Редактирование:
Transhumanist FAQ Version 3
(раздел)
Перейти к навигации
Перейти к поиску
Внимание:
Вы не вошли в систему. Ваш IP-адрес будет общедоступен, если вы запишете какие-либо изменения. Если вы
войдёте
или
создадите учётную запись
, её имя будет использоваться вместо IP-адреса, наряду с другими преимуществами.
Анти-спам проверка.
Не
заполняйте это!
===If these technologies are so dangerous, should they be banned? What can be done to reduce the risks?=== The position that we ought to relinquish research into robotics, genetic engineering, and nanotechnology has been advocated in an article by Bill Joy (2000). Joy argued that some of the future applications of these technologies are so dangerous that research in those fields should be stopped now. Partly because of Joy’s previously technophiliac credentials (he was a software designer and a cofounder of Sun Microsystems), his article, which appeared in Wired magazine, attracted a great deal of attention. Many of the responses to Joy’s article pointed out that there is no realistic prospect of a worldwide ban on these technologies; that they have enormous potential benefits that we would not want to forgo; that the poorest people may have a higher tolerance for risk in developments that could improve their condition; and that a ban may actually increase the dangers rather than reduce them, both by delaying the development of protective applications of these technologies, and by weakening the position of those who choose to comply with the ban relative to less scrupulous groups who defy it. A more promising alternative than a blanket ban is differential technological development, in which we would seek to influence the sequence in which technologies developed. On this approach, we would strive to retard the development of harmful technologies and their applications, while accelerating the development of beneficial technologies, especially those that offer protection against the harmful ones. For technologies that have decisive military applications, unless they can be verifiably banned, we may seek to ensure that they are developed at a faster pace in countries we regard as responsible than in those that we see as potential enemies. (Whether a ban is verifiable and enforceable can change over time as a result of developments in the international system or in surveillance technology.) In the case of nanotechnology, the desirable sequence of development is that nanotech immune systems and other defensive measures be deployed before offensive capabilities become available to many independent powers. Once a technology is shared by many, it becomes extremely hard to prevent further proliferation. In the case of biotechnology, we should seek to promote research into vaccines, anti-viral drugs, protective gear, sensors, and diagnostics, and to delay as long as possible the development and proliferation of biological warfare agents and the means of their weaponization. For artificial intelligence, a serious risk will emerge only when capabilities approach or surpass those of humans. At that point one should seek to promote the development of friendly AI and to prevent unfriendly or unreliable AI systems. Superintelligence is an example of a technology that seems especially worth promoting because it can help reduce a broad range of threats. Superintelligent systems could advise us on policy and make the progress curve for nanotechnology steeper, thus shortening the period of vulnerability between the development of dangerous nanoreplicators and the deployment of effective defenses. If we have a choice, it seems preferable that superintelligence be developed before advanced nanotechnology, as superintelligence could help reduce the risks of nanotechnology but not vice versa. Other technologies that have wide risk-reducing uses include intelligence augmentation, information technology, and surveillance. These can make us smarter individually and collectively or make enforcement of necessary regulation more feasible. A strong prima facie case therefore exists for pursuing these technologies as vigorously as possible. Needless to say, we should also promote non-technological developments that are beneficial in almost all scenarios, such as peace and international cooperation. In confronting the hydra of existential, limited and endurable risks glaring at us from the future, it is unlikely that any one silver bullet will provide adequate protection. Instead, an arsenal of countermeasures will be needed so that we can address the various risks on multiple levels. The first step to tackling a risk is to recognize its existence. More research is needed, and existential risks in particular should be singled out for attention because of their seriousness and because of the special nature of the challenges they pose. Surprisingly little work has been done in this area (but see e.g. Leslie (1996), Bostrom (2002), and Rees (2003) for some preliminary explorations). The strategic dimensions of our choices must be taken into account, given that some of the technologies in questions have important military ramifications. In addition to scholarly studies of the threats and their possible countermeasures, public awareness must be raised to enable a more informed debate of our long-term options. Some of the lesser existential risks, such as an apocalyptic asteroid impact or the highly speculative scenario involving something like the upsetting of a metastable vacuum state in some future particle accelerator experiment, could be substantially reduced at relatively small expense. Programs to accomplish this – e.g. an early detection system for dangerous near-earth objects on potential collation course with Earth, or the commissioning of advance peer review of planned high-energy physics experiments – are probably cost-effective. However, these lesser risks must not deflect attention from the more serious concern raised by more probable existential disasters [see “Aren’t these future technologies very risky? Could they even cause our extinction?”]. In light of how superabundant the human benefits of technology can ultimately be, it matters less that we obtain all of these benefits in their precisely most optimal form, and more that we obtain them at all. For many practical purposes, it makes sense to adopt the rule of thumb that we should act so as to maximize the probability of an acceptable outcome, one in which we attain some (reasonably broad) realization of our potential; or, to put it in negative terms, that we should act so as to minimize net existential risk. References: Bostrom, N. “Existential Risks: Analyzing Human Extinction Scenarios and Related Hazards,” Journal of Evolution and Technology. Vol. 9 (2002). http://www.nickbostrom.com/existential/risks.html Joy, B. “Why the Future Doesn’t Need Us”. Wired, 8:04 (2000). http://www.wired.com/wired/archive/8.04/joy_pr.html Leslie, J. The End of the World: The Ethics and Science of Human Extinction. (London: Routledge, 1996). Rees, M. Our Final Hour. (New York: Basic Books, 2003).
Описание изменений:
Пожалуйста, учтите, что любой ваш вклад в проект «hpluswiki» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см.
Hpluswiki:Авторские права
).
НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!
Отменить
Справка по редактированию
(в новом окне)
Навигация
Персональные инструменты
Вы не представились системе
Обсуждение
Вклад
Создать учётную запись
Войти
Пространства имён
Статья
Обсуждение
русский
Просмотры
Читать
Править
История
Ещё
Навигация
Начало
Свежие правки
Случайная страница
Инструменты
Ссылки сюда
Связанные правки
Служебные страницы
Сведения о странице
Дополнительно
Как редактировать
Вики-разметка
Telegram
Вконтакте
backup