Редактирование:
FBXO31
(раздел)
Перейти к навигации
Перейти к поиску
Внимание:
Вы не вошли в систему. Ваш IP-адрес будет общедоступен, если вы запишете какие-либо изменения. Если вы
войдёте
или
создадите учётную запись
, её имя будет использоваться вместо IP-адреса, наряду с другими преимуществами.
Анти-спам проверка.
Не
заполняйте это!
==Publications== {{medline-entry |title=The SCF ubiquitin ligase complex mediates degradation of the tumor suppressor [[FBXO31]] and thereby prevents premature cellular senescence. |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/30171069 |abstract=The tumor suppressor F-box protein 31 ([[FBXO31]]) is indispensable for maintaining genomic stability. Its levels drastically increase following DNA damage, leading to cyclin D1 and [[MDM2]] degradation and G and G /M arrest. Prolonged arrest in these phases leads to cellular senescence. Accordingly, [[FBXO31]] needs to be kept at low basal levels in unstressed conditions for normal cell cycle progression during growth and development. However, the molecular mechanism maintaining these basal [[FBXO31]] levels has remained unclear. Here, we identified the F-box family SCF-E3 ubiquitin ligase [[FBXO46]] (SCF ) as an important proteasomal regulator of [[FBXO31]] and found that [[FBXO46]] helps maintain basal [[FBXO31]] levels under unstressed conditions and thereby prevents premature senescence. Using molecular docking and mutational studies, we showed that [[FBXO46]] recognizes an R[i]XX[/i]R motif located at the [[FBXO31]] C terminus to direct its polyubiquitination and thereby proteasomal degradation. Furthermore, [[FBXO46]] depletion enhanced the basal levels of [[FBXO31]], resulting in senescence induction. In response to genotoxic stress, [[ATM]] (ataxia telangiectasia-mutated) Ser/Thr kinase-mediated phosphorylation of [[FBXO31]] at Ser-278 maintained [[FBXO31]] levels. In contrast, activated [[ATM]] phosphorylated [[FBXO46]] at Ser-21/Ser-67, leading to its degradation via [[FBXO31]]. Thus, [[ATM]]-catalyzed phosphorylation after DNA damage governs [[FBXO31]] levels and [[FBXO46]] degradation via a negative feedback loop. Collectively, our findings reveal that [[FBXO46]] is a crucial proteasomal regulator of [[FBXO31]] and thereby prevents senescence in normal growth conditions. They further indicate that [[FBXO46]]-mediated regulation of [[FBXO31]] is abrogated following genotoxic stress to promote increased [[FBXO31]] levels for maintenance of genomic stability. |mesh-terms=* Cellular Senescence * F-Box Proteins * Genomic Instability * Humans * Molecular Docking Simulation * Phosphorylation * Proteasome Endopeptidase Complex * SKP Cullin F-Box Protein Ligases * Tumor Suppressor Proteins * Ubiquitination |keywords=* ATM * DNA damage * E3 ubiquitin ligase * F-box protein * cell cycle * flow cytometry * post-transcriptional regulation * post-translational modification (PTM) * protein motif * protein turnover * senescence * ubiquitin ligase * ubiquitination * ubiquitylation (ubiquitination) |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6200945 }} {{medline-entry |title=Solutions to Peto's paradox revealed by mathematical modelling and cross-species cancer gene analysis. |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/26056366 |abstract=Whales have 1000-fold more cells than humans and mice have 1000-fold fewer; however, cancer risk across species does not increase with the number of somatic cells and the lifespan of the organism. This observation is known as Peto's paradox. How much would evolution have to change the parameters of somatic evolution in order to equalize the cancer risk between species that differ by orders of magnitude in size? Analysis of previously published models of colorectal cancer suggests that a two- to three-fold decrease in the mutation rate or stem cell division rate is enough to reduce a whale's cancer risk to that of a human. Similarly, the addition of one to two required tumour-suppressor gene mutations would also be sufficient. We surveyed mammalian genomes and did not find a positive correlation of tumour-suppressor genes with increasing body mass and longevity. However, we found evidence of the amplification of [[TP53]] in elephants, [[MAL]] in horses and [[FBXO31]] in microbats, which might explain Peto's paradox in those species. Exploring parameters that evolution may have fine-tuned in large, long-lived organisms will help guide future experiments to reveal the underlying biology responsible for Peto's paradox and guide cancer prevention in humans. |mesh-terms=* Animals * Body Size * Evolution, Molecular * Gene Dosage * Genes, Tumor Suppressor * Humans * Longevity * Mathematical Concepts * Mice * Models, Genetic * Multigene Family * Mutation * Neoplasms * Risk Factors * Species Specificity |keywords=* Peto's paradox * Wright–Fisher model * algebraic model * cancer * evolution * tumour suppression |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581027 }}
Описание изменений:
Пожалуйста, учтите, что любой ваш вклад в проект «hpluswiki» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см.
Hpluswiki:Авторские права
).
НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!
Отменить
Справка по редактированию
(в новом окне)
Навигация
Персональные инструменты
Вы не представились системе
Обсуждение
Вклад
Создать учётную запись
Войти
Пространства имён
Статья
Обсуждение
русский
Просмотры
Читать
Править
История
Ещё
Навигация
Начало
Свежие правки
Случайная страница
Инструменты
Ссылки сюда
Связанные правки
Служебные страницы
Сведения о странице
Дополнительно
Как редактировать
Вики-разметка
Telegram
Вконтакте
backup