1636
правок
Denis.s (обсуждение | вклад) Нет описания правки |
Denis.s (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
__NOTOC__ | __NOTOC__ | ||
==A2M== | |||
{{medline-entry | |||
|title=Age-Dependent Variation in Glycosylation Features of Alpha-2-Macroglobulin. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31489526 | |||
|mesh-terms=* Adult | |||
* Aging | |||
* Electrophoresis, Gel, Two-Dimensional | |||
* Glycosylation | |||
* Humans | |||
* Infant, Newborn | |||
* Polysaccharides | |||
* Pregnancy-Associated alpha 2-Macroglobulins | |||
* Protein Isoforms | |||
* Umbilical Cord | |||
|keywords=* Alpha-2-macroglobulin | |||
* Glycosylation | |||
* Newborn | |||
* Plasma | |||
|full-text-url=https://sci-hub.do/10.1007/s12013-019-00883-4 | |||
}} | |||
==AACS== | |||
{{medline-entry | |||
|title=Sex differences in subjective age-associated changes in sleep: a prospective elderly cohort study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33170149 | |||
|keywords=* aging | |||
* longitudinal studies | |||
* normative | |||
* self-report | |||
* sex characteristics | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695390 | |||
}} | |||
==ABCG2== | ==ABCG2== | ||
{{medline-entry | |||
|title=Contribution of senescence in human endometrial stromal cells during proliferative phase to embryo receptivity†. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32285109 | |||
|keywords=* cellular senescence | |||
* embryo receptivity | |||
* endometrial stem cell | |||
* human endometrial stromal cell | |||
* infertility | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7313258 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title=[[ABCG2]] rs2231142 variant in hyperuricemia is modified by SLC2A9 and SLC22A12 polymorphisms and cardiovascular risk factors in an elderly community-dwelling population. | |title=[[ABCG2]] rs2231142 variant in hyperuricemia is modified by SLC2A9 and SLC22A12 polymorphisms and cardiovascular risk factors in an elderly community-dwelling population. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32183743 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32183743 | ||
|mesh-terms=* ATP Binding Cassette Transporter, Subfamily G, Member 2 | |mesh-terms=* ATP Binding Cassette Transporter, Subfamily G, Member 2 | ||
* Aged | * Aged | ||
Строка 43: | Строка 91: | ||
|title=European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. | |title=European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32127639 | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32127639 | ||
|mesh-terms=* Aniline Compounds | |mesh-terms=* Aniline Compounds | ||
* Antineoplastic Agents | * Antineoplastic Agents | ||
Строка 63: | Строка 111: | ||
* Quinolines | * Quinolines | ||
* Survival Analysis | * Survival Analysis | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214240 | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214240 | ||
}} | }} | ||
== | ==ABO== | ||
{{medline-entry | |||
|title=Allelic distribution of [i][[ABO]][/i] gene in Chinese centenarians. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33103040 | |||
|keywords=* ABO gene | |||
* centenarian | |||
* longevity | |||
* single nucleotide polymorphisms | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574633 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Genetically Determined [[ABO]] Blood Group and its Associations With Health and Disease. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31969017 | ||
|mesh-terms=* | |mesh-terms=* ABO Blood-Group System | ||
* Aged | * Adult | ||
* | * Age Factors | ||
* Aged | |||
* Cardiovascular Diseases | |||
* Female | * Female | ||
* Genetic | * Gene Frequency | ||
* Genetic Predisposition to Disease | |||
* Health Status | |||
* Healthy Aging | |||
* Humans | * Humans | ||
* | * Incidence | ||
* Male | * Male | ||
* Middle Aged | * Middle Aged | ||
* | * Phenotype | ||
* | * Polymorphism, Single Nucleotide | ||
* | * Prevalence | ||
|keywords=* | * Risk Assessment | ||
* | * Risk Factors | ||
* | * United Kingdom | ||
* | |keywords=* ABO | ||
|full-text-url=https://sci-hub.do/10. | * aging | ||
* blood | |||
* genetics | |||
* hypertension | |||
* phenotype | |||
|full-text-url=https://sci-hub.do/10.1161/ATVBAHA.119.313658 | |||
}} | |||
==ABR== | |||
{{medline-entry | |||
|title=[Hidden hearing loss and early identification]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32791650 | |||
|mesh-terms=* Acoustic Stimulation | |||
* Audiometry, Pure-Tone | |||
* Auditory Threshold | |||
* Evoked Potentials, Auditory, Brain Stem | |||
* Hearing Loss, Noise-Induced | |||
* Humans | |||
* Noise | |||
|keywords=* aging | |||
* drug damage | |||
* hidden hearing loss | |||
* noise exposure | |||
|full-text-url=https://sci-hub.do/10.13201/j.issn.2096-7993.2020.07.023 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Aging But Not Age-Related Hearing Loss Dominates the Decrease of Parvalbumin Immunoreactivity in the Primary Auditory Cortex of Mice. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32327469 | ||
|keywords=* age-related hearing loss | |||
|keywords=* | |||
* aging | * aging | ||
* | * mouse primary auditoy cortex | ||
* | * parvalbumin | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7210488 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Hearing loss through apoptosis of the spiral ganglion neurons in apolipoprotein E knockout mice fed with a western diet. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31948760 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Apolipoproteins E | |||
* Apoptosis | |||
* Diet, Western | |||
* Disease Models, Animal | |||
* Hearing Loss | |||
* Male | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* Neurons | |||
* Spiral Ganglion | |||
|keywords=* Apoptosis | |||
* Atherosclerosis | |||
* Hearing loss | |||
* Reactive oxygen specie | |||
* Spiral ganglion neurons | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2019.12.100 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Effects of enriched endogenous omega-3 fatty acids on age-related hearing loss in mice. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31771637 | ||
| | |mesh-terms=* Aging | ||
* | * Animals | ||
* | * Body Weight | ||
* | * Caenorhabditis elegans Proteins | ||
* | * Cochlea | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * Evoked Potentials, Auditory, Brain Stem | ||
* Fatty Acid Desaturases | |||
* Fatty Acids, Omega-3 | |||
* Male | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Mice, Transgenic | |||
* Neurons | |||
* Presbycusis | |||
* Spiral Ganglion | |||
|keywords=* Age-related hearing loss | |||
* C57BL/6 mouse | |||
* Cochlea | |||
* Omega-3 (n-3) fatty acids | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6878677 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Hearing impairment and associated morphological changes in pituitary adenylate cyclase activating polypeptide (PACAP)-deficient mice. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31601840 | ||
| | |mesh-terms=* Aging | ||
* | * Animals | ||
* | * Cochlea | ||
* | * Evoked Potentials, Auditory, Brain Stem | ||
* | * Genotype | ||
* | * Hearing | ||
* | * Hearing Loss | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * Inflammation | ||
* Male | |||
* Mice | |||
* Mice, Knockout | |||
* Models, Animal | |||
* Neovascularization, Pathologic | |||
* Neurons | |||
* Pituitary Adenylate Cyclase-Activating Polypeptide | |||
* Proteome | |||
* Proto-Oncogene Proteins c-fos | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787024 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Global nurse/midwife workforce and reproductive health through social ecology lens. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31402489 | ||
| | |mesh-terms=* Adolescent | ||
* | * Cross-Sectional Studies | ||
* Employment | |||
* | * Female | ||
* | * Global Health | ||
* | * Health Education | ||
* Humans | |||
* Income | |||
* Life Expectancy | |||
* Male | |||
* Midwifery | |||
* Pregnancy | |||
* Reproductive Health | |||
* | * Social Environment | ||
* | * Socioeconomic Factors | ||
* | * Workforce | ||
* | |keywords=* global health | ||
* | * nurse/midwife workforce | ||
* | * reproductive health | ||
* | * social ecology | ||
* | |full-text-url=https://sci-hub.do/10.1111/phn.12648 | ||
* | |||
* | |||
* | |||
* | |||
* | |||
* | |||
|full-text-url=https:// | |||
}} | }} | ||
== | ==ACD== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Genetics of cognitive trajectory in Brazilians: 15 years of follow-up from the Bambuí-Epigen Cohort Study of Aging. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31792241 | ||
| | |mesh-terms=* Age Factors | ||
* | * Aged | ||
* | * Aging | ||
* | * Brazil | ||
* | * Cognition | ||
* | * Cognitive Dysfunction | ||
* | * Cohort Studies | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * Female | ||
* Follow-Up Studies | |||
* Genetic Predisposition to Disease | |||
* Genome-Wide Association Study | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Polymorphism, Single Nucleotide | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6889148 | |||
}} | }} | ||
== | ==ACE== | ||
{{medline-entry | |||
|title=Elite swimmers possess shorter telomeres than recreationally active controls. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33068677 | |||
|keywords=* Aging | |||
* Athlete | |||
* Exercise | |||
* Genetics | |||
|full-text-url=https://sci-hub.do/10.1016/j.gene.2020.145242 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Coronavirus Disease-2019 Conundrum: RAS Blockade and Geriatric-Associated Neuropsychiatric Disorders. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32850927 | ||
|keywords=* | |keywords=* ACE2 | ||
* | * ACEIs | ||
* | * ARBs | ||
* | * COVID-19 | ||
* | * RAS | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * SARS-CoV-2 | ||
* geriatrics | |||
* neuropsychiatric disorders | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431869 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Pregnancy Protects Hyperandrogenemic Female Rats From Postmenopausal Hypertension. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32755410 | ||
|keywords=* | |keywords=* aging | ||
* | * endothelin | ||
* menopause | * menopause | ||
* | * nitric oxide | ||
|full-text-url=https:// | * renin-angiotensin system | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429272 | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Heart failure is associated with accelerated age related metabolic bone disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32498656 | |||
|keywords=* Heart failure | |||
* comorbidities | |||
* geriatrics | |||
* metabolic bone disease | |||
* osteoporosis | |||
|full-text-url=https://sci-hub.do/10.1080/00015385.2020.1771885 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Management of heart failure: an Italian national survey on fellows/specialists in geriatrics. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32383033 | ||
| | |mesh-terms=* Aged | ||
* | * Geriatrics | ||
* | * Heart Failure | ||
* | * Humans | ||
* | * Italy | ||
|full-text-url=https://sci-hub.do/10. | * Specialization | ||
* Stroke Volume | |||
* Surveys and Questionnaires | |||
|keywords=* Aged, 65 years or over | |||
* Care survey | |||
* Health | |||
* Heart failure | |||
|full-text-url=https://sci-hub.do/10.1007/s40520-020-01577-1 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Angiotensin-Converting Enzyme ([[ACE]]) genetic variation and longevity in Peruvian older people: a cross-sectional study. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32281429 | ||
|mesh-terms=* | |mesh-terms=* Aged | ||
* | * Aged, 80 and over | ||
* | * Cross-Sectional Studies | ||
* Female | * Female | ||
* | * Genetic Variation | ||
* Humans | * Humans | ||
* Longevity | |||
* Male | * Male | ||
* | * Middle Aged | ||
* | * Peptidyl-Dipeptidase A | ||
* | * Peru | ||
* | * Polymorphism, Genetic | ||
|keywords=* ACE gene | |||
* Longevity | |||
* Perú | |||
* ageing | |||
|full-text-url=https://sci-hub.do/10.1080/03014460.2020.1748227 | |||
|keywords=* | |||
* | |||
* | |||
* | |||
|full-text-url=https:// | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=COVID-19 and chronological aging: senolytics and other anti-aging drugs for the treatment or prevention of corona virus infection? | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32229706 | ||
|mesh-terms=* Aged | |mesh-terms=* Age Factors | ||
* Aged | |||
* Aged, 80 and over | * Aged, 80 and over | ||
* | * Aging | ||
* | * Angiotensin-Converting Enzyme 2 | ||
* | * Antiviral Agents | ||
* | * Azithromycin | ||
* | * Betacoronavirus | ||
* | * COVID-19 | ||
* | * Coronavirus Infections | ||
* Dipeptidyl Peptidase 4 | |||
* Humans | * Humans | ||
* | * Hydroxychloroquine | ||
* | * Pandemics | ||
* | * Peptidyl-Dipeptidase A | ||
* | * Pneumonia, Viral | ||
* | * Quercetin | ||
* | * Receptors, Virus | ||
|keywords=* | * SARS-CoV-2 | ||
* | |keywords=* Azithromycin | ||
* | * COVID-19 | ||
* | * Doxycycline | ||
* | * Hydroxy-chloroquine | ||
|full-text-url=https:// | * Quercetin | ||
* Rapamycin | |||
* aging | |||
* antibiotic | |||
* corona virus | |||
* drug repurposing | |||
* prevention | |||
* senescence | |||
* senolytic drug therapy | |||
* viral replication | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7202514 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=[i]A[/i]ngiotensin Converting Enzyme Inhibitors [i]C[/i]ombined with [i]E[/i]xercise for Hypertensive [i]S[/i]eniors (The [[ACE]]S Trial): Study Protocol of a Randomized Controlled Trial. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32039215 | |||
|keywords=* | |keywords=* aging | ||
* | * antihypertensive | ||
* | * exercise | ||
* | * functional status | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * hypertension | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6988302 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Vascular age. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32013519 | ||
|mesh-terms=* Aged | |mesh-terms=* Adolescent | ||
* Adult | |||
* Aged | |||
* Aging | * Aging | ||
* | * Angiotensin-Converting Enzyme Inhibitors | ||
* | * Atherosclerosis | ||
* | * Child | ||
* Elasticity | |||
* Humans | * Humans | ||
* | * Middle Aged | ||
* | * Perindopril | ||
* | * Pulse Wave Analysis | ||
* | * Vascular Stiffness | ||
|keywords= | * Young Adult | ||
|keywords=* ACE inhibitors | |||
* CT angiography | |||
* atorvastatin | |||
* dyslipidemia | |||
* hypertension | |||
* intima media thickness (IMT) | |||
* perindopril | |||
* pulse wave velocity (PWV) | |||
* statins | |||
* vascular age | |||
}} | }} | ||
== | ==ACE2== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=How Does SARS-CoV-2 Affect the Central Nervous System? A Working Hypothesis. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33304284 | ||
|keywords=* | |keywords=* ACE2 | ||
* | * Alzheimer disease | ||
* | * Ang(1-7)/Mas | ||
* | * COVID-19 | ||
* | * RAAS | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * SARS-CoV | ||
* brain aging | |||
* neurodegenerative and psychiatric disorders abstract | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7701095 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Bioinformatic characterization of angiotensin-converting enzyme 2, the entry receptor for SARS-CoV-2. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33112891 | ||
| | |mesh-terms=* Aging | ||
* | * Angiotensin-Converting Enzyme 2 | ||
* | * Betacoronavirus | ||
* | * Binding Sites | ||
* | * COVID-19 | ||
* Carrier Proteins | |||
* Computational Biology | |||
* Coronavirus Infections | |||
* Female | |||
* Gene Expression Regulation, Enzymologic | |||
* Gene Ontology | |||
* Humans | |||
* Interferons | |||
* Lung | |||
* Male | |||
* Metalloproteases | |||
* Neovascularization, Physiologic | |||
* Organ Specificity | |||
* Pandemics | |||
* Peptidyl-Dipeptidase A | |||
* Pneumonia, Viral | |||
* Promoter Regions, Genetic | |||
* RNA, Messenger | |||
* Receptors, Virus | |||
* Renin-Angiotensin System | |||
* SARS-CoV-2 | |||
* Sex Characteristics | |||
* Single-Cell Analysis | |||
* Transcription Factors | |||
* Transcription Initiation Site | |||
* Virus Attachment | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7592753 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32854108 | ||
| | |mesh-terms=* Aging | ||
* | * Angiotensin-Converting Enzyme 2 | ||
* | * Animals | ||
* | * Betacoronavirus | ||
* | * COVID-19 | ||
* | * COVID-19 Vaccines | ||
|full-text-url=https:// | * Coronavirus Infections | ||
* Disease Models, Animal | |||
* Female | |||
* Forkhead Transcription Factors | |||
* Humans | |||
* Interferon-alpha | |||
* Interferons | |||
* Interleukins | |||
* Male | |||
* Mice | |||
* Mice, Inbred BALB C | |||
* Mice, Transgenic | |||
* Models, Molecular | |||
* Pandemics | |||
* Peptidyl-Dipeptidase A | |||
* Pneumonia, Viral | |||
* Receptors, Virus | |||
* SARS-CoV-2 | |||
* Viral Vaccines | |||
|full-text-url=https://sci-hub.do/10.1038/s41586-020-2708-8 | |||
}} | }} | ||
== | {{medline-entry | ||
|title=COVID-19 and Senotherapeutics: Any Role for the Naturally-occurring Dipeptide Carnosine? | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32765939 | |||
|keywords=* | |keywords=* acetyl-carnosine | ||
* aging | * aging | ||
* | * carnosine | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * inflammation | ||
* lungs | |||
* olfaction | |||
* virus | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7390525 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title=[[ | |title=The dual impact of [[ACE2]] in COVID-19 and ironical actions in geriatrics and pediatrics with possible therapeutic solutions. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32653522 | ||
| | |mesh-terms=* Age Factors | ||
* Aged | |||
* Aged, 80 and over | |||
* | * Angiotensin-Converting Enzyme 2 | ||
* | * Anti-Inflammatory Agents | ||
* | * Betacoronavirus | ||
* | * COVID-19 | ||
* | * Child | ||
|full-text-url=https:// | * Child, Preschool | ||
* Coronavirus | |||
* Coronavirus Infections | |||
* Female | |||
* Geriatrics | |||
* Humans | |||
* Infant | |||
* Infant, Newborn | |||
* Male | |||
* Pandemics | |||
* Pediatrics | |||
* Peptidyl-Dipeptidase A | |||
* Pneumonia, Viral | |||
* Protein Binding | |||
* Receptors, Virus | |||
* Renin-Angiotensin System | |||
* SARS-CoV-2 | |||
* Severe Acute Respiratory Syndrome | |||
* Virus Internalization | |||
|keywords=* ACE2 | |||
* Angiotensin 2 | |||
* Angiotensin-(1–7) | |||
* Corona virus | |||
* Glycoprotein spikes | |||
* RAAS system | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347488 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=The possible pathophysiology mechanism of cytokine storm in elderly adults with COVID-19 infection: the contribution of "inflame-aging". | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32529477 | ||
|mesh-terms=* | |mesh-terms=* Adipocytes | ||
* | * Age Factors | ||
* | * Aged | ||
* Aging | |||
* Angiotensin II Type 2 Receptor Blockers | |||
* Autophagy | |||
* Betacoronavirus | |||
* COVID-19 | |||
* Cellular Senescence | * Cellular Senescence | ||
* | * Coronavirus Infections | ||
* | * Cytokine Release Syndrome | ||
* | * Cytokines | ||
* Humans | * Humans | ||
* | * Immune System | ||
|keywords=* | * Inflammation | ||
* | * Pandemics | ||
* | * Pneumonia, Viral | ||
* | * Reactive Oxygen Species | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * Receptor, Angiotensin, Type 2 | ||
* SARS-CoV-2 | |||
* Vitamin D | |||
* Vitamin D Deficiency | |||
|keywords=* ACE2 receptor | |||
* Autophagy | |||
* COVID-19 | |||
* Cytokine storm | |||
* Senescent cell | |||
* Vitamin D | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289226 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32510973 | ||
|keywords=* | |mesh-terms=* Adaptive Immunity | ||
* Angiotensin-Converting Enzyme 2 | |||
* Animals | |||
* Betacoronavirus | |||
* COVID-19 | |||
* Coronavirus Infections | |||
* DNA, Mitochondrial | |||
* Gene Expression Regulation, Viral | |||
* Host Microbial Interactions | |||
* Humans | |||
* Immunity, Innate | |||
* Mitochondria | |||
* Pandemics | |||
* Peptidyl-Dipeptidase A | |||
* Pneumonia, Viral | |||
* RNA, Viral | |||
* SARS-CoV-2 | |||
* Virus Replication | |||
|keywords=* COVID-19 | |||
* SARS-CoV | |||
* aging | * aging | ||
* | * coronavirus | ||
* | * mitochondria | ||
* | * mitochondrial DNA | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7381712 | ||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=A Mouse Model of SARS-CoV-2 Infection and Pathogenesis. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32485164 | ||
|mesh-terms=* Aging | |mesh-terms=* Aging | ||
* Angiotensin-Converting Enzyme 2 | |||
* Animals | * Animals | ||
* | * Betacoronavirus | ||
* | * Brain | ||
* | * COVID-19 | ||
* | * CRISPR-Cas Systems | ||
* | * Coronavirus Infections | ||
* | * Cytokines | ||
* | * Disease Models, Animal | ||
* | * Gene Knock-In Techniques | ||
* Lung | |||
* Lung Diseases, Interstitial | |||
* Mice, Inbred C57BL | |||
* Nose | |||
* Pandemics | |||
* Peptidyl-Dipeptidase A | |||
* Pneumonia, Viral | |||
* RNA, Viral | |||
* SARS-CoV-2 | |||
* Stomach | |||
* Trachea | |||
* Viral Load | |||
* Virus Replication | |||
|keywords=* SARS-CoV-2 | |||
* angiotensin-converting enzyme II | |||
* hACE2-KI/NIFDC | |||
* mouse model | |||
* pathogenesis | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250783 | |||
}} | |||
{{medline-entry | |||
|title=COVID-19-associated cardiovascular morbidity in older adults: a position paper from the Italian Society of Cardiovascular Researches. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32430627 | |||
|mesh-terms=* Age Factors | |||
* Aged | |||
* Betacoronavirus | |||
* COVID-19 | |||
* Cardiovascular Diseases | |||
* Coronavirus Infections | |||
* Female | |||
* Humans | * Humans | ||
* | * Italy | ||
* Male | * Male | ||
* | * Middle Aged | ||
* | * Pandemics | ||
* | * Pneumonia, Viral | ||
* | * Risk Factors | ||
* | * SARS-CoV-2 | ||
* | |keywords=* Acute myocardial injury | ||
* | * Aging | ||
* | * COVID-19 | ||
* | * Cardiovascular system | ||
* Frailty | |||
|full-text-url=https:// | * SARS-CoV-2 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237344 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Gut microbiota and Covid-19- possible link and implications. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32430279 | ||
|keywords=* | |mesh-terms=* Aging | ||
* | * Betacoronavirus | ||
* | * COVID-19 | ||
* | * Coronavirus Infections | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * Diet | ||
* Dysbiosis | |||
* Gastrointestinal Microbiome | |||
* Gastrointestinal Tract | |||
* Homeostasis | |||
* Humans | |||
* Immunity | |||
* Lung | |||
* Pandemics | |||
* Pneumonia, Viral | |||
* SARS-CoV-2 | |||
|keywords=* Covid-19 | |||
* Diet | |||
* Dysbiosis | |||
* Gut microbiome | |||
* Immunity | |||
* Lung microbiota | |||
* SARS-CoV-2 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217790 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Inflamm-aging: Why older men are the most susceptible to SARS-CoV-2 complicated outcomes. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32389499 | ||
| | |mesh-terms=* Aged | ||
* | * Aged, 80 and over | ||
* Aging | |||
* Angiotensin-Converting Enzyme 2 | |||
* Antibodies, Monoclonal, Humanized | |||
* Betacoronavirus | |||
* COVID-19 | |||
* Comorbidity | |||
* Coronavirus Infections | |||
* | |||
* | |||
* | |||
* | |||
* | |||
* Female | * Female | ||
* Humans | * Humans | ||
* Interleukin- | * Inflammation | ||
* Interferon Type I | |||
* Interleukin-6 | |||
* Male | * Male | ||
* | * Pandemics | ||
* | * Peptidyl-Dipeptidase A | ||
* | * Pneumonia, Viral | ||
|keywords=* | * SARS-CoV-2 | ||
* | * Severe Acute Respiratory Syndrome | ||
* | |keywords=* COVID-19 | ||
* | * Cardiovascular diseases | ||
|full-text-url=https:// | * Host-directed therapies | ||
* Inflamm-aging | |||
* SARS-CoV-2 | |||
* interleukin-6 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7252014 | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Restoration of the Renin-Angiotensin System Balance Is a Part of the Effect of Fasting on Cardiovascular Rejuvenation: Role of Age and Fasting Models. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31571520 | |||
|keywords=* aging | |||
* cardiac hypertrophy index | |||
* intermittent fasting | |||
* renin–angiotensin system (RAS) | |||
|full-text-url=https://sci-hub.do/10.1089/rej.2019.2254 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Angiotensin 1-7 alleviates aging-associated muscle weakness and bone loss, but is not associated with accelerated aging in [[ACE2]]-knockout mice. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31519791 | ||
|mesh-terms=* | |mesh-terms=* Adipose Tissue | ||
* Aging | * Aging | ||
* | * Angiotensin I | ||
* Angiotensin-Converting Enzyme 2 | |||
* Animals | |||
* Body Weight | * Body Weight | ||
* | * Bone Resorption | ||
* | * Cyclin-Dependent Kinase Inhibitor p16 | ||
* | * Forelimb | ||
* | * Gene Deletion | ||
* | * Hand Strength | ||
* Male | * Male | ||
* | * Mice, Inbred C57BL | ||
* | * Mice, Knockout | ||
* | * Muscle Weakness | ||
* | * Muscles | ||
* | * Organ Size | ||
|keywords=* | * PAX3 Transcription Factor | ||
* | * Peptide Fragments | ||
* | * Peptidyl-Dipeptidase A | ||
* | * Proto-Oncogene Proteins | ||
* | * Receptors, G-Protein-Coupled | ||
|full-text-url=https://sci-hub.do/10. | * Renin-Angiotensin System | ||
* Time Factors | |||
|keywords=* Angiotensin 1-7 | |||
* Angiotensin Converting Enzyme 2 | |||
* Mas receptor | |||
* Muscle weakness | |||
* osteoporosis | |||
|full-text-url=https://sci-hub.do/10.1042/CS20190573 | |||
}} | }} | ||
== | ==ACLY== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=In S. cerevisiae hydroxycitric acid antagonizes chronological aging and apoptosis regardless of citrate lyase. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32666259 | ||
|keywords=* Aging | |keywords=* Aging | ||
* | * Apoptosis/necrosis | ||
* | * Caloric restriction mimetics | ||
* | * Hydroxycitric acid | ||
* | * Oxidative stress | ||
* | * Sch9 and Ras2 pathways | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527365 | |||
|full-text-url=https:// | |||
}} | }} | ||
== | ==ACR== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Progenitor cell niche senescence reflects pathology of the parotid salivary gland in primary Sjögren's syndrome. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32159757 | ||
|keywords=* | |keywords=* p16 | ||
* | * primary Sjögren’s syndrome | ||
* | * salivary gland | ||
* | * salivary gland progenitor cells | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * senescence | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516109 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Jumping Joints: The Complex Relationship Between Osteoarthritis and Jumping Mechanography. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31655874 | ||
|keywords= | |keywords=* Aging | ||
* Aging | * Jumping mechanography | ||
* | * Muscle | ||
* | * Osteoarthritis | ||
* | * Sarcopenia | ||
* | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994439 | ||
|full-text-url=https:// | |||
}} | }} | ||
==ACVR1== | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Fibrodysplasia Ossificans Progressiva (FOP): A Segmental Progeroid Syndrome. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31998237 | ||
|keywords=* ACVR1 | |||
* activin A | |||
* cell senescence | |||
* fibrodysplasia ossificans progressiva | |||
* progeroid syndrome | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966325 | |||
}} | }} | ||
==ADA== | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Adenosine Metabolism in the Cerebral Cortex from Several Mice Models during Aging. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33023260 | ||
| | |||
* | |keywords=* adenosine metabolism | ||
* | * aging | ||
* | * animal models | ||
* | * glutamate | ||
* purinergic signaling | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582336 | |||
|full-text-url=https:// | |||
}} | }} | ||
== | ==ADAM10== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=NKG2D Ligand Shedding in Response to Stress: Role of [[ADAM10]]. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32269567 | ||
|keywords=* | |keywords=* ADAM10 | ||
* | * NKG2D | ||
* | * NKG2D ligands | ||
* | * cancer | ||
* | * chemotherapy | ||
* | * senescence | ||
* | * shedding | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7109295 | ||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Chronic Mild Stress Modified Epigenetic Mechanisms Leading to Accelerated Senescence and Impaired Cognitive Performance in Mice. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32050516 | ||
|keywords=* | |mesh-terms=* ADAM10 Protein | ||
* | * Aging | ||
* | * Amyloid Precursor Protein Secretases | ||
* | * Animals | ||
* | * Cognition | ||
* | * Epigenesis, Genetic | ||
* | * Female | ||
|full-text-url=https:// | * Glial Fibrillary Acidic Protein | ||
* Glycogen Synthase Kinase 3 beta | |||
* Mechanistic Target of Rapamycin Complex 1 | |||
* Membrane Proteins | |||
* Mice | |||
* MicroRNAs | |||
* NF-kappa B | |||
* Reactive Oxygen Species | |||
* Signal Transduction | |||
* Stress, Psychological | |||
|keywords=* Alzheimer’s disease | |||
* SAMP8 | |||
* SAMR1 | |||
* age-related cognitive decline | |||
* autophagy | |||
* cognition | |||
* epigenetics | |||
* inflammation | |||
* oxidative stress | |||
* senescence | |||
* stress | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037343 | |||
}} | }} | ||
== | ==ADAM17== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=ACE2/[[ADAM17]]/TMPRSS2 Interplay May Be the Main Risk Factor for COVID-19. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33117379 | ||
|keywords=* | |mesh-terms=* ADAM17 Protein | ||
* | * Aged | ||
* | * Aging | ||
* | * Angiotensin-Converting Enzyme 2 | ||
* | * Betacoronavirus | ||
|full-text-url=https:// | * COVID-19 | ||
* Comorbidity | |||
* Coronavirus Infections | |||
* Female | |||
* Humans | |||
* Male | |||
* Pandemics | |||
* Peptidyl-Dipeptidase A | |||
* Pneumonia, Viral | |||
* Receptors, Interleukin-6 | |||
* Risk Factors | |||
* SARS-CoV-2 | |||
* Serine Endopeptidases | |||
* Tumor Necrosis Factor-alpha | |||
|keywords=* ACE2 | |||
* ADAM17 | |||
* COVID-19 pathophysiology | |||
* SARS-CoV-2 | |||
* TMPRSS2 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575774 | |||
}} | }} | ||
== | ==ADH5== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Can Serum Nitrosoproteome Predict Longevity of Aged Women? | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33260845 | ||
| | |||
|keywords=* aging | |||
* cardiovascular disease | |||
* muscle atrophy | |||
* nitrosative stress | |||
* proteomics | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731247 | |||
}} | |||
==ADM== | |||
{{medline-entry | |||
|title=Assessment of age-related differences in decomposition-based quantitative EMG in the intrinsic hand muscles: A multivariate approach. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32693193 | |||
|keywords=* Aging | |keywords=* Aging | ||
* | * Decomposition-based quantitative electromyography (DQEMG) | ||
* | * Hand muscle | ||
