Редактирование:
TNC
Перейти к навигации
Перейти к поиску
Внимание:
Вы не вошли в систему. Ваш IP-адрес будет общедоступен, если вы запишете какие-либо изменения. Если вы
войдёте
или
создадите учётную запись
, её имя будет использоваться вместо IP-адреса, наряду с другими преимуществами.
Анти-спам проверка.
Не
заполняйте это!
Tenascin precursor (TN) (Cytotactin) (GMEM) (GP 150-225) (Glioma-associated-extracellular matrix antigen) (Hexabrachion) (JI) (Myotendinous antigen) (Neuronectin) (Tenascin-C) (TN-C) [HXB] ==Publications== {{medline-entry |title=Effects of Tenascin C on the Integrity of Extracellular Matrix and Skin Aging. |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33217999 |abstract=Tenascin C ([[TNC]]) is an element of the extracellular matrix (ECM) of various tissues, including the skin, and is involved in modulating ECM integrity and cell physiology. Although skin aging is apparently associated with changes in the ECM, little is known about the role of [[TNC]] in skin aging. In this study, we found that the [i]Tnc[/i] mRNA level was significantly reduced in the skin tissues of aged mice compared with young mice, consistent with reduced [[TNC]] protein expression in aged human skin. [[TNC]]-large ([[TNC]]-L; 330-kDa) and -small ([[TNC]]-S; 240-kDa) polypeptides were observed in conditional media from primary dermal fibroblasts. Both recombinant [[TNC]] polypeptides, corresponding to [[TNC]]-L and [[TNC]]-S, increased the expression of type I collagen and reduced the expression of matrix metalloproteinase-1 in fibroblasts. Treatment of fibroblasts with a recombinant [[TNC]] polypeptide, corresponding to [[TNC]]-L, induced phosphorylation of [[SMAD2]] and [[SMAD3]]. [[TNC]] increased the level of transforming growth factor-β1 ([i]TGF-β1[/i]) mRNA and upregulated the expression of type I collagen by activating the TGF-β signaling pathway. In addition, [[TNC]] also promoted the expression of type I collagen in fibroblasts embedded in a three-dimensional collagen matrix. Our findings suggest that [[TNC]] contributes to the integrity of ECM in young skin and to prevention of skin aging. |keywords=* TGF-β * aging * collagen * extracellular matrix * fibroblast * skin * tenascin C |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698786 }} {{medline-entry |title=Tenascin-C expression controls the maturation of articular cartilage in mice. |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32066496 |abstract=Expression of the de-adhesive extracellular matrix protein tenascin-C ([[TNC]]) is associated with the early postnatal development of articular cartilage which is both load-dependent and associated with chondrocyte differentiation. We assessed morphological changes in the articular cartilage of [[TNC]] deficient mice at postnatal ages of 1, 4 and 8 weeks compared to age-matched wildtype mice. Cartilage integrity was assessed based on hematoxylin and eosin stained-sections from the tibial bone using a modified Mankin score. Chondrocyte density and cartilage thickness were assessed morphometrically. [[TNC]] expression was localized based on immunostaining. At 8 weeks of age, the formed tangential/transitional zone of the articular cartilage was 27% thicker and the density of chondrocytes in the articular cartilage was 55% lower in wildtype than the [[TNC]]-deficient mice. [[TNC]] protein expression was associated with chondrocytes. No relevant changes were found in mice at 1 and 4 weeks of age. The findings indicate a role of tenascin-C in the post-natal maturation of the extracellular matrix in articular cartilage. This might be a compensatory mechanism to strengthen resilience against mechanical stress. |mesh-terms=* Aging * Animals * Cartilage, Articular * Cell Count * Genotype * Mice * Tenascin |keywords=* Adhesion * Articular cartilage * Cartilage defect * Cell density * Knock-out mouse * Load * Tenascin C |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7027060 }} {{medline-entry |title=Effects of hydrothermal aging, thermal cycling, and water storage on the mechanical properties of a machinable resin-based composite containing nano-zirconia fillers. |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31877525 |abstract=This study aimed to investigate the effects of hydrothermal aging, thermal cycling, and water storage on the mechanical properties of a machinable resin-based composite containing nano-zirconia fillers. A machinable resin-based composite containing nano-zirconia fillers (Lava Ultimate, LU) and a resin-based composite with a similar resin matrix-to-filler ratio but without zirconia fillers (Tetric N-Ceram, [[TNC]]) were prepared into bars and assigned into four groups based on the type of aging treatment (hydrothermal aging, thermal cycling, water storage, or no aging). The phase transformations of the zirconia fillers in LU after aging were evaluated by X-ray diffraction. The flexural strength, Weibull modulus, flexural modulus, and Vickers hardness of each group were investigated. The fracture surface morphologies of both resin-based composites before and after aging were observed by a scanning electron microscopy (SEM). Only Tetragonal zirconia was detected in the LU samples. Both before and after aging, the flexural strength, flexural modulus, and Vickers hardness values of LU were significantly higher than those of [[TNC]] (p < 0.05) with the exception of the flexural modulus of LU, which showed no difference with that of [[TNC]] after water storage (p = 0.68). Hydrothermal aging, thermal cycling, and water storage had no significant effects on the surface Vickers hardnesses of LU or [[TNC]] (p > 0.05). Hydrothermal aging significantly improved the flexural strength of LU (p = 0.00). Thermal cycling (p = 0.00) and water storage (p = 0.00) significantly decreased the flexural strength of LU. The flexural strength of [[TNC]] was not decreased by hydrothermal aging (p = 0.82) or water storage (p = 0.36), while it was decreased by thermal cycling (p = 0.00). The hydrothermal aging group of LU exhibited the highest Weibull modulus. The machinable resin-based composite containing nano-zirconia fillers provides superior flexural strength, flexural modulus, and Vickers hardness compared to the direct-filling resin-based composite with a similar resin matrix-to-filler ratio, although it fails to provide better aging resistance. |keywords=* Aging * Mechanical properties * Nano-zirconia * Phase transformation * Resin nano-ceramic * Resin-based composite |full-text-url=https://sci-hub.do/10.1016/j.jmbbm.2019.103522 }}
Описание изменений:
Пожалуйста, учтите, что любой ваш вклад в проект «hpluswiki» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см.
Hpluswiki:Авторские права
).
НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!
Отменить
Справка по редактированию
(в новом окне)
Шаблон, используемый на этой странице:
Шаблон:Medline-entry
(
править
)
Навигация
Персональные инструменты
Вы не представились системе
Обсуждение
Вклад
Создать учётную запись
Войти
Пространства имён
Статья
Обсуждение
русский
Просмотры
Читать
Править
История
Ещё
Навигация
Начало
Свежие правки
Случайная страница
Инструменты
Ссылки сюда
Связанные правки
Служебные страницы
Сведения о странице
Дополнительно
Как редактировать
Вики-разметка
Telegram
Вконтакте
backup