править]
- Two Behavioral Tests Allow a Better Correlation Between Cognitive Function and Expression of Synaptic Proteins. / 2018 / PubMed / Full text
SYT4[править]
- Age-related obesity and type 2 diabetes dysregulate neuronal associated genes and proteins in humans. / 06.10.2015 / PubMed / Full text
SYT7[править]
- Synaptotagmin-7, a binding protein of P53, inhibits the senescence and promotes the tumorigenicity of lung cancer cells. / 28.02.2019 / PubMed / Full text
TAAR1[править]
- Minimal Age-Related Alterations in Behavioral and Hematological Parameters in Trace Amine-Associated Receptor 1 (TAAR1) Knockout Mice. / 03.2020 / PubMed / Full text
TAC3[править]
- Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus. / 2015 / PubMed / Full text
TAF15[править]
TAF7[править]
- Basonuclin 1 deficiency causes testicular premature aging: BNC1 cooperates with TAF7L to regulate spermatogenesis. / 22.01.2020 / PubMed / Full text
TAF7L[править]
- Basonuclin 1 deficiency causes testicular premature aging: BNC1 cooperates with TAF7L to regulate spermatogenesis. / 22.01.2020 / PubMed / Full text
TANK[править]
- Aging aggravated liver ischemia and reperfusion injury by promoting STING-mediated NLRP3 activation in macrophages. / 08.2020 / PubMed / Full text
TAP1[править]
TAP2[править]
- Lifespan of mice and primates correlates with immunoproteasome expression. / 05.2015 / PubMed / Full text
TAS1R2[править]
- Bitter, Sweet, Salty, Sour and Umami Taste Perception Decreases with Age: Sex-Specific Analysis, Modulation by Genetic Variants and Taste-Preference Associations in 18 to 80 Year-Old Subjects. / 18.10.2018 / PubMed / Full text
TBC1D2[править]
- Genome-wide association study identifies [i]SIAH3[/i] locus influencing the rate of ventricular enlargement in non-demented elders. / 11.11.2019 / PubMed / Full text
TBR1[править]
- DNA methylation-based age prediction from saliva: High age predictability by combination of 7 CpG markers. / 07.2017 / PubMed / Full text
TBX3[править]
- Coordinated control of senescence by lncRNA and a novel T-box3 co-repressor complex. / 29.05.2014 / PubMed / Full text
TCERG1[править]
- The longevity-promoting factor, TCER-1, widely represses stress resistance and innate immunity. / 17.07.2019 / PubMed / Full text
TCF15[править]
TCF21[править]
- Balance between senescence and apoptosis is regulated by telomere damage-induced association between p16 and caspase-3. / 22.06.2018 / PubMed / Full text
TCF7L1[править]
- TCF7L1 promotes skin tumorigenesis independently of β-catenin through induction of LCN2. / 03.05.2017 / PubMed / Full text
TCP1[править]
- Proteometabolomic characterization of apical bud maturation in Pinus pinaster. / 01.09.2020 / PubMed / Full text
TCTA[править]
- Exciplex-Forming Cohost for High Efficiency and High Stability Phosphorescent Organic Light-Emitting Diodes. / 17.01.2018 / PubMed / Full text
TDRD1[править]
- Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice. / 01.2020 / PubMed / Full text
TDRD6[править]
- Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice. / 01.2020 / PubMed / Full text
TEAD4[править]
- Clinical, polysomnographic and genome-wide association analyses of narcolepsy with cataplexy: a European Narcolepsy Network study. / 10.2013 / PubMed / Full text
TECPR2[править]
- Neuropathology-driven Whole-genome Sequencing Study Points to Novel Candidate Genes for Healthy Brain Aging. / 01-03.2019 / PubMed / Full text
TEP1[править]
- [Influence of Age on the Susceptibility of Anopheles stephensi to Plasmodium berghei Infection]. / 12.2016 / PubMed
TERF2IP[править]
- Endothelial senescence-associated secretory phenotype (SASP) is regulated by Makorin-1 ubiquitin E3 ligase. / 11.2019 / PubMed / Full text
TESC[править]