* | * Jiggle | ||
* | * Motor unit potential (MUP) | ||
|full-text-url=https:// | * Multivariate | ||
|full-text-url=https://sci-hub.do/10.1016/j.clinph.2020.06.017 | |||
}} | |||
{{medline-entry | |||
|title=Evaluation of transcriptional levels of the natriuretic peptides, endothelin-1, adrenomedullin, their receptors and long non-coding RNAs in rat cardiac tissue as cardiovascular biomarkers of aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31629715 | |||
|keywords=* ADM system | |||
* Aging | |||
* Biomarkers | |||
* ET-1system | |||
* LncRNA | |||
* NP system | |||
|full-text-url=https://sci-hub.do/10.1016/j.peptides.2019.170173 | |||
}} | }} | ||
== | ==ADORA2B== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Adenosine A2B receptor: A pathogenic factor and a therapeutic target for sensorineural hearing loss. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33131093 | ||
|keywords=* | |keywords=* ADA-deficiency | ||
* | * adenosine deaminase deficiency | ||
* aging | * aging | ||
* | * myelin protein zero | ||
* | * myelination | ||
|full-text-url=https://sci-hub.do/10.1096/fj.202000939R | |||
|full-text-url=https://sci-hub.do/10. | |||
}} | }} | ||
== | ==ADRA2A== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=α2A-Adrenergic Receptor Inhibits the Progression of Cervical Cancer Through Blocking PI3K/AKT/mTOR Pathway. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33116632 | ||
|keywords=* | |keywords=* ADRA2A | ||
* | * PI3K/Akt/mTOR pathway | ||
* | * cervical cancer | ||
* | * metastasis | ||
* | * proliferation | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * senescence | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574911 | |||
}} | }} | ||
==AFM== | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Photocatalytic aging process of Nano-TiO coated polypropylene microplastics: Combining atomic force microscopy and infrared spectroscopy ([[AFM]]-IR) for nanoscale chemical characterization. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33080556 | ||
|keywords=* | |keywords=* AFM-IR | ||
* Aging process | |||
* | * Microplastics | ||
* | * Nanoscale characterization | ||
* | * Polypropylene | ||
* | |full-text-url=https://sci-hub.do/10.1016/j.jhazmat.2020.124159 | ||
|full-text-url=https:// | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Nanoscale infrared, thermal and mechanical properties of aged microplastics revealed by an atomic force microscopy coupled with infrared spectroscopy ([[AFM]]-IR) technique. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32702545 | ||
|keywords=* | |keywords=* AFM-IR | ||
* | * Aging process | ||
* | * Mechanical properties | ||
* | * Microplastics (MPs) | ||
* | * Thermal analysis | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.scitotenv.2020.140944 | ||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Detecting zeta potential of polydimethylsiloxane (PDMS) in electrolyte solutions with atomic force microscope. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32521351 | ||
|keywords=* | |keywords=* AFM | ||
* | * Air plasma treatment | ||
* | * Liquid aging | ||
|full-text-url=https://sci-hub.do/10. | * PDMS | ||
* Zeta potential | |||
|full-text-url=https://sci-hub.do/10.1016/j.jcis.2020.05.061 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Recent Applications of Advanced Atomic Force Microscopy in Polymer Science: A Review. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32429499 | ||
|keywords=* | |keywords=* AFM-IR | ||
* | * blends | ||
* | * nanoscale characterization | ||
|full-text-url=https:// | * polymer aging | ||
* polymer composites | |||
* polymers | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284686 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Active fractions of mannoproteins derived from yeast cell wall stimulate innate and acquired immunity of adult and elderly dogs. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32288071 | ||
|keywords=* AFM, active fraction of mannoproteins | |||
| | * ALP, alkaline phosphatase | ||
* ALT, alanine aminotransferase | |||
* Ageing | |||
* CBC, complete blood count | |||
* | * CD21+, B lymphocyte | ||
* | * CD4+, auxiliary T lymphocyte | ||
* | * CD5+, total T lymphocyte | ||
* | * CD8+, cytotoxic lymphocyte | ||
* | * CO, cells only | ||
* | * Canine | ||
* | * DCHT, delayed cutaneous hypersensitivity test | ||
* | * FOSs, fructooligosaccharides | ||
* | * GALT, gut-associated lymphoid tissue | ||
* | * IL-12, interleukin 12 | ||
* IgA, immunoglobulin A | |||
* | * Immunosenescence | ||
* | * LPS, bacterial lipopolysaccharide | ||
* | * MOSs, mannanoligosaccharides | ||
* | * NADPH, reduced nicotinamide adenine dinucleotide phosphate | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * NO, nitrogen monoxide | ||
* NOS, nitric oxide synthase | |||
* OD, optical density | |||
* PMA, phorbol myristate acetate | |||
* Saccharomyces cerevisiae | |||
* Senescence | |||
* TNF-α, tumour necrosis factor alpha | |||
* Th1, helper T lymphocyte | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7126846 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=The Effect of Waste Engine Oil and Waste Polyethylene on UV Aging Resistance of Asphalt. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32155867 | ||
|keywords=* | |keywords=* Fourier transform infrared spectroscopy | ||
* | * atomic force microscopy | ||
* | * gel permeation chromatography | ||
* | * ultraviolet aging | ||
* | * waste engine oil | ||
|full-text-url=https:// | * waste polyethylene | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182932 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Mechanical properties measured by atomic force microscopy define health biomarkers in ageing C. elegans. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32098962 | ||
|mesh-terms=* | |mesh-terms=* Aging | ||
* | * Animal Feed | ||
* | * Animals | ||
* | * Bacillus subtilis | ||
* | * Biomarkers | ||
* | * Caenorhabditis elegans | ||
* | * Caenorhabditis elegans Proteins | ||
* | * Comamonas | ||
* Escherichia coli | |||
* | * Forkhead Transcription Factors | ||
* | * Hot Temperature | ||
* | * Insulin | ||
* | * Microbiota | ||
* | * Microscopy, Atomic Force | ||
* Mutation | |||
* Receptor, Insulin | |||
* Signal Transduction | |||
* Ultraviolet Rays | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7042263 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Nanomechanical insights: Amyloid beta oligomer-induced senescent brain endothelial cells. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31513781 | ||
|keywords=* | |mesh-terms=* Alzheimer Disease | ||
* | * Amyloid beta-Peptides | ||
* | * Biomechanical Phenomena | ||
* | * Brain | ||
* | * Cell Culture Techniques | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * Cell Membrane | ||
* Cellular Senescence | |||
* Endothelial Cells | |||
* Endothelium, Vascular | |||
* Humans | |||
* Microscopy, Atomic Force | |||
* Vascular Endothelial Growth Factor A | |||
|keywords=* Amyloid beta oligomer | |||
* Atomic force microscopy | |||
* Brain endothelial cells | |||
* Nanoindentation | |||
* Nanomechanical properties | |||
* Senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6791778 | |||
}} | }} | ||
== | ==AGER== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Vitamin D3 regulates apoptosis and proliferation in the testis of D-galactose-induced aged rat model. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31575929 | |||
|mesh-terms=* Aging | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |||
|mesh-terms=* Aging | |||
* Animals | * Animals | ||
* | * Antioxidants | ||
* | * Apoptosis | ||
* | * Cell Proliferation | ||
* | * Cholecalciferol | ||
* | * Down-Regulation | ||
* | * Galactose | ||
* Male | * Male | ||
* | * Oxidative Stress | ||
* | * Rats | ||
* Spermatogenesis | |||
* Testis | |||
* | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6773724 | ||
* | |||
|full-text-url=https:// | |||
}} | }} | ||
== | ==AGT== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=SQSTM1/p62 and PPARGC1A/PGC-1alpha at the interface of autophagy and vascular senescence. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31441382 | ||
|keywords=* | |keywords=* Aging | ||
* | * SQSTM1 | ||
* | * autophagy | ||
* oxidative stress | |||
* senescence | * senescence | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * vascular biology | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469683 | |||
}} | }} | ||
== | ==AHR== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Indoles from the commensal microbiota act via the [[AHR]] and IL-10 to tune the cellular composition of the colonic epithelium during aging. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32817517 | ||
|keywords=* | |mesh-terms=* Aging | ||
* | * Animals | ||
* | * Bacteria | ||
* | * Cell Differentiation | ||
|full-text-url=https:// | * Epithelial Cells | ||
* Female | |||
* Goblet Cells | |||
* Indoles | |||
* Interleukin-10 | |||
* Interleukins | |||
* Male | |||
* Mice | |||
* Mice, Inbred BALB C | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* Microbiota | |||
* Mucus | |||
* Receptors, Aryl Hydrocarbon | |||
* Signal Transduction | |||
|keywords=* aging | |||
* goblet cell | |||
* intestinal homeostasis | |||
* mucus | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7474656 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Role of the Aryl Hydrocarbon Receptor in Environmentally Induced Skin Aging and Skin Carcinogenesis. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31795255 | ||
|keywords=* | |mesh-terms=* Animals | ||
* | * Environmental Exposure | ||
* | * Extracellular Matrix | ||
* | * Humans | ||
* | * Receptors, Aryl Hydrocarbon | ||
* | * Skin Aging | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * Skin Neoplasms | ||
|keywords=* DNA damage | |||
* UV radiation | |||
* extracellular matrix | |||
* extrinsic skin aging | |||
* melanoma | |||
* particulate matter | |||
* pigmentation | |||
* polycyclic aromatic hydrocarbons | |||
* squamous cell carcinoma | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928879 | |||
}} | }} | ||
== | ==AIP== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=[Aryl hydrocarbon receptor interacting protein ([[AIP]]) in human dermis during aging.] | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33280328 | ||
|keywords=* AIP | |||
| | * PCNA | ||
* aging | |||
* fibroblasts | |||
* skin | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Sex-Specific Association between Serum Vitamin D Status and Lipid Profiles: A Cross-Sectional Study of a Middle-Aged and Elderly Chinese Population. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32350171 | |||
|keywords=* | |keywords=* atherogenic index of plasma | ||
* | * dyslipidaemia | ||
* | * gerontology | ||
* | * sex difference | ||
* | * vitamin D | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.3177/jnsv.66.105 | ||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=The oblique effect: The relationship between profiles of visuospatial preference, cognition, and brain connectomics in older adults. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31654648 | ||
|mesh-terms=* Aged | |||
* Brain | |||
* Cognition | |||
* Connectome | |||
* Diffusion Tensor Imaging | |||
* Executive Function | |||
* Female | |||
* Humans | |||
* Judgment | |||
* Male | |||
* Middle Aged | |||
* Neuropsychological Tests | |||
* Pattern Recognition, Visual | |||
* Spatial Processing | |||
|keywords=* Aging | |keywords=* Aging | ||
* | * Executive function | ||
* | * Oblique effect | ||
* | * Perception | ||
* | * Structural connectivity | ||
* | * Visuospatial processing | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6887099 | ||
}} | }} | ||
== | ==ALAS1== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Heterozygous disruption of [[ALAS1]] in mice causes an accelerated age-dependent reduction in free heme, but not total heme, in skeletal muscle and liver. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33307066 | ||
|keywords=* | |keywords=* 5-Aminolevulinate synthase 1 (ALAS1) | ||
* | * 5-Aminolevulinic acid (ALA) | ||
* | * Aging | ||
* | * Free heme | ||
* | * Liver | ||
|full-text-url=https:// | * Skeletal muscle | ||
|full-text-url=https://sci-hub.do/10.1016/j.abb.2020.108721 | |||
}} | }} | ||
== | ==ALB== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Effects of Age on Inflammatory Profiles and Nutrition/Energy Metabolism in Domestic Cats. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33262938 | ||
|keywords=* | |keywords=* M/L ratio | ||
* | * SAA | ||
* aging | * aging | ||
* | * domestic cats | ||
* | * obesity | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695597 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |||
}} | }} | ||
==ALK== | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Catalog of Lung Cancer Gene Mutations Among Chinese Patients. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32850378 | ||
|keywords=* | |keywords=* China | ||
* aging | * aging | ||
* | * gene mutation | ||
* | * lung cancer | ||
* | * pathology | ||
* | * tobacco smoking | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7417348 | ||
}} | }} | ||
==ALKBH8== | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Loss of epitranscriptomic control of selenocysteine utilization engages senescence and mitochondrial reprogramming . | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31765888 | ||
|mesh-terms=* AlkB Homolog 8, tRNA Methyltransferase | |||
* Animals | |||
* Cells, Cultured | |||
* Cellular Senescence | |||
* Epigenesis, Genetic | |||
* Gene Deletion | |||
* Gene Expression Profiling | |||
|mesh-terms=* | |||
* | |||
* | |||
* | |||
* | |||
* | |||
* | |||
* Humans | * Humans | ||
* | * Mice | ||
* | * Mitochondria | ||
* | * Oxygen Consumption | ||
* | * Selenocysteine | ||
|keywords= | * Uncoupling Protein 2 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |keywords=* Epitranscriptome | ||
* Mitochondria | |||
* Selenium | |||
* Senescence | |||
* Uncoupling protein | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904832 | |||
}} | }} | ||
== | ==ALOX12== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Arachidonate 12-lipoxygenase and 12-hydroxyeicosatetraenoic acid contribute to stromal aging-induced progression of pancreatic cancer. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32265301 | ||
|keywords=* | |keywords=* aging | ||
* | * arachidonic acid (AA) (ARA) | ||
* | * cancer biology | ||
* | * cell proliferation | ||
* | * fibroblast | ||
* | * pancreatic cancer | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * stromal cell | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242692 | |||
}} | }} | ||
==ALOX5== | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Functional Characterization of Knock-In Mice Expressing a 12/15-Lipoxygenating Alox5 Mutant Instead of the 5-Lipoxygenating Wild-Type Enzyme. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31642348 | ||
|mesh-terms=* Aging | |mesh-terms=* Aging | ||
* Alanine | |||
* Animals | * Animals | ||
* | * Arachidonate 5-Lipoxygenase | ||
* | * Asparagine | ||
* | * Body Weight | ||
* | * Female | ||
* | * Gene Knock-In Techniques | ||
* | * Leukotrienes | ||
* | * Linoleic Acid | ||
* Male | * Male | ||
* Mice | * Mice | ||
* | * Mutation | ||
* | * PPAR gamma | ||
* | * Phenylalanine | ||
* | |keywords=* eicosanoids | ||
* | * inflammation | ||
* leukotrienes | |||
|full-text-url=https:// | * lipoxygenase | ||
* resolvins | |||
|full-text-url=https://sci-hub.do/10.1089/ars.2019.7751 | |||
}} | }} | ||
== | ==AMH== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Beyond premature ovarian insufficiency: Staging reproductive aging in adolescent and young adult cancer survivors. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33141175 | ||
|keywords=* | |keywords=* STRAW | ||
* | * adolescent and young adult cancer | ||
* | * menopausal transition | ||
* | * premature ovarian insufficiency | ||
* | * reproductive aging | ||
|full-text-url=https://sci-hub.do/10.1210/clinem/dgaa797 | |||
|full-text-url=https:// | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Correlates and Timing of Reproductive Aging Transitions in a Global Cohort of Midlife Women With Human Immunodeficiency Virus: Insights From the REPRIEVE Trial. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32645159 | |||
|keywords=* Cardiometabolic Risk | |||
* HIV | |||
* Menopause | |||
* Reproductive Aging | |||
* Sex | |||
* Women | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347076 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Epigenetic clock measuring age acceleration via DNA methylation levels in blood is associated with decreased oocyte yield. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32285295 | ||
|keywords=* Aging | |keywords=* Aging | ||
* DNA methylation | * DNA methylation | ||
* | * Epigenetic clock | ||
* | * Epigenetics | ||
* | * Infertility | ||
* | * Methylome | ||
|full-text-url=https:// | * Ovarian aging | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244694 | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Modeling Variation in the Reproductive Lifespan of Female Adolescent and Young Adult Cancer Survivors Using [[AMH]]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32270202 | |||
|keywords=* AMH | |||
* adolescent and young adult cancer | |||
* functional principal components analysis | |||
* ovarian reserve | |||
* reproductive lifespan | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329316 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Improving Prediction of Age at Menopause Using Multiple Anti-Müllerian Hormone Measurements: the Tehran Lipid-Glucose Study. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109280 | ||
|keywords=* | |keywords=* Tehran Lipid and Glucose Study (TLGS) | ||
* | * anti-müllerian hormone (AMH) | ||
* menopause | |||
* reproductive aging | |||
* | |full-text-url=https://sci-hub.do/10.1210/clinem/dgaa083 | ||
* | |||
|full-text-url=https://sci-hub.do/10. | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Antimullerian Hormone and Impending Menopause in Late Reproductive Age: The Study of Women's Health Across the Nation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31965189 | |||
|keywords=* aging | |||
* female reproductive endocrinology | |||
* gonadotropins | |||
* inhibin/activin/follistatin/AMH | |||
* menopause | |||
* ovaries | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7067546 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Basal characterization and in vitro differentiation of putative stem cells derived from the adult mouse ovary. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31900800 | ||
| | |mesh-terms=* Aging | ||
* | * Animals | ||
* | * Anti-Mullerian Hormone | ||
* | * Antigens, Ly | ||
* | * Cell Differentiation | ||
* | * Cell Shape | ||
* | * Female | ||
* | * Lewis X Antigen | ||
|full-text-url=https:// | * Membrane Proteins | ||
* Mice, Inbred C57BL | |||
* Ovary | |||
* Stem Cells | |||
|keywords=* BMP-4 | |||
* Multipotent | |||
* Ovary | |||
* Retinoic acid | |||
* Stem cells | |||
|full-text-url=https://sci-hub.do/10.1007/s11626-019-00411-x | |||
}} | |||
{{medline-entry | |||
|title=Serum anti-Müllerian hormone concentration and follicle density throughout reproductive life and in different diseases-implications in fertility preservation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31782794 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Aging | |||
* Anti-Mullerian Hormone | |||
* Child | |||
* Child, Preschool | |||
* Female | |||
* Fertility Preservation | |||
* Humans | |||
* Ovarian Follicle | |||
* Retrospective Studies | |||
* Young Adult | |||
|keywords=* anti-Müllerian hormone | |||
* cancer | |||
* fertility preservation | |||
* ovarian reserve | |||
* ovarian tissue | |||
* primary follicle | |||
* primordial follicle | |||
|full-text-url=https://sci-hub.do/10.1093/humrep/dez215 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Associations Between Anti-Mullerian Hormone and Cardiometabolic Health in Reproductive Age Women Are Explained by Body Mass Index. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31586179 | ||
| | |||
|mesh-terms=* Adult | |||
* Anti-Mullerian Hormone | |||
* Biomarkers | |||
* Body Mass Index | |||
* Cardiovascular Diseases | |||
* Case-Control Studies | |||
* Cross-Sectional Studies | |||
* Female | |||
* Follow-Up Studies | |||
* Humans | * Humans | ||
* | * Incidence | ||
* | * Infertility, Female | ||
* Polycystic Ovary Syndrome | |||
* | |||
* Prognosis | * Prognosis | ||
* | * United States | ||
* | |keywords=* anti-mullerian hormone (AMH) | ||
* | * cardiometabolic health | ||
* cardiovascular risk | |||
* | * ovarian aging | ||
* | * ovarian reserve markers | ||
* | * reproductive aging | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7024739 | ||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Relationships between antral follicle count, blood serum concentration of anti-Müllerian hormone and fertility in mares. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31586925 | ||
|keywords=* | |mesh-terms=* Aging | ||
* | * Animals | ||
* | * Anti-Mullerian Hormone | ||
* | * Female | ||
* | * Fertility | ||
|full-text-url=https:// | * Horses | ||
* Ovarian Follicle | |||
* Ovulation | |||
|keywords=* AMH | |||
* Anzahl Follikel | |||
* Ovar | |||
* Pferd | |||
* Ultraschall | |||
* compte folliculaire | |||
* conta dei follicoli | |||
* ecografia | |||
* equine | |||
* equini | |||
* follicle count | |||
* ovaia | |||
* ovaire | |||
* ovary | |||
* reproductive status | |||
* stato riproduttivo | |||
* ultrasonography | |||
* Reproduktionsstatus | |||
* échographie | |||
* équin | |||
* état reproducteur | |||
|full-text-url=https://sci-hub.do/10.17236/sat00225 | |||
}} | }} | ||
== | ==AMT== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=A multi-method comparison of autobiographical memory impairments amongst younger and older adults. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32162531 | ||
|keywords=* | |||
* | |keywords=* Depression | ||
* | * aging | ||
* | * episodic memory | ||
* | * overgeneral | ||
* specificity | |||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1080/13607863.2020.1729338 | ||
}} | }} | ||
== | ==ANGPTL2== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Circulating angiopoietin-like protein 2 levels and mortality risk in patients receiving maintenance hemodialysis: a prospective cohort study. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31840173 | ||
|mesh-terms=* | |mesh-terms=* Aged | ||
* | * Angiopoietin-like Proteins | ||
* | * Biomarkers | ||
* | * C-Reactive Protein | ||
* | * Disease Progression | ||
* | * Female | ||
* Humans | * Humans | ||
* | * Kidney Diseases | ||
* | * Male | ||
* | * Middle Aged | ||
* | * Prognosis | ||
* | * Prospective Studies | ||
|keywords=* | * Renal Dialysis | ||
* | * Risk Factors | ||
* | * Survival Rate | ||
|full-text-url=https://sci-hub.do/10. | |keywords=* aging | ||
* angiopoietin-like protein (ANGPTL) 2 | |||
* chronic inflammation | |||
* hemodialysis | |||
* mortality risk | |||
|full-text-url=https://sci-hub.do/10.1093/ndt/gfz236 | |||
}} | |||
==ANK3== | |||
{{medline-entry | |||
|title=Age-related atrophy of cortical thickness and genetic effect of [[ANK3]] gene in first episode MDD patients. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32911427 | |||
|keywords=* ANK3 | |||
* Aging | |||
* Cortical thickness | |||
* Major depressive disorder | |||
* Neuroimage | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7490581 | |||
}} | }} | ||
== | ==AOX1== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=N1-Methylnicotinamide: An Anti-Ovarian Aging Hormetin? | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32711159 | ||
|keywords=* | |keywords=* AMPK | ||
* | * MNAM | ||
* | * Ovarian Aging | ||
* ROS | |||
* | |full-text-url=https://sci-hub.do/10.1016/j.arr.2020.101131 | ||
|full-text-url=https://sci-hub.do/10.1016/j. | |||
}} | }} | ||
== | ==AP2B1== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Circular RNA NF1-419 enhances autophagy to ameliorate senile dementia by binding Dynamin-1 and Adaptor protein 2 B1 in AD-like mice. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31860870 | ||
|mesh-terms=* Aging | |mesh-terms=* Adaptor Protein Complex beta Subunits | ||
* | * Aging | ||
* | * Alzheimer Disease | ||
* | * Animals | ||
* | * Astrocytes | ||
* | * Autophagy | ||
* Cellular Senescence | |||
* | * Dynamin I | ||
* | * Genes, Neurofibromatosis 1 | ||
* | * Mice | ||
* | * RNA, Circular | ||
* | * Rats | ||
* | * Rats, Sprague-Dawley | ||
* | |keywords=* aging | ||
* | * astrocyte | ||
* | * autophagy | ||
* | * biological function | ||
|full-text-url=https:// | * circular RNA | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949063 | |||
}} | }} | ||
== | ==APC== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Differences between blacks and whites in well-being, beliefs, emotional states, behaviors and survival, 1978-2014. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32925952 | ||
| | |||
|mesh-terms=* Adult | |||
* African Americans | |||
* Aged | |||
* Behavior | |||
* Cohort Studies | |||
* Emotions | |||
* European Continental Ancestry Group | |||
* Female | |||
* Hispanic Americans | |||
* Humans | |||
* Longevity | |||
* Male | |||
* Middle Aged | |||
* Socioeconomic Factors | |||
* Survival Analysis | |||
* United States | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7489510 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Wnt-induced, TRP53-mediated Cell Cycle Arrest of Precursors Underlies Interstitial Cell of Cajal Depletion During Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32771388 | |||
|keywords=* Compliance | |||
* Senescence | |||
* Stem Cell | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7672319 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Burden of musculoskeletal disorders in Iran during 1990-2017: estimates from the Global Burden of Disease Study 2017. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32651719 | ||
|mesh-terms=* | |mesh-terms=* Female | ||
* | * Global Burden of Disease | ||
* | * Global Health | ||
* Humans | * Humans | ||
* Iran | |||
* Life Expectancy | * Life Expectancy | ||
* Male | * Male | ||
* | * Musculoskeletal Diseases | ||
* | * Quality-Adjusted Life Years | ||
* | |keywords=* Burden | ||
* | * DALY | ||
* | * Decomposition | ||
* | * Global burden of diseases | ||
* Iran | |||
|full-text-url=https:// | * Musculoskeletal diseases | ||
|full-text-url=https://sci-hub.do/10.1007/s11657-020-00767-8 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Fall-related mortality trends in older Japanese adults aged ≥65 years: a nationwide observational study. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31831549 | ||
|mesh-terms=* | |mesh-terms=* Accidental Falls | ||
* Aged | |||
* | * Aged, 80 and over | ||
* | * Female | ||
* | * Geriatrics | ||
* | * Health Policy | ||
* | * Health Services Needs and Demand | ||
* | * Humans | ||
* Japan | |||
* Male | |||
* | * Mortality | ||
* | * Public Health | ||
* | |keywords=* adult intensive & critical care | ||
* | * epidemiology | ||
* | * geriatric medicine | ||
|keywords=* | * health & safety | ||
* | * health policy | ||
* | * public health | ||
* | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6924807 | ||
* | |||
|full-text-url=https:// | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Stroke Mortality Rates and Trends in Romania, 1994-2017. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31624036 | |||
|mesh-terms=* Adult | |||
* Age Distribution | |||
* Aged | |||
* Aged, 80 and over | |||
* Cause of Death | |||
* Female | |||
* Humans | |||
* Life Expectancy | |||
* Male | |||
* Middle Aged | |||
* Prognosis | |||
* Registries | |||
* Risk Assessment | |||
* Risk Factors | |||
* Romania | |||
* Sex Distribution | |||
* Stroke | |||
* Time Factors | |||
|keywords=* Mortality | |||
* age-standardized mortality rates | |||
* life expectancy | |||
* stroke | |||
|full-text-url=https://sci-hub.do/10.1016/j.jstrokecerebrovasdis.2019.104431 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=A new approach to quantifying the EEG during walking: Initial evidence of gait related potentials and their changes with aging and dual tasking. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31449852 | ||
| | |mesh-terms=* Accelerometry | ||
* | * Adult | ||
* | * Aged | ||
* | * Aging | ||
* | * Electroencephalography | ||
* | * Evoked Potentials | ||
* | * Exercise Test | ||
* | * Female | ||
|full-text-url=https:// | * Gait | ||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Multitasking Behavior | |||
* Reaction Time | |||
* Walking | |||
|keywords=* Dual task | |||
* EEG | |||
* Gait cycle | |||
* Gait related potentials (GRP) | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2019.110709 | |||
}} | }} | ||
== | ==APOC3== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Positional Obstructive Sleep Apnea Syndrome in Elderly Patients. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32050596 | ||
|mesh-terms=* | |mesh-terms=* Adult | ||
* Aged | |||
* Humans | |||
* Middle Aged | |||
* Polysomnography | |||
* | * Posture | ||
* | * Prospective Studies | ||
* | * Sleep Apnea, Obstructive | ||
* | * Supine Position | ||
* | * Young Adult | ||
* | |keywords=* aging effects | ||
* | * obstructive sleep apnea | ||
* | * polysomnography | ||
* | * positional sleep apnea | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7042812 | |||
|keywords= | |||
* aging | |||
* | |||
* | |||
* | |||
|full-text-url=https:// | |||
}} | }} | ||
== | ==APOE== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Polygenic risk score of longevity predicts longer survival across an age-continuum. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33216869 | ||
|keywords=* centenarians | |||
* cognitive health | |||
* genetics | |||
* healthy aging | |||
* longevity | |||
|full-text-url=https://sci-hub.do/10.1093/gerona/glaa289 | |||
|keywords=* | |||
* | |||
* | |||
* | |||
* | |||
|full-text-url=https://sci-hub.do/10. | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Association Between [[APOE]] Alleles and Change of Neuropsychological Tests in the Long Life Family Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33216038 | |||
|keywords=* APOE | |||
* cognition | |||
* longevity | |||
* longitudinal studies | |||
|full-text-url=https://sci-hub.do/10.3233/JAD-201113 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=The [[APOE]] gene cluster responds to air pollution factors in mice with coordinated expression of genes that differs by age in humans. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33215813 | ||
| | |||
| | |||
|keywords=* Alzheimer's disease | |||
* aging | |||
* air pollution | |||
* | * apolipoprotein E | ||
* | * chromosome 19q13 | ||
* | |full-text-url=https://sci-hub.do/10.1002/alz.12230 | ||
* | }} | ||
* | {{medline-entry | ||
|title=Homozygosity in the [i][[APOE]][/i] 3 Polymorphism Is Associated With Less Depression and Higher Serum Low-Density Lipoprotein in Chinese Elderly Schizophrenics. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33178131 | |||
|keywords=* APOE E3 | |||
* Chinese | |||
* aging | |||
