Редактирование:
Whole brain emulation
(раздел)
Перейти к навигации
Перейти к поиску
Внимание:
Вы не вошли в систему. Ваш IP-адрес будет общедоступен, если вы запишете какие-либо изменения. Если вы
войдёте
или
создадите учётную запись
, её имя будет использоваться вместо IP-адреса, наряду с другими преимуществами.
Анти-спам проверка.
Не
заполняйте это!
=== Volume Transmission === Surrounding the cells of the brain is the extracellular space, on average 200 Å across and corresponding to 20% of brain volume (Nicholson, 2001). It transports nutrients and buffers ions, but may also enable volume transmission of signalling molecules. * Volume transmission of small molecules appears fairly well established. Nitrous oxide is hydrophobic and has low molecular weight and can hence diffuse relatively freely through membranes: it can reach up to 0.1‐0.2 mm away from a release point under physiological conditions (Malinski, Taha et al., 1993; Schuman and Madison, 1994; Wood and Garthwaite, 1994). While mainly believed to be important for autoregulation of blood supply, it may also have a role in memory (Ledo, Frade et al., 2004). This might explain how LTP (Long Term Potentiation) can induce “crosstalk” that reduces LTP induction thresholds over a span of 10 μm and ten minutes (Harvey and Svoboda, 2007). * Signal substances such as dopamine exhibit volume transmission (Rice, 2000) and this may have effect for potentiation of nearby synapses during learning: simulations show that a single synaptic release can be detected up to 20 μm away and with a 100 ms half‐life (Cragg, Nicholson et al., 2001). Larger molecules have their relative diffusion speed reduced by the limited geometry of the extracellular space, both in terms of its tortuosity and its anisotropy (Nicholson, 2001). As suggested by Robert Freitas, there may also exist active extracellular transport modes. Diffusion rates are also affected by local flow of the CSF and can differ from region to region (Fenstermacher and Kaye, 1988); if this is relevant then local diffusion and flow measurements may be needed to develop at least a general brain diffusion model. The geometric part of such data could be relatively easily gained from the high resolution 3D scans needed for other WBE subproblems. * Rapid and broad volume transmission such as from nitrous oxide can be simulated using a relatively coarse spatiotemporal grid size, while local transmission requires a grid with a spatial scale close to the neural scale if diffusion is severely hindered. * For constraining brain emulation it might be useful to analyse the expected diffusion and detection distances of the ≈200 known chemical signalling molecules based on their molecular weight, diffusion constant and uptake (for different local neural geometries and source/sink distributions). This would provide information on diffusion times that constrain the diffusion part of the emulation and possibly show which chemical species need to be spatially modelled.
Описание изменений:
Пожалуйста, учтите, что любой ваш вклад в проект «hpluswiki» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см.
Hpluswiki:Авторские права
).
НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!
Отменить
Справка по редактированию
(в новом окне)
Навигация
Персональные инструменты
Вы не представились системе
Обсуждение
Вклад
Создать учётную запись
Войти
Пространства имён
Статья
Обсуждение
русский
Просмотры
Читать
Править
История
Ещё
Навигация
Начало
Свежие правки
Случайная страница
Инструменты
Ссылки сюда
Связанные правки
Служебные страницы
Сведения о странице
Дополнительно
Как редактировать
Вики-разметка
Telegram
Вконтакте
backup