TFAP2A[править]
- Replicative senescence is associated with nuclear reorganization and with DNA methylation at specific transcription factor binding sites. / 2015 / PubMed / Full text
TFE3[править]
- Towards Age-Related Anti-Inflammatory Therapy: Klotho Suppresses Activation of ER and Golgi Stress Response in Senescent Monocytes. / 21.01.2020 / PubMed / Full text
TFG[править]
- TFG-maintaining stability of overlooked FANCD2 confers early DNA-damage response. / 24.10.2020 / PubMed / Full text
TFPI[править]
- Identification of cardiovascular health gene variants related to longevity in a Chinese population. / 07.09.2020 / PubMed / Full text
TGDS[править]
- The evaluation and design of a short depression screening tool in Turkish older adults. / 10.2018 / PubMed / Full text
TGFB2[править]
- Seminal plasma transforming growth factor-β, activin A and follistatin fluctuate within men over time. / 10.2016 / PubMed / Full text
TGFBR1[править]
- Dexamethasone Induces a Specific Form of Ramified Dysfunctional Microglia. / 02.2019 / PubMed / Full text
TGM2[править]
- Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. / 11.2018 / PubMed / Full text
THADA[править]
- Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. / 29.09.2015 / PubMed / Full text
THBS1[править]
- G protein-coupled receptor kinase 4-induced cellular senescence and its senescence-associated gene expression profiling. / 15.11.2017 / PubMed / Full text
THBS4[править]
- Specific factors in blood from young but not old mice directly promote synapse formation and NMDA-receptor recruitment. / 18.06.2019 / PubMed / Full text
THEMIS[править]
- Lifetime benefits of early detection and treatment of diabetic kidney disease. / 2019 / PubMed / Full text
THPO[править]
- Thrombopoietin is associated with δ's intercept, and only in Non-Hispanic Whites. / 2016 / PubMed / Full text
TIE1[править]
- Cerebrovascular Senescence Is Associated With Tau Pathology in Alzheimer's Disease. / 2020 / PubMed / Full text
TIMP3[править]
- Enhanced tissue regeneration potential of juvenile articular cartilage. / 11.2013 / PubMed / Full text
TINF2[править]
- Acute telomerase components depletion triggers oxidative stress as an early event previous to telomeric shortening. / 04.2018 / PubMed / Full text
TJP1[править]
- Morphological and immunohistochemical characteristics of the equine corneal epithelium. / 11.2019 / PubMed / Full text
TLR10[править]
- Innate immune response to LPS in airway epithelium is dependent on chronological age and antecedent exposures. / 11.2013 / PubMed / Full text
TM9SF1[править]
- Epigallocatechin-3-gallate increases autophagy signaling in resting and unloaded plantaris muscles but selectively suppresses autophagy protein abundance in reloaded muscles of aged rats. / 06.2017 / PubMed / Full text
TMEM127[править]
TMEM135[править]
- Mouse [i]Tmem135[/i] mutation reveals a mechanism involving mitochondrial dynamics that leads to age-dependent retinal pathologies. / 15.11.2016 / PubMed / Full text
TMEM38B[править]
- Genome wide association study of age at menarche in the Japanese population. / 2013 / PubMed / Full text
TMEM51[править]
- Genome-wide analysis of DNA methylation profiles in a senescence-accelerated mouse prone 8 brain using whole-genome bisulfite sequencing. / 01.06.2017 / PubMed / Full text
TNFAIP3[править]
TNFRSF11B[править]
- Genetic Burden Analyses of Phenotypes Relevant to Aging in the Berlin Aging Study II (BASE-II). / 2016 / PubMed / Full text
TNFRSF1A[править]
- Consumption of protein-enriched milk has minor effects on inflammation in older adults-A 12-week double-blind randomized controlled trial. / 03.2017 / PubMed / Full text
TNFSF13[править]
