Редактирование:
Aging genes 30-59
(раздел)
Перейти к навигации
Перейти к поиску
Внимание:
Вы не вошли в систему. Ваш IP-адрес будет общедоступен, если вы запишете какие-либо изменения. Если вы
войдёте
или
создадите учётную запись
, её имя будет использоваться вместо IP-адреса, наряду с другими преимуществами.
Анти-спам проверка.
Не
заполняйте это!
==GDF11== * {{medline-title |title=Growth differentiation factor-11 supplementation improves survival and promotes recovery after ischemic stroke in aged mice. |date=04.05.2020 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32365331 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244081 }} * {{medline-title |title=Anti-Aging Effects of [[GDF11]] on Skin. |date=09.04.2020 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32283613 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177281 }} * {{medline-title |title=Targeted Approach to Distinguish and Determine Absolute Levels of GDF8 and [[GDF11]] in Mouse Serum. |date=06.2020 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32104967 |full-text-url=https://sci-hub.do/10.1002/pmic.201900104 }} * {{medline-title |title=Growth differentiation factor 11 impairs titanium implant healing in the femur and leads to mandibular bone loss. |date=09.2020 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31983062 |full-text-url=https://sci-hub.do/10.1002/JPER.19-0247 }} * {{medline-title |title=Systemic [[GDF11]] stimulates the secretion of adiponectin and induces a calorie restriction-like phenotype in aged mice. |date=01.2020 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31637864 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974718 }} * {{medline-title |title=Circulating factors in young blood as potential therapeutic agents for age-related neurodegenerative and neurovascular diseases. |date=11.2019 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31400495 |full-text-url=https://sci-hub.do/10.1016/j.brainresbull.2019.08.004 }} * {{medline-title |title=Effects of Exercise Training on Growth and Differentiation Factor 11 Expression in Aged Mice. |date=2019 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31417428 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6684741 }} * {{medline-title |title=[[TERT]] assists [[GDF11]] to rejuvenate senescent VEGFR2 /CD133 cells in elderly patients with myocardial infarction. |date=11.2019 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31292540 |full-text-url=https://sci-hub.do/10.1038/s41374-019-0290-1 }} * {{medline-title |title=The role of [[GDF11]] in aging and skeletal muscle, cardiac and bone homeostasis. |date=04.2019 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31144559 |full-text-url=https://sci-hub.do/10.1080/10409238.2019.1610722 }} * {{medline-title |title=Circulating [[GDF11]] levels are decreased with age but are unchanged with obesity and type 2 diabetes. |date=21.03.2019 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30897065 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6461177 }} * {{medline-title |title=Activin type II receptor signaling in cardiac aging and heart failure. |date=06.03.2019 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30842316 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7124007 }} * {{medline-title |title=Neuroprotective potential of [[GDF11]] in experimental intracerebral hemorrhage in elderly rats. |date=05.2019 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30827882 |full-text-url=https://sci-hub.do/10.1016/j.jocn.2019.02.016 }} * {{medline-title |title=The influence of [[GDF11]] on brain fate and function. |date=02.2019 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30729414 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423340 }} * {{medline-title |title=Administration of r[[GDF11]] retards the aging process in male mice via action of anti-oxidant system. |date=08.2019 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30726519 |full-text-url=https://sci-hub.do/10.1007/s10522-019-09799-1 }} * {{medline-title |title=Novel biomolecules of ageing, sex differences and potential underlying mechanisms of telomere shortening in coronary artery disease. |date=05.2019 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30684534 |full-text-url=https://sci-hub.do/10.1016/j.exger.2019.01.020 }} * {{medline-title |title=The Growth Differentiation Factor 11 is Involved in Skin Fibroblast Ageing and is Induced by a Preparation of Peptides and Sugars Derived from Plant Cell Cultures. |date=03.2019 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30661170 |full-text-url=https://sci-hub.do/10.1007/s12033-019-00154-w }} * {{medline-title |title=[The role of «Youth and aging proteins» in essential hypertension pathogenesis.] |date=2018 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30584875 }} * {{medline-title |title=Regenerative Capacity of Endogenous Factor: Growth Differentiation Factor 11; a New Approach of the Management of Age-Related Cardiovascular Events. |date=12.12.2018 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30545044 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6321079 }} * {{medline-title |title=Late-onset administration of [[GDF11]] extends life span and delays development of age-related markers in the annual fish Nothobranchius guentheri. |date=04.2019 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30519861 |full-text-url=https://sci-hub.do/10.1007/s10522-018-09789-9 }} * {{medline-title |title=Growth Differentiation Factor 11 treatment leads to neuronal and vascular improvements in the hippocampus of aged mice. |date=23.11.2018 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30470794 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6251885 }} * {{medline-title |title=Relationship of Circulating Growth and Differentiation Factors 8 and 11 and Their Antagonists as Measured Using Liquid Chromatography-Tandem Mass Spectrometry With Age and Skeletal Muscle Strength in Healthy Adults. |date=01.01.2019 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30380014 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6298188 }} * {{medline-title |title=The [[GDF11]]-[[FTO]]-PPARγ axis controls the shift of osteoporotic [[MSC]] fate to adipocyte and inhibits bone formation during osteoporosis. |date=12.2018 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30279140 |full-text-url=https://sci-hub.do/10.1016/j.bbadis.2018.09.015 }} * {{medline-title |title=The effects of aging, diabetes mellitus, and antiplatelet drugs on growth factors and anti-aging proteins in platelet-rich plasma. |date=2019 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30252623 |full-text-url=https://sci-hub.do/10.1080/09537104.2018.1514110 }} * {{medline-title |title=Relationship of muscle function to circulating myostatin, follistatin and [[GDF11]] in older women and men. |date=30.08.2018 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30165829 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6117873 }} * {{medline-title |title=Activin subfamily peptides predict chronological age in humans. |date=09.2018 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30178598 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6121122 }} * {{medline-title |title=Growth differentiation factor 11 worsens hepatocellular injury and liver regeneration after liver ischemia reperfusion injury. |date=09.2018 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29913561 |full-text-url=https://sci-hub.do/10.1096/fj.201800195R }} * {{medline-title |title=The [i]Drosophila[/i] TGF-beta/Activin-like ligands Dawdle and Myoglianin appear to modulate adult lifespan through regulation of 26S proteasome function in adult muscle. |date=26.04.2018 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/29615416 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5936056 }} * {{medline-title |title=Lifelong exercise, but not short-term high-intensity interval training, increases [[GDF11]], a marker of successful aging: a preliminary investigation. |date=07.2017 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28701523 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5506528 }} * {{medline-title |title=Exogenous [[GDF11]] induces cardiac and skeletal muscle dysfunction and wasting. |date=07.2017 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28647906 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833306 }} * {{medline-title |title=["Protein of senility" [[CCL11]], "protein of juvenility" [[GDF11]] and their role in age-related pathology]. |date=2016 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28556640 }} * {{medline-title |title=A targeted proteomic assay for the measurement of plasma proteoforms related to human aging phenotypes. |date=08.2017 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28508553 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5863538 }} * {{medline-title |title=The Growth Differentiation Factor 11 ([[GDF11]]) and Myostatin (MSTN) in tissue specific aging. |date=06.2017 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28472635 |full-text-url=https://sci-hub.do/10.1016/j.mad.2017.04.009 }} * {{medline-title |title=Targeted myocardial delivery of [[GDF11]] gene rejuvenates the aged mouse heart and enhances myocardial regeneration after ischemia-reperfusion injury. |date=01.2017 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/28004242 |full-text-url=https://sci-hub.do/10.1007/s00395-016-0593-y }} * {{medline-title |title=[[GDF11]] Treatment Attenuates the Recovery of Skeletal Muscle Function After Injury in Older Rats. |date=03.2017 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27924614 |full-text-url=https://sci-hub.do/10.1208/s12248-016-0024-x }} * {{medline-title |title=[[GDF11]] improves tubular regeneration after acute kidney injury in elderly mice. |date=05.10.2016 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27703192 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5050408 }} * {{medline-title |title=Increased serum [[GDF11]] concentration is associated with a high prevalence of osteoporosis in elderly native Chinese women. |date=11.2016 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27557752 |full-text-url=https://sci-hub.do/10.1111/1440-1681.12651 }} * {{medline-title |title=[[GDF11]] administration does not extend lifespan in a mouse model of premature aging. |date=30.08.2016 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27507054 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302888 }} * {{medline-title |title=[[GDF11]] Inhibits Bone Formation by Activating Smad2/3 in Bone Marrow Mesenchymal Stem Cells. |date=11.2016 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27395058 |full-text-url=https://sci-hub.do/10.1007/s00223-016-0173-z }} * {{medline-title |title=Serum Levels of Growth Differentiation Factor 11 Are Independently Associated with Low Hemoglobin Values in Hemodialysis Patients. |date=2016 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27298756 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4900214 }} * {{medline-title |title=Quantification of [[GDF11]] and Myostatin in Human Aging and Cardiovascular Disease. |date=14.06.2016 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27304512 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4913514 }} * {{medline-title |title=Lack of evidence for [[GDF11]] as a rejuvenator of aged skeletal muscle satellite cells. |date=06.2016 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27139744 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854912 }} * {{medline-title |title=Is Growth Differentiation Factor 11 a Realistic Therapeutic for Aging-Dependent Muscle Defects? |date=01.04.2016 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27034276 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4829942 }} * {{medline-title |title=Biochemistry and Biology of [[GDF11]] and Myostatin: Similarities, Differences, and Questions for Future Investigation. |date=01.04.2016 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/27034275 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4818972 }} * {{medline-title |title=Circulating Concentrations of Growth Differentiation Factor 11 Are Heritable and Correlate With Life Span. |date=12.2016 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26774117 |full-text-url=https://sci-hub.do/10.1093/gerona/glv308 }} * {{medline-title |title=Evaluation of growth differentiation factor 11 ([[GDF11]]) levels in dogs with chronic mitral valve insufficiency. |date=01.2016 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26733738 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686040 }} * {{medline-title |title=Molecular mechanism of endothelial and vascular aging: implications for cardiovascular disease. |date=21.12.2015 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26543043 |full-text-url=https://sci-hub.do/10.1093/eurheartj/ehv587 }} * {{medline-title |title=Circulating Growth Differentiation Factor 11/8 Levels Decline With Age. |date=08.01.2016 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26489925 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748736 }} * {{medline-title |title=[[GDF11]] does not rescue aging-related pathological hypertrophy. |date=06.11.2015 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26383970 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4636963 }} * {{medline-title |title=Splenocytes derived from young WT mice prevent AD progression in APPswe/PSENldE9 transgenic mice. |date=28.08.2015 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26317549 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4673234 }} * {{medline-title |title=Blood-Borne Revitalization of the Aged Brain. |date=10.2015 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26237737 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4867550 }} * {{medline-title |title=[[GDF11]] Increases with Age and Inhibits Skeletal Muscle Regeneration. |date=07.07.2015 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26001423 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4497834 }} * {{medline-title |title=The aging human recipient of transfusion products. |date=06.2015 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25921506 |full-text-url=https://sci-hub.do/10.1016/j.transci.2015.04.009 }} * {{medline-title |title=Systemic factors mediate reversible age-associated brain dysfunction. |date=12.2014 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/25400086 |full-text-url=https://sci-hub.do/10.1089/rej.2014.1643 }} * {{medline-title |title=Rejuvenation: it's in our blood. |date=01.07.2014 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24988454 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126586 }} * {{medline-title |title=Intertissue control of the nucleolus via a myokine-dependent longevity pathway. |date=12.06.2014 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24882005 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125979 }} * {{medline-title |title=Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. |date=09.05.2014 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24797482 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4123747 }} * {{medline-title |title=Restoring systemic [[GDF11]] levels reverses age-related dysfunction in mouse skeletal muscle. |date=09.05.2014 |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/24797481 |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104429 }}
Описание изменений:
Пожалуйста, учтите, что любой ваш вклад в проект «hpluswiki» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см.
Hpluswiki:Авторские права
).
НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!
Отменить
Справка по редактированию
(в новом окне)
Навигация
Персональные инструменты
Вы не представились системе
Обсуждение
Вклад
Создать учётную запись
Войти
Пространства имён
Статья
Обсуждение
русский
Просмотры
Читать
Править
История
Ещё
Навигация
Начало
Свежие правки
Случайная страница
Инструменты
Ссылки сюда
Связанные правки
Служебные страницы
Сведения о странице
Дополнительно
Как редактировать
Вики-разметка
Telegram
Вконтакте
backup