* depressive symptom | |||
* schizophrenia | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7593819 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Effect of apolipoprotein E polymorphism on cognition and brain in the Cambridge Centre for Ageing and Neuroscience cohort. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33088920 | |||
|keywords=* Cognition | |||
* ageing | |||
* apolipoprotein E | |||
* brain | |||
* lifespan | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545750 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Cardiovascular risk factors and [[APOE]]-ε4 status affect memory functioning in aging via changes to temporal stem diffusion. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33070365 | ||
|keywords=* | |keywords=* APOE | ||
* | * BMI | ||
* | * RRID:SCR_001398 | ||
* | * RRID:SCR_002403 | ||
* | * RRID:SCR_002823 | ||
* | * RRID:SCR_002865 | ||
|full-text-url=https:// | * RRID:SCR_007037 | ||
* aging | |||
* diffusion tensor imaging | |||
* hypertension | |||
* memory | |||
* path modeling | |||
|full-text-url=https://sci-hub.do/10.1002/jnr.24734 | |||
}} | }} | ||
== | {{medline-entry | ||
|title=[[APOE]] [i]ε[/i]4 and resting-state functional connectivity in racially/ethnically diverse older adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32999914 | |||
|keywords=* APOE ε4 differences | |||
* brain aging | |||
* dementia | |||
* neuroimaging | |||
* racial/ethnic differences | |||
* resting‐state functional connectivity | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7508460 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Predictors of Olfactory Decline in Aging: A Longitudinal Population-Based Study. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32886741 | ||
|keywords=* | |keywords=* Cognitive aging | ||
* | * Epidemiology | ||
* | * Olfactory | ||
* | * Olfactory impairment | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662159 | |||
|full-text-url=https:// | |||
}} | }} | ||
== | {{medline-entry | ||
|title=When Culture Influences Genes: Positive Age Beliefs Amplify the Cognitive-Aging Benefit of [[APOE]] ε2. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32835364 | |||
|keywords=* | |||
APOE | |||
* Age beliefs | |||
* Cognition | |||
* Gene | |||
* Health and Retirement Study | |||
* Self-perceptions of aging | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7489069 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Age and the association between apolipoprotein E genotype and Alzheimer disease: A cerebrospinal fluid biomarker-based case-control study. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32817639 | ||
|mesh-terms=* Adult | |mesh-terms=* Adult | ||
* Aged | * Aged | ||
* Aged, 80 and over | * Aged, 80 and over | ||
* Aging | * Aging | ||
* | * Alzheimer Disease | ||
* Apolipoprotein E4 | |||
* Biomarkers | |||
* Case-Control Studies | |||
* Cohort Studies | |||
* Female | * Female | ||
* | * Genotype | ||
* Humans | * Humans | ||
* Male | * Male | ||
* Middle Aged | * Middle Aged | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7446786 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Estimating the potential for dementia prevention through modifiable risk factors elimination in the real-world setting: a population-based study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32767997 | |||
|keywords=* | |keywords=* Aging | ||
* | * Alzheimer’s disease | ||
* | * Dementia | ||
* | * Dementia prevention | ||
* | * Modifiable risk factors | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * Population attributable fraction | ||
* Public health | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414752 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Machine learning-based estimation of cognitive performance using regional brain MRI markers: the Northern Manhattan Study. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32740887 | ||
* | |keywords=* Biomarkers | ||
* | * Brain aging | ||
* | * Cognitive aging | ||
* | * Machine learning | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1007/s11682-020-00325-3 | ||
}} | }} | ||
== | {{medline-entry | ||
|title=Effects of an [[APOE]] Promoter Polymorphism on Fronto-Parietal Functional Connectivity During Nondemented Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32694990 | |||
|keywords=* | |keywords=* APOE promoter | ||
* aging | * aging | ||
* | * brain connectome | ||
* | * fronto-parietal network | ||
* | * working memory | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7338603 | ||
}} | }} | ||
== | {{medline-entry | ||
|title=The relationship of parental longevity with the aging brain-results from UK Biobank. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32671621 | |||
|keywords=* Aging | |keywords=* Aging | ||
* | * Brain structure | ||
* | * DTI | ||
* | * MRI | ||
* | * Neuroimaging | ||
* | * Parental longevity | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7525531 | ||
}} | }} | ||
== | {{medline-entry | ||
|title=Alzheimer's Patient Microglia Exhibit Enhanced Aging and Unique Transcriptional Activation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32610143 | |||
|keywords=* Alzheimer’s disease | |||
* aging | |||
* microglia | |||
* neurodegenerative diseases | |||
* neuroinflammation | |||
* transcriptomics | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7422733 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Relationships Between Plasma Lipids Species, Gender, Risk Factors, and Alzheimer's Disease. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32474467 | ||
| | |||
|mesh-terms=* | |||
* | |keywords=* APOEɛ4 | ||
* | * Aging | ||
* | * Alzheimer’s disease | ||
* | * gender | ||
* | * lipid | ||
* | species | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7369125 | |||
}} | |||
{{medline-entry | |||
|title=Effects of sex, age, and apolipoprotein E genotype on hippocampal parenchymal fraction in cognitively normal older adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32416384 | |||
|mesh-terms=* Age Factors | |||
* Aged | |||
* Aged, 80 and over | |||
* Apolipoproteins E | |||
* Biomarkers | |||
* Cognition | |||
* Databases, Factual | |||
* Female | |||
* Genotype | |||
* Hippocampus | |||
* Humans | * Humans | ||
* | * Linear Models | ||
* | * Male | ||
* | * Middle Aged | ||
|keywords=* | * Neuroimaging | ||
* | * Organ Size | ||
* | * Parenchymal Tissue | ||
* | * Reference Values | ||
* | * Sex Factors | ||
|full-text-url=https://sci-hub.do/10.1016/j. | |keywords=* Alzheimer’s disease | ||
* Apolipoprotein E ϵ4 | |||
* Atrophy | |||
* Brain | |||
* Healthy aging | |||
* Hippocampal parenchymal fraction | |||
* Hippocampal volumetric integrity | |||
* Hippocampus | |||
* MRI | |||
* Mild cognitive impairment | |||
* Neurodegeneration | |||
* Sex | |||
|full-text-url=https://sci-hub.do/10.1016/j.pscychresns.2020.111107 | |||
}} | |||
{{medline-entry | |||
|title=Cognitive Health of Nonagenarians in Southern Italy: A Descriptive Analysis from a Cross-Sectional, Home-Based Pilot Study of Exceptional Longevity (Cilento Initiative on Aging Outcomes Or CIAO). | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32380778 | |||
|keywords=* Cilento Region | |||
* cognitive health | |||
* lifestyle | |||
* longevity | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7279440 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Apolipoprotein E and Health in Older Men: The Concord Health and Ageing in Men Project. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32342099 | ||
| | |||
* | |keywords=* Aging | ||
* | * Alzheimer’s disease | ||
* | * Apolipoprotein E | ||
* | * Cognition | ||
* | * Cognitive frailty | ||
* Frailty | |||
* Male | * Male | ||
|full-text-url=https://sci-hub.do/10.1093/gerona/glaa105 | |||
|full-text-url=https://sci-hub.do/10. | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=CSF amyloid is a consistent predictor of white matter hyperintensities across the disease course from aging to Alzheimer's disease. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32305782 | ||
|keywords=* | |mesh-terms=* Aged | ||
* | * Aged, 80 and over | ||
* | * Aging | ||
* | * Alzheimer Disease | ||
* | * Amyloid beta-Peptides | ||
* | * Biomarkers | ||
|full-text-url=https://sci-hub.do/10. | * Cerebrovascular Disorders | ||
* Cognitive Dysfunction | |||
* Female | |||
* Humans | |||
* Magnetic Resonance Imaging | |||
* Male | |||
* Peptide Fragments | |||
* White Matter | |||
* tau Proteins | |||
|keywords=* Alzheimer's disease | |||
* Amyloid | |||
* Cerebrospinal fluid | |||
* Tau | |||
* Vascular disease | |||
* White matter hyperintensities | |||
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2020.03.008 | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Association of Cardiovascular Risk Factors with Cerebral Perfusion in Whites and African Americans. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32310160 | |||
|keywords=* Aging | |keywords=* Aging | ||
* | * Alzheimer’s disease | ||
* | * blood pressure | ||
* | * cerebrovascular circulation | ||
* | * neuroimaging | ||
|full-text-url=https:// | * obesity | ||
|full-text-url=https://sci-hub.do/10.3233/JAD-190360 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Alzheimer's Risk Factors Age, [[APOE]] Genotype, and Sex Drive Distinct Molecular Pathways. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32199103 | ||
| | |mesh-terms=* Adaptor Proteins, Signal Transducing | ||
* | * Age Factors | ||
* | * Aging | ||
* | * Alzheimer Disease | ||
* | * Animals | ||
* Apolipoprotein E2 | |||
* Apolipoprotein E3 | |||
* Apolipoprotein E4 | |||
* Apolipoproteins E | |||
* Brain | |||
* Female | |||
* Gene Expression | |||
* Gene Expression Profiling | |||
* Gene Regulatory Networks | |||
|keywords=* | * Genotype | ||
* | * Humans | ||
* | * Male | ||
* | * Membrane Glycoproteins | ||
* | * Membrane Proteins | ||
|full-text-url=https:// | * Metabolome | ||
* Mice | |||
* Mice, Transgenic | |||
* Protective Factors | |||
* Receptors, Immunologic | |||
* Risk Factors | |||
* Serpins | |||
* Sex Factors | |||
* Unfolded Protein Response | |||
|keywords=* APOE | |||
* Alzheimer’s disease | |||
* Serpina3 | |||
* age | |||
* extracellular vesicles | |||
* inflammation | |||
* lipid metabolism | |||
* metabolomics | |||
* sex | |||
* transcriptomics | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7388065 | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Less agreeable, better preserved? A PET amyloid and MRI study in a community-based cohort. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32169357 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Amyloidogenic Proteins | |||
* Apolipoproteins E | |||
* Brain | |||
* Cognition | |||
* Cohort Studies | |||
* Female | |||
* Follow-Up Studies | |||
* Humans | |||
* Magnetic Resonance Imaging | |||
* Male | |||
* Neuroimaging | |||
* Organ Size | |||
* Personality | |||
* Positron-Emission Tomography | |||
|keywords=* Amyloid load | |||
* Cognitive aging | |||
* Cohort studies | |||
* Personality | |||
* Structural MRI | |||
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2020.02.004 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Physical Activity as Moderator of the Association Between [[APOE]] and Cognitive Decline in Older Adults: Results from Three Longitudinal Cohort Studies. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32110803 | ||
|keywords=* | |keywords=* Gene–environment interaction | ||
* | * InCHIANTI | ||
* | * Longitudinal Aging Study Amsterdam | ||
* | * Rotterdam Study | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518558 | |||
|full-text-url=https:// | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Longitudinal Maintenance of Cognitive Health in Centenarians in the 100-plus Study. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32101309 | ||
|mesh-terms=* Aging | |mesh-terms=* Aged, 80 and over | ||
* | * Aging | ||
* Apolipoprotein E4 | |||
* Cognition | |||
* Female | * Female | ||
* | * Humans | ||
* | * Longitudinal Studies | ||
* Male | * Male | ||
* | * Mental Status and Dementia Tests | ||
* | * Prospective Studies | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7137688 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Interaction of [[APOE]], cerebral blood flow, and cortical thickness in the entorhinal cortex predicts memory decline. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32048144 | |||
|keywords=* APOE ε4 | |||
* Aging | |||
* Cerebral blood flow | |||
* Cognitive decline | |||
* Cortical thickness | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7165062 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Determinants of mesial temporal lobe volume loss in older individuals with preserved cognition: a longitudinal PET amyloid study. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32057528 | ||
|mesh-terms= | |mesh-terms=* Aged | ||
* Aged | |||
* Aged, 80 and over | * Aged, 80 and over | ||
* Aging | * Aging | ||
* | * Alleles | ||
* | * Amyloidogenic Proteins | ||
* | * Apolipoprotein E4 | ||
* Cognitive Reserve | |||
* Female | * Female | ||
* | * Follow-Up Studies | ||
* Genotype | |||
* | |||
* Humans | * Humans | ||
* Longitudinal Studies | |||
* Male | * Male | ||
* | * Neuropsychological Tests | ||
* | * Organ Size | ||
* | * Positron-Emission Tomography | ||
* Sex Factors | |||
* | * Temporal Lobe | ||
* | |keywords=* APOE | ||
|keywords= | * Amyloid load | ||
|full-text-url=https://sci-hub.do/10. | * Cognitive changes | ||
* Mesial temporal lobe | |||
* Normal aging | |||
* Structural MRI | |||
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2019.12.002 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Long-term exposure to ambient air pollution, [[APOE]]-ε4 status, and cognitive decline in a cohort of older adults in northern Manhattan. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31926436 | ||
| | |mesh-terms=* Aged | ||
* | * Air Pollutants | ||
* | * Air Pollution | ||
* | * Apolipoprotein E4 | ||
* | * Apolipoproteins E | ||
* | * Cognitive Dysfunction | ||
* | * Female | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * Genotype | ||
* Humans | |||
* Male | |||
* Prospective Studies | |||
* Washington | |||
|keywords=* APOE-ε4 allele | |||
* Aging | |||
* Air pollution | |||
* Cognitive decline | |||
* Cognitive risk factors | |||
* Epidemiology | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7024003 | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Evidence in support of chromosomal sex influencing plasma based metabolome vs [[APOE]] genotype influencing brain metabolome profile in humanized [[APOE]] male and female mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31917799 | |||
|mesh-terms=* Age of Onset | |||
* Aging | |||
* Alzheimer Disease | |||
* Amyloid beta-Peptides | |||
* Animals | |||
* Apolipoprotein E4 | |||
* Apolipoproteins E | |||
* Brain | |||
* Disease Models, Animal | |||
* Female | |||
* Genotype | |||
* Humans | |||
* Magnetic Resonance Imaging | |||
* Male | |||
* Metabolome | |||
* Mice | |||
* Mice, Transgenic | |||
* Sex Characteristics | |||
* Sex Chromosomes | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952084 | |||
|full-text-url=https:// | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=[[APOE]] region molecular signatures of Alzheimer's disease across races/ethnicities. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31813627 | ||
|keywords=* | |mesh-terms=* Alleles | ||
* | * Alzheimer Disease | ||
* | * Apolipoproteins E | ||
* | * Continental Population Groups | ||
* | * Haplotypes | ||
* | * Heterozygote | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * Homozygote | ||
* Humans | |||
* Linkage Disequilibrium | |||
* Polymorphism, Single Nucleotide | |||
* Risk Factors | |||
|keywords=* APOE polymorphism | |||
* Aging | |||
* Alzheimer's disease | |||
* Health span | |||
* Life span | |||
* Neurodegenerative disorders | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064423 | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Varying Effects of [[APOE]] Alleles on Extreme Longevity in European Ethnicities. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31724059 | |||
|mesh-terms=* Aged, 80 and over | |||
* Alleles | |||
* Apolipoproteins E | |||
* Ethnic Groups | |||
|mesh-terms= | * Europe | ||
* Aged, 80 and over | * European Continental Ancestry Group | ||
* | * Female | ||
* | |||
* | |||
* | |||
* | |||
* | |||
* Humans | * Humans | ||
* Longevity | * Longevity | ||
* | * Male | ||
* | |keywords=* APOE | ||
* | * Bioinformatics | ||
* | * Human genetics | ||
|full-text-url=https:// | * Longevity | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7330482 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Prospective Evaluation of Cognitive Health and Related Factors in Elderly at Risk for Developing Alzheimer's Dementia: A Longitudinal Cohort Study. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31686098 | ||
|keywords=* | |mesh-terms=* Aged | ||
* | * Aged, 80 and over | ||
* | * Alzheimer Disease | ||
* | * Anxiety | ||
|full-text-url=https://sci-hub.do/10. | * Apolipoprotein E4 | ||
* Cognition | |||
* Cognitive Dysfunction | |||
* Cohort Studies | |||
* Depression | |||
* Efficiency | |||
* Female | |||
* Healthy Volunteers | |||
* Humans | |||
* Longitudinal Studies | |||
* Male | |||
* Mental Status and Dementia Tests | |||
* Middle Aged | |||
* Neuropsychological Tests | |||
* Prospective Studies | |||
* Risk Factors | |||
* Sleep | |||
* United Kingdom | |||
* Work | |||
|keywords=* Alzheimer Disease | |||
* CHARIOT | |||
* aging registry | |||
* cognitive health | |||
* pre-clinical | |||
|full-text-url=https://sci-hub.do/10.14283/jpad.2019.31 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Association of Cardiovascular and Alzheimer's Disease Risk Factors with Intracranial Arterial Blood Flow in Whites and African Americans. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31658057 | ||
|keywords=* aging | |mesh-terms=* African Americans | ||
* | * Aged | ||
* | * Alzheimer Disease | ||
* | * Biomarkers | ||
* | * Blood Flow Velocity | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * Cardiovascular Diseases | ||
* Cerebrovascular Circulation | |||
* European Continental Ancestry Group | |||
* Female | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Risk Factors | |||
|keywords=* African Americans | |||
* Alzheimer’s disease | |||
* Apolipoprotein E4 | |||
* aging | |||
* cerebrovascular circulation | |||
* glucose | |||
* metabolic syndrome | |||
* neuroimaging | |||
* risk factors | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081660 | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Is Ongoing Anticholinergic Burden Associated With Greater Cognitive Decline and Dementia Severity in Mild to Moderate Alzheimer's Disease? | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31613323 | |||
|keywords=* Alzheimers | |||
* Cognitive aging | |||
* Drug related | |||
* Medication | |||
|full-text-url=https://sci-hub.do/10.1093/gerona/glz244 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Multicenter Alzheimer's and Parkinson's disease immune biomarker verification study. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31630996 | ||
|mesh-terms=* | |mesh-terms=* Age Factors | ||
* | * Aged | ||
* | * Aged, 80 and over | ||
* | * Alzheimer Disease | ||
* | * Amyloid | ||
* | * Biomarkers | ||
* | * Cohort Studies | ||
* | * Europe | ||
* Female | |||
* Humans | * Humans | ||
* | * Inflammation | ||
* | * Male | ||
|keywords=* | * Middle Aged | ||
* | * Parkinson Disease | ||
* | * Sex Factors | ||
* | * tau Proteins | ||
* | |keywords=* Aging | ||
* | * Alzheimer's disease | ||
* | * Amyloid | ||
* | * Biomarker | ||
|full-text-url=https:// | * Cerebrospinal fluid | ||
* Inflammation | |||
* Mild cognitive impairment | |||
* Multicenter | |||
* Parkinson's disease | |||
* Tau | |||
|full-text-url=https://sci-hub.do/10.1016/j.jalz.2019.07.018 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Prospective Memory: Age related change is influenced by [[APOE]] genotype. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31578124 | ||
|keywords=* | |keywords=* APOE | ||
* | * Alzheimer’s disease | ||
* | * aging | ||
* | * mid-adulthood | ||
|full-text-url=https://sci-hub.do/10. | * prospective memory | ||
|full-text-url=https://sci-hub.do/10.1080/13825585.2019.1671305 | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Education Moderates the Relation Between [[APOE]] ɛ4 and Memory in Nondemented Non-Hispanic Black Older Adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31594222 | |||
|mesh-terms=* Adult | |||
* African Americans | |||
* Aged | |||
* Aged, 80 and over | |||
|mesh-terms=* | * Aging | ||
* | * Alzheimer Disease | ||
* | * Apolipoprotein E4 | ||
* | * Cognitive Reserve | ||
* | * Educational Status | ||
* | * Executive Function | ||
* | * Female | ||
* | |||
* | |||
* | |||
* | |||
* Humans | * Humans | ||
* | * Male | ||
* | * Memory | ||
* | * Memory, Episodic | ||
* | * Memory, Short-Term | ||
* Middle Aged | |||
* Neuropsychological Tests | |||
* Sex Characteristics | |||
|keywords=* APOE | |||
* | * African American | ||
* | * Alzheimer’s disease | ||
* | * cognitive reserve | ||
|keywords=* | * educational attainment | ||
* | * episodic memory | ||
* | * genetic risk | ||
* | * neuropsychological evaluation | ||
* | |full-text-url=https://sci-hub.do/10.3233/JAD-190415 | ||
* | |||
* | |||
|full-text-url=https:// | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Apolipoprotein E ε4 allele effects on longitudinal cognitive trajectories are sex and age dependent. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31561966 | ||
| | |mesh-terms=* Age Factors | ||
* | * Aged | ||
* | * Alleles | ||
* | * Apolipoprotein E4 | ||
* | * Cognition Disorders | ||
* | * European Continental Ancestry Group | ||
|full-text-url=https:// | * Executive Function | ||
* Female | |||
* Humans | |||
* Longitudinal Studies | |||
* Male | |||
* Memory | |||
* Neuropsychological Tests | |||
* Sex Factors | |||
|keywords=* Aging | |||
* Alzheimer's disease | |||
* Apolipoprotein E ε4 | |||
* Cognitive decline | |||
* Sex | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7561018 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Interactive effect of age and [[APOE]]-ε4 allele load on white matter myelin content in cognitively normal middle-aged subjects. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31520917 | ||
|keywords=* | |mesh-terms=* Age Factors | ||
* | * Aged | ||
* | * Aging | ||
* | * Apolipoprotein E4 | ||
* | * Female | ||
* | * Humans | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * Magnetic Resonance Imaging | ||
* Male | |||
* Middle Aged | |||
* Myelin Sheath | |||
* White Matter | |||
|keywords=* Aging | |||
* Alzheimer | |||
* Apolipoprotein E | |||
* Cognitively normal subjects | |||
* Myelination | |||
* T1w/T2w ratio | |||
* White matter integrity | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6742967 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=[[APOE]] modifies the interaction of entorhinal cerebral blood flow and cortical thickness on memory function in cognitively normal older adults. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31493534 | ||
|keywords=* | |mesh-terms=* Aged | ||
* | * Aged, 80 and over | ||
* | * Apolipoproteins E | ||
* | * Cerebral Cortex | ||
* | * Cerebrovascular Circulation | ||
* | * Entorhinal Cortex | ||
|full-text-url=https:// | * Female | ||
* Genotype | |||
* Humans | |||
* Linear Models | |||
* Male | |||
* Memory | |||
* Middle Aged | |||
|keywords=* APOE ε4 | |||
* Aging | |||
* Alzheimer’s disease | |||
* Cerebral blood flow | |||
* Cognitive decline | |||
* Cortical thickness | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6819270 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=When time's arrow doesn't bend: [[APOE]]-ε4 influences episodic memory before old age. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31473197 | ||
|mesh-terms=* Adult | |mesh-terms=* Adult | ||
* | * Alleles | ||
* | * Alzheimer Disease | ||
* | * Apolipoprotein E4 | ||
* | * Cognition | ||
* | * Cognitive Aging | ||
* Female | * Female | ||
* | * Genotype | ||
* Humans | * Humans | ||
* | * Linear Models | ||
* Male | * Male | ||
* Memory | |||
* Memory, Episodic | |||
* Middle Aged | * Middle Aged | ||
* Young Adult | * Young Adult | ||
|keywords=* | |keywords=* Alzheimer's diseas | ||
* | * Apolipoprotein E | ||
* | * Cognition | ||
* | * Episodic memory | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * Semantic memory | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6817416 | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Cognitive-Motor Integration Performance Is Affected by Sex, [[APOE]] Status, and Family History of Dementia. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31424400 | |||
|mesh-terms=* Aged | |||
* Apolipoproteins E | |||
* Cognition | |||
* Cognitive Dysfunction | |||
* Cross-Sectional Studies | |||
* Dementia | |||
* Female | |||
* Humans | |||
* Male | |||
* Medical History Taking | |||
* Middle Aged | |||
* Photic Stimulation | |||
* Psychomotor Performance | |||
* Sex Characteristics | |||
* Surveys and Questionnaires | |||
|keywords=* Aging | |||
* alzheimer’s disease | |||
* apolipoprotein E4 | |||
* dementia risk | |||
* geriatric | |||
assessment | |||
* motor skills | |||
* movement | |||
* visuomotor integration | |||
|full-text-url=https://sci-hub.do/10.3233/JAD-190403 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Associations among amyloid status, age, and longitudinal regional brain atrophy in cognitively unimpaired older adults. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31437719 | ||
| | |mesh-terms=* Aged | ||
* | * Aged, 80 and over | ||
* | * Aging | ||
* | * Amyloid beta-Peptides | ||
* | * Atrophy | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * Brain | ||
* Cognition | |||
* Cognitive Dysfunction | |||
* Databases, Factual | |||
* Female | |||
* Humans | |||
* Longitudinal Studies | |||
* Male | |||
* Middle Aged | |||
|keywords=* Aging | |||
* Alzheimer's disease | |||
* Amyloid-β | |||
* Brain atrophy | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7198229 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Cognitive function and neuropathological outcomes: a forward-looking approach. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31435771 | ||
| | |mesh-terms=* Aged | ||
* | * Aged, 80 and over | ||
* | * Aging | ||
* | * Alzheimer Disease | ||
* | * Cognitive Dysfunction | ||
|full-text-url=https:// | * Female | ||
* Humans | |||
* Male | |||
* Middle Aged | |||
|keywords=* Alzheimer’s disease | |||
* Cognition | |||
* Multi-state model | |||
* Neuropathology | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6851487 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=[[APOE]] gene-dependent BOLD responses to a breath-hold across the adult lifespan. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31408838 | ||
| | |mesh-terms=* Adult | ||
* | * Aged | ||
* | * Aging | ||
* | * Apolipoprotein E3 | ||
* | * Apolipoprotein E4 | ||
* | * Apolipoproteins E | ||
* | * Breath Holding | ||
* | * Cerebrovascular Circulation | ||
|full-text-url=https:// | * Cross-Over Studies | ||
* Double-Blind Method | |||
* Female | |||
* Genotype | |||
* Hemodynamics | |||
* Humans | |||
* Longevity | |||
* Magnetic Resonance Imaging | |||
* Male | |||
* Middle Aged | |||
* Nitrates | |||
|keywords=* Ageing | |||
* Alzheimer's disease | |||
* Apolipoprotein E | |||
* BOLD fMRI | |||
* Breath-hold | |||
* Cerebrovascular reactivity | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6699560 | |||
}} | }} | ||
== | ==APP== | ||
{{medline-entry | |||
|title=Pre-symptomatic Caspase-1 inhibitor delays cognitive decline in a mouse model of Alzheimer disease and aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32917871 | |||
|mesh-terms=* Aging | |||
* Alzheimer Disease | |||
* Amyloid beta-Peptides | |||
* Animals | |||
* Behavior, Animal | |||
* Cognitive Dysfunction | |||
* Cytokines | |||
* Dipeptides | |||
* Disease Models, Animal | |||
* Encephalitis | |||
* Female | |||
* Humans | |||
* Inflammation | |||
* Male | |||
* Memory Disorders | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Mice, Transgenic | |||
* Serpins | |||
* Spatial Memory | |||
* Viral Proteins | |||
* para-Aminobenzoates | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486940 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Regorafenib Regulates AD Pathology, Neuroinflammation, and Dendritic Spinogenesis in Cells and a Mouse Model of AD. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32660121 | ||
|keywords=* | |keywords=* aging | ||
* | * amyloid beta | ||
* | * dendritic spine | ||
* | * neuroinflammation | ||
|full-text-url=https:// | * regorafenib | ||
* tau | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408082 | |||
}} | }} | ||
== | {{medline-entry | ||
|title=An agnostic reevaluation of the amyloid cascade hypothesis of Alzheimer's disease pathogenesis: The role of [[APP]] homeostasis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32588983 | |||
|keywords=* aging | |||
* amyloid hypothesis | |||
* amyloid precursor protein homeostasis | |||
* late onset Alzheimer's disease | |||
* young onset Alzheimer's disease | |||
|full-text-url=https://sci-hub.do/10.1002/alz.12124 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Transcriptomic profiling of microglia and astrocytes throughout aging. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32238175 | ||
|keywords=* | |keywords=* Aging | ||
* | * Alzheimer’s disease (AD) | ||
* Astrocyte | |||
* | * Microglia | ||
* | * RNA-seq | ||
* | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7115095 | ||
|full-text-url=https:// | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Platelets in Amyloidogenic Mice Are Activated and Invade the Brain. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32194368 | |||
|keywords=* | |keywords=* Alzheimer’s disease | ||
* | * aging | ||
* | * astrocytes | ||
* | * platelets | ||
* | * vascular pathology | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7063083 | ||
}} | }} | ||
== | {{medline-entry | ||
|title=CHIP modulates [[APP]]-induced autophagy-dependent pathological symptoms in Drosophila. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31777182 | |||
|mesh-terms=* Alzheimer Disease | |||
* Amyloid beta-Protein Precursor | |||
|mesh-terms=* | |||
* Animals | * Animals | ||
* | * Aspartic Acid Endopeptidases | ||
* | * Autophagy | ||
* | * Brain | ||
* | * Cognitive Dysfunction | ||
* | * Disease Models, Animal | ||
* | * Dopaminergic Neurons | ||
* | * Down-Regulation | ||
* | * Drosophila | ||
* | * Drosophila Proteins | ||
* | * Eye | ||
* | * Learning Disabilities | ||
* | * Locomotion | ||
* | * Longevity | ||
* | * Nuclear Proteins | ||
* | * Presenilins | ||
* | * RNA Interference | ||
* | * Wings, Animal | ||
|keywords=* | |keywords=* | ||
CHIP | |||
* APP | |||
* Alzheimer’s disease | |||
* | * Aβ | ||
* autophagy | |||
* | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996943 | ||
* | |||
* | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Studies on [[APP]] metabolism related to age-associated mitochondrial dysfunction in [[APP]]/PS1 transgenic mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31744937 | |||