- Genome-wide methylation analysis reveals differentially methylated loci that are associated with an age-dependent increase in bovine fibroblast response to LPS. / 25.05.2017 / PubMed / Full text
TNFSF15[править]
- Expression of pro- and anti-inflammatory cytokines and chemokines during the ovulatory cycle and effects of aging on their expression in the uterine mucosa of laying hens. / 11.2018 / PubMed / Full text
TNK1[править]
- Role of CLU, PICALM, and TNK1 Genotypes in Aging With and Without Alzheimer's Disease. / 05.2018 / PubMed / Full text
TNKS2[править]
- Gene expression in human mesenchymal stem cell aging cultures: modulation by short peptides. / 06.2020 / PubMed / Full text
TNNI1[править]
- Regular aerobic exercise-ameliorated troponin I carbonylation to mitigate aged rat soleus muscle functional recession. / 05.2019 / PubMed / Full text
TNP1[править]
TNP2[править]
TNPO3[править]
TNS3[править]
- Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. / 10.2016 / PubMed / Full text
TOP3A[править]
- Replication Stress at Telomeric and Mitochondrial DNA: Common Origins and Consequences on Ageing. / 08.10.2019 / PubMed / Full text
TOR2A[править]
- The correlation of copy number variations with longevity in a genome-wide association study of Han Chinese. / 05.06.2018 / PubMed / Full text
TP53BP1[править]
- Induction of DNA double-strand breaks and cellular senescence by human respiratory syncytial virus. / 18.05.2016 / PubMed / Full text
TP53INP1[править]
- TP53INP1 deficiency maintains murine B lymphopoiesis in aged bone marrow through redox-controlled IL-7R/STAT5 signaling. / 02.01.2019 / PubMed / Full text
TP53RK[править]
- Novel homozygous OSGEP gene pathogenic variants in two unrelated patients with Galloway-Mowat syndrome: case report and review of the literature. / 11.04.2019 / PubMed / Full text
TP73[править]
- G protein-coupled receptor kinase 4-induced cellular senescence and its senescence-associated gene expression profiling. / 15.11.2017 / PubMed / Full text
TPCN1[править]
- Effect of aging on calcium signaling in C57Bl6J mouse cerebral arteries. / 06.2013 / PubMed / Full text
TPP2[править]
- Early-onset Evans syndrome, immunodeficiency, and premature immunosenescence associated with tripeptidyl-peptidase II deficiency. / 29.01.2015 / PubMed / Full text
TPRKB[править]
- Novel homozygous OSGEP gene pathogenic variants in two unrelated patients with Galloway-Mowat syndrome: case report and review of the literature. / 11.04.2019 / PubMed / Full text
TRAV1-2[править]
TRAV27[править]
- Perturbed CD8 T cell immunity across universal influenza epitopes in the elderly. / 02.2018 / PubMed / Full text
TRBV19[править]
- Perturbed CD8 T cell immunity across universal influenza epitopes in the elderly. / 02.2018 / PubMed / Full text
TREM1[править]
- A TREM1 variant alters the accumulation of Alzheimer-related amyloid pathology. / 03.2015 / PubMed / Full text
TRHR[править]
- Association between polymorphisms in the TRHR gene, fat-free mass, and muscle strength in older women. / 12.2013 / PubMed / Full text
TRIB2[править]
- TRIB2 functions as novel oncogene in colorectal cancer by blocking cellular senescence through AP4/p21 signaling. / 12.12.2018 / PubMed / Full text
TRIB3[править]
- Inhibition of glioma growth by flavokawain B is mediated through endoplasmic reticulum stress induced autophagy. / 2018 / PubMed / Full text
TRIM27[править]
- TRIM27 Functions as a Novel Oncogene in Non-Triple-Negative Breast Cancer by Blocking Cellular Senescence through p21 Ubiquitination. / 04.12.2020 / PubMed / Full text
TRIOBP[править]
- A Large Genome-Wide Association Study of Age-Related Hearing Impairment Using Electronic Health Records. / 10.2016 / PubMed / Full text
TRPC1[править]
