Открыть главное меню
Главная
Случайная
Войти
Настройки
О hpluswiki
Отказ от ответственности
hpluswiki
Найти
Редактирование:
HMGCL
Внимание:
Вы не вошли в систему. Ваш IP-адрес будет общедоступен, если вы запишете какие-либо изменения. Если вы
войдёте
или
создадите учётную запись
, её имя будет использоваться вместо IP-адреса, наряду с другими преимуществами.
Анти-спам проверка.
Не
заполняйте это!
Hydroxymethylglutaryl-CoA lyase, mitochondrial precursor (EC 4.1.3.4) (HL) (HMG-CoA lyase) (3-hydroxy-3-methylglutarate-CoA lyase) ==Publications== {{medline-entry |title=Supplementation with the reduced form of Coenzyme Q10 decelerates phenotypic characteristics of senescence and induces a peroxisome proliferator-activated receptor-alpha gene expression signature in SAMP1 mice. |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/19960455 |abstract=Our present study reveals significant decelerating effects on senescence processes in middle-aged SAMP1 mice supplemented for 6 or 14 months with the reduced form (Q(10)H(2), 500 mg/kg BW/day) of coenzyme Q(10) (CoQ(10)). To unravel molecular mechanisms of these CoQ(10) effects, a genome-wide transcript profiling in liver, heart, brain and kidney of SAMP1 mice supplemented with the reduced (Q(10)H(2)) or oxidized form of CoQ(10) (Q(10)) was performed. Liver seems to be the main target tissue of CoQ(10) intervention, followed by kidney, heart and brain. Stringent evaluation of the resulting data revealed that Q(10)H(2) has a stronger impact on gene expression than Q(10), primarily due to differences in the bioavailability. Indeed, Q(10)H(2) supplementation was more effective than Q(10) to increase levels of CoQ(10) in the liver of SAMP1 mice. To identify functional and regulatory connections of the "top 50" (p<0.05) Q(10)H(2)-sensitive transcripts in liver, text mining analysis was used. Hereby, we identified Q(10)H(2)-sensitive genes which are regulated by peroxisome proliferator-activated receptor-alpha and are primarily involved in cholesterol synthesis (e.g. [[HMGCS1]], [[HMGCL]] and HMGCR), fat assimilation (FABP5), lipoprotein metabolism (PLTP) and inflammation (STAT-1). These data may explain, at least in part, the decelerating effects on degenerative processes observed in Q(10)H(2)-supplemented SAMP1 mice. |mesh-terms=* Aging * Animals * Dietary Supplements * Eating * Female * Gene Expression Profiling * Gene Expression Regulation * Liver * Mice * Oxidation-Reduction * PPAR alpha * Phenotype * Ubiquinone |full-text-url=https://sci-hub.do/10.1002/mnfr.200900155 }} {{medline-entry |title=Manipulation of thyroid status and/or GH injection alters hepatic gene expression in the juvenile chicken. |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/17675858 |abstract=Both thyroid hormone (T3) and growth hormone (GH) are important regulators of somatic growth in birds and mammals. Although T3-mediated gene transcription is well known, the molecular basis of T3 interaction with GH on growth and development of birds remains unknown. In earlier studies, we discovered that exogenous GH alone increased accumulation of visceral fat in young chickens, while the combination of GH injections and dietary T3 worked synergistically to deplete body fat. In the present study, cDNA microarray and quantitative RT-PCR analyses enabled us to examine hepatic gene expression in young chickens after chronic manipulation of thyroid status and GH injection alone or in combination with T3. Thyroid status modulates expression of common and unique sets of genes involved in a wide range of molecular functions (i.e., energy metabolism, storage and transport, signal transduction, protein turnover and drug detoxification). Hepatic expression of 35 genes was altered by hypothyroidism (e.g., ADFP, [[ANGPTL3]], GSTalpha, [[CAT]], [[PPARG]], [[HMGCL]], [[GHR]], [[IGF1]], [[STAT3]], THRSPalpha), whereas hyperthyroidism affected expression of another cluster of 13 genes (e.g., [[IGFBP1]], [[KHK]], [[LDHB]], BAIA2L1, SULT1B, TRIAD3). Several genes were identified which have not been previously ascribed as T3 responsive (e.g., DEFB9, [[EPS8L2]], [[ARHGAP1]], LASS2, INHBC). Exogenous GH altered expression of 17 genes (e.g., [[CCAR1]], CYP2C45, [[GYS2]], ENOB, [[HK1]], [[FABP1]], [[SQLE]], [[SOCS2]], UPG2). The T3 GH treatment depleted the greatest amount of body fat, where 34 differentially expressed genes were unique to this group (e.g., C/EBP, [[CDC42EP1]], [[SYDE2]], [[PCK2]], PIK4CA, TH1L, [[GPT2]], BHMT). The marked reduction in body fat brought about by the T3 GH synergism could involve modulation of hormone signaling via altered activity of the Ras superfamily of molecular switches, which control diverse biological processes. In conclusion, this study provides the first global analysis of endocrine (T3 and GH) regulation of hepatic gene transcription in the chicken. |mesh-terms=* Adipose Tissue * Aging * Animals * Body Weight * Chickens * Gene Expression Regulation * Growth Hormone * Liver * Phenotype * RNA, Messenger * Thyroid Gland * Transcription, Genetic * Triiodothyronine |full-text-url=https://sci-hub.do/10.1159/000103178 }}
Описание изменений:
Пожалуйста, учтите, что любой ваш вклад в проект «hpluswiki» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см.
Hpluswiki:Авторские права
).
НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!
Отменить
Справка по редактированию
(в новом окне)
Шаблон, используемый на этой странице:
Шаблон:Medline-entry
(
править
)