|mesh-terms=* Adenosine Triphosphate | |||
|mesh-terms=* | |||
* Aging | * Aging | ||
* Alzheimer Disease | |||
* Amyloid beta-Protein Precursor | |||
* Animals | * Animals | ||
* | * Blood Platelets | ||
* Disease Models, Animal | |||
* Hippocampus | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Mice, Transgenic | |||
* Mitochondria | |||
* Presenilin-1 | |||
|keywords=* APP/PS1 mice | |||
* Amyloid-beta | |||
* adenosine 5’-triphosphate | |||
* mitochondria dysfunction | |||
* platelets | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6914425 | |||
}} | |||
{{medline-entry | |||
|title=Intermittent Hypoxia-Hyperoxia Training Improves Cognitive Function and Decreases Circulating Biomarkers of Alzheimer's Disease in Patients with Mild Cognitive Impairment: A Pilot Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31671598 | |||
|mesh-terms=* Aged | |||
* Alzheimer Disease | |||
* Biomarkers | * Biomarkers | ||
* | * Case-Control Studies | ||
* | * Cognition | ||
* Cognitive Dysfunction | |||
* Female | * Female | ||
* | * Humans | ||
* | * Hyperoxia | ||
* | * Hypoxia | ||
* Male | * Male | ||
* | * Middle Aged | ||
* | * Pilot Projects | ||
* | * Respiratory Therapy | ||
* | * Treatment Outcome | ||
|keywords=* Alzheimer’s disease | |||
* adaptation | |||
|keywords=* | |||
* aging | * aging | ||
* | * amyloid beta | ||
* | * biomarker | ||
* | * cognitive function | ||
|full-text-url=https:// | * hyperoxia | ||
* intermittent hypoxia | |||
* platelets | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6862463 | |||
}} | }} | ||
== | {{medline-entry | ||
|title=The Implication of Androgens in the Presence of Protein Kinase C to Repair Alzheimer’s Disease-Induced Cognitive Dysfunction | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31677609 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Alzheimer Disease | |||
* Amyloid Precursor Protein Secretases | |||
* Amyloid beta-Peptides | |||
* Androgens | |||
* Aspartic Acid Endopeptidases | |||
* Cognition | |||
* Cognitive Dysfunction | |||
* Cyclic AMP Response Element-Binding Protein | |||
* Female | |||
* Hippocampus | |||
* Humans | |||
* Learning | |||
* MAP Kinase Signaling System | |||
* Male | |||
* Middle Aged | |||
* Neoplasm Proteins | |||
* Phosphorylation | |||
* Protein Kinase C | |||
* Receptors for Activated C Kinase | |||
* tau Proteins | |||
|keywords=* Androgens | |||
* Cognition | |||
* Hippocampus | |||
* Protein kinase C | |||
* Spatial memory | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6984714 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Modulation of Neural and Muscular Adaptation Processes During Resistance Training by Fish Protein Ingestions in Older Adults. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31596471 | ||
|keywords=* | |keywords=* Aging | ||
* | * Alaska pollack protein | ||
* | * Motor unit identification | ||
* | * Multichannel surface electromyography | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * Nutritional supplementation | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7164534 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Antipsychotic Polypharmacy in Older Adult Asian Patients With Schizophrenia: Research on Asian Psychotropic Prescription Pattern. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31480982 | ||
| | |mesh-terms=* Aged | ||
* | * Aged, 80 and over | ||
* | * Aging | ||
* | * Antipsychotic Agents | ||
* | * Asian Continental Ancestry Group | ||
|full-text-url=https://sci-hub.do/10. | * Female | ||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Polypharmacy | |||
* Schizophrenia | |||
|keywords=* Asian | |||
* antipsychotic polypharmacy | |||
* older adult patients | |||
* schizophrenia | |||
|full-text-url=https://sci-hub.do/10.1177/0891988719862636 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=A pleiotropic role for exosomes loaded with the amyloid β precursor protein carboxyl-terminal fragments in the brain of Down syndrome patients. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31479861 | ||
|keywords=* | |mesh-terms=* Amyloid beta-Protein Precursor | ||
* | * Brain | ||
* | * Down Syndrome | ||
* | * Exosomes | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * Humans | ||
|keywords=* APP | |||
* APP-CTFs | |||
* Aging | |||
* Brain | |||
* Down syndrome | |||
* Exosomes | |||
* Extracellular vesicles | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960325 | |||
}} | |||
==APPL1== | |||
{{medline-entry | |||
|title=Insulin and adipokine signaling and their cross-regulation in postmortem human brain. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31539648 | |||
|mesh-terms=* Adipokines | |||
* Aging | |||
* Brain | |||
* Humans | |||
* Insulin | |||
* Leptin | |||
* Postmortem Changes | |||
* Signal Transduction | |||
|keywords=* Adipokine | |||
* Adiponectin receptors | |||
* Alzheimer's disease–related dementias | |||
* Leptin receptors | |||
* Postmortem brain | |||
* Type 2 diabetes | |||
* insulin signaling | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960343 | |||
}} | }} | ||
== | ==AQP3== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Transbuccal platform for delivery of lipogenic actives to facial skin: Because fat matters. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32592290 | ||
|keywords=* | |keywords=* adipocytes | ||
* aging | * aging | ||
* | * cosmetics | ||
* | * face | ||
* | * fat pads | ||
* | * integument | ||
* | * subcutis | ||
* | * wrinkles | ||
|full-text-url=https://sci-hub.do/10.1002/term.3087 | |||
|full-text-url=https:// | |||
}} | }} | ||
== | ==AR== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Mechanisms of Androgen Receptor Agonist- and Antagonist-Mediated Cellular Senescence in Prostate Cancer. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32650419 | ||
| | |||
|keywords=* PKB/Akt | |||
* Src | |||
* | * androgen receptor antagonist | ||
* | * antiandrogen | ||
* | * bipolar androgen therapy | ||
* | * cellular senescence | ||
* prostate cancer | |||
* | * supraphysiological androgen levels | ||
* | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408918 | ||
* | |||
|full-text-url=https:// | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Interleukin-23 Represses the Level of Cell Senescence Induced by the Androgen Receptor Antagonists Enzalutamide and Darolutamide in Castration-Resistant Prostate Cancer Cells. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32562083 | |||
| | |||
|keywords=* Androgen receptor antagonists | |||
* Cellular senescence | |||
* Interleukin-23 | |||
* Prostate cancer spheroids | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335377 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=A Landscape of Murine Long Non-Coding RNAs Reveals the Leading Transcriptome Alterations in Adipose Tissue during Aging. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32460027 | ||
| | |||
|keywords=* adipocyte | |||
* adipose tissue | |||
* | |||
* aging | * aging | ||
* | * lncRNA | ||
* | * long non-coding RNA | ||
* | * non-coding RNA | ||
* | * transcriptome | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603645 | |||
}} | |||
{{medline-entry | |||
|title=Senolytic compounds control a distinct fate of androgen receptor agonist- and antagonist-induced cellular senescent LNCaP prostate cancer cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32351687 | |||
|keywords=* Akt inhibitor | |||
* Antiandrogen | |||
* Bcl-2 family inhibitor | |||
* Bipolar androgen therapy | |||
* Cellular senescence | |||
* HSP90 inhibitor | |||
* Prostate cancer | |||
* Senolytic compounds | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7183592 | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Role of gut microbiota in sex- and diet-dependent metabolic disorders that lead to early mortality of androgen receptor-deficient male mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32017595 | |||
|mesh-terms=* Adipocytes | |||
| | * Adipose Tissue | ||
* Animals | |||
* Anti-Bacterial Agents | |||
* Diet | |||
* | * Diet, High-Fat | ||
* | * Feces | ||
* Diet, | * Female | ||
* | * Gastrointestinal Microbiome | ||
* | * Lipid Metabolism | ||
* | * Longevity | ||
* Metabolic | * Male | ||
* Metabolic Diseases | |||
* Mice | * Mice | ||
* Mice, Inbred C57BL | |||
* Mice, Knockout | * Mice, Knockout | ||
* Obesity | * Obesity | ||
* | * Receptors, Androgen | ||
* | * Sex Characteristics | ||
|keywords=* androgen-insensitive syndrome | |||
|keywords=* | * longevity | ||
* | |||
* metabolic syndrome | * metabolic syndrome | ||
* | * testosterone | ||
* | * type 2 diabetes | ||
|full-text-url=https://sci-hub.do/10.1152/ajpendo.00461.2019 | |||
|full-text-url=https:// | |||
}} | }} | ||
== | {{medline-entry | ||
|title=A jaboticaba extract prevents prostatic damage associated with aging and high-fat diet intake. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32003372 | |||
|mesh-terms=* Aging | |mesh-terms=* Aging | ||
* Animals | * Animals | ||
* | * Cell Proliferation | ||
* | * Diet, High-Fat | ||
* | * Male | ||
* | * Mice | ||
* | * Myrtaceae | ||
* | * Plant Extracts | ||
* | * Prostate | ||
* | |||
* | |full-text-url=https://sci-hub.do/10.1039/c9fo02621e | ||
* | }} | ||
|keywords= | {{medline-entry | ||
|full-text-url=https://sci-hub.do/10. | |title=Identifying blood-specific age-related DNA methylation markers on the Illumina MethylationEPIC® BeadChip. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31546163 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Child | |||
* Child, Preschool | |||
* Cohort Studies | |||
* CpG Islands | |||
* DNA Methylation | |||
* Forensic Genetics | |||
* Genetic Markers | |||
* Humans | |||
* Infant | |||
* Infant, Newborn | |||
* Linear Models | |||
* Middle Aged | |||
* Oligonucleotide Array Sequence Analysis | |||
* Young Adult | |||
|keywords=* Age | |||
* CpG sites | |||
* DNA methylation | |||
* Forensic age estimation | |||
* Forensic epigenetics | |||
* Illumina MethylationEPIC | |||
|full-text-url=https://sci-hub.do/10.1016/j.forsciint.2019.109944 | |||
}} | }} | ||
== | ==ARC== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=The Polymorphism rs2968 of [i]LSS[/i] Gene Confers Susceptibility to Age-Related Cataract. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32877255 | ||
| | |mesh-terms=* Aged | ||
* | * Aging | ||
* | * Alleles | ||
* | * Cataract | ||
* | * Female | ||
* | * Gene Expression Regulation | ||
* | * Genetic Association Studies | ||
* | * Genetic Predisposition to Disease | ||
* | * Genotype | ||
* | * Haplotypes | ||
* | * Humans | ||
* | * Hydroxymethylglutaryl CoA Reductases | ||
|full-text-url=https:// | * Intramolecular Transferases | ||
* Lens, Crystalline | |||
* Male | |||
* Middle Aged | |||
* Polymorphism, Single Nucleotide | |||
|keywords=* ARC | |||
* HMGCR | |||
* LSS | |||
* SNPs | |||
* lanosterol | |||
|full-text-url=https://sci-hub.do/10.1089/dna.2020.5872 | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Decreased Anti-Müllerian hormone and Anti-Müllerian hormone receptor type 2 in hypothalami of old Japanese Black cows. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32554955 | |||
|keywords=* Müllerian inhibiting substance | |||
* female reproductive senescence | |||
* gonadotropin-releasing hormone neuron | |||
* preoptic area | |||
* ruminant | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7468072 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Resveratrol delay the cataract formation against naphthalene-induced experimental cataract in the albino rats. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31746523 | ||
|mesh-terms= | |mesh-terms=* Animals | ||
* Cataract | |||
* Animals | * Dose-Response Relationship, Drug | ||
* | |||
* | |||
* Male | * Male | ||
* | * Naphthalenes | ||
* Rats | * Rats | ||
* Rats, | * Rats, Sprague-Dawley | ||
* | * Resveratrol | ||
|keywords=* age-related cataracts | |||
|keywords=* | |||
* aging | * aging | ||
* | * oxidative stress | ||
* | * resveratrol | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1002/jbt.22420 | ||
}} | }} | ||
== | ==AREG== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Targeting amphiregulin ([[AREG]]) derived from senescent stromal cells diminishes cancer resistance and averts programmed cell death 1 ligand (PD-L1)-mediated immunosuppression. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31493351 | ||
|keywords=* | |mesh-terms=* Amphiregulin | ||
* | * Animals | ||
* | * Antineoplastic Agents | ||
* | * B7-H1 Antigen | ||
* | * Cells, Cultured | ||
|full-text-url=https:// | * Cellular Senescence | ||
* Drug Resistance, Neoplasm | |||
* Humans | |||
* Mice | |||
* Mice, Inbred NOD | |||
* Mice, SCID | |||
* Stromal Cells | |||
* Tumor Microenvironment | |||
|keywords=* aging | |||
* amphiregulin | |||
* cancer resistance | |||
* clinical biomarker | |||
* combinational treatment | |||
* programmed cell death 1 ligand | |||
* senescence-associated secretory phenotype | |||
* stroma | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826133 | |||
}} | }} | ||
== | ==ARNT== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Loss of [[ARNT]] in skeletal muscle limits muscle regeneration in aging. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33064329 | ||
|keywords=* aging | |keywords=* aging | ||
* | * hypoxia signaling | ||
* | * muscle regeneration | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1096/fj.202000761RR | ||
}} | }} | ||
== | {{medline-entry | ||
|title=[Arylhydrocarbon receptor nuclear translocator ([[ARNT]]) in human skin during aging.] | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32593246 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Aryl Hydrocarbon Receptor Nuclear Translocator | |||
* Child | |||
* Child, Preschool | |||
* Dermis | |||
* Fetus | |||
* Fibroblasts | |||
* Humans | |||
* Infant | |||
* Infant, Newborn | |||
* Skin | |||
* Skin Aging | |||
* Young Adult | |||
|keywords=* ARNT | |||
* PCNA | |||
* aging | |||
* fibroblasts | |||
* skin | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=The E3 ubiquitin ligase STUB1 attenuates cell senescence by promoting the ubiquitination and degradation of the core circadian regulator BMAL1. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32041778 | ||
| | |||
* | |keywords=* E3 ubiquitin ligase | ||
* | * STIP1 homology and U-box-containing protein 1 (STUB1) | ||
* | * brain and muscle ARNT-like 1 (BMAL1, ARNTL, MOP3) | ||
* | * cell cycle regulation | ||
* | * circadian clock | ||
* | * hydrogen peroxide | ||
* proteasome | |||
* protein degradation | |||
* senescence | |||
* ubiquitylation (ubiquitination) | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7135990 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |||
}} | }} | ||
== | ==ASB7== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=[[ASB7]] Is a Novel Regulator of Cytoskeletal Organization During Oocyte Maturation. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33251222 | ||
| | |||
|keywords=* ASBs | |||
* | * maternal aging | ||
* meiosis | |||
* oocyte | |||
* reproduction | |||
* | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7674779 | ||
* | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |||
}} | }} | ||
== | ==ASL== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Increased blood-brain barrier permeability to water in the aging brain detected using noninvasive multi-TE [[ASL]] MRI. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32910547 | ||
|keywords=* | |keywords=* aging | ||
* Aging | * aquaporin-4 | ||
* | * arterial spin labeling | ||
* | * blood-brain barrier | ||
* | * blood-brain interface | ||
* | * water permeability | ||
* | |full-text-url=https://sci-hub.do/10.1002/mrm.28496 | ||
* | }} | ||
* | {{medline-entry | ||
* | |title=Quantitative Cerebrovascular Reactivity in Normal Aging: Comparison Between Phase-Contrast and Arterial Spin Labeling MRI. | ||
* | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32849217 | ||
* | |||
* | |||
|full-text-url=https:// | |keywords=* MRI | ||
* aging | |||
* arterial spin labeling | |||
* cerebrovascular reactivity | |||
* phase-contrast | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411174 | |||
}} | |||
{{medline-entry | |||
|title=Correcting Task fMRI Signals for Variability in Baseline CBF Improves BOLD-Behavior Relationships: A Feasibility Study in an Aging Model. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32425745 | |||
|keywords=* BOLD deactivation | |||
* aging | |||
* cerebral blood flow | |||
* domain-general | |||
* language fMRI | |||
* semantic fluency | |||
* sensitization | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7205008 | |||
}} | }} | ||
== | ==ASXL1== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=[[ASXL1]] mutation in clonal hematopoiesis. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31945396 | ||
| | |||
|mesh-terms=* Aged | |||
* Aging | |||
* Animals | |||
* Clonal Evolution | |||
* Codon, Nonsense | |||
* Hematologic Neoplasms | |||
* Hematopoiesis | |||
* Humans | |||
* Myeloproliferative Disorders | |||
* Neoplasm Proteins | |||
* Repressor Proteins | |||
|full-text-url=https://sci-hub.do/10.1016/j.exphem.2020.01.002 | |||
|full-text-url=https:// | |||
}} | }} | ||
==ATF4== | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Endoplasmic Reticulum Stress Mediates Vascular Smooth Muscle Cell Calcification via Increased Release of Grp78-Loaded Extracellular Vesicles. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33297752 | ||
|keywords=* | |keywords=* aging | ||
* | * arteries | ||
* | * endoplasmic reticulum | ||
* | * vascular calcification | ||
* | * warfarin | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1161/ATVBAHA.120.315506 | ||
}} | }} | ||
==ATF6== | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Cellular proteostasis decline in human senescence. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33257563 | ||
|keywords=* | |keywords=* UPR | ||
* | * chaperones | ||
* | * heat shock response | ||
* | * protein homeostasis | ||
* senescence | * senescence | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1073/pnas.2018138117 | ||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Impact of endoplasmic reticulum stress on oocyte aging mechanisms. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32514562 | ||
|keywords=* | |keywords=* ER stress | ||
* | * GRP78 | ||
* | * PERK | ||
* | * eIF2α | ||
* | * endoplasmic reticulum | ||
|full-text-url=https:// | * mouse oocyte | ||
* oocyte aging | |||
* salubrinal | |||
|full-text-url=https://sci-hub.do/10.1093/molehr/gaaa040 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=ER stress activates immunosuppressive network: implications for aging and Alzheimer's disease. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32279085 | ||
|keywords=* | |keywords=* Ageing | ||
* | * Immunometabolism | ||
* | * Immunosenescence | ||
* | * Immunosuppression | ||
* | * Inflammaging | ||
|full-text-url=https:// | * Neurodegeneration | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7220864 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Towards Age-Related Anti-Inflammatory Therapy: Klotho Suppresses Activation of ER and Golgi Stress Response in Senescent Monocytes. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31972978 | ||
|keywords=* | |keywords=* ER stress response | ||
* | * Golgi apparatus/complex stress response | ||
* | * SASP | ||
* | * immunosenescence | ||
* | * klotho | ||
* | * monocytes | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072557 | ||
}} | }} | ||
== | ==ATG3== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Estrogen Signaling Induces Mitochondrial Dysfunction-Associated Autophagy and Senescence in Breast Cancer Cells. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32244623 | ||
|keywords=* | |keywords=* Estrogen | ||
* | * MCF-7 | ||
* | * MDA-MB-231 | ||
* | * autophagy | ||
* | * mitochondria | ||
|full-text-url=https:// | * senescence | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235898 | |||
}} | }} | ||
== | ==ATG5== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Autophagy and heat-shock response impair stress granule assembly during cellular senescence. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33049246 | ||
|keywords=* | |keywords=* Ageing | ||
* | * Cellular senescence | ||
* | * Molecular biology | ||
* | * Oxidative stress | ||
* | * Stress granules | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.mad.2020.111382 | ||
}} | }} | ||
== | ==ATG7== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Age-related impairment of autophagy in cervical motor neurons. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33290859 | ||
|keywords=* | |keywords=* Aging | ||
* | * Autophagy | ||
* | * Motor neuron | ||
* | * Neuromuscular dysfunction | ||
* | * Spinal cord | ||
|full-text-url=https://sci-hub.do/10.1016/j. | |full-text-url=https://sci-hub.do/10.1016/j.exger.2020.111193 | ||
}} | }} | ||
== | {{medline-entry | ||
|title=Comprehensive Bioinformatics Identifies Key microRNA Players in [[ATG7]]-Deficient Lung Fibroblasts. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32527064 | |||
|keywords=* autophagy | |||
* bioinformatics | |||
* functional network analysis | |||
* lung fibrosis | |||
* miR | |||
* proteomics | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7312768 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Regulation of autophagy by DNA G-quadruplexes. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32420812 | ||
| | |||
| | |||
|keywords=* G-quadruplex | |||
* aging | |||
* | * astrocytes | ||
* autophagy | |||
* neurodegeneration | |||
* neurons | |||
|full-text-url=https://sci-hub.do/10.1080/15548627.2020.1769991 | |||
}} | |||
{{medline-entry | |||
|title=[[ATG7]] is essential for secretion of iron from ameloblasts and normal growth of murine incisors during aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31880208 | |||
|keywords=* ATG7 | |||
* Aging | * Aging | ||
* | * ameloblast | ||
* | * autophagy | ||
* | * epithelium | ||
* | * ferritin | ||
* | * hyperplasia | ||
* | * iron | ||
* | * secretion | ||
* | * tooth | ||
|full-text-url=https://sci-hub.do/10.1080/15548627.2019.1709764 | |||
|full-text-url=https://sci-hub.do/10. | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Enhancing Autophagy Diminishes Aberrant Ca Homeostasis and Arrhythmogenesis in Aging Rabbit Hearts. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31636573 | ||
|keywords=* aging | |keywords=* aging | ||
* | * autophagy | ||
* | * calcium | ||
* | * cardiac physiology | ||
* | * ryanodine receptor | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787934 | ||
}} | }} | ||
== | ==ATM== | ||
{{medline-entry | |||
|title=S[[ATM]]F Suppresses the Premature Senescence Phenotype of the [[ATM]] Loss-of-Function Mutant and Improves Its Fertility in [i]Arabidopsis[/i]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33143308 | |||
|keywords=* ATM | |||
* DNA damage | |||
* SATMF | |||
* fertility | |||
* leaf senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662627 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title=[ | |title=[[ATM]] mediated-p53 signaling pathway forms a novel axis for senescence control. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32949791 | ||
| | |||
| | |||
|keywords=* ATM inhibition | |||
* Metabolic reprogrammer | |||
* Mitochondria | |||
* P53 | |||
* Senescence alleviation | |||
|full-text-url=https://sci-hub.do/10.1016/j.mito.2020.09.002 | |||
}} | |||
{{medline-entry | |||
|title=Non-canonical [[ATM]]/MRN activities temporally define the senescence secretory program. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32785991 | |||
|keywords=* DNA damage response | |||
| | * MRN complex | ||
* NF-κB | |||
* chromatin | |||
* senescence secretome | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7534619 | |||
* | |||
* | |||
* | |||
* | |||
|full-text-url=https:// | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=[[ATM]] is a key driver of NF-κB-dependent DNA-damage-induced senescence, stem cell dysfunction and aging. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32201398 | ||
|keywords=* | |keywords=* ATM | ||
* | * DNA damage response | ||
* | * NF-κB | ||
* | * aging | ||
* | * cellular senescence | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138542 | ||
}} | }} | ||
== | {{medline-entry | ||
|title=[[ATM]] suppresses leaf senescence triggered by DNA double-strand break through epigenetic control of senescence-associated genes in Arabidopsis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32163596 | |||
|keywords=* | |keywords=* | ||
* | Arabidopsis thaliana | ||
* | |||
* | * ATM | ||
* | * DNA repair | ||
* senescence | * double-strand breaks | ||
|full-text-url=https:// | * histone methylation | ||
* leaf senescence | |||
|full-text-url=https://sci-hub.do/10.1111/nph.16535 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Glioblastoma Cells Do Not Affect Axitinib-Dependent Senescence of HUVECs in a Transwell Coculture Model. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32098270 | ||
|mesh-terms=* | |mesh-terms=* Ataxia Telangiectasia Mutated Proteins | ||
* Axitinib | |||
* | |||
* Cell Line, Tumor | * Cell Line, Tumor | ||
* | * Cellular Senescence | ||
* | * Coculture Techniques | ||
* | * Gene Expression Profiling | ||
* | * Glioblastoma | ||
* Human Umbilical Vein Endothelial Cells | |||
* Humans | * Humans | ||
* | * Phosphorylation | ||
|keywords=* Axitinib | |||
|keywords=* | * endothelial cells | ||
* | * glioblastoma | ||
* | * senescence | ||
* | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073100 | ||
|full-text-url=https:// | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Declining BRCA-Mediated DNA Repair in Sperm Aging and its Prevention by Sphingosine-1-Phosphate. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31916095 | |||
|keywords=* | |keywords=* Aging | ||
* DNA fragmentation | |||
* | * Gene expression | ||
* | * Sperm | ||
* | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065969 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=BRCA-related [[ATM]]-mediated DNA double-strand break repair and ovarian aging. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31822904 | ||
|keywords=* | |mesh-terms=* Aging | ||
* | * Animals | ||
* | * Ataxia Telangiectasia | ||
* | * BRCA1 Protein | ||
* | * BRCA2 Protein | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * DNA Breaks, Double-Stranded | ||
* DNA Repair | |||
* Female | |||
* Fertility | |||
* Fertility Preservation | |||
* Humans | |||
* Mice | |||
* Oocytes | |||
* Ovarian Follicle | |||
* Ovarian Reserve | |||
* Ovary | |||
|keywords=* | |||
BRCA | |||
* | |||
BRCA1/2 | |||
* DNA repair | |||
* anti-Mullerian hormone | |||
* chemotherapy | |||
* mutations | |||
* oocyte | |||
* ovarian aging | |||
* ovarian reserve | |||
* ovarian response | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6935693 | |||
}} | }} | ||
== | {{medline-entry | ||
|title=[[ATM]] Deficiency Accelerates DNA Damage, Telomere Erosion, and Premature T Cell Aging in HIV-Infected Individuals on Antiretroviral Therapy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31781094 | |||
|mesh-terms=* Anti-Retroviral Agents | |||
* Ataxia Telangiectasia Mutated Proteins | |||
* Cellular Senescence | |||
* DNA Damage | |||
* HIV Infections | |||
* Humans | |||
* T-Lymphocytes | |||
* Telomere | |||
|keywords=* ATM | |||
* DNA damage repair | |||
* HIV | |||
* T cell homeostasis | |||
* apoptosis | |||
* immune aging | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856652 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=SMG1 heterozygosity exacerbates haematopoietic cancer development in Atm null mice by increasing persistent DNA damage and oxidative stress. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31565865 | ||
|keywords=* | |mesh-terms=* Animals | ||
* | * Ataxia Telangiectasia Mutated Proteins | ||
* | * Carcinogenesis | ||
* | * Cells, Cultured | ||
* | * DNA Damage | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * Embryo, Mammalian | ||
* Fibroblasts | |||
* Gamma Rays | |||
* Hematologic Neoplasms | |||
* Heterozygote | |||
* Kaplan-Meier Estimate | |||
* Longevity | |||
* Lymphoma | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* Oxidative Stress | |||
* Protein-Serine-Threonine Kinases | |||
|keywords=* DNA damage | |||
* cancer | |||
* inflammation | |||
* lymphoma | |||
* oxidative stress | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850945 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=LncRNA RP11-670E13.6, interacted with hnRNPH, delays cellular senescence by sponging microRNA-663a in UVB damaged dermal fibroblasts. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31444317 | ||
| | |mesh-terms=* Cell Proliferation | ||
* | * Cellular Senescence | ||
* | * Fibroblasts | ||
* | * Heterogeneous-Nuclear Ribonucleoprotein Group F-H | ||
* | * Humans | ||
* senescence | * MicroRNAs | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * RNA, Long Noncoding | ||
* Skin | |||
* Skin Aging | |||
* Ultraviolet Rays | |||
|keywords=* cellular senescence | |||
* dermal fibroblast | |||
* lncRNA | |||
* microRNA | |||
* ultraviolet B | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6738423 | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Tel1/[[ATM]] Signaling to the Checkpoint Contributes to Replicative Senescence in the Absence of Telomerase. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31391264 | |||
|mesh-terms=* Amino Acid Substitution | |||
| | * Ataxia Telangiectasia Mutated Proteins | ||
| | * Cell Cycle Checkpoints | ||
| | * Cell Division | ||
|mesh-terms=* Aging | * Cellular Senescence | ||
* DNA Damage | |||
* DNA Replication | |||
* DNA, Single-Stranded | |||
* DNA-Binding Proteins | |||
* Intracellular Signaling Peptides and Proteins | |||
* Mutant Proteins | |||
* Protein-Serine-Threonine Kinases | |||
* Saccharomyces cerevisiae | |||
* Saccharomyces cerevisiae Proteins | |||
* Telomerase | |||
* Telomere | |||
* Telomere Shortening | |||
|keywords=* Tel1 | |||
* checkpoint | |||
* replicative senescence | |||
* telomere | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6781906 | |||
}} | |||
==ATP7A== | |||
{{medline-entry | |||
|title=Adipocyte-specific disruption of ATPase copper transporting α in mice accelerates lipoatrophy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31396659 | |||
|mesh-terms=* 3T3-L1 Cells | |||
* Adipocytes | |||
* Adipose Tissue, White | |||
* Aging | |||
* Animals | * Animals | ||
* | * Body Weight | ||
* | * Copper | ||
* | * Copper-Transporting ATPases | ||
* | * Diet, High-Fat | ||
* Energy Metabolism | |||
* Insulin Resistance | |||
* Lipid Metabolism | |||
* Lipodystrophy | |||
* Lipolysis | |||
* Mice | * Mice | ||
* Mice, | * Mice, Knockout | ||
|keywords=* ATP7A | |||
* Adipose tissues | |||
* Copper | |||
* Insulin resistance | |||
|keywords=* | * Lipoatrophy | ||
* | |full-text-url=https://sci-hub.do/10.1007/s00125-019-4966-2 | ||
* | |||
* | |||
* | |||
|full-text-url=https:// | |||
}} | }} | ||
== | ==ATR== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Bloodstain age estimation through infrared spectroscopy and Chemometric models. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33077037 | ||