- Ca entry via TRPC1 is essential for cellular differentiation and modulates secretion via the SNARE complex. / 01.07.2019 / PubMed / Full text
TRPC7[править]
- Nociceptive transient receptor potential canonical 7 (TRPC7) mediates aging-associated tumorigenesis induced by ultraviolet B. / 01.2020 / PubMed / Full text
TRPM5[править]
- Genetic strategies to analyze primary TRP channel-expressing cells in mice. / 11.2017 / PubMed / Full text
TRPS1[править]
- miRNA expression profiling uncovers a role of miR-302b-3p in regulating skin fibroblasts senescence. / 01.2020 / PubMed / Full text
TRPV2[править]
- The role of transient receptor potential vanilloid 2 channel in cardiac aging. / 10.2017 / PubMed / Full text
TSG101[править]
- Exosomal Notch3 from high glucose-stimulated endothelial cells regulates vascular smooth muscle cells calcification/aging. / 01.09.2019 / PubMed / Full text
TSHR[править]
- TSH-independent release of thyroid hormones through cold exposure in aging rats. / 27.10.2017 / PubMed / Full text
TSPYL5[править]
- Uncovering genetic mechanisms of kidney aging through transcriptomics, genomics, and epigenomics. / 03.2019 / PubMed / Full text
TSSK6[править]
- DNA methylation-based age prediction from saliva: High age predictability by combination of 7 CpG markers. / 07.2017 / PubMed / Full text
TTF1[править]
- Senescence and autophagy in usual interstitial pneumonia of different etiology. / 27.08.2020 / PubMed / Full text
TUBA1A[править]
- Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. / 2019 / PubMed / Full text
TUBAL3[править]
- Identification of biomarkers of human skin ageing in both genders. Wnt signalling - a label of skin ageing? / 2012 / PubMed / Full text
TWIST2[править]
- DNA methylation abnormalities at gene promoters are extensive and variable in the elderly and phenocopy cancer cells. / 07.2014 / PubMed / Full text
TXK[править]
- Phenotypic characteristics of aged CD4 CD28 T lymphocytes are determined by changes in the whole-genome DNA methylation pattern. / 04.2017 / PubMed / Full text
TXN[править]
- Thioredoxin mitigates radiation-induced hematopoietic stem cell injury in mice. / 15.11.2017 / PubMed / Full text
TXNDC5[править]
TXNRD3[править]
- Mitochondrial thioredoxin reductase 2 is elevated in long-lived primate as well as rodent species and extends fly mean lifespan. / 08.2017 / PubMed / Full text
TYK2[править]
- Immunologic effects of chronic administration of tofacitinib, a Janus kinase inhibitor, in cynomolgus monkeys and rats - Comparison of juvenile and adult responses. / 04.2018 / PubMed / Full text
TYMS[править]
- C. elegans lifespan extension by osmotic stress requires FUdR, base excision repair, FOXO, and sirtuins. / 03.2016 / PubMed / Full text
TYRO3[править]
- The tyrosine kinase receptor Tyro3 enhances lifespan and neuropeptide Y (Npy) neuron survival in the mouse anorexia ([i]anx[/i]) mutation. / 01.05.2017 / PubMed / Full text
TYRP1[править]
- Thymocid , a Standardized Black Cumin ([i]Nigella sativa[/i]) Seed Extract, Modulates Collagen Cross-Linking, Collagenase and Elastase Activities, and Melanogenesis in Murine B16F10 Melanoma Cells. / 19.07.2020 / PubMed / Full text
UACA[править]
- Knockdown of [i]UACA[/i] inhibitsproliferation and invasion and promotes senescence of hepatocellular carcinoma cells. / 2018 / PubMed / Full text
UAP1[править]
- Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice. / 02.2015 / PubMed / Full text
UBC[править]
- Selection of a Real-Time PCR Housekeeping Gene Panel in Human Endothelial Colony Forming Cells for Cellular Senescence Studies. / 2019 / PubMed / Full text
UBE2C[править]
- Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text
UBE2D2[править]
- Stable reference genes in granulosa cells of bovine dominant follicles during follicular growth, FSH stimulation and maternal aging. / 04.2016 / PubMed / Full text
