Редактирование:
Whole brain emulation
(раздел)
Перейти к навигации
Перейти к поиску
Внимание:
Вы не вошли в систему. Ваш IP-адрес будет общедоступен, если вы запишете какие-либо изменения. Если вы
войдёте
или
создадите учётную запись
, её имя будет использоваться вместо IP-адреса, наряду с другими преимуществами.
Анти-спам проверка.
Не
заполняйте это!
=== The Body Model === The virtual body can also be considered as means of abstraction: Instead of mapping the sensory/motor neuron map directly to a telepresence robot or to a virtual body, one could just pipe information to and from the individual virtual muscles and virtual sensors. For example, creating a virtual avatar that has points where collision checking is done. When a collision is detected, a pulse (Containing the information of the force vector, possibly) is piped to the corresponding sensor, that sends it to its corresponding neuron. The same is done with muscles, but viceversa: The nerve impulse is translated by the map from a pure impulse to, say, stress and force vectors in the virtual muscle. The muscle can then pipe this values to a software object that turns them into motion of a limb in the avatar. The body simulation translates between neural signals and the environment, as well as maintains a model of body state as it affects the brain emulation. How detailed the body simulation needs to be in order to function depends on the goal. An “adequate” simulation produces enough and the right kind of information for the emulation to function and act, while a convincing simulation is nearly or wholly indistinguishable from the “feel” of the original body. A number of relatively simple biomechanical simulations of bodies connected to simulated nervous systems have been created to study locomotion. (Suzuki, Goto et al., 2005) simulated the C. elegans body as a multi‐joint rigid link where the joints were controlled by motorneurons in a simulated motor control network. Örjan Ekeberg has simulated locomotion in lamprey (Ekeberg and Grillner, 1999), stick insects (Ekeberg, Blümel et al., 2004), and the hind legs of cat (Ekeberg and Pearson, 2005) where a rigid skeleton is moved by muscles either modeled as springs contracting linearly with neural signals, or in the case of the cat, a model fitting observed data relating neural stimulation, length, and velocity with contraction force (Brown, Scott et al., 1996). These models also include sensory feedback from stretch receptors, enabling movements to adapt to environmental forces: locomotion involves an information loop between neural activity, motor response, body dynamics, and sensory feedback (Pearson, Ekeberg et al., 2006). Today biomechanical model software enables fairly detailed models of muscles, the skeleton, and the joints, enabling calculation of forces, torques, and interaction with a simulated environment (Biomechanics Research Group Inc, 2005). Such models tend to simplify muscles as lines and make use of pre‐recorded movements or tensions to generate the kinematics. A detailed mechanical model of human walking has been constructed with 23 degrees of freedom driven by 54 muscles. However, it was not controlled by a neural network but rather used to find an energy‐optimizing gait (Anderson and Pandy, 2001). A state of‐the‐art model involving 200 rigid bones with over 300 degrees of freedom, driven by muscular actuators with excitation‐contraction dynamics and some neural control, has been developed for modelling human body motion in a dynamic environment, e.g. for ergonomics testing (Ivancevic and Beagley, 2004). This model runs on a normal workstation, suggesting that rigid body simulation is not a computationally hard problem in comparison to WBE. Other biomechanical models are being explored for assessing musculoskeletal function in human (Fernandez and Pandy, 2006), and can be validated or individualized by use of MRI data (Arnold, Salinas et al., 2000) or EMG (Lloyd and Besier, 2003). It is expected that near future models will be based on volumetric muscle and bone models found using MRI scanning (Blemker, Asakawa et al., 2007; Blemker and Delp, 2005), as well as construction of topological models (Magnenat‐Thalmann and Cordier, 2000). There are also various simulations of soft tissue (Benham, Wright et al., 2001), breathing (Zordan, Celly et al., 2004) and soft tissue deformation for surgery simulation (Cotin, Delingette et al., 1999). Another source of body models comes from computer graphics, where much effort has gone into rendering realistic characters, including modelling muscles, hair and skin. The emphasis has been on realistic appearance rather than realistic physics (Scheepers, Parent et al., 1997), but increasingly the models are becoming biophysically realistic and overlapping with biophysics (Chen and Zeltzer, 1992; Yucesoy, Koopman et al., 2002). For example, 30 contact/collision coupled muscles in the upper limb with fascia and tendons were generated from the visible human dataset and then simulated using a finite volume method; this simulation (using one million mesh tetrahedra) ran at a rate of 240 seconds per frame on a single CPU Xeon 3.06 GHz (on the order of a few GFLOPS) (Teran, Sifakis et al., 2005). Scaling this up 20 times to encompass ≈600 muscles implies a computational cost on the order of a hundred TFLOPS for a complete body simulation. Physiological models are increasingly used in medicine for education, research and patient evaluation. Relatively simple models can accurately simulate blood oxygenation (Hardman, Bedforth et al., 1998). For a body simulation this might be enough to provide the right feedback between exertion and brain state. Similarly simple nutrient and hormone models could be used insofar a realistic response to hunger and eating were desired.
Описание изменений:
Пожалуйста, учтите, что любой ваш вклад в проект «hpluswiki» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см.
Hpluswiki:Авторские права
).
НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!
Отменить
Справка по редактированию
(в новом окне)
Навигация
Персональные инструменты
Вы не представились системе
Обсуждение
Вклад
Создать учётную запись
Войти
Пространства имён
Статья
Обсуждение
русский
Просмотры
Читать
Править
История
Ещё
Навигация
Начало
Свежие правки
Случайная страница
Инструменты
Ссылки сюда
Связанные правки
Служебные страницы
Сведения о странице
Дополнительно
Как редактировать
Вики-разметка
Telegram
Вконтакте
backup