|keywords=* Aging | |||
* Bloodstains | |||
* Chemometric | |||
* Forensic chemistry | |||
* MLR | |||
* PLSR | |||
|full-text-url=https://sci-hub.do/10.1016/j.scijus.2020.07.004 | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Artificial Intelligence and fourier-transform infrared spectroscopy for evaluating water-mediated degradation of lubricant oils. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32887052 | |||
|keywords=* | |keywords=* ANN | ||
* | * Artificial neural networks | ||
* | * FTIR | ||
* | * LDA | ||
* | * Linear discriminant analysis | ||
|full-text-url=https:// | * Lubricant oil aging | ||
|full-text-url=https://sci-hub.do/10.1016/j.talanta.2020.121312 | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Senescence Induction by Combined Ionizing Radiation and DNA Damage Response Inhibitors in Head and Neck Squamous Cell Carcinoma Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32883016 | |||
| | |keywords=* ATM | ||
| | * ATR | ||
| | * DNA damage response inhibitor | ||
| | * DNAPK | ||
* | * HNSCC | ||
* homologous recombination | |||
* ionizing radiation | |||
* kinase inhibitor | |||
* radiosensitivity | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7563880 | |||
}} | |||
{{medline-entry | |||
|title=Kinetics of thermal degradation and lifetime study of poly(vinylidene fluoride) (PVDF) subjected to bioethanol fuel accelerated aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32775731 | |||
|keywords=* Activation energy | |||
* Aging | * Aging | ||
* | * Bioethanol fuel | ||
* | * Kinetics analysis | ||
* | * Lifetime prediction | ||
* | * Materials chemistry | ||
* | * Materials science | ||
* | * Poly(vinylidene fluoride) | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7398943 | |||
|full-text-url=https:// | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Supraphysiological protection from replication stress does not extend mammalian lifespan. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32253367 | |||
|keywords=* DNA damage | |||
* aging | |||
* cancer | |||
* mouse models | |||
* replication stress | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7185120 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Assessing the Retest Reliability of Prefrontal EEG Markers of Brain Rhythm Slowing in the Eyes-Closed Resting State. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32253926 | ||
|keywords=* | |keywords=* EEG | ||
* | * EEG slowing | ||
* | * brain aging | ||
* | * dominant frequency | ||
|full-text-url=https:// | * prefrontal | ||
|full-text-url=https://sci-hub.do/10.1177/1550059420914832 | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Effects of Hydrogen Peroxide and Sodium Hypochlorite Aging on Properties and Performance of Polyethersulfone Ultrafiltration Membrane. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31635217 | |||
|mesh-terms=* Humic Substances | |||
* Hydrogen Peroxide | |||
* Hydrophobic and Hydrophilic Interactions | |||
* Membranes, Artificial | |||
* Polymers | |||
* Sodium Hypochlorite | |||
* Sulfones | |||
* Ultrafiltration | |||
|keywords=* chemical cleaning | |||
* hydrogen peroxide (H2O2) | |||
* membrane aging | |||
* polyethersulfone (PES) ultrafiltration (UF) membrane | |||
* sodium hypochlorite (NaClO) | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6843545 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=NF-κB signaling in skin aging. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31634486 | ||
| | |||
|mesh-terms=* Adult | |mesh-terms=* Animals | ||
* | * Cellular Senescence | ||
* | * Humans | ||
* | * NF-kappa B | ||
* | * Phenotype | ||
* | * Signal Transduction | ||
* | * Skin Aging | ||
* | * Skin Neoplasms | ||
* | |keywords=* NF-κB | ||
* Senescence-associated secretory phenotype | |||
* Skin aging | |||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2019.111160 | |||
}} | |||
{{medline-entry | |||
|title=Development of a w/o emulsion using ionic liquid strategy for transdermal delivery of anti - aging component α - lipoic acid: Mechanism of different ionic liquids on skin retention and efficacy evaluation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31634554 | |||
|mesh-terms=* Administration, Cutaneous | |||
* Animals | |||
* Emulsions | |||
* Hydroxyproline | |||
* Ionic Liquids | |||
* Male | |||
* Rats, Wistar | |||
* Skin | |||
* Skin Absorption | |||
* Skin Aging | |||
* Thioctic Acid | |||
* Ultraviolet Rays | |||
|keywords=* Anti – aging efficacy | |||
* Ionic liquids | |||
* Skin retention | |||
* Solubility | |||
* Α – lipoic acid | |||
|full-text-url=https://sci-hub.do/10.1016/j.ejps.2019.105042 | |||
}} | |||
{{medline-entry | |||
|title=Effect of Nitrogen-Doped Graphene Oxide on the Aging Behavior of Nitrile-Butadiene Rubber. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31658636 | |||
|keywords=* aging resistance | |||
* graphene oxide | |||
* nitrile-butadiene rubber | |||
* nitrogen-doped | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835680 | |||
}} | |||
==AVP== | |||
{{medline-entry | |||
|title=Plasma oxytocin and vasopressin levels in young and older men and women: Functional relationships with attachment and cognition. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31606581 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Age Factors | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Anxiety | |||
* Avoidance Learning | |||
* Cognition | |||
* Cohort Studies | |||
* Female | * Female | ||
* Humans | * Humans | ||
* Male | * Male | ||
* Middle Aged | * Middle Aged | ||
* | * Object Attachment | ||
* | * Oxytocin | ||
* | * Sex Factors | ||
* | * Vasopressins | ||
* | * Young Adult | ||
* | |keywords=* Age | ||
* Sex | * Attachment anxiety | ||
* | * Oxytocin | ||
* Processing speed | |||
* Sex | |||
| | * Vasopressin | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943921 | |||
}} | |||
==B4GALT1== | |||
{{medline-entry | |||
|title=Expression of β-1,4-galactosyltransferases during Aging in Caenorhabditis elegans. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33171474 | |||
* | |keywords=* Biomarker | ||
* | * Glycosylation | ||
* | * Lifespan regulation | ||
* | * bre-4 | ||
|full-text-url=https:// | * sqv-3 | ||
|full-text-url=https://sci-hub.do/10.1159/000510722 | |||
}} | }} | ||
== | ==BACE1== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Electric Stimulation of Neurogenesis Improves Behavioral Recovery After Focal Ischemia in Aged Rats. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32742258 | ||
|keywords= | |keywords=* aging | ||
* aging | * behavior | ||
* | * electrical stimulation | ||
* | * neurogenesis | ||
* | * rats | ||
* | * stroke | ||
* | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7365235 | ||
}} | |||
{{medline-entry | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |title=Disruption of synaptic expression pattern and age-related DNA oxidation in a neuronal model of lead-induced toxicity. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32058320 | |||
|keywords=* Aging mice | |||
* Brain-derived neurotrophic factor precursor | |||
* Latent expression pattern | |||
* Lead | |||
* Pubertal exposure | |||
* Synaptic deficits | |||
* Tau phosphorylation | |||
|full-text-url=https://sci-hub.do/10.1016/j.etap.2020.103350 | |||
}} | }} | ||
==BAD== | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=I imidazoline receptor modulation protects aged SAMP8 mice against cognitive decline by suppressing the calcineurin pathway. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33128688 | ||
|keywords=* | |keywords=* Aging | ||
* | * Alzheimer’s disease | ||
* | * Behavior | ||
* | * I2 imidazoline receptors | ||
* | * NFAT | ||
* | * Neuroinflammation | ||
* | * Neuroprotection | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1007/s11357-020-00281-2 | ||
}} | }} | ||
==BAK1== | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Developmental Attenuation of Neuronal Apoptosis by Neural-Specific Splicing of Bak1 Microexon. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32710818 | ||
|keywords=* | |mesh-terms=* Animals | ||
* | * Apoptosis | ||
* | * Brain | ||
* | * Cell Line, Tumor | ||
* | * Cells, Cultured | ||
* | * Female | ||
* | * Heterogeneous-Nuclear Ribonucleoproteins | ||
* | * Male | ||
|full-text-url=https:// | * Mice | ||
* Mice, Inbred C57BL | |||
* Mutation | |||
* Neural Stem Cells | |||
* Neurogenesis | |||
* Nonsense Mediated mRNA Decay | |||
* Polypyrimidine Tract-Binding Protein | |||
* RNA Splicing | |||
* bcl-2 Homologous Antagonist-Killer Protein | |||
|keywords=* AS-NMD | |||
* BAK | |||
* BCL2 family proteins | |||
* NMD | |||
* PTB | |||
* PTBP | |||
* PTBP2 | |||
* UPF2 | |||
* alternative splicing | |||
* cell death | |||
* neural development | |||
* neurogenesis | |||
* neuronal lifespan | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7529960 | |||
}} | }} | ||
== | ==BANF1== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=An additional case of Néstor-Guillermo progeria syndrome diagnosed in early childhood. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32783369 | ||
|keywords=* | |keywords=* BANF1 | ||
* | * Néstor-Guillermo progeria syndrome | ||
* | * premature aging | ||
* | * progeria | ||
* | * whole exome sequencing | ||
|full-text-url=https://sci-hub.do/10. | |full-text-url=https://sci-hub.do/10.1002/ajmg.a.61777 | ||
}} | }} | ||
== | ==BATF== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=LncRNA-ES3 inhibition by Bhlhe40 is involved in high glucose-induced calcification/senescence of vascular smooth muscle cells. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32483833 | ||
| | |||
* | |keywords=* Bhlhe40 | ||
* | * VSMC calcification/senescence | ||
* | * diabetes | ||
* lncRNA-ES3 | |||
* microRNA | |||
* vascular aging | |||
|full-text-url=https://sci-hub.do/10.1111/nyas.14381 | |||
* | |||
* | |||
|full-text-url=https://sci-hub.do/10. | |||
}} | }} | ||
== | ==BAX== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Clearance of therapy-induced senescent tumor cells by the senolytic ABT-263 via interference with BCL-X -[[BAX]] interaction. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32652830 | |||
| | |||
|keywords=* | |keywords=* ABT-263 | ||
* | * BCL-XL | ||
* | * chemotherapy | ||
* | * radiation | ||
* | * senescence | ||
|full-text-url=https:// | * senolytic | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7530780 | |||
}} | }} | ||
== | {{medline-entry | ||
|title=CREB Signaling Mediates Dose-Dependent Radiation Response in the Murine Hippocampus Two Years after Total Body Exposure. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31657930 | |||
|keywords=* | |keywords=* CREB signaling | ||
* | * aging | ||
* | * brain | ||
* | * hippocampus | ||
* | * ionizing radiation | ||
|full-text-url=https:// | * label-free proteomics | ||
|full-text-url=https://sci-hub.do/10.1021/acs.jproteome.9b00552 | |||
}} | }} | ||
== | ==BAZ2B== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Two conserved epigenetic regulators prevent healthy ageing. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32103178 | ||
| | |mesh-terms=* Aging | ||
* | * Animals | ||
* | * Caenorhabditis elegans | ||
* | * Caenorhabditis elegans Proteins | ||
* | * Cognition | ||
|full-text-url=https://sci-hub.do/10. | * Cognitive Dysfunction | ||
* Epigenesis, Genetic | |||
* Healthy Aging | |||
* Histone-Lysine N-Methyltransferase | |||
* Histones | |||
* Humans | |||
* Longevity | |||
* Lysine | |||
* Male | |||
* Memory | |||
* Methylation | |||
* Mice | |||
* Mitochondria | |||
* Neurons | |||
* Proteins | |||
* RNA Interference | |||
* Spatial Learning | |||
* Transcription Factors, General | |||
|full-text-url=https://sci-hub.do/10.1038/s41586-020-2037-y | |||
}} | }} | ||
== | ==BCL6== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Ecto-NTPDase CD39 is a negative checkpoint that inhibits follicular helper cell generation. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32452837 | ||
|keywords=* | |keywords=* Adaptive immunity | ||
* | * Aging | ||
* | * Cellular senescence | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * T cells | ||
* Vaccines | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324201 | |||
}} | }} | ||
==BCR== | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=The presence of CLL-associated stereotypic B cell receptors in the normal [[BCR]] repertoire from healthy individuals increases with age. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31485252 | ||
|keywords=* Aging | |keywords=* Aging | ||
* | * B-lymphocyte | ||
* | * BCR repertoire | ||
* | * CLL | ||
* | * Stereotypic BCR | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6714092 | ||
}} | }} | ||
== | ==BDNF== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Influence of [i][[BDNF]][/i] Genetic Polymorphisms in the Pathophysiology of Aging-related Diseases. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33269104 | ||
|keywords=* | |keywords=* Aging | ||
* | * BDNF gene | ||
* | * aging-related diseases | ||
* | * polymorphism | ||
* | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673859 | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | }} | ||
{{medline-entry | |||
|title=Moderators of the Impact of (Poly)Phenols Interventions on Psychomotor Functions and [[BDNF]]: Insights from Subgroup Analysis and Meta-Regression. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32961777 | |||
|keywords=* aging | |||
* antioxidant | |||
* brain functions | |||
* brain plasticity | |||
* cognition | |||
* psychomotor functions | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7551086 | |||
}} | |||
{{medline-entry | |||
|title=Astroglia-Derived [[BDNF]] and MSK-1 Mediate Experience- and Diet-Dependent Synaptic Plasticity. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32708382 | |||
|keywords=* AMPA receptors | |||
* Arc/Arg3.1 | |||
* GABA receptors | |||
* TrkB receptors | |||
* aging | |||
* calcium signalling | |||
* dendritic spines | |||
* diet | |||
* enriched environment | |||
* glia-neuron interactions | |||
* ion conductance microscopy | |||
* synaptic scaling | |||
* synaptic strength | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407492 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=[[BDNF]] reverses aging-related microglial activation. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32664974 | ||
|keywords=* Aging | |keywords=* Aging | ||
* | * BDNF | ||
* | * CREB | ||
* | * Microglial activation | ||
* | * NF-кB | ||
* | * TrkB | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7362451 | ||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title=The | |title=High Supervised Resistance Training in Elderly Women: The Role of Supervision Ratio. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32509119 | ||
|keywords=* Aging | |||
* exercise | |||
* functional capacity | |||
* muscle strength | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7241618 | |||
|keywords=* | |||
* | |||
* | |||
* | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Metformin regulates astrocyte reactivity in Parkinson's disease and normal aging. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32497590 | ||
|keywords=* | |keywords=* Aging | ||
* | * Dorsal striatum | ||
* | * Metformin | ||
* | * Parkinson's disease | ||
* | * Reactive astrocyte | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.neuropharm.2020.108173 | ||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Aging-Induced Brain-Derived Neurotrophic Factor in Adipocyte Progenitors Contributes to Adipose Tissue Dysfunction. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32489703 | ||
| | |||
|keywords=* BDNF | |||
* adipocyte progenitors | |||
* adipose tissue | |||
* aging | |||
* sympathetic innervation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7220283 | |||
}} | |||
{{medline-entry | |||
|title=The Role of [[BDNF]] on Aging-Modulation Markers. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32397504 | |||
|keywords=* BBB | |||
* astrocytes | |||
* brain aging | |||
* in vivo model | |||
* low dose BDNF | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7287884 | |||
|keywords=* | |||
* | |||
* | |||
* | |||
* | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Spermidine and spermine delay brain aging by inducing autophagy in SAMP8 mice. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32268299 | ||
|keywords=* | |keywords=* aging | ||
* | * autophagy | ||
* | * mitochondrial dysfunction | ||
* | * polyamine | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7185103 | ||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Microglia senescence occurs in both substantia nigra and ventral tegmental area. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32275335 | ||
|keywords=* | |keywords=* Parkinson's disease | ||
* | * aging-dependent neurodegeneration | ||
* | * dopamine neurons | ||
* | * microglia complexity | ||
* | * stereological analyses | ||
|full-text-url=https://sci-hub.do/10. | * tyrosine hydroxylase; microglia senescence | ||
|full-text-url=https://sci-hub.do/10.1002/glia.23834 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Towards an understanding of the physical activity-[[BDNF]]-cognition triumvirate: A review of associations and dosage. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32171785 | ||
|mesh-terms=* Aging | |mesh-terms=* Aging | ||
* | * Brain-Derived Neurotrophic Factor | ||
* | * Cognition | ||
* | * Exercise | ||
* Healthy Aging | |||
* Humans | |||
|keywords=* Ageing | |||
* BDNF | |||
* Brain | * Brain | ||
* | * Physical activity | ||
* | |full-text-url=https://sci-hub.do/10.1016/j.arr.2020.101044 | ||
* | }} | ||
* | {{medline-entry | ||
* | |title=Impact of [[BDNF]] and sex on maintaining intact memory function in early midlife. | ||
* | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31948671 | ||
* | |||
|mesh-terms=* Brain | |||
* Brain-Derived Neurotrophic Factor | |||
* Cognition | |||
* Female | |||
* Humans | |||
* Magnetic Resonance Imaging | |||
* Male | * Male | ||
* | * Memory | ||
* | * Memory, Short-Term | ||
* Menopause | |||
* Middle Aged | |||
* Neuroprotective Agents | |||
* Neuropsychological Tests | |||
* | * Reproduction | ||
* | * Sex Characteristics | ||
* | |||
* | |||
* | |||
* | |||
|keywords=* Aging | |keywords=* Aging | ||
* | * BDNF | ||
* | * Hormones | ||
* | * Memory | ||
* | * Menopause | ||
* | * Sex differences | ||
|full-text-url=https://sci-hub.do/10.1016/j. | |full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2019.12.014 | ||
}} | }} | ||
== | {{medline-entry | ||
|title=Testosterone replacement causes dose-dependent improvements in spatial memory among aged male rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31901624 | |||
|keywords=* Aging | |||
* BDNF | |||
* Object location memory | |||
* Radial arm maze | |||
* Spatial memory | |||
* Testosterone | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080566 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=The effects of aerobic exercise intensity on memory in older adults. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31665610 | ||
|keywords=* | |keywords=* BDNF | ||
* | * activité physique | ||
* aging | * aging | ||
* | * cognition | ||
* | * entraînement par intervalles de haute intensité | ||
* | * executive functions | ||
|full-text-url=https://sci-hub.do/10. | * exercice | ||
* exercise | |||
* fonctions exécutives | |||
* high-intensity interval training | |||
* memory | |||
* mémoire | |||
* physical activity | |||
* vieillissement | |||
|full-text-url=https://sci-hub.do/10.1139/apnm-2019-0495 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Protective effects of vitamin D on neurophysiologic alterations in brain aging: role of brain-derived neurotrophic factor ([[BDNF]]). | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31524100 | ||
|keywords=* | |keywords=* BDNF | ||
* | * Brain aging | ||
* | * neurophysiologic alterations | ||
* | * neuroprotection | ||
|full-text-url=https://sci-hub.do/10. | * vitamin D supplementation | ||
|full-text-url=https://sci-hub.do/10.1080/1028415X.2019.1665854 | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Differential Effects of Physical Exercise, Cognitive Training, and Mindfulness Practice on Serum [[BDNF]] Levels in Healthy Older Adults: A Randomized Controlled Intervention Study. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31498125 | ||
|mesh-terms=* Aged | |||
* Brain-Derived Neurotrophic Factor | |||
* Cognition | |||
* Correlation of Data | |||
* Exercise | |||
|mesh-terms= | |||
* Aged | |||
* | |||
* | |||
* | |||
* | |||
* Female | * Female | ||
* | * Healthy Aging | ||
* Healthy Lifestyle | |||
* Humans | * Humans | ||
* | * Learning | ||
* Male | * Male | ||
* | * Mindfulness | ||
* | * Neuropsychological Tests | ||
* | * Outcome Assessment, Health Care | ||
* | |keywords=* Aging | ||
* | * brain-derived neurotrophic factor | ||
* cognitive training | |||
* | * mindfulness | ||
* | * physical exercise | ||
* | |full-text-url=https://sci-hub.do/10.3233/JAD-190756 | ||
|full-text-url=https://sci-hub.do/10. | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Dietary Supplementation with Fish Oil or Conjugated Linoleic Acid Relieves Depression Markers in Mice by Modulation of the Nrf2 Pathway. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31398773 | ||
| | |mesh-terms=* Aging | ||
* Animals | |||
* Antidepressive Agents | |||
* | * Autoimmunity | ||
* | * Biomarkers | ||
* | * Brain | ||
* | * Brain-Derived Neurotrophic Factor | ||
* | * Depression | ||
|full-text-url=https://sci-hub.do/10. | * Dietary Supplements | ||
* Docosahexaenoic Acids | |||
* Fatty Acid Elongases | |||
* Fatty Acids | |||
* Fish Oils | |||
* Inflammation | |||
* Linoleic Acids, Conjugated | |||
* Liver | |||
* Male | |||
* Mice, Inbred MRL lpr | |||
* NF-E2-Related Factor 2 | |||
* Oxidative Stress | |||
* Stearoyl-CoA Desaturase | |||
* Tumor Necrosis Factor-alpha | |||
|keywords=* brain derived neurotrophic factor | |||
* brain fatty acid profile | |||
* conjugated linoleic acid | |||
* depression | |||
* fish oil | |||
* nuclear erythroid related factor-2 | |||
|full-text-url=https://sci-hub.do/10.1002/mnfr.201900243 | |||
}} | }} | ||
== | ==BGN== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Alterations of local functional connectivity in lifespan: A resting-state fMRI study. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32462815 | ||
|keywords=* | |keywords=* four-dimensional spatial-temporal consistency of local neural activity | ||
* | * lifespan | ||
* | * local functional connectivity | ||
* | * local functional connectivity density | ||
* | * resting-state fMRI | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375100 | ||
}} | }} | ||
== | ==BHLHE40== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Thyroid hormone induces cellular senescence in prostate cancer cells through induction of DEC1. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32360904 | ||
|keywords=* | |mesh-terms=* Basic Helix-Loop-Helix Transcription Factors | ||
* | * Cell Line, Tumor | ||
|full-text-url=https:// | * Cell Proliferation | ||
* Cellular Senescence | |||
* Cyclin-Dependent Kinase Inhibitor p15 | |||
* Homeodomain Proteins | |||
* Humans | |||
* Male | |||
* Prostatic Neoplasms | |||
* Thyroid Hormones | |||
|keywords=* BHLHE40 | |||
* Cellular senescence | |||
* DEC1 | |||
* Prostate cancer | |||
* Thyroid hormone | |||
|full-text-url=https://sci-hub.do/10.1016/j.jsbmb.2020.105689 | |||
}} | }} | ||
== | ==BLM== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=[Olmesartan inhibits age-associated migration and invasion of human aortic vascular smooth muscle cells by upregulating miR-3133 axis]. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32895132 | ||
|keywords=* | |mesh-terms=* Cell Movement | ||
* | * Cell Proliferation | ||
* | * Cells, Cultured | ||
* | * Humans | ||
* | * Imidazoles | ||
* | * Matrix Metalloproteinase 2 | ||
|full-text-url=https:// | * MicroRNAs | ||
* Muscle, Smooth, Vascular | |||
* Myocytes, Smooth Muscle | |||
* Tetrazoles | |||
|keywords=* aging | |||
* invasion | |||
* microRNA | |||
* migration | |||
* olmesartan | |||
* vascular smooth muscle cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7225100 | |||
}} | }} | ||
== | ==BMI1== | ||
{{medline-entry | {{medline-entry | ||
|title=[ | |title=Senescence Induced by [[BMI1]] Inhibition Is a Therapeutic Vulnerability in H3K27M-Mutant DIPG. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33086074 | ||
| | |||
|mesh-terms=* | |||
* | |keywords=* BH3 mimetics | ||
* | * BMI1 | ||
* | * DIPG | ||
* | * H3K27M mutant | ||
* | * H3WT | ||
* | * PTC 028 | ||
* | * RNAi screen | ||
* | * SASP | ||
* | * senescence | ||
|keywords=* | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574900 | ||
* | }} | ||
* | ==BMP2== | ||
* | |||
{{medline-entry | |||
|title=Interleukin-1β-Induced Senescence Promotes Osteoblastic Transition of Vascular Smooth Muscle Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32126555 | |||
|mesh-terms=* Adult | |||
|full-text-url=https://sci-hub.do/10. | * Aged | ||
* Aged, 80 and over | |||
* Female | |||
* Humans | |||
* Interleukin-1beta | |||
* Male | |||
* Middle Aged | |||
* Muscle, Smooth, Vascular | |||
* Osteoblasts | |||
|keywords=* Interleukin-1β | |||
* Osteoblastic transition | |||
* Senescence | |||
* Vascular calcification | |||
|full-text-url=https://sci-hub.do/10.1159/000504298 | |||
}} | }} | ||
== | ==BMP4== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Direct reprogramming of human smooth muscle and vascular endothelial cells reveals defects associated with aging and Hutchinson-Gilford progeria syndrome. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32896271 | ||
|keywords=* aging | |keywords=* aging | ||
* | * direct reprogramming | ||
* | * endothelial cell | ||
* | * human | ||
* | * hutchinson-gilford progeria syndrome | ||
* | * medicine | ||
* | * mouse | ||
* | * smooth muscle cell | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * vascular barrier | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7478891 | |||
}} | }} | ||
== | ==BMP7== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Downregulation of miR-542-3p promotes osteogenic transition of vascular smooth muscle cells in the aging rat by targeting [[BMP7]]. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31829291 | ||
|mesh-terms=* Aging | |||
* Animals | |||
* Base Sequence | |||
* Bone Morphogenetic Protein 7 | |||
* Down-Regulation | |||
* Glycerophosphates | |||
* MicroRNAs | |||
* Models, Biological | |||
* Muscle, Smooth, Vascular | |||
* Myocytes, Smooth Muscle | |||
* Osteogenesis | |||
* Rats | |||
|keywords=* Aging | |keywords=* Aging | ||
* | * Mir-542-3p | ||
* Osteogenic differentiation | |||
* Vascular smooth muscle cells | |||
* | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6907335 | ||
* | |||
|full-text-url=https:// | |||
}} | }} | ||
== | ==BOC== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Protein Requirements of Elderly Chinese Adults Are Higher than Current Recommendations. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32140711 | ||
|mesh-terms=* Aged | |||
|mesh-terms=* | |||
* Aging | * Aging | ||
* | * Amino Acids | ||
* | * Body Weight | ||
* | * China | ||
* Dietary Proteins | |||
* Energy Intake | |||
* Energy Metabolism | |||
* Female | * Female | ||
* Humans | * Humans | ||
* Male | * Male | ||
* | * Nutritional Requirements | ||
* | * Oxidation-Reduction | ||
* Phenylalanine | |||
* Recommended Dietary Allowances | |||
* Tyrosine | |||
|keywords=* indicator amino acid oxidation | |||
* | * older adults | ||
* | * phenylalanine oxidation | ||
* | * protein requirement | ||
|keywords=* | * stable isotope | ||
* | |full-text-url=https://sci-hub.do/10.1093/jn/nxaa031 | ||
* | |||
* | |||
* | |||
|full-text-url=https:// | |||
}} | }} | ||
== | ==BPI== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=High TARC plasma levels confer protection to long living individuals by inducing M2 profile. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33002742 | ||
|keywords=* | |keywords=* FACS | ||
* | * Longevity | ||
* | * M2 macrophages | ||
* | * Plasma profile | ||
* | * TARC | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.1016/j.cyto.2020.155305 | ||
}} | }} | ||
== | {{medline-entry | ||
|title=Circulating [[BPI]]FB4 Levels Associate With and Influence the Abundance of Reparative Monocytes and Macrophages in Long Living Individuals. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32547549 | |||
{{medline-entry | |keywords=* FACS | ||
|title= | * M2 macrophages | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | * immunity | ||
| | * longevity | ||
|mesh-terms= | * patrolling-monocytes | ||
* plasma | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7272600 | |||
* Aged | }} | ||
==BPIFB4== | |||
{{medline-entry | |||
|title=New Insights for [[BPIFB4]] in Cardiovascular Therapy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32998388 | |||
|keywords=* BPIFB4 | |||
* aging | |||
* cardiovascular disease | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7583974 | |||
}} | |||
{{medline-entry | |||
|title=LAV-[[BPIFB4]] associates with reduced frailty in humans and its transfer prevents frailty progression in old mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31461407 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | * Aged, 80 and over | ||
* Aging | * Aging | ||
* | * Animals | ||
* Female | * Female | ||
* Frailty | |||
* Gene Expression Regulation | |||
* Genotype | |||
* Humans | * Humans | ||
* Longevity | * Longevity | ||
* Male | * Male | ||
* | * Mice | ||
* | * Mice, Inbred C57BL | ||
* | * Mice, Transgenic | ||
|keywords= | * Phosphoproteins | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * Specific Pathogen-Free Organisms | ||
|keywords=* BPIFB4 | |||
* aging | |||
* frailty | |||
* longevity-associated variant-lav | |||
* survival | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6738439 | |||
}} | }} | ||
== | ==BRAF== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Conditional reprograming culture conditions facilitate growth of lower grade glioma models. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33258947 | ||
|keywords=* | |keywords=* BRAFV600E | ||
* Conditional reprogramming | |||
* | * NF1 | ||
* | * Senescence | ||
* | * low grade glioma | ||
* | |full-text-url=https://sci-hub.do/10.1093/neuonc/noaa263 | ||
* | }} | ||
* | {{medline-entry | ||
* | |title=Active notch protects MAPK activated melanoma cell lines from MEK inhibitor cobimetinib. | ||
* | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33202284 | ||
* | |||
* | |||
* | |keywords=* Cobimetinib (PubChem CID: 16222096) | ||
* | * MEK | ||
* | * Nirogacestat (PubChem CID:46224413) | ||
* | * Notch | ||
* | * Senescence | ||
* | * Uveal melanoma | ||
* | |full-text-url=https://sci-hub.do/10.1016/j.biopha.2020.111006 | ||
|full-text-url=https://sci-hub.do/10. | }} | ||
{{medline-entry | |||
|title=Mitochondrial metabolic reprograming via [[BRAF]] inhibition ameliorates senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31421186 | |||
|mesh-terms=* Cell Proliferation | |||
* Cells, Cultured | |||
* Cellular Reprogramming | |||
* Cellular Senescence | |||
* Drug Evaluation, Preclinical | |||
* Humans | |||
* Mitochondria | |||
* Proto-Oncogene Proteins B-raf | |||
|keywords=* BRAF | |||
* Metabolic reprogramming | |||
* Mitochondrial function | |||
* SB590885 | |||
* Senescence | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2019.110691 | |||
}} | }} | ||
== | ==BRD2== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Brd2 haploinsufficiency extends lifespan and healthspan in C57B6/J mice. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32559200 | ||
|mesh-terms=* | |mesh-terms=* Animals | ||
* | * Female | ||
* | * Fertility | ||
* | * Grooming | ||
* | * Haploinsufficiency | ||
* Kidney | |||
* Longevity | |||
* Male | |||
* Mice | * Mice | ||
* | * Mice, Inbred C57BL | ||
* Transcription Factors | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304595 | |||
* | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |||
}} | }} | ||
== | ==BRD4== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Inhibition of [[BRD4]] triggers cellular senescence through suppressing aurora kinases in oesophageal cancer cells. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32954665 | ||
| | |||
* | |keywords=* BRD4 | ||
* | * aurora kinase | ||
* | * cellular senescence | ||
* oesophageal cancer | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7701500 | |||
|full-text-url=https:// | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=[[BRD4]] contributes to LPS-induced macrophage senescence and promotes progression of atherosclerosis-associated lipid uptake. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32392533 | ||
|keywords=* | |keywords=* BRD4 | ||
* | * gene expression | ||
* | * inflammation | ||
* | * macrophage | ||
* | * senescence | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7288959 | ||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=BET Proteins Are Required for Transcriptional Activation of the Senescent Islet Cell Secretome in Type 1 Diabetes. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31561444 | ||
|mesh-terms=* | |mesh-terms=* Animals | ||
* | * Cell Cycle Proteins | ||
* | * Cellular Senescence | ||
* Diabetes Mellitus, Type 1 | |||
* Female | |||
* Humans | * Humans | ||
* | * Insulin-Secreting Cells | ||
|keywords=* | * Islets of Langerhans | ||
* | * Mice | ||
* | * Mice, Inbred NOD | ||
* | * Paracrine Communication | ||
* Protein Binding | |||
* Transcription Factors | |||
* Transcriptional Activation | |||
|keywords=* BET proteins | |||
* beta cells | |||
* senescence and SASP | |||
* type 1 diabetes | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6801956 | |||
}} | |||
==BTK== | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Amelioration of age-related brain function decline by Bruton's tyrosine kinase inhibition. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31736210 | ||
|keywords=* | |keywords=* BTK | ||
* | * cellular senescence | ||
* | * healthspan | ||
* | * p53 | ||
|full-text-url=https:// | * progeria | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974713 | |||
}} | }} | ||
==C2== | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=[Effects of resistance training on mitochondrial function in skeletal muscle of aging rats]. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32744013 | ||
|mesh-terms= | |mesh-terms=* Aging | ||
* Animals | |||
* Aging | |||
* | |||
* Male | * Male | ||
* | * Membrane Potential, Mitochondrial | ||
* | * Mitochondria, Muscle | ||
|keywords=* | * Muscle, Skeletal | ||
* | * Physical Conditioning, Animal | ||
* | * Rats | ||
* | * Rats, Sprague-Dawley | ||
* | * Resistance Training | ||
|full-text-url=https://sci-hub.do/10. | |keywords=* fusion protein 2 | ||
* mitochondria | |||
* quadriceps | |||
* rats | |||
* resistance training | |||
|full-text-url=https://sci-hub.do/10.12047/j.cjap.5861.2020.037 | |||
}} | |||
{{medline-entry | |||
|title=Structural and functional characterization of Solanum lycopersicum phosphatidylinositol 3-kinase [[C2]] domain. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31972387 | |||
|mesh-terms=* Animals | |||
* C2 Domains | |||
* Lycopersicon esculentum | |||
* Phosphatidylinositol 3-Kinase | |||
* Plants, Genetically Modified | |||
* Protein Binding | |||
* Tobacco | |||
|keywords=* C2 domain | |||
* Membrane binding | |||
* Phosphatidylinositol 3-kinase | |||
* Senescence | |||
|full-text-url=https://sci-hub.do/10.1016/j.plaphy.2020.01.014 | |||
}} | }} | ||
==C3== | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Inverse association between periumbilical fat and longevity mediated by complement [[C3]] and cardiac structure. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33221761 | ||
|keywords=* | |keywords=* abdominal obesity | ||
* | * cardiac structure | ||
* | * complement C3 | ||
* | * longevity | ||
* | * periumbilical fat | ||
|full-text-url=https:// | |full-text-url=https://sci-hub.do/10.18632/aging.104113 | ||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Complement [[C3]] deficiency ameliorates aging related changes in the kidney. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32882264 | ||
|mesh-terms=* | |mesh-terms=* Aging | ||
* | * Animals | ||
* | * Complement C3 | ||
* | * Inflammation | ||
* | * Kidney | ||
* | * Kidney Diseases | ||
* Male | * Male | ||
* Mice | * Mice | ||
* | * Mice, Inbred C57BL | ||
* | * Mice, Knockout | ||
|keywords=* Complement component 3 | |||
* Kidney disorder | |||
* Senescence | |||
|full-text-url=https://sci-hub.do/10.1016/j.lfs.2020.118370 | |||
|keywords=* | |||
* | |||
* | |||
|full-text-url=https:// | |||
}} | }} | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Reduced sialylation triggers homeostatic synapse and neuronal loss in middle-aged mice. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32087947 | ||
|mesh-terms=* Aging | |||
* Animals | |||
* Brain | |||
* Homeostasis | |||
* Immunity, Innate | |||
* Mice, Transgenic | |||
* Neurons | |||
* Racemases and Epimerases | |||
* Sialic Acid Binding Immunoglobulin-like Lectins | |||
* Sialic Acids | |||
* Synapses | |||
|keywords=* Aging | |keywords=* Aging | ||
* | * GNE | ||
* | * Glycocalyx | ||
* | * Microglia | ||
|full-text-url=https://sci-hub.do/10. | * Neurodegeneration | ||
* Neuroinflammation | |||
* Sialic acid | |||
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2020.01.008 | |||
}} | }} | ||
== | {{medline-entry | ||
|title=[Comparative analysis of experimental data about the effects of various polyphenols on lifespan and aging.] | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31512417 | |||
|mesh-terms=* Animals | |||
* Antioxidants | |||
|mesh-terms=* | |||
* | |||
* Female | * Female | ||
* | * Longevity | ||
* Male | * Male | ||
* | * Mice | ||
* | * Mice, Inbred BALB C | ||
* | * Polyphenols | ||
|keywords= | * Survival Analysis | ||
|keywords=* BP-C3 | |||
* Gompertz model | |||
* SkQ1 | |||
* aging | |||
* herbal extracts | |||
* lifespan | |||
* metformin | |||
* polyphenols | |||
* resveratrol | |||
* tocopherol | |||
}} | }} | ||
== | ==C5== | ||
{{medline-entry | {{medline-entry | ||
|title=[[ | |title=The [[C5]]-75 Program: Meeting the Need for Efficient, Pragmatic Frailty Screening and Management in Primary Care. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32638663 | ||
|keywords=* | |keywords=* aging | ||
* | * case-finding | ||
* | * co-morbid conditions | ||
* | * comorbidité | ||
* | * dépistage | ||
* | * fragilité | ||
|full-text-url=https://sci-hub.do/10. | * frailty | ||
* primary care | |||
* recherche de cas | |||
* screening | |||
* soins de première ligne | |||
* vieillissement | |||
|full-text-url=https://sci-hub.do/10.1017/S0714980820000161 | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Can a relatively large spinal cord for the dural sac influence severity of paralysis in elderly patients with cervical spinal cord injury caused by minor trauma? | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32590805 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Cervical Vertebrae | |||
* Female | |||
* Geriatrics | |||
* Humans | |||
* Japan | |||
* Magnetic Resonance Imaging | |||
* Male | |||
* Paralysis | |||
* Severity of Illness Index | |||
* Spinal Canal | |||
* Spinal Cord | |||
* Spinal Cord Injuries | |||
* Tomography, X-Ray Computed | |||
* Wounds and Injuries | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7328921 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | |||
}} | }} | ||
== | ==C6== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=Evolution of the Aroma of Treixadura Wines during Bottle Aging. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33049919 | ||
|keywords=* | |keywords=* bottle aging | ||
* | * flavor profile | ||
* | * sensory evaluation | ||
* | * volatile composition | ||
* | * white wine | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600726 | ||
}} | }} | ||
== | {{medline-entry | ||
|title=D-galactose induces senescence of glioblastoma cells through YAP-CDK6 pathway. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32991321 | |||
|keywords=* | |keywords=* CDK6 | ||
* | * D-galatose | ||
* | * YAP | ||
* | * cellular senescence | ||
* | * glioblastoma | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7585072 | ||
}} | }} | ||
== | ==C7== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=The Vertebral Artery Convergence to the Cervical Spine in Elders. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32337923 | ||
|keywords=* | |mesh-terms=* Aged | ||
* | * Aged, 80 and over | ||
* | * Aging | ||
* | * Cervical Vertebrae | ||
* | * Computed Tomography Angiography | ||
* | * Cross-Sectional Studies | ||
|full-text-url=https://sci-hub.do/10. | * Female | ||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Retrospective Studies | |||
* Vertebral Artery | |||
|keywords=* angiography | |||
* computed tomography | |||
* osteoarthritis | |||
* spine | |||
* vertebral artery | |||
* aging | |||
|full-text-url=https://sci-hub.do/10.3897/folmed.61.e39418 | |||
}} | }} | ||
== | ==C9== | ||
{{medline-entry | {{medline-entry | ||
|title= | |title=[[C9]]orf72 in myeloid cells suppresses STING-induced inflammation. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32814898 | ||
| | |||
|mesh-terms=* Aging | |||
* Amyotrophic Lateral Sclerosis | |||
* Animals | |||
* C9orf72 Protein | |||
* Dendritic Cells | |||
* Encephalomyelitis, Autoimmune, Experimental | |||
* Female | |||
* Humans | |||
* Inflammation | |||
* Interferon Type I | |||
* Membrane Proteins | |||
* Mice | |||
* Myeloid Cells | |||
* Neoplasms | |||
* T-Lymphocytes | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7484469 | |||
|full-text-url=https:// | |||
}} | }} | ||
== | {{medline-entry | ||
|title=Glycine-alanine dipeptide repeats spread rapidly in a repeat length- and age-dependent manner in the fly brain. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31843021 | |||
|mesh-terms=* Aging | |||
* Alanine | |||
* Animals | |||
* Animals, Genetically Modified | |||
* Brain | |||
* C9orf72 Protein | |||
* DNA Repeat Expansion | |||
* Dipeptides | |||
* Drosophila | |||
* Female | |||
* Glycine | |||
|keywords=* Ageing | |||
* C9orf72 | |||
* Dipeptide repeat proteins | |||
* Drosophila | |||
* PolyGA | |||
* Repeat size | |||
* Spread | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6916080 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Human iPSC-derived astrocytes from ALS patients with mutated [[C9]]ORF72 show increased oxidative stress and neurotoxicity. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31787569 | ||
|keywords=* | |mesh-terms=* Amyotrophic Lateral Sclerosis | ||
* Animals | |||
* Astrocytes | |||
* Biomarkers | |||
* C9orf72 Protein | |||
* Cells, Cultured | |||
* Cellular Reprogramming | |||
* Cellular Senescence | |||
* Cerebral Cortex | |||
* Disease Models, Animal | |||
* Gene Expression Profiling | |||
* Glutamic Acid | |||
* Humans | |||
* Induced Pluripotent Stem Cells | |||
* Mice | |||
* Motor Neurons | |||
* Mutation | |||
* Oxidative Stress | |||
* Proteomics | |||
* Reactive Oxygen Species | |||
|keywords=* Amyotrophic lateral sclerosis | |||
* Astrocytes | |||
* Neurotoxicity | |||
* Oxidative stress | |||
* Senescence | |||
* iPSC | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6921360 | |||
}} | |||
==C9orf72== | |||
{{medline-entry | |||
|title=Carriership of two copies of [[C9orf72]] hexanucleotide repeat intermediate-length alleles is a risk factor for ALS in the Finnish population. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33168078 | |||
|keywords=* ALS | |||
* Aging | * Aging | ||
* | * C9orf72 | ||
* | * Case-control analysis | ||
* | * Intermediate repeats | ||
|full-text-url=https:// | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7654028 | ||
}} | }} | ||
== | ==CA1== | ||
{{medline-entry | |||
|title=The relation between tau pathology and granulovacuolar degeneration of neurons. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33069844 | |||
|keywords=* AT8 | |||
* Aging | |||
* CA1 | |||
* Casein kinase 1δ | |||
* Congo red | |||
* Dorsal raphe nucleus | |||
* Locus coeruleus | |||
* Neurodegeneration | |||
* Tau pathology | |||
|full-text-url=https://sci-hub.do/10.1016/j.nbd.2020.105138 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Memory and dendritic spines loss, and dynamic dendritic spines changes are age-dependent in the rat. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32950615 | ||
| | |||
|keywords=* Aging | |||
* Hippocampus | |||
* Locomotor activity | |||
* Memory and learning | |||
* Prefrontal cortex | |||
* Pyramidal neurons | |||
* dendritic spines | |||
|full-text-url=https://sci-hub.do/10.1016/j.jchemneu.2020.101858 | |||
}} | |||
{{medline-entry | |||
|title=Deregulated expression of a longevity gene, Klotho, in the C9orf72 deletion mice with impaired synaptic plasticity and adult hippocampal neurogenesis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32887666 | |||
|keywords=* | |keywords=* Amyotrophic lateral sclerosis (ALS) | ||
* | * C9ORF72 | ||
* | * Dentate gyrus, adult neurogenesis | ||
* | * Frontotemporal dementia (FTD) | ||
* | * Klotho | ||
* | * Long-term depression (LTD) | ||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/ | * Long-term potentiation (LTP) | ||
* Longevity | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7473815 | |||
}} | }} | ||
== | {{medline-entry | ||
|title=COX5A Plays a Vital Role in Memory Impairment Associated With Brain Aging [i]via[/i] the BDNF/ERK1/2 Signaling Pathway. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32754029 | |||
|keywords=* BDNF | |||
* COX5A | |||
* ERK1/2 | |||
* brain senescence | |||
* memory impairment | |||
* mitochondria | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7365906 | |||
}} | |||
{{medline-entry | {{medline-entry | ||
|title= | |title=Changes of fat-mass and obesity-associated protein expression in the hippocampus in animal models of high-fat diet-induced obesity and D-galactose-induced aging. | ||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/ | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32647628 | ||
| | |||
|keywords=* Aging | |||
* Fto | |||
* Hippocampus | |||
* | |||
* | |||
* Mice | * Mice | ||
* MicroRNAs | * Obesity | ||
* Pulmonary Emphysema | |full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336480 | ||
* Zinc Finger E-box Binding Homeobox 2 | }} | ||
|keywords=* ZEB2 | {{medline-entry | ||
* cellular senescence | |title=Phenylbutyrate ameliorates prefrontal cortex, hippocampus, and nucleus accumbens neural atrophy as well as synaptophysin and GFAP stress in aging mice. | ||
* inflammation | |pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32531811 | ||
* miR-200b | |||
* pulmonary emphysema | |||
|keywords=* aging | |||
* dendrites | |||
* hippocampus | |||
* memory and learning | |||
* nucleus accumbens | |||
* prefrontal cortex | |||
* sodium phenylbutyrate | |||
|full-text-url=https://sci-hub.do/10.1002/syn.22177 | |||
}} | |||
{{medline-entry | |||
|title=Heterogeneity in brain distribution of activated microglia and astrocytes in a rat ischemic model of Alzheimer's disease after 2 years of survival. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32501292 | |||
|keywords=* Alzheimer’s disease | |||
* aging | |||
* brain ischemia | |||
* glia | |||
* neuroinflammation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343500 | |||
}} | |||
{{medline-entry | |||
|title=Hippocampal Subregion Transcriptomic Profiles Reflect Strategy Selection during Cognitive Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32376783 | |||
|mesh-terms=* Animals | |||
* Cognitive Aging | |||
* Dentate Gyrus | |||
* Hippocampus | |||
* Maze Learning | |||
* Rats | |||
* Rats, Inbred F344 | |||
* Spatial Memory | |||
* Transcriptome | |||
|keywords=* aging | |||
* hippocampus | |||
* pattern separation | |||
* reference memory | |||
* spatial discrimination | |||
* transcription | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7326352 | |||
}} | |||
{{medline-entry | |||
|title=Associations between pattern separation and hippocampal subfield structure and function vary along the lifespan: A 7 T imaging study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32371923 | |||
|mesh-terms=* Adult | |||
* Age Factors | |||
* Aged | |||
* Brain Mapping | |||
* Female | |||
* Hippocampus | |||
* Humans | |||
* Longevity | |||
* Magnetic Resonance Imaging | |||
* Male | |||
* Middle Aged | |||
* Young Adult | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7200747 | |||
}} | |||
{{medline-entry | |||
|title=Laminarin Pretreatment Provides Neuroprotection against Forebrain Ischemia/Reperfusion Injury by Reducing Oxidative Stress and Neuroinflammation in Aged Gerbils. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32326571 | |||
|keywords=* aging | |||
* laminarin | |||
* neuroinflammation | |||
* neuroprotection | |||
* oxidative stress | |||
* transient cerebral ischemia | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7230782 | |||
}} | |||
{{medline-entry | |||
|title=Age-dependent Alteration in Mitochondrial Dynamics and Autophagy in Hippocampal Neuron of Cannabinoid CB1 Receptor-deficient Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32294520 | |||
|keywords=* Aging | |||
* CB1 receptor | |||
* Hippocampus | |||
* Mitochondria | |||
* Mitophagy | |||
|full-text-url=https://sci-hub.do/10.1016/j.brainresbull.2020.03.014 | |||
}} | |||
{{medline-entry | |||
|title=Functional Connectivity of Hippocampal CA3 Predicts Neurocognitive Aging via [[CA1]]-Frontal Circuit. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32239141 | |||
|keywords=* aging | |||
* functional connectivity | |||
* hippocampus | |||
* spatial memory | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7325802 | |||
}} | |||
{{medline-entry | |||
|title=Integration of qRT-PCR and Immunohistochemical Techniques for mRNA Expression and Localization of m1AChR in the Brain of Aging Rat. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32219760 | |||
|keywords=* Acetylcholine | |||
* Aging | |||
* Brain | |||
* Immunohistochemistry | |||
* m1AChR | |||
* qRT-PCR | |||
|full-text-url=https://sci-hub.do/10.1007/978-1-0716-0471-7_23 | |||
}} | |||
{{medline-entry | |||
|title=Role of Eclipta prostrata extract in improving spatial learning and memory deficits in D-galactose-induced aging in rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32186114 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Behavior, Animal | |||
* CA1 Region, Hippocampal | |||
* Catalase | |||
* Dopamine | |||
* Eclipta | |||
* Galactose | |||
* Gene Expression Regulation, Enzymologic | |||
* Glutathione Peroxidase | |||
* Glutathione Reductase | |||
* Male | |||
* Memory Disorders | |||
* Nitric Oxide | |||
* Nitric Oxide Synthase Type II | |||
* Norepinephrine | |||
* Plant Extracts | |||
* RNA, Messenger | |||
* Rats | |||
* Rats, Sprague-Dawley | |||
* Serotonin | |||
* Spatial Learning | |||
* Superoxide Dismutase | |||
|keywords=* Antioxidants | |||
* Eclipta | |||
* Galactose | |||
* Memory disorders | |||
* Spatial learning | |||
}} | |||
{{medline-entry | |||
|title=Differential annualized rates of hippocampal subfields atrophy in aging and future Alzheimer's clinical syndrome. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32107063 | |||
|mesh-terms=* Aged | |||
* Aging | |||
* Alzheimer Disease | |||
* Atrophy | |||
* Cohort Studies | |||
* Cross-Sectional Studies | |||
* Dentate Gyrus | |||
* Female | |||
* Hippocampus | |||
* Humans | |||
* Magnetic Resonance Imaging | |||
* Male | |||
* Neuropsychological Tests | |||
* Risk | |||
|keywords=* Aging | |||
* Alzheimer's disease | |||
* Hippocampal subfields | |||
* MRI | |||
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2020.01.011 | |||
}} | |||
{{medline-entry | |||
|title=Rectification of radiotherapy-induced cognitive impairments in aged mice by reconstituted Sca-1 stem cells from young donors. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32028989 | |||
|mesh-terms=* Animals | |||
* Behavior, Animal | |||
* Cognitive Dysfunction | |||
* Dendritic Spines | |||
* Hematopoietic Stem Cell Transplantation | |||
* Hippocampus | |||
* Humans | |||
* Long-Term Potentiation | |||
* Maze Learning | |||
* Memory | |||
* Mice | |||
* Neurons | |||
* Radiotherapy | |||
* Recovery of Function | |||
* Spinocerebellar Ataxias | |||
* Treatment Outcome | |||
|keywords=* Aging | |||
* Bone marrow stem cells | |||
* Learning and memory | |||
* Microglia | |||
* Radiotherapy | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7006105 | |||
}} | |||
{{medline-entry | |||
|title=Increasing neurogenesis refines hippocampal activity rejuvenating navigational learning strategies and contextual memory throughout life. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31919362 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Cyclin D1 | |||
* Cyclin-Dependent Kinase 4 | |||
* Female | |||
* Hippocampus | |||
* Learning | |||
* Memory | |||
* Memory Consolidation | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Neural Stem Cells | |||
* Neurogenesis | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952376 | |||
}} | |||
{{medline-entry | |||
|title=Memory Performance Correlates of Hippocampal Subfield Volume in Mild Cognitive Impairment Subtype. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31849620 | |||
|keywords=* aging | |||
* hippocampus | |||
* memory | |||
* mild cognitive impairment | |||
* neuroimaging | |||
* subfields | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6897308 | |||
}} | |||
{{medline-entry | |||
|title=Spermidine protects from age-related synaptic alterations at hippocampal mossy fiber-CA3 synapses. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31873156 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* CA3 Region, Hippocampal | |||
* Long-Term Potentiation | |||
* Mice | |||
* Mossy Fibers, Hippocampal | |||
* Spermidine | |||
* Synaptic Transmission | |||
* Synaptic Vesicles | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927957 | |||
}} | |||
{{medline-entry | |||
|title=Methylene blue inhibits Caspase-6 activity, and reverses Caspase-6-induced cognitive impairment and neuroinflammation in aged mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31843022 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Caspase 6 | |||
* Caspase Inhibitors | |||
* Cognitive Dysfunction | |||
* Female | |||
* Humans | |||
* Inflammation | |||
* Male | |||
* Methylene Blue | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* Mice, Transgenic | |||
|keywords=* Alzheimer disease | |||
* Axonal degeneration | |||
* Caspase-6 | |||
* Caspase-6 inhibitor | |||
* Hippocampal CA1 | |||
* Hippocampal fibres | |||
* Methylene blue | |||
* Synaptic plasticity | |||
* White matter | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915996 | |||
}} | |||
{{medline-entry | |||
|title=Long-term Memory Upscales Volume of Postsynaptic Densities in the Process that Requires Autophosphorylation of αCaMKII. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31800021 | |||
|keywords=* CA1 area | |||
* CaMKII | |||
* IntelliCages | |||
* aging | |||
* dendritic spines | |||
* memory | |||
* postsynaptic density | |||
|full-text-url=https://sci-hub.do/10.1093/cercor/bhz261 | |||
}} | |||
{{medline-entry | |||
|title=PACAP27 mitigates an age-dependent hippocampal vulnerability to PGJ2-induced spatial learning deficits and neuroinflammation in mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31769222 | |||
|keywords=* CA1 | |||
* CA3 | |||
* Fluoro-Jade C | |||
* aging | |||
* microglia | |||
* radial arm maze | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955932 | |||
}} | |||
{{medline-entry | |||
|title=Inhibition of oxidative stress by testosterone improves synaptic plasticity in senescence accelerated mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31746286 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Male | |||
* Mice | |||
* Neuronal Plasticity | |||
* Oxidative Stress | |||
* Random Allocation | |||
* Receptors, N-Methyl-D-Aspartate | |||
* Testosterone | |||
|keywords=* Alzheimer’s disease | |||
* N-methyl-D-aspartate receptor-1 | |||
* Senescence accelerated mouse | |||
* Testosterone | |||
* oxidative stress | |||
|full-text-url=https://sci-hub.do/10.1080/15287394.2019.1683988 | |||
}} | |||
{{medline-entry | |||
|title=Restored presynaptic synaptophysin and cholinergic inputs contribute to the protective effects of physical running on spatial memory in aged mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31470103 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Cholinergic Neurons | |||
* Hippocampus | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Physical Conditioning, Animal | |||
* Presynaptic Terminals | |||
* Spatial Memory | |||
* Synaptophysin | |||
|keywords=* Aging | |||
* Cholinergic cells | |||
* Hippocampus | |||
* Memory | |||
* Physical training | |||
* Presynaptic terminals | |||
* Synaptophysin | |||
|full-text-url=https://sci-hub.do/10.1016/j.nbd.2019.104586 | |||
}} | |||
{{medline-entry | |||
|title=Senescent neurophysiology: Ca signaling from the membrane to the nucleus. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31394200 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* CA1 Region, Hippocampal | |||
* Calcium Signaling | |||
* Cell Nucleus | |||
* Epigenesis, Genetic | |||
* Excitatory Postsynaptic Potentials | |||
* Humans | |||
* Membrane Potentials | |||
* Neuronal Plasticity | |||
* Pyramidal Cells | |||
* Receptors, N-Methyl-D-Aspartate | |||
|keywords=* Afterhyperpolarization | |||
* Aging | |||
* Epigenetics | |||
* Hippocampus | |||
* N-methyl-D-aspartate receptor | |||
* Synaptic plasticity | |||
* Transcription | |||
|full-text-url=https://sci-hub.do/10.1016/j.nlm.2019.107064 | |||
}} | |||
==CA2== | |||
{{medline-entry | |||
|title=Maintaining Aging Hippocampal Function with Safe and Feasible Shaking Exercise in SAMP10 Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32526748 | |||
|keywords=* Aging | |||
* Behavior analysis | |||
* Hippocampus | |||
* Shaking exercise | |||
* Spatial cognition | |||
|full-text-url=https://sci-hub.do/10.1159/000507884 | |||
}} | |||
{{medline-entry | |||
|title=One-year Follow-up Study of Hippocampal Subfield Atrophy in Alzheimer's Disease and Normal Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32008518 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Alzheimer Disease | |||
* Atrophy | |||
* Case-Control Studies | |||
* Cognitive Dysfunction | |||
* Disease Progression | |||
* Female | |||
* Follow-Up Studies | |||
* Hippocampus | |||
* Humans | |||
* Magnetic Resonance Imaging | |||
* Male | |||
* Neuroimaging | |||
|keywords=* Alzheimer's disease | |||
* biomarker | |||
* hippocampal | |||
* mild cognitive impairment | |||
* neurodegenerative diseases | |||
* normal aging | |||
* radial distance | |||
* subfield atrophy | |||
|full-text-url=https://sci-hub.do/10.2174/1573405615666190327102052 | |||
}} | |||
{{medline-entry | |||
|title=Maturation of PNN and ErbB4 Signaling in Area [[CA2]] during Adolescence Underlies the Emergence of PV Interneuron Plasticity and Social Memory. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31665627 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Animals, Newborn | |||
* CA2 Region, Hippocampal | |||
* Interneurons | |||
* Long-Term Synaptic Depression | |||
* Male | |||
* Memory | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Neural Inhibition | |||
* Neuregulin-1 | |||
* Neuronal Plasticity | |||
* Parvalbumins | |||
* Receptor, ErbB-4 | |||
* Receptors, Opioid, delta | |||
* Signal Transduction | |||
* Social Behavior | |||
* Synapses | |||
* gamma-Aminobutyric Acid | |||
|keywords=* ErbB4 | |||
* adolescence | |||
* area CA2 | |||
* delta opioid receptors | |||
* hippocampus | |||
* long-term depression | |||
* neuregulin 1 | |||
* parvalbumin interneuron | |||
* perineuronal net | |||
* social memory | |||
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2019.09.044 | |||
}} | |||
==CA3== | |||
{{medline-entry | |||
|title=Features of Postnatal Hippocampal Development in a Rat Model of Sporadic Alzheimer's Disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32581685 | |||
|keywords=* Alzheimer’s disease | |||
* OXYS rats | |||
* aging | |||
* hippocampal mossy fibers | |||
* hippocampus | |||
* neurogenesis | |||
* postnatal development | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289999 | |||
}} | |||
{{medline-entry | |||
|title=Age-Related Changes in Synaptic Plasticity Associated with Mossy Fiber Terminal Integration during Adult Neurogenesis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32332082 | |||
|keywords=* aging | |||
* conditional transgenic | |||
* giant synapse | |||
* stratum lucidum | |||
* synaptogenesis | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240290 | |||
}} | |||
{{medline-entry | |||
|title=Metabotropic Glutamate Receptors at the Aged Mossy Fiber - [[CA3]] Synapse of the Hippocampus. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31917351 | |||
|keywords=* aging | |||
* hippocampal area CA3 | |||
* mGluRs | |||
* mossy fibers | |||
* synaptic transmission | |||
|full-text-url=https://sci-hub.do/10.1016/j.neuroscience.2019.12.016 | |||
}} | |||
==CACNA1S== | |||
{{medline-entry | |||
|title=Increased calcium channel in the lamina propria of aging rat. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31682233 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Calcium Channel Blockers | |||
* Calcium Channels | |||
* Cell Line | |||
* Fibroblasts | |||
* Gene Expression Regulation | |||
* Humans | |||
* Larynx | |||
* Male | |||
* Mucous Membrane | |||
* Rats | |||
* Rats, Sprague-Dawley | |||
* Verapamil | |||
|keywords=* aging | |||
* calcium channel | |||
* extracellular matrix | |||
* vocal fold | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834399 | |||
}} | |||
==CAD== | |||
{{medline-entry | |||
|title=Serum soluble Klotho is inversely related to coronary artery calcification assessed by intravascular ultrasound in patients with stable coronary artery disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33303310 | |||
|keywords=* Aging | |||
* Coronary artery calcification | |||
* Intravascular ultrasound | |||
* Klotho | |||
|full-text-url=https://sci-hub.do/10.1016/j.jjcc.2020.11.014 | |||
}} | |||
{{medline-entry | |||
|title=Shear bond strengths of aged and non-aged [[CAD]]/CAM materials after different surface treatments. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33149848 | |||
|keywords=* Bond strength | |||
* Computer-aided design and computer-aided manufacturing (CAD/CAM) | |||
* Laser | |||
* Repair | |||
* Surface treatment | |||
* Thermal aging | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7604239 | |||
}} | |||
{{medline-entry | |||
|title=Prediction of Early Postoperative Major Cardiac Events and In-Hospital Mortality in Elderly Hip Fracture Patients: The Role of Different Types of Preoperative Cardiac Abnormalities on Echocardiography Report. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32546993 | |||
|mesh-terms=* Aged | |||
* Aortic Valve Stenosis | |||
* Cardiovascular Diseases | |||
* Comorbidity | |||
* Echocardiography | |||
* Female | |||
* Fracture Fixation | |||
* Hip Fractures | |||
* Hospital Mortality | |||
* Humans | |||
* Male | |||
* Postoperative Complications | |||
* Prognosis | |||
* Risk Factors | |||
|keywords=* aging | |||
* echocardiographic abnormality | |||
* hip fracture surgery | |||
* mortality | |||
* postoperative cardiac complications | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7266334 | |||
}} | |||
{{medline-entry | |||
|title=[Polymorbidity in elderly patients needing myocardial revascularization (a review article).] | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31800187 | |||
|mesh-terms=* Aged | |||
* Cognitive Dysfunction | |||
* Coronary Artery Disease | |||
* Humans | |||
* Myocardial Revascularization | |||
* Quality of Life | |||
* Risk | |||
|keywords=* aging | |||
* elderly | |||
* ischemic heart disease | |||
* myocardial revascularization | |||
* polymorbidity | |||
}} | |||
{{medline-entry | |||
|title=Fracture force of [[CAD]]/CAM resin composite crowns after in vitro aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31712983 | |||
|mesh-terms=* Ceramics | |||
* Composite Resins | |||
* Computer-Aided Design | |||
* Crowns | |||
* Dental Porcelain | |||
* Dental Restoration Failure | |||
* Dental Stress Analysis | |||
* Humans | |||
* Materials Testing | |||
|keywords=* Aging | |||
* CAD/CAM | |||
* CAD/CAM bloc | |||
* Dental material | |||
* Fit | |||
* Preparation | |||
* Resin composite | |||
* Resin-based material | |||
* Storage | |||
* TCML | |||
|full-text-url=https://sci-hub.do/10.1007/s00784-019-03099-1 | |||
}} | |||
{{medline-entry | |||
|title=Clinical performance of chairside monolithic lithium disilicate glass-ceramic [[CAD]]-CAM crowns. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31565848 | |||
|mesh-terms=* Ceramics | |||
* Computer-Aided Design | |||
* Crowns | |||
* Dental Porcelain | |||
* Dental Prosthesis Design | |||
* Humans | |||
* Materials Testing | |||
|keywords=* CAD-CAM | |||
* chairside | |||
* dental crowns | |||
* lithium disilicate | |||
* longevity | |||
* survival | |||
|full-text-url=https://sci-hub.do/10.1111/jerd.12531 | |||
}} | |||
{{medline-entry | |||
|title=Acute resveratrol supplementation in coronary artery disease: towards patient stratification. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31429599 | |||
|mesh-terms=* Aged | |||
* Biomarkers | |||
* Brachial Artery | |||
* Cardiac Rehabilitation | |||
* Coronary Artery Bypass | |||
* Coronary Artery Disease | |||
* Cross-Over Studies | |||
* Exercise Therapy | |||
* Female | |||
* Humans | |||
* Kinetics | |||
* Male | |||
* Middle Aged | |||
* Oxygen | |||
* Oxygen Consumption | |||
* Percutaneous Coronary Intervention | |||
* Resveratrol | |||
* Single-Blind Method | |||
* Treatment Outcome | |||
* Vasodilation | |||
|keywords=* Antioxidant | |||
* aging | |||
* endothelial dysfunction | |||
* oxygen uptake | |||
|full-text-url=https://sci-hub.do/10.1080/14017431.2019.1657584 | |||
}} | |||
==CARM1== | |||
{{medline-entry | |||
|title=[[CARM1]] regulates senescence during airway epithelial cell injury in COPD pathogenesis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31461302 | |||
|mesh-terms=* Aged | |||
* Animals | |||
* Apoptosis | |||
* Cell Differentiation | |||
* Cell Proliferation | |||
* Cellular Senescence | |||
* Epithelial Cells | |||
* Female | |||
* Humans | |||
* Male | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* Middle Aged | |||
* Naphthalenes | |||
* Protein-Arginine N-Methyltransferases | |||
* Pulmonary Disease, Chronic Obstructive | |||
* Respiratory Mucosa | |||
* Wound Healing | |||
|keywords=* CARM1 | |||
* COPD | |||
* airway epithelium | |||
* senescence | |||
|full-text-url=https://sci-hub.do/10.1152/ajplung.00441.2018 | |||
}} | |||
==CASP3== | |||
{{medline-entry | |||
|title=Does cartilage ERα overexpression correlate with osteoarthritic chondrosenescence? Indications from [i]Labisia pumila[/i] OA mitigation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31502578 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Bone Development | |||
* Cartilage | |||
* Chondrocytes | |||
* Diclofenac | |||
* Disease Models, Animal | |||
* Estrogen Receptor alpha | |||
* Flavonoids | |||
* Gallic Acid | |||
* Gene Expression Regulation | |||
* Humans | |||
* Iodoacetates | |||
* Matrix Metalloproteinase 13 | |||
* Metabolism | |||
* Osteoarthritis | |||
* Ovariectomy | |||
* Plant Extracts | |||
* Primulaceae | |||
* Rats | |||
}} | |||
==CAT== | |||
{{medline-entry | |||
|title=Training improves the handling of inhaler devices and reduces the severity of symptoms in geriatric patients suffering from chronic-obstructive pulmonary disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33036566 | |||
|keywords=* Chronic-obstructive pulmonary disease - Inhaler devices | |||
* Compliance | |||
* Geriatrics | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547456 | |||
}} | |||
{{medline-entry | |||
|title=7-chloro-4-(phenylselanyl) quinoline co-treatment prevent oxidative stress in diabetic-like phenotype induced by hyperglycidic diet in Drosophila melanogaster. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32931926 | |||
|keywords=* 4-PSQ | |||
* 7-chloro-4-(phenylselanyl) quinolone | |||
* Antioxidant effect | |||
* Diabetic-like phenotype | |||
* Hyperglycidic diet | |||
* Longevity | |||
* Oxidative stress | |||
|full-text-url=https://sci-hub.do/10.1016/j.cbpc.2020.108892 | |||
}} | |||
{{medline-entry | |||
|title=Aging influences in the blood-brain barrier permeability and cerebral oxidative stress in sepsis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32827711 | |||
|keywords=* Aging | |||
* Blood-brain barrier | |||
* Brain | |||
* Oxidative stress | |||
* Sepsis | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2020.111063 | |||
}} | |||
{{medline-entry | |||
|title=2 -Deoxy - d-glucose at chronic low dose acts as a caloric restriction mimetic through a mitohormetic induction of ROS in the brain of accelerated senescence model of rat. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32559563 | |||
|keywords=* 2-Deoxy- d-glucose | |||
* Aging | |||
* Brain | |||
* CRM | |||
* Mitohormosis | |||
* ROS | |||
|full-text-url=https://sci-hub.do/10.1016/j.archger.2020.104133 | |||
}} | |||
{{medline-entry | |||
|title=Ceftriaxone improves senile neurocognition damages induced by D-galactose in mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32440324 | |||
|keywords=* Aging | |||
* Ceftriaxone | |||
* D-galactose | |||
* Mice | |||
* Oxidative stress | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7229512 | |||
}} | |||
{{medline-entry | |||
|title=Ginsenoside Rg1 protects against d-galactose induced fatty liver disease in a mouse model via FOXO1 transcriptional factor. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32437790 | |||
|mesh-terms=* Animals | |||
* Antioxidants | |||
* Cellular Senescence | |||
* Disease Models, Animal | |||
* Fatty Liver | |||
* Forkhead Box Protein O1 | |||
* Galactose | |||
* Ginsenosides | |||
* Lipid Peroxidation | |||
* Male | |||
* Medicine, Chinese Traditional | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Oxidative Stress | |||
* Protective Agents | |||
* Transcription Factors | |||
|keywords=* D-galactose | |||
* FOXO1 | |||
* Non-alcoholic fatty liver disease | |||
* Rg1 | |||
* Senescence | |||
|full-text-url=https://sci-hub.do/10.1016/j.lfs.2020.117776 | |||
}} | |||
{{medline-entry | |||
|title=Effects of long-term intermittent versus chronic calorie restriction on oxidative stress in a mouse cancer model. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31424629 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Antioxidants | |||
* Caloric Restriction | |||
* Catalase | |||
* Erythrocytes | |||
* Female | |||
* Glutathione | |||
* Lipid Peroxidation | |||
* Malondialdehyde | |||
* Mammary Neoplasms, Experimental | |||
* Mice, Inbred C57BL | |||
* Oxidative Stress | |||
* Superoxide Dismutase | |||
|keywords=* MMTV-TGF-α mice | |||
* breast cancer | |||
* energy restriction | |||
* intermittent calorie restriction | |||
* mammary tumor | |||
* oxidative stress | |||
|full-text-url=https://sci-hub.do/10.1002/iub.2145 | |||
}} | |||
{{medline-entry | |||
|title=The Toxicity of Nonaged and Aged Coated Silver Nanoparticles to Freshwater Alga Raphidocelis subcapitata. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31403715 | |||
|mesh-terms=* Aquatic Organisms | |||
* Chlorophyta | |||
* Fresh Water | |||
* Hydrodynamics | |||
* Lipid Peroxidation | |||
* Metal Nanoparticles | |||
* Particle Size | |||
* Reactive Oxygen Species | |||
* Silver | |||
* Static Electricity | |||
* Toxicity Tests | |||
|keywords=* Aquatic toxicology | |||
* Ecotoxicology | |||
* Environmental fate | |||
* Heavy metals | |||
* Nanoparticle aging | |||
* Nanotoxicology | |||
|full-text-url=https://sci-hub.do/10.1002/etc.4549 | |||
}} | |||
==CBS== | |||
{{medline-entry | |||
|title=Permanent cystathionine-β-Synthase gene knockdown promotes inflammation and oxidative stress in immortalized human adipose-derived mesenchymal stem cells, enhancing their adipogenic capacity. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32800520 | |||
|keywords=* Cellular senescence | |||
* Cystathionine β-synthase | |||
* Human adipose-derived mesenchymal stem cells | |||
* Inflammation | |||
* Oxidative stress and adipogenesis | |||
|full-text-url=https://sci-hub.do/10.1016/j.redox.2020.101668 | |||
}} | |||
{{medline-entry | |||
|title=Cardiovascular phenotype of mice lacking 3-mercaptopyruvate sulfurtransferase. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32027885 | |||
|mesh-terms=* Animals | |||
* Antioxidants | |||
* Cardiovascular System | |||
* Cystathionine beta-Synthase | |||
* Cystathionine gamma-Lyase | |||
* Gene Expression Regulation, Enzymologic | |||
* Hydrogen Sulfide | |||
* Male | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* Myocardial Reperfusion Injury | |||
* Myocytes, Cardiac | |||
* Nitric Oxide | |||
* Phenotype | |||
* Reactive Oxygen Species | |||
* Sulfurtransferases | |||
* Vasodilation | |||
|keywords=* 3-mercaptopyruvate transferase (3-MST) | |||
* Aging | |||
* Blood pressure | |||
* Myocardial infarction | |||
* Nitric Oxide (NO) | |||
* Reactive Oxygen Species (ROS) | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7657663 | |||
}} | |||
==CBX3== | |||
{{medline-entry | |||
|title=Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979540 | |||
|keywords=* Aging | |||
* Bone | |||
* CBX1 | |||
* CBX2 | |||
* CBX3 | |||
* CBX4 | |||
* CBX5 | |||
* CBX6 | |||
* CBX7 | |||
* CBX8 | |||
* Cancer | |||
* Chromatin | |||
* Development | |||
* Epigenetics | |||
* H3K27me3 | |||
* H3K9me3 | |||
* Lineage-commitment | |||
* Osteoblast | |||
* Senescence | |||
* Stem cell | |||
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115659 | |||
}} | |||
==CCK== | |||
{{medline-entry | |||
|title=Senolytic agent Quercetin ameliorates intervertebral disc degeneration via the Nrf2/NF-κB axis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33242601 | |||
|keywords=* Intervertebral disc degeneration | |||
* NF-κB pathway | |||
* Nrf2 | |||
* Quercetin | |||
* Senescence | |||
|full-text-url=https://sci-hub.do/10.1016/j.joca.2020.11.006 | |||
}} | |||
{{medline-entry | |||
|title=Astragalus improve aging bone marrow mesenchymal stem cells (BMSCs) vitality and osteogenesis through VD-FGF23-Klotho axis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32355520 | |||
|keywords=* Astragalus | |||
* BMSCs | |||
* VD-FGF23-Klotho axis | |||
* aging | |||
* osteogenesis differentiation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191145 | |||
}} | |||
{{medline-entry | |||
|title=Effects of Age on Acute Appetite-Related Responses to Whey-Protein Drinks, Including Energy Intake, Gastric Emptying, Blood Glucose, and Plasma Gut Hormone Concentrations-A Randomized Controlled Trial. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32268554 | |||
|keywords=* aging | |||
* appetite | |||
* energy intake | |||
* gastric emptying | |||
* glucose | |||
* gut hormones | |||
* whey protein | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7231005 | |||
}} | |||
{{medline-entry | |||
|title=Lactose induced redox-dependent senescence and activated Nrf2 pathway. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31934025 | |||
|keywords=* Lactose | |||
* Nrf2 | |||
* ROS | |||
* cellular senescence | |||
* oxidative stress | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949649 | |||
}} | |||
{{medline-entry | |||
|title=Quercetin Suppresses the Progression of Atherosclerosis by Regulating MST1-Mediated Autophagy in ox-LDL-Induced RAW264.7 Macrophage Foam Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31816893 | |||
|mesh-terms=* Adenine | |||
* Animals | |||
* Atherosclerosis | |||
* Autophagy | |||
* Cell Survival | |||
* Cellular Senescence | |||
* Cyclin-Dependent Kinase Inhibitor p16 | |||
* Cyclin-Dependent Kinase Inhibitor p21 | |||
* Disease Progression | |||
* Foam Cells | |||
* Hepatocyte Growth Factor | |||
* Lipid Metabolism | |||
* Lipoproteins, LDL | |||
* Mice | |||
* Proto-Oncogene Proteins | |||
* Quercetin | |||
* RAW 264.7 Cells | |||
* Sirolimus | |||
* Up-Regulation | |||
|keywords=* RAW264.7 | |||
* atherosclerosis | |||
* autophagy | |||
* quercetin | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928812 | |||
}} | |||
{{medline-entry | |||
|title=LncRNA AW112010 Promotes Mitochondrial Biogenesis and Hair Cell Survival: Implications for Age-Related Hearing Loss. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31781342 | |||
|mesh-terms=* Adenosine Triphosphate | |||
* Aging | |||
* Animals | |||
* Cell Survival | |||
* DNA-Binding Proteins | |||
* Gene Silencing | |||
* Hair Cells, Auditory | |||
* Hearing Loss | |||
* Mice | |||
* Mitochondria | |||
* Organelle Biogenesis | |||
* RNA, Long Noncoding | |||
* Resveratrol | |||
* Signal Transduction | |||
* Transcription Factors | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6855056 | |||
}} | |||
{{medline-entry | |||
|title=Effects of age on feeding response: Focus on the rostral C1 neuron and its glucoregulatory proteins. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31705967 | |||
|keywords=* Aging | |||
* Catecholaminergic neurons | |||
* Feeding response | |||
* Glucoprivation | |||
* Rostral ventrolateral medulla | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2019.110779 | |||
}} | |||
{{medline-entry | |||
|title=Ser-Tyr and Asn-Ala, vasorelaxing dipeptides found by comprehensive screening, reduce blood pressure via different age-dependent mechanisms. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31685714 | |||
|mesh-terms=* Aging | |||
* Amino Acid Sequence | |||
* Animals | |||
* Antihypertensive Agents | |||
* Blood Pressure | |||
* Cholecystokinin | |||
* Dipeptides | |||
* Drug Evaluation, Preclinical | |||
* Hypertension | |||
* Male | |||
* Mesenteric Arteries | |||
* Nitric Oxide | |||
* Peptide Library | |||
* Proglumide | |||
* Rats | |||
* Rats, Inbred SHR | |||
* Receptors, Cholecystokinin | |||
* Vasodilation | |||
* Vasodilator Agents | |||
|keywords=* aging | |||
* dipeptide library | |||
* nitric oxide | |||
* structure-activity relationship | |||
* vasorelaxation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874431 | |||
}} | |||
{{medline-entry | |||
|title=Fisetin, via CKIP-1/REGγ, limits oxidized LDL-induced lipid accumulation and senescence in RAW264.7 macrophage-derived foam cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31655030 | |||
|mesh-terms=* Animals | |||
* Autoantigens | |||
* Carrier Proteins | |||
* Cellular Senescence | |||
* Flavonoids | |||
* Foam Cells | |||
* Lipid Metabolism | |||
* Lipoproteins, LDL | |||
* Mice | |||
* Proteasome Endopeptidase Complex | |||
* RAW 264.7 Cells | |||
* Signal Transduction | |||
|keywords=* CKIP-1/REGγ signaling | |||
* Fisetin | |||
* Lipid accumulation | |||
* RAW264.7 | |||
* Senescence | |||
|full-text-url=https://sci-hub.do/10.1016/j.ejphar.2019.172748 | |||
}} | |||
==CCL11== | |||
{{medline-entry | |||
|title=CCL-11 or Eotaxin-1: An Immune Marker for Ageing and Accelerated Ageing in Neuro-Psychiatric Disorders. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32887304 | |||
|keywords=* Alzheimer’s disease | |||
* CCL-11 | |||
* aging | |||
* behaviour | |||
* biomarkers | |||
* brain | |||
* cytokines | |||
* eotaxin | |||
* prevention | |||
* schizophrenia | |||
* stroke | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7558796 | |||
}} | |||
==CCL17== | |||
{{medline-entry | |||
|title=Aging and chronic high-fat feeding negatively affects kidney size, function, and gene expression in CTRP1-deficient mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33085906 | |||
|keywords=* aging | |||
* heart | |||
* kidney | |||
* metabolism | |||
* obesity | |||
|full-text-url=https://sci-hub.do/10.1152/ajpregu.00139.2020 | |||
}} | |||
==CCL19== | |||
{{medline-entry | |||
|title=Age-Related Gliosis Promotes Central Nervous System Lymphoma through [[CCL19]]-Mediated Tumor Cell Retention. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31526758 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Aged | |||
* Aging | |||
* Animals | |||
* Astrocytes | |||
* Blood-Brain Barrier | |||
* Cell Line, Tumor | |||
* Central Nervous System Neoplasms | |||
* Chemokine CCL19 | |||
* Chemokine CXCL12 | |||
* Disease Models, Animal | |||
* Female | |||
* Gliosis | |||
* Humans | |||
* Intravital Microscopy | |||
* Lymphoma | |||
* Male | |||
* Mice | |||
* Mice, Transgenic | |||
* Microscopy, Fluorescence, Multiphoton | |||
* Middle Aged | |||
* NF-kappa B | |||
* Receptors, CCR7 | |||
* Time-Lapse Imaging | |||
* Young Adult | |||
|keywords=* CCL19 | |||
* CNSL | |||
* CXCL12 | |||
* DLBCL | |||
* PCNSL | |||
* SCNSL | |||
* gliosis | |||
* lymphoma | |||
* metastasis | |||
* neuroinflammation | |||
|full-text-url=https://sci-hub.do/10.1016/j.ccell.2019.08.001 | |||
}} | |||
==CCL2== | |||
{{medline-entry | |||
|title=β1 Integrin regulates adult lung alveolar epithelial cell inflammation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31873073 | |||
|mesh-terms=* Aging | |||
* Alveolar Epithelial Cells | |||
* Animals | |||
* Cell Adhesion | |||
* Chemokine CCL2 | |||
* Chemokines | |||
* Disease Models, Animal | |||
* Epithelium | |||
* Integrin beta1 | |||
* Lung | |||
* Macrophages | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* Pneumonia | |||
* Pulmonary Disease, Chronic Obstructive | |||
* Receptors, CCR2 | |||
|keywords=* COPD | |||
* Inflammation | |||
* Integrins | |||
* Macrophages | |||
* Pulmonology | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7098727 | |||
}} | |||
==CCL20== | |||
{{medline-entry | |||
|title=p53 and p53-related mediators PAI-1 and IGFBP-3 are downregulated in peripheral blood mononuclear cells of HIV-patients exposed to non-nucleoside reverse transcriptase inhibitors. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32272174 | |||
|keywords=* Aging | |||
* Antiretroviral drugs | |||
* HIV | |||
* Inflammation | |||
* NNRTI | |||
* Senescence | |||
* p53 | |||
|full-text-url=https://sci-hub.do/10.1016/j.antiviral.2020.104784 | |||
}} | |||
==CCL28== | |||
{{medline-entry | |||
|title=Age-related chemokine alterations affect IgA secretion and gut immunity in female mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32277312 | |||
|keywords=* Aging | |||
* CCL25 | |||
* CCL28 | |||
* Gut immunity | |||
* IgA | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-020-09877-9 | |||
}} | |||
==CCN1== | |||
{{medline-entry | |||
|title=Sodium tanshinone IIA sulfonate restrains fibrogenesis through induction of senescence in mice with induced deep endometriosis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32651107 | |||
|keywords=* Deep endometriosis | |||
* Fibrogenesis | |||
* Mouse | |||
* Senescence | |||
* Sodium tanshinone IIA sulfonate | |||
|full-text-url=https://sci-hub.do/10.1016/j.rbmo.2020.04.006 | |||
}} | |||
{{medline-entry | |||
|title=Inhibition of cellular communication network factor 1 ([[CCN1]])-driven senescence slows down cartilage inflammaging and osteoarthritis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32622876 | |||
|keywords=* CCN1 | |||
* Cartilage inflammaging | |||
* Chondrocyte cluster | |||
* Osteoarthritis | |||
* Senescence | |||
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115522 | |||
}} | |||
{{medline-entry | |||
|title=The senescence-associated matricellular protein [[CCN1]] in plasma of human subjects with idiopathic pulmonary fibrosis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31765873 | |||
|mesh-terms=* Aged | |||
* Cellular Senescence | |||
* Cysteine-Rich Protein 61 | |||
* Disease Progression | |||
* Enzyme-Linked Immunosorbent Assay | |||
* Female | |||
* Humans | |||
* Idiopathic Pulmonary Fibrosis | |||
* Male | |||
* Middle Aged | |||
* Outcome Assessment, Health Care | |||
* Predictive Value of Tests | |||
* Survival Rate | |||
|keywords=* CCN1 | |||
* Cellular senescence | |||
* Idiopathic pulmonary fibrosis | |||
* Transplant-free survival | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023981 | |||
}} | |||
==CCN3== | |||
{{medline-entry | |||
|title=[[CCN3]] Signaling Is Differently Regulated in Placental Diseases Preeclampsia and Abnormally Invasive Placenta. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33304321 | |||
|keywords=* CCN3 | |||
* abnormally invasive placenta | |||
* invasion | |||
* preeclampsia | |||
* senescence | |||
* trophoblast | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7701218 | |||
}} | |||
{{medline-entry | |||
|title=[[CCN3]] (NOV) Drives Degradative Changes in Aging Articular Cartilage. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33066270 | |||
|keywords=* CCN3 | |||
* NOV | |||
* SASP | |||
* aging | |||
* cellular communication network factor 3 | |||
* oxidative stress | |||
* p21 | |||
* p53 | |||
* primary chondrocytes | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7593953 | |||
}} | |||
==CCND1== | |||
{{medline-entry | |||
|title=Effects of hydrogen peroxide, doxorubicin and ultraviolet irradiation on senescence of human dental pulp stem cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32592933 | |||
|mesh-terms=* Cells, Cultured | |||
* Cellular Senescence | |||
* Dental Pulp | |||
* Doxorubicin | |||
* Humans | |||
* Hydrogen Peroxide | |||
* Stem Cells | |||
* Ultraviolet Rays | |||
|keywords=* Cell cycle | |||
* ROS | |||
* Stress induced senescence | |||
* Ultraviolet irradiation | |||
* p21 | |||
|full-text-url=https://sci-hub.do/10.1016/j.archoralbio.2020.104819 | |||
}} | |||
==CCND3== | |||
{{medline-entry | |||
|title=The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32727592 | |||
|keywords=* Aging | |||
* Immunosuppression | |||
* Osteogenic differentiation | |||
* Periodontal ligament stem cells | |||
* Peripheral blood mononuclear cells | |||
* Tissue engineering | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392710 | |||
}} | |||
==CCR2== | |||
{{medline-entry | |||
|title=Hip Fracture Leads to Transitory Immune Imprint in Older Patients. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33072114 | |||
|keywords=* acute stress | |||
* aging | |||
* immune response | |||
* inflammation | |||
* regulation loop | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7533556 | |||
}} | |||
{{medline-entry | |||
|title=The CC-chemokine receptor 2 is involved in the control of ovarian folliculogenesis and fertility lifespan in mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32615332 | |||
|keywords=* Aging | |||
* CCR2 | |||
* Fertility | |||
* Follicle | |||
* Ovary | |||
|full-text-url=https://sci-hub.do/10.1016/j.jri.2020.103174 | |||
}} | |||
{{medline-entry | |||
|title=Deficit of resolution receptor magnifies inflammatory leukocyte directed cardiorenal and endothelial dysfunction with signs of cardiomyopathy of obesity. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32543720 | |||
|keywords=* inflammatory macrophage | |||
* kidney function | |||
* non-resolving inflammation | |||
* obesogenic aging | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7704037 | |||
}} | |||
{{medline-entry | |||
|title=Tet2-mediated clonal hematopoiesis in nonconditioned mice accelerates age-associated cardiac dysfunction. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32154790 | |||
|keywords=* Aging | |||
* Bone marrow transplantation | |||
* Cardiology | |||
* Hematopoietic stem cells | |||
* Macrophages | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7213793 | |||
}} | |||
{{medline-entry | |||
|title=Inflammation and Ectopic Fat Deposition in the Aging Murine Liver Is Influenced by [[CCR2]]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31843499 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Body Weight | |||
* Chemokine CCL2 | |||
* Disease Models, Animal | |||
* Female | |||
* Gene Expression Profiling | |||
* Inflammation | |||
* Macrophages | |||
* Male | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Non-alcoholic Fatty Liver Disease | |||
* Organ Size | |||
* Receptors, CCR2 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013280 | |||
}} | |||
{{medline-entry | |||
|title=Klotho-mediated targeting of CCL2 suppresses the induction of colorectal cancer progression by stromal cell senescent microenvironments. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31545552 | |||
|mesh-terms=* Aged | |||
* Cell Line, Tumor | |||
* Cell Movement | |||
* Cell Proliferation | |||
* Cellular Microenvironment | |||
* Cellular Senescence | |||
* Chemokine CCL2 | |||
* Colorectal Neoplasms | |||
* Disease Progression | |||
* Down-Regulation | |||
* Doxorubicin | |||
* Female | |||
* Glucuronidase | |||
* Human Umbilical Vein Endothelial Cells | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* NF-kappa B | |||
* Neoplasm Invasiveness | |||
* Proportional Hazards Models | |||
* Signal Transduction | |||
* Stromal Cells | |||
|keywords=* CCL2 | |||
* Klotho | |||
* colorectal cancer | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822285 | |||
}} | |||
==CCR3== | |||
{{medline-entry | |||
|title=Low Molecular Weight Hyaluronan Induces an Inflammatory Response in Ovarian Stromal Cells and Impairs Gamete Development In Vitro. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32033185 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Extracellular Matrix | |||
* Female | |||
* Germ Cells | |||
* Granulosa Cells | |||
* Hyaluronan Receptors | |||
* Hyaluronic Acid | |||
* Inflammation | |||
* Mice | |||
* Mice, Inbred BALB C | |||
* Mice, Inbred C57BL | |||
* Molecular Weight | |||
* Ovary | |||
* Stromal Cells | |||
|keywords=* hyaluronan fragments | |||
* inflammation | |||
* ovarian biology | |||
* reproductive aging | |||
* stroma | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036885 | |||
}} | |||
==CCR5== | |||
{{medline-entry | |||
|title=[Enhancement can do harm]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31532388 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* CRISPR-Cas Systems | |||
* China | |||
* Embryo Research | |||
* Gene Editing | |||
* Gene Silencing | |||
* Genetic Enhancement | |||
* Genome-Wide Association Study | |||
* HIV Infections | |||
* HIV-1 | |||
* Humans | |||
* Longevity | |||
* Middle Aged | |||
* Receptors, CCR5 | |||
|full-text-url=https://sci-hub.do/10.1051/medsci/2019136 | |||
}} | |||
==CCS== | |||
{{medline-entry | |||
|title=Frailty Significantly Associated with a Risk for Mid-term Outcomes in Elderly Chronic Coronary Syndrome Patients: a Prospective Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33306315 | |||
|keywords=* Aging | |||
* Canada | |||
* Confidence Intervals | |||
* Death | |||
* Frail Elderly | |||
* Frailty | |||
* Heart | |||
* Multivariate Analysis | |||
* Prognosis | |||
* Risk Factors | |||
|full-text-url=https://sci-hub.do/10.21470/1678-9741-2019-0484 | |||
}} | |||
{{medline-entry | |||
|title=Microbleeds and Medial Temporal Atrophy Determine Cognitive Trajectories in Normal Aging: A Longitudinal PET-MRI Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32925053 | |||
|keywords=* Atrophy | |||
* cognition | |||
* imaging markers | |||
* medial temporal lobe | |||
* microbleeds | |||
* normal aging | |||
|full-text-url=https://sci-hub.do/10.3233/JAD-200559 | |||
}} | |||
{{medline-entry | |||
|title=Hippocampal Volume Loss, Brain Amyloid Accumulation, and APOE Status in Cognitively Intact Elderly Subjects. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31846965 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Amyloid beta-Peptides | |||
* Apolipoprotein E4 | |||
* Brain | |||
* Cognitive Aging | |||
* Female | |||
* Hippocampus | |||
* Humans | |||
* Longitudinal Studies | |||
* Magnetic Resonance Imaging | |||
* Male | |||
* Positron-Emission Tomography | |||
|keywords=* APOE | |||
* Aging | |||
* Amyloid | |||
* Hippocampus | |||
|full-text-url=https://sci-hub.do/10.1159/000504302 | |||
}} | |||
{{medline-entry | |||
|title=Amyloid Load, Hippocampal Volume Loss, and Diffusion Tensor Imaging Changes in Early Phases of Brain Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31803008 | |||
|keywords=* APOE genotyping | |||
* amyloid deposition | |||
* magnetic resonance imaging | |||
* normal aging | |||
* positron emission tomography | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6872975 | |||
}} | |||
{{medline-entry | |||
|title=Lower bone mass is associated with subclinical atherosclerosis, endothelial dysfunction and carotid thickness in the very elderly. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31783200 | |||
|keywords=* Aging | |||
* Endothelial dysfunction | |||
* Osteoporosis | |||
* Subclinical atherosclerosis | |||
|full-text-url=https://sci-hub.do/10.1016/j.atherosclerosis.2019.11.007 | |||
}} | |||
==CD14== | |||
{{medline-entry | |||
|title=Human innate immune cell crosstalk induces melanoma cell senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32939325 | |||
|keywords=* NK cell | |||
* cytokines | |||
* melanoma | |||
* senescence | |||
* slanMo | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7470184 | |||
}} | |||
{{medline-entry | |||
|title=Fusion Potential of Human Osteoclasts In Vitro Reflects Age, Menopause, and In Vivo Bone Resorption Levels of Their Donors-A Possible Involvement of DC-STAMP. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32887359 | |||
|keywords=* CTX | |||
* DC-STAMP | |||
* DNA methylation | |||
* aging | |||
* cell fusion | |||
* epigenetics | |||
* menopause | |||
* multinucleation | |||
* osteoclast | |||
* osteoclastogenesis | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7504560 | |||
}} | |||
{{medline-entry | |||
|title=Association of [[CD14]] with incident dementia and markers of brain aging and injury. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31818907 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Atrophy | |||
* Biomarkers | |||
* Brain | |||
* Cognitive Dysfunction | |||
* Dementia | |||
* Female | |||
* Humans | |||
* Incidence | |||
* Lipopolysaccharide Receptors | |||
* Longitudinal Studies | |||
* Male | |||
* Middle Aged | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7108812 | |||
}} | |||
{{medline-entry | |||
|title=Compromised Bone Healing in Aged Rats Is Associated With Impaired M2 Macrophage Function. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31681320 | |||
|mesh-terms=* Age Factors | |||
* Aging | |||
* Animals | |||
* Antigens, CD | |||
* Antigens, Differentiation, Myelomonocytic | |||
* Biomarkers | |||
* Bone Regeneration | |||
* Bone and Bones | |||
* Female | |||
* Fractures, Bone | |||
* Gene Expression | |||
* Lipopolysaccharide Receptors | |||
* Macrophages | |||
* Osteotomy | |||
* Rats, Sprague-Dawley | |||
* Wound Healing | |||
|keywords=* CD14+ cells | |||
* aging | |||
* angiogenesis | |||
* bone regeneration | |||
* compromised healing | |||
* macrophage | |||
* monocyte | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6813416 | |||
}} | |||
==CD19== | |||
{{medline-entry | |||
|title=Sequential treatment with aT19 cells generates memory CAR-T cells and prolongs the lifespan of Raji-B-NDG mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31634527 | |||
|mesh-terms=* Animals | |||
* Antigens, CD19 | |||
* Cell Line, Tumor | |||
* Combined Modality Therapy | |||
* Disease-Free Survival | |||
* HEK293 Cells | |||
* Healthy Volunteers | |||
* Humans | |||
* Immunologic Memory | |||
* Immunotherapy, Adoptive | |||
* Longevity | |||
* Lymphoma, B-Cell | |||
* Mice | |||
* Neoplasm Recurrence, Local | |||
* Receptors, Chimeric Antigen | |||
* Recombinant Proteins | |||
* Remission Induction | |||
* T-Lymphocytes | |||
* Time Factors | |||
* Transduction, Genetic | |||
* Transplantation, Autologous | |||
* Xenograft Model Antitumor Assays | |||
|keywords=* Autologous CD19 T cells | |||
* Chimeric antigen receptor | |||
* Memory T cells | |||
* Sequential therapy | |||
|full-text-url=https://sci-hub.do/10.1016/j.canlet.2019.10.022 | |||
}} | |||
==CD27== | |||
{{medline-entry | |||
|title=The Interplay between [[CD27]] and [[CD27]] B Cells Ensures the Flexibility, Stability, and Resilience of Human B Cell Memory. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32130900 | |||
|keywords=* CD27 | |||
* VH repertoire | |||
* aging | |||
* germinal center | |||
* immunodeficiency | |||
* immunological memory | |||
* memory B cells | |||
* pregnancy | |||
* spleen | |||
* vaccine | |||
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2020.02.022 | |||
}} | |||
{{medline-entry | |||
|title=CMV-independent increase in [[CD27]]-CD28+ CD8+ EMRA T cells is inversely related to mortality in octogenarians. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31993214 | |||
|keywords=* Biomarkers | |||
* Senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6972903 | |||
}} | |||
{{medline-entry | |||
|title=Compartmentalized cytotoxic immune response leads to distinct pathogenic roles of natural killer and senescent CD8 T cells in human cutaneous leishmaniasis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31925782 | |||
|mesh-terms=* CD56 Antigen | |||
* CD57 Antigens | |||
* Case-Control Studies | |||
* Cellular Senescence | |||
* Cytotoxicity, Immunologic | |||
* Female | |||
* Gene Expression Regulation | |||
* Host-Parasite Interactions | |||
* Humans | |||
* Interferon-gamma | |||
* Killer Cells, Natural | |||
* Lectins, C-Type | |||
* Leishmania braziliensis | |||
* Leishmaniasis, Cutaneous | |||
* Male | |||
* Oligosaccharides | |||
* Receptors, Immunologic | |||
* Severity of Illness Index | |||
* Sialyl Lewis X Antigen | |||
* Signal Transduction | |||
* Skin | |||
* T-Lymphocytes, Cytotoxic | |||
|keywords=* | |||
Leishmania braziliensis | |||
* CD8+ T cells | |||
* cellular senescence | |||
* cutaneous leishmaniasis | |||
* immunopathology | |||
* natural killer cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078002 | |||
}} | |||
{{medline-entry | |||
|title=[[CD27]]- IgD- B cell memory subset associates with inflammation and frailty in elderly individuals but only in males. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31423147 | |||
|keywords=* Aging | |||
* B cell | |||
* Frailty | |||
* Immunosenescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693136 | |||
}} | |||
==CD28== | |||
{{medline-entry | |||
|title=Premature CD4 T Cells Senescence Induced by Chronic Infection in Patients with Acute Coronary Syndrome. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33269101 | |||
|keywords=* CD28null T cells | |||
* CD4+ T cells | |||
* acute coronary syndrome | |||
* immunosenescence | |||
* infection | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673853 | |||
}} | |||
{{medline-entry | |||
|title=The IMMENSE Study: The Interplay Between iMMune and ENdothelial Cells in Mediating Cardiovascular Risk in Systemic Lupus Erythematosus. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33193356 | |||
|keywords=* angiogenic T cells | |||
* cardiovascular risk | |||
* endothelial progenitor cells | |||
* immunosenescence | |||
* systemic lupus erythematosus | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7658008 | |||
}} | |||
{{medline-entry | |||
|title=Emergence of T cell immunosenescence in diabetic chronic kidney disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33088331 | |||
|keywords=* BMI | |||
* CKD | |||
* Diabetes | |||
* Immunosenescence | |||
* T cell | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574244 | |||
}} | |||
{{medline-entry | |||
|title=The relationship between Chlamydia pneumoniae infection and CD4/CD8 ratio, lymphocyte subsets in middle-aged and elderly individuals. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33068732 | |||
|keywords=* CD4/CD8 ratio | |||
* Chlamydia pneumoniae | |||
* Immune profile | |||
* Immunosenescence | |||
* Lymphocyte subsets | |||
|full-text-url=https://sci-hub.do/10.1016/j.micpath.2020.104541 | |||
}} | |||
{{medline-entry | |||
|title=Next steps in mechanisms of inflammaging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32960694 | |||
|keywords=* Aging | |||
* autophagy | |||
* glutathione | |||
* membrane potential | |||
* mitochondria | |||
* oxidative stress | |||
|full-text-url=https://sci-hub.do/10.1080/15548627.2020.1822089 | |||
}} | |||
{{medline-entry | |||
|title=A randomized pilot trial to evaluate the benefit of the concomitant use of atorvastatin and Raltegravir on immunological markers in protease-inhibitor-treated subjects living with HIV. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32941476 | |||
|mesh-terms=* Adult | |||
* Anti-HIV Agents | |||
* Anticholesteremic Agents | |||
* Atorvastatin | |||
* CD4-Positive T-Lymphocytes | |||
* CD8-Positive T-Lymphocytes | |||
* Female | |||
* HIV Infections | |||
* HIV Protease Inhibitors | |||
* Humans | |||
* Immunosenescence | |||
* Inflammation | |||
* Lymphocyte Activation | |||
* Male | |||
* Middle Aged | |||
* Pilot Projects | |||
* Raltegravir Potassium | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7498036 | |||
}} | |||
{{medline-entry | |||
|title=Aging affects responsiveness of peripheral blood mononuclear cells to immunosuppression of periodontal ligament stem cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32663414 | |||
|keywords=* Periodontal ligament stem cells | |||
* T lymphocytes | |||
* age | |||
* coculture | |||
* cytokines | |||
* immunophenotyping | |||
* immunosenescence | |||
* immunosuppression | |||
* peripheral blood mononuclear cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7364836 | |||
}} | |||
{{medline-entry | |||
|title=Comparison of Donepezil, Memantine, Melatonin, and Liuwei Dihuang Decoction on Behavioral and Immune Endocrine Responses of Aged Senescence-Accelerated Mouse Resistant 1 Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32477103 | |||
|keywords=* Liuwei Dihuang decoction | |||
* aging | |||
* cognition | |||
* immune response | |||
* inflammation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7241684 | |||
}} | |||
{{medline-entry | |||
|title=Immunosenescent characteristics of T cells in young patients following haploidentical haematopoietic stem cell transplantation from parental donors. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32280463 | |||
|keywords=* CD28− T cells | |||
* HaploSCT | |||
* immune monitoring | |||
* immunosenescence | |||
* telomere length | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7142179 | |||
}} | |||
{{medline-entry | |||
|title=Diagnosis-independent loss of T-cell costimulatory molecules in individuals with cytomegalovirus infection. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32209361 | |||
|keywords=* Biological aging | |||
* Cytomegalovirus | |||
* Depression | |||
* Immunosenescence | |||
* Major depressive disorder | |||
* Sex differences | |||
* T-cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7594105 | |||
}} | |||
{{medline-entry | |||
|title=Accelerated immunosenescence in rheumatoid arthritis: impact on clinical progression. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32190092 | |||
|keywords=* Ageing | |||
* Cell senescence | |||
* Cognitive impairment | |||
* Immune ageing | |||
* Rheumatoid arthritis | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7068869 | |||
}} | |||
{{medline-entry | |||
|title=Accelerated immune aging was correlated with lupus-associated brain fog in reproductive-age systemic lupus erythematosus patients. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32107852 | |||
|keywords=* immunosenescence | |||
* lupus-associated brain fog | |||
* systemic lupus erythematosus | |||
|full-text-url=https://sci-hub.do/10.1111/1756-185X.13816 | |||
}} | |||
{{medline-entry | |||
|title=T cells, aging and senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32092501 | |||
|keywords=* Aging | |||
* Senescence | |||
* T cells | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2020.110887 | |||
}} | |||
{{medline-entry | |||
|title=Liver fibrosis and accelerated immune dysfunction (immunosenescence) among HIV-infected Russians with heavy alcohol consumption - an observational cross-sectional study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31892306 | |||
|mesh-terms=* Adult | |||
* Alcoholism | |||
* CD28 Antigens | |||
* CD4-Positive T-Lymphocytes | |||
* CD57 Antigens | |||
* CD8-Positive T-Lymphocytes | |||
* Cross-Sectional Studies | |||
* Female | |||
* HIV Infections | |||
* Hepatitis C | |||
* Humans | |||
* Immunologic Memory | |||
* Immunosenescence | |||
* Leukocyte Common Antigens | |||
* Linear Models | |||
* Liver Cirrhosis, Alcoholic | |||
* Male | |||
* Phenotype | |||
* Randomized Controlled Trials as Topic | |||
* Russia | |||
* Zinc | |||
|keywords=* Alcohol | |||
* HIV | |||
* Immune senescence | |||
* Liver fibrosis | |||
* Russia | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938606 | |||
}} | |||
{{medline-entry | |||
|title=Effect of Allogenic Bone Marrow Mesenchymal Stem Cell Transplantation on T Cells of Old Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31895587 | |||
|keywords=* aging | |||
* cellular senescence | |||
* memory T cells | |||
* stem cell | |||
|full-text-url=https://sci-hub.do/10.1089/cell.2019.0055 | |||
}} | |||
{{medline-entry | |||
|title=Peripheral antibody concentrations are associated with highly differentiated T cells and inflammatory processes in the human bone marrow. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31462901 | |||
|keywords=* Aging | |||
* Antibodies | |||
* B cells | |||
* Bone marrow | |||
* Exhaustion | |||
* Immunosenescence | |||
* Inflammation | |||
* Pro-inflammatory | |||
* Senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6706884 | |||
}} | |||
==CD33== | |||
{{medline-entry | |||
|title=Maximum reproductive lifespan correlates with [[CD33]]rSIGLEC gene number: Implications for NADPH oxidase-derived reactive oxygen species in aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31907986 | |||
|mesh-terms=* Animals | |||
* Gene Dosage | |||
* Humans | |||
* Longevity | |||
* NADPH Oxidases | |||
* Neutrophils | |||
* Reactive Oxygen Species | |||
* Sialic Acid Binding Ig-like Lectin 3 | |||
* Whale, Killer | |||
|keywords=* | |||
CD33rSIGLEC | |||
* NADPH-oxidase | |||
* prolonged post-reproductive lifespan | |||
* reactive oxygen species | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7018541 | |||
}} | |||
==CD34== | |||
{{medline-entry | |||
|title=Comparing the Effect of TGF-β Receptor Inhibition on Human Perivascular Mesenchymal Stromal Cells Derived from Endometrium, Bone Marrow and Adipose Tissues. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33271899 | |||
|keywords=* SUSD2 | |||
* adipose tissue | |||
* apoptosis | |||
* bone marrow | |||
* clonogenicity | |||
* endometrium | |||
* menstrual fluid | |||
* perivascular mesenchymal stromal cells | |||
* placenta | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712261 | |||
}} | |||
{{medline-entry | |||
|title=ACE2/ACE imbalance and impaired vasoreparative functions of stem/progenitor cells in aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33247425 | |||
|keywords=* ACE2 | |||
* Aging | |||
* Angiotensin-(1-7) | |||
* Hematopoietic stem/progenitor cells | |||
* Ischemia | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7694587 | |||
}} | |||
{{medline-entry | |||
|title=Innovative Mind-Body Intervention Day Easy Exercise Increases Peripheral Blood [[CD34]] Cells in Adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32841054 | |||
|keywords=* CD34+ cells | |||
* aging | |||
* day easy exercise | |||
* mind–body intervention | |||
|full-text-url=https://sci-hub.do/10.1177/0963689720952352 | |||
}} | |||
{{medline-entry | |||
|title=Human Thymic Involution and Aging in Humanized Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32733465 | |||
|keywords=* aging | |||
* human | |||
* humanized mouse | |||
* recent thymic emigrants | |||
* thymus involution | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7358581 | |||
}} | |||
{{medline-entry | |||
|title=Coinhibition of activated p38 MAPKα and mTORC1 potentiates stemness maintenance of HSCs from SR1-expanded human cord blood [[CD34]] cells via inhibition of senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32602209 | |||
|keywords=* HSC stemness maintenance | |||
* Stem Regenin 1 | |||
* cellular senescence | |||
* ex vivo expansion | |||
* human cord blood CD34+ cells | |||
* mammalian target of rapamycin complex 1 | |||
* p38 mitogen-activated protein kinase α | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695631 | |||
}} | |||
{{medline-entry | |||
|title=Bulk and single-cell gene expression analyses reveal aging human choriocapillaris has pro-inflammatory phenotype. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32531351 | |||
|mesh-terms=* Age Factors | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Choroid | |||
* Endothelial Cells | |||
* Female | |||
* Gene Expression Regulation | |||
* Humans | |||
* Infant | |||
* Infant, Newborn | |||
* Inflammation | |||
* Inflammation Mediators | |||
* Macular Degeneration | |||
* Male | |||
* Middle Aged | |||
* Phenotype | |||
* Sequence Analysis, RNA | |||
* Single-Cell Analysis | |||
|keywords=* Age-related macular degeneration | |||
* Choriocapillaris | |||
* Choroid | |||
* Infant | |||
* Pericytes | |||
* Single-cell | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396301 | |||
}} | |||
{{medline-entry | |||
|title=Mesenchymal stem cells repair bone marrow damage of aging rats and regulate autophagy and aging genes. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32432372 | |||
|keywords=* aging | |||
* autophagy | |||
* bone marrow injury | |||
* mesenchymal stem cells | |||
* repair | |||
|full-text-url=https://sci-hub.do/10.1002/cbf.3548 | |||
}} | |||
{{medline-entry | |||
|title=Immune cell extracellular vesicles and their mitochondrial content decline with ageing. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31911808 | |||
|keywords=* Ageing | |||
* Apoptotic bodies | |||
* Exosomes | |||
* Extracellular vesicles | |||
* Immune cells | |||
* Immunosenescence | |||
* Inflammageing | |||
* Microvesicles | |||
* Mitochondria | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6942666 | |||
}} | |||
{{medline-entry | |||
|title=Young and elderly oral squamous cell carcinoma patients present similar angiogenic profile and predominance of M2 macrophages: Comparative immunohistochemical study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31497915 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Antigens, CD | |||
* Antigens, Differentiation, Myelomonocytic | |||
* Carcinoma, Squamous Cell | |||
* Female | |||
* Humans | |||
* Immunohistochemistry | |||
* Immunosenescence | |||
* Macrophages | |||
* Male | |||
* Middle Aged | |||
* Mouth Neoplasms | |||
* Neovascularization, Pathologic | |||
* Receptors, Cell Surface | |||
* Tumor Microenvironment | |||
|keywords=* M1 and M2 macrophages | |||
* angiogenesis | |||
* immunohistochemistry | |||
* immunosenescence | |||
* oral squamous cell carcinoma | |||
|full-text-url=https://sci-hub.do/10.1002/hed.25954 | |||
}} | |||
==CD36== | |||
{{medline-entry | |||
|title=Liver osteopontin is required to prevent the progression of age-related nonalcoholic fatty liver disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32638492 | |||
|keywords=* Osteopontin | |||
* aging | |||
* lipid metabolism | |||
* nonalcoholic fatty liver disease | |||
* p53 | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431823 | |||
}} | |||
{{medline-entry | |||
|title=Reduction of senescence-associated beta-galactosidase activity by vitamin E in human fibroblasts depends on subjects' age and cell passage number. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32479666 | |||
|keywords=* CD36 scavenger receptor | |||
* alpha-tocopherol | |||
* exosomes | |||
* extracellular vesicles | |||
* gene expression | |||
* lysosome | |||
* senescence | |||
* signal transduction | |||
* vitamin E | |||
|full-text-url=https://sci-hub.do/10.1002/biof.1636 | |||
}} | |||
{{medline-entry | |||
|title=Niacin-mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32030468 | |||
|keywords=* Aging | |||
* Macrophages | |||
* Microglia | |||
* Oligodendrocyte progenitor cells | |||
* Phagocytosis | |||
* Remyelination | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181452 | |||
}} | |||
==CD38== | |||
{{medline-entry | |||
|title=Re-equilibration of imbalanced NAD metabolism ameliorates the impact of telomere dysfunction. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32935380 | |||
|keywords=* CD38 NADase | |||
* NAD metabolism | |||
* mitochondrial impairment | |||
* replicative senescence | |||
* telomere biology disorders | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7604620 | |||
}} | |||
{{medline-entry | |||
|title=TNFRSF12A and [[CD38]] Contribute to a Vicious Circle for Chronic Obstructive Pulmonary Disease by Engaging Senescence Pathways. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32537452 | |||
|keywords=* aging | |||
* chronic inflammation | |||
* lung | |||
* network analysis | |||
* senescence | |||
* tissue remodeling | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7268922 | |||
}} | |||
{{medline-entry | |||
|title=Aging alters acetylation status in skeletal and cardiac muscles. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32300965 | |||
|keywords=* Aging | |||
* CD38 | |||
* Deacetylation | |||
* NAD+ | |||
* PARP | |||
* SIRT | |||
* Skeletal muscle | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7286993 | |||
}} | |||
{{medline-entry | |||
|title=[[CD38]] in Neurodegeneration and Neuroinflammation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32085567 | |||
|keywords=* ALS. | |||
* Alzheimer’s disease | |||
* CD38 | |||
* NAD | |||
* Parkinson’s disease | |||
* aging | |||
* neurodegeneration | |||
* neuroinflammation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072759 | |||
}} | |||
{{medline-entry | |||
|title=[[CD38]], a Receptor with Multifunctional Activities: From Modulatory Functions on Regulatory Cell Subsets and Extracellular Vesicles, to a Target for Therapeutic Strategies. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31783629 | |||
|mesh-terms=* ADP-ribosyl Cyclase 1 | |||
* Aging | |||
* Animals | |||
* Antibodies, Monoclonal | |||
* B-Lymphocytes, Regulatory | |||
* Cell Line | |||
* Extracellular Vesicles | |||
* Humans | |||
* Infections | |||
* Membrane Glycoproteins | |||
* Mice | |||
* Neoplasms | |||
* T-Lymphocytes, Regulatory | |||
|keywords=* CD38 | |||
* adenosine | |||
* immune-modulation | |||
* regulatory cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953043 | |||
}} | |||
{{medline-entry | |||
|title=[[CD38]] Deficiency Alleviates D-Galactose-Induced Myocardial Cell Senescence Through NAD /Sirt1 Signaling Pathway. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31551807 | |||
|keywords=* CD38 | |||
* D-galactose | |||
* NAD+ | |||
* heart senescence | |||
* oxidative stress | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6735286 | |||
}} | |||
==CD4== | |||
{{medline-entry | |||
|title=Identification of Key Genes and Potential New Biomarkers for Ovarian Aging: A Study Based on RNA-Sequencing Data. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33304387 | |||
|keywords=* GEO database | |||
* bioinformatics | |||
* biomarker | |||
* immune cell infiltration | |||
* ovarian aging | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7701310 | |||
}} | |||
{{medline-entry | |||
|title=Distinct Age-Related Epigenetic Signatures in [[CD4]] and CD8 T Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33262764 | |||
|keywords=* T-cell | |||
* T-cell homeostasis | |||
* aging | |||
* chromatin accessibility | |||
* epigenetics | |||
* ribosomal proteins | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7686576 | |||
}} | |||
{{medline-entry | |||
|title=IL-1β-MyD88-mTOR Axis Promotes Immune-Protective IL-17A Foxp3 Cells During Mucosal Infection and Is Dysregulated With Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33240286 | |||
|keywords=* Candida | |||
* Foxp3 | |||
* IL-1β | |||
* Treg | |||
* Treg17 | |||
* aging | |||
* fungal infection | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7677307 | |||
}} | |||
{{medline-entry | |||
|title=Thymus involution sets the clock of declined immunity and repair with aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33248315 | |||
|keywords=* Aging | |||
* Chronic systemic inflammation | |||
* Dysregulated CD4 T cells | |||
* Immune-mediated repair | |||
* Thymus | |||
|full-text-url=https://sci-hub.do/10.1016/j.arr.2020.101231 | |||
}} | |||
{{medline-entry | |||
|title=Food insecurity and T-cell dysregulation in women living with HIV on antiretroviral therapy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33247896 | |||
|keywords=* HIV | |||
* exhaustion | |||
* food insecurity | |||
* immune activation | |||
* senescence | |||
|full-text-url=https://sci-hub.do/10.1093/cid/ciaa1771 | |||
}} | |||
{{medline-entry | |||
|title=Rapamycin Eyedrops Increased [[CD4]] Foxp3 Cells and Prevented Goblet Cell Loss in the Aged Ocular Surface. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33255287 | |||
|keywords=* aging | |||
* dry eye | |||
* goblet cell | |||
* inflammation | |||
* lacrimal gland | |||
* ocular surface | |||
* rapamycin | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7727717 | |||
}} | |||
{{medline-entry | |||
|title=Antioxidants N-Acetylcysteine and Vitamin C Improve T Cell Commitment to Memory and Long-Term Maintenance of Immunological Memory in Old Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33228213 | |||
|keywords=* NAC | |||
* T cells | |||
* aging | |||
* antioxidants | |||
* immunosenescence | |||
* vaccination | |||
* vitamin C | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7699597 | |||
}} | |||
{{medline-entry | |||
|title=Evolution of comorbidities in people living with HIV between 2004 and 2014: cross-sectional analyses from ANRS CO3 Aquitaine cohort. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33198667 | |||
|keywords=* Aging | |||
* Cardiovascular events | |||
* Chronic kidney disease | |||
* Comorbidities | |||
* HIV | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7670698 | |||
}} | |||
{{medline-entry | |||
|title=Impact of age on [[CD4]] recovery and viral suppression over time among adults living with HIV who initiated antiretroviral therapy in the African Cohort Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33183355 | |||
|keywords=* Elders on antiretroviral drugs | |||
* HIV and aging | |||
* HIV treatment outcomes | |||
* Sub-saharan Africa | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7664082 | |||
}} | |||
{{medline-entry | |||
|title=hPMSCs protects against D-galactose-induced oxidative damage of [[CD4]] T cells through activating Akt-mediated Nrf2 antioxidant signaling. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33148324 | |||
|keywords=* Aging | |||
* CD4+ T cells | |||
* Nrf2 | |||
* Oxidative stress | |||
* Senescence-associated secretoryphenotype | |||
* hPMSC | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641865 | |||
}} | |||
{{medline-entry | |||
|title=Substantial gap in primary care: older adults with HIV presenting late to care. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33129258 | |||
|keywords=* Aging population | |||
* HIV | |||
* Older adults | |||
* Risk | |||
* Stigma | |||
* Testing | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603686 | |||
}} | |||
{{medline-entry | |||
|title=Quantitative Digitography Measures Fine Motor Disturbances in Chronically Treated HIV Similar to Parkinson's Disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33132893 | |||
|keywords=* HIV—human immunodeficiency virus | |||
* Parkinson’s disease | |||
* aging | |||
* fine motor activities | |||
* motor control | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575770 | |||
}} | |||
{{medline-entry | |||
|title=Monocyte and T Cell Immune Phenotypic Profiles Associated With Age Advancement Differ Between People With HIV, Lifestyle-Comparable Controls and Blood Donors. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33123168 | |||
|keywords=* HIV | |||
* T cell | |||
* aging | |||
* immune activation | |||
* immune dysfunction | |||
* inflammation | |||
* monocyte | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7573236 | |||
}} | |||
{{medline-entry | |||
|title=HIV and three dimensions of Wisdom: Association with cognitive function and physical and mental well-being: For: Psychiatry Research. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33096437 | |||
|keywords=* Affective | |||
* Aging | |||
* Aids | |||
* Compassion | |||
* Reflective | |||
|full-text-url=https://sci-hub.do/10.1016/j.psychres.2020.113510 | |||
}} | |||
{{medline-entry | |||
|title=CD8 T cells are present at low levels in the white matter with physiological and pathological aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33049712 | |||
|keywords=* aging | |||
* neuroscience | |||
* pathology | |||
|full-text-url=https://sci-hub.do/10.18632/aging.104043 | |||
}} | |||
{{medline-entry | |||
|title=Immunotherapy in older patients with cancer. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33041248 | |||
|keywords=* Ageing | |||
* Cancer | |||
* Elderly | |||
* Immunosenescence | |||
* Immunotherapy | |||
* Old people | |||
* Oncogeriatry | |||
|full-text-url=https://sci-hub.do/10.1016/j.bj.2020.07.009 | |||
}} | |||
{{medline-entry | |||
|title=Multiple genetic programs contribute to [[CD4]] T cell memory differentiation and longevity by maintaining T cell quiescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32987276 | |||
|keywords=* CD4 T cell | |||
* Cell longevity | |||
* Gene | |||
* Genetic programs | |||
* Memory T cell | |||
* Memory cell markers | |||
|full-text-url=https://sci-hub.do/10.1016/j.cellimm.2020.104210 | |||
}} | |||
{{medline-entry | |||
|title=Conventional Treatment for Multiple Myeloma Drives Premature Aging Phenotypes and Metabolic Dysfunction in T Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33013907 | |||
|keywords=* T cell | |||
* aging | |||
* autologous stem cell transplant | |||
* metabolism | |||
* myeloma | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7494758 | |||
}} | |||
{{medline-entry | |||
|title=Immunosenescence: the role of age in multiple sclerosis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32962809 | |||
|keywords=* Ageing | |||
* Envejecimiento | |||
* Esclerosis múltiple | |||
* Esclerosis múltiple de comienzo tardío | |||
* Immunosenescence | |||
* Inmunosenescencia | |||
* Late-onset multiple sclerosis | |||
* Multiple sclerosis | |||
|full-text-url=https://sci-hub.do/10.1016/j.nrl.2020.05.016 | |||
}} | |||
{{medline-entry | |||
|title=Umbilical cord mesenchymal stem cells protect thymus structure and function in aged C57 mice by downregulating aging-related genes and upregulating autophagy- and anti-oxidative stress-related genes. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32924972 | |||
|keywords=* aged | |||
* senescence | |||
* thymus | |||
* transplantation | |||
* umbilical cord mesenchymal stem cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521525 | |||
}} | |||
{{medline-entry | |||
|title=Impaired Cytotoxic CD8 T Cell Response in Elderly COVID-19 Patients. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32948688 | |||
|mesh-terms=* Aged, 80 and over | |||
* Antigens, CD | |||
* Betacoronavirus | |||
* CD4-Positive T-Lymphocytes | |||
* CD8-Positive T-Lymphocytes | |||
* COVID-19 | |||
* Coronavirus Infections | |||
* Cytotoxins | |||
* Female | |||
* Humans | |||
* Immunity, Cellular | |||
* Male | |||
* Middle Aged | |||
* Pandemics | |||
* Pneumonia, Viral | |||
* SARS-CoV-2 | |||
* T-Lymphocyte Subsets | |||
* T-Lymphocytes, Cytotoxic | |||
|keywords=* CD4+ | |||
* CD8+ | |||
* COVID-19 | |||
* PD-1 | |||
* SARS-CoV-2 | |||
* aging | |||
* cytotoxic T cells | |||
* granzyme | |||
* perforin | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7502863 | |||
}} | |||
{{medline-entry | |||
|title=What are the roles of antibodies versus a durable, high quality T-cell response in protective immunity against SARS-CoV-2? | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32875286 | |||
|keywords=* Antibodies | |||
* Antibody-dependent enhancement | |||
* CD8 T-cells | |||
* COVID-19 | |||
* Durable immunity | |||
* Protective immunity | |||
* SARS | |||
* SARS-CoV-2 | |||
* T cell lifespan | |||
* T-cell epitopes | |||