UBE2E3[править]
- Loss of the ubiquitin conjugating enzyme UBE2E3 induces cellular senescence. / 07.2018 / PubMed / Full text
UBE2N[править]
- Aged monkey brains reveal the role of ubiquitin-conjugating enzyme UBE2N in the synaptosomal accumulation of mutant huntingtin. / 01.03.2015 / PubMed / Full text
UBE2T[править]
- Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. / 2013 / PubMed / Full text
UBE4B[править]
- CircRNAs in the tree shrew ([i]Tupaia belangeri[/i]) brain during postnatal development and aging. / 30.04.2018 / PubMed / Full text
UBN1[править]
- O-linked N-acetylglucosamine transferase (OGT) interacts with the histone chaperone HIRA complex and regulates nucleosome assembly and cellular senescence. / 07.06.2016 / PubMed / Full text
UBP1[править]
- Expression of potato RNA-binding proteins StUBA2a/b and StUBA2c induces hypersensitive-like cell death and early leaf senescence in Arabidopsis. / 07.2015 / PubMed / Full text
UBQLN2[править]
- Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis. / 24.02.2016 / PubMed / Full text
UBTD1[править]
- UBTD1 induces cellular senescence through an UBTD1-Mdm2/p53 positive feedback loop. / 03.2015 / PubMed / Full text
UBTF[править]
- Age-associated dysregulation of protein metabolism in the mammalian oocyte. / 12.2017 / PubMed / Full text
UBXN2B[править]
- Clinical, polysomnographic and genome-wide association analyses of narcolepsy with cataplexy: a European Narcolepsy Network study. / 10.2013 / PubMed / Full text
UCHL3[править]
- UCHL3 Regulates Topoisomerase-Induced Chromosomal Break Repair by Controlling TDP1 Proteostasis. / 12.06.2018 / PubMed / Full text
UCHL5[править]
- Amelioration of neuronal cell death in a spontaneous obese rat model by dietary restriction through modulation of ubiquitin proteasome system. / 07.2016 / PubMed / Full text
UCN[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
UCN3[править]
- Urocortin 3 signalling in the auditory brainstem aids recovery of hearing after reversible noise-induced threshold shift. / 08.2019 / PubMed / Full text
UGT1A6[править]
- Expression of UDP-Glucuronosyltransferase 1 (UGT1) and Glucuronidation Activity toward Endogenous Substances in Humanized UGT1 Mouse Brain. / 07.2015 / PubMed / Full text
UGT2B28[править]
- Ages of hepatocellular carcinoma occurrence and life expectancy are associated with a UGT2B28 genomic variation. / 05.12.2019 / PubMed / Full text
UGT2B7[править]
- Application of a physiologically based pharmacokinetic model for the prediction of mirabegron plasma concentrations in a population with severe renal impairment. / 05.2019 / PubMed / Full text
ULK2[править]
- miR-26a suppresses autophagy in swine Sertoli cells by targeting ULK2. / 08.2018 / PubMed / Full text
UNC5C[править]
- Identification of genes associated with dissociation of cognitive performance and neuropathological burden: Multistep analysis of genetic, epigenetic, and transcriptional data. / 04.2017 / PubMed / Full text
UPF1[править]
- Differential alternative splicing coupled to nonsense-mediated decay of mRNA ensures dietary restriction-induced longevity. / 21.08.2017 / PubMed / Full text
UPRT[править]
- UPRT, a suicide-gene therapy candidate in higher eukaryotes, is required for Drosophila larval growth and normal adult lifespan. / 14.08.2015 / PubMed / Full text
UQCRC1[править]
- Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone. / 07.2014 / PubMed / Full text
UQCRFS1[править]
- Contribution of genetic polymorphisms on functional status at very old age: a gene-based analysis of 38 genes (311 SNPs) in the oxidative stress pathway. / 04.2014 / PubMed / Full text
USF1[править]
- The rs2516839 variation of USF1 gene is associated with 4-year mortality of nonagenarian women: The Vitality 90 study. / 01.2019 / PubMed / Full text
USF2[править]
- Age-Related Expression of Human AT1R Variants and Associated Renal Dysfunction in Transgenic Mice. / 15.10.2018 / PubMed / Full text
USP15[править]
- Deficiency of parkin and PINK1 impairs age-dependent mitophagy in [i]Drosophila[/i]. / 29.05.2018 / PubMed / Full text
USP28[править]
- Genetic interrogation of replicative senescence uncovers a dual role for USP28 in coordinating the p53 and GATA4 branches of the senescence program. / 01.10.2017 / PubMed / Full text
USP30[править]
- Deficiency of parkin and PINK1 impairs age-dependent mitophagy in [i]Drosophila[/i]. / 29.05.2018 / PubMed / Full text
USP4[править]
- Increased Expression of Ubiquitin-Specific Protease 4 Participates in Neuronal Apoptosis After Intracerebral Hemorrhage in Adult Rats. / 04.2017 / PubMed / Full text
USP8[править]
- Inhibition of the deubiquitinase USP8 corrects a Drosophila PINK1 model of mitochondria dysfunction. / 04.2019 / PubMed / Full text
UTF1[править]
- miR-377 induces senescence in human skin fibroblasts by targeting DNA methyltransferase 1. / 09.03.2017 / PubMed / Full text
UVRAG[править]
- Essential role for UVRAG in autophagy and maintenance of cardiac function. / 01.01.2014 / PubMed / Full text
UVSSA[править]
- A C. elegans homolog for the UV-hypersensitivity syndrome disease gene UVSSA. / 05.2016 / PubMed / Full text
VAMP2[править]
- Newly produced synaptic vesicle proteins are preferentially used in synaptic transmission. / 01.08.2018 / PubMed / Full text
VAMP8[править]
- NUPR1 maintains autolysosomal efflux by activating SNAP25 transcription in cancer cells. / 2018 / PubMed / Full text
VAPB[править]
- Transforming Cytosolic Proteins into "Insoluble" and Membrane-toxic Forms Triggering Diseases/Aging by Genetic, Pathological or Environmental Factors. / 2017 / PubMed / Full text
VAV3[править]
- Age-related obesity and type 2 diabetes dysregulate neuronal associated genes and proteins in humans. / 06.10.2015 / PubMed / Full text
VCL[править]
- The effects of different preservation methods on ide (Leuciscus idus) sperm and the longevity of sperm movement. / 04.2018 / PubMed / Full text
VCPIP1[править]
- Tandem Deubiquitination and Acetylation of SPRTN Promotes DNA-Protein Crosslink Repair and Protects against Aging. / 03.09.2020 / PubMed / Full text
VDAC3[править]
- VDAC3 As a Potential Marker of Mitochondrial Status Is Involved in Cancer and Pathology. / 2016 / PubMed / Full text
VEGFC[править]
- Proteomic profiling of follicle fluids after superstimulation in one-month-old lambs. / 02.2018 / PubMed / Full text
VEGFD[править]
- Single-Arm Resistance Training Study to Determine the Relationship between Training Outcomes and Muscle Growth Factor mRNAs in Older Adults Consuming Numerous Medications and Supplements. / 2018 / PubMed / Full text
VHLL[править]
- The Monetary Valuation of Lifetime Health Improvement and Life Expectancy Gains in Turkey. / 29.09.2017 / PubMed / Full text
VIT[править]
VPREB3[править]
- Age-related but not longevity-related genes are found by weighted gene co-expression network analysis in the peripheral blood cells of humans. / 19.01.2019 / PubMed / Full text
VPS13C[править]
- SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text
VPS13D[править]
- SerThr-PhosphoProteome of Brain from Aged PINK1-KO A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. / 04.07.2019 / PubMed / Full text
VPS26A[править]
- Characterization of novel markers of senescence and their prognostic potential in cancer. / 20.11.2014 / PubMed / Full text
VPS37B[править]
- Identification of HIV infection-related DNA methylation sites and advanced epigenetic aging in HIV-positive, treatment-naive U.S. veterans. / 20.02.2017 / PubMed / Full text
VPS4A[править]
- The expression changes of vacuolar protein sorting 4B (VPS4B) following middle cerebral artery occlusion (MCAO) in adult rats brain hippocampus. / 01.2014 / PubMed / Full text
VPS4B[править]
- The expression changes of vacuolar protein sorting 4B (VPS4B) following middle cerebral artery occlusion (MCAO) in adult rats brain hippocampus. / 01.2014 / PubMed / Full text
VRK2[править]
- Accelerated Epigenetic Aging and Methylation Disruptions Occur in Human Immunodeficiency Virus Infection Prior to Antiretroviral Therapy. / 22.09.2020 / PubMed / Full text
VSIG4[править]
- Immune checkpoint protein VSIG4 as a biomarker of aging in murine adipose tissue. / 10.2020 / PubMed / Full text
VSX1[править]
- Amyloid Precursor-Like Protein 2 deletion-induced retinal synaptopathy related to congenital stationary night blindness: structural, functional and molecular characteristics. / 08.06.2016 / PubMed / Full text
WAC[править]
- Implementation of Writing Across the Curriculum (WAC) learning approaches in social work and sociology gerontology courses. / 2013 / PubMed / Full text
WASL[править]
WBP11[править]
- Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of mRNA splicing relevant proteins in aging HSPCs. / 05.03.2020 / PubMed / Full text
WDR48[править]
- Genome-wide studies of verbal declarative memory in nondemented older people: the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium. / 15.04.2015 / PubMed / Full text
WDR5[править]
- Inhibition of the H3K4 methyltransferase MLL1/WDR5 complex attenuates renal senescence in ischemia reperfusion mice by reduction of p16 . / 11.2019 / PubMed / Full text
WDR73[править]
- Novel homozygous OSGEP gene pathogenic variants in two unrelated patients with Galloway-Mowat syndrome: case report and review of the literature. / 11.04.2019 / PubMed / Full text
WDSUB1[править]
- The complex genetics of gait speed: genome-wide meta-analysis approach. / 10.01.2017 / PubMed / Full text
WFDC2[править]
- Differences in biomarkers and molecular pathways according to age for patients with HFrEF. / 01.10.2020 / PubMed / Full text
WIF1[править]
- Identification of the mechanisms by which age alters the mechanosensitivity of mesenchymal stromal cells on substrates of differing stiffness: Implications for osteogenesis and angiogenesis. / 15.04.2017 / PubMed / Full text
WNK1[править]
- Overexpression of WNK1 in POMC-expressing neurons reduces weigh gain via WNK4-mediated degradation of Kir6.2. / 10.2018 / PubMed / Full text
WNK4[править]
- Overexpression of WNK1 in POMC-expressing neurons reduces weigh gain via WNK4-mediated degradation of Kir6.2. / 10.2018 / PubMed / Full text
WNT10A[править]
- Dysregulation of the Wnt Signaling Pathway and Synovial Stem Cell Dysfunction in Osteoarthritis Development. / 01.04.2020 / PubMed / Full text
WNT3[править]
WNT5B[править]
- Dysregulation of the Wnt Signaling Pathway and Synovial Stem Cell Dysfunction in Osteoarthritis Development. / 01.04.2020 / PubMed / Full text
WNT7A[править]
- Exogenous Expression of WNT7A in Leukemia-Derived Cell Lines Induces Resistance to Chemotherapeutic Agents. / 2020 / PubMed / Full text
WWC1[править]
- WWC1 genotype modulates age-related decline in episodic memory function across the adult life span. / 01.05.2014 / PubMed / Full text
XAF1[править]
- XIAP-associating factor 1, a transcriptional target of BRD7, contributes to endothelial cell senescence. / 02.02.2016 / PubMed / Full text
XG[править]
- The effect of administration media on palatability and ease of swallowing of multiparticulate formulations. / 15.11.2018 / PubMed / Full text
XK[править]
- Neurodegeneration in the elderly - When the blood type matters: An overview of the McLeod syndrome with focus on hematological features. / 06.2015 / PubMed / Full text
XPO1[править]
- Nuclear Export Inhibition Enhances HLH-30/TFEB Activity, Autophagy, and Lifespan. / 15.05.2018 / PubMed / Full text
XRCC2[править]
- Copy neutral loss of heterozygosity is more frequent in older ovarian cancer patients. / 09.2013 / PubMed / Full text
XRCC5[править]
- Repairing DNA damage by XRCC6/KU70 reverses TLR4-deficiency-worsened HCC development via restoring senescence and autophagic flux. / 01.06.2013 / PubMed / Full text
YBX2[править]
- Preovulatory Aging In Vivo and In Vitro Affects Maturation Rates, Abundance of Selected Proteins, Histone Methylation Pattern and Spindle Integrity in Murine Oocytes. / 2016 / PubMed / Full text
YES1[править]
- Re-exploring the core genes and modules in the human frontal cortex during chronological aging: insights from network-based analysis of transcriptomic studies. / 20.10.2018 / PubMed / Full text
ZAP70[править]
ZBED6[править]
- Correlation between ZBED6 Gene Upstream CpG Island methylation and mRNA expression in cattle. / 03.04.2017 / PubMed / Full text
ZBTB7A[править]
- The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. / 29.09.2020 / PubMed / Full text
ZC3H11A[править]
- In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. / 12.2019 / PubMed / Full text
ZFHX3[править]
ZFP36L1[править]
- Zinc finger protein ZFP36L1 promotes osteoblastic differentiation but represses adipogenic differentiation of mouse multipotent cells. / 28.03.2017 / PubMed / Full text
ZFPM2[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
ZIC1[править]
- The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. / 29.09.2020 / PubMed / Full text
ZNF14[править]
- Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. / 07.2014 / PubMed / Full text
ZNF207[править]
- Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. / 02.2018 / PubMed / Full text
ZNF211[править]
- Genetics of facial telangiectasia in the Rotterdam Study: a genome-wide association study and candidate gene approach. / 23.10.2020 / PubMed / Full text
ZNF367[править]
- RNA-seq of the aging brain in the short-lived fish N. furzeri - conserved pathways and novel genes associated with neurogenesis. / 12.2014 / PubMed / Full text
ZNF396[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
ZNF467[править]
- Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. / 15.11.2018 / PubMed / Full text
ZNF483[править]
- Genome wide association study of age at menarche in the Japanese population. / 2013 / PubMed / Full text
ZNF518B[править]
- The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. / 29.09.2020 / PubMed / Full text
ZNF616[править]
- Global Characteristics of CSIG-Associated Gene Expression Changes in Human HEK293 Cells and the Implications for CSIG Regulating Cell Proliferation and Senescence. / 2015 / PubMed / Full text
ZNF619[править]
- Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. / 12.2019 / PubMed / Full text
ZNF644[править]
- Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients. / 03.09.2019 / PubMed / Full text
ZNF704[править]
- Genome-Wide Association Study and Linkage Analysis of the Healthy Aging Index. / 08.2015 / PubMed / Full text
ZPBP2[править]
- Sex- and age-dependent DNA methylation at the 17q12-q21 locus associated with childhood asthma. / 07.2013 / PubMed / Full text
ZRSR2[править]
- Insight into the molecular pathophysiology of myelodysplastic syndromes: targets for novel therapy. / 10.2016 / PubMed / Full text
ZSCAN4[править]
- Genetics of facial telangiectasia in the Rotterdam Study: a genome-wide association study and candidate gene approach. / 23.10.2020 / PubMed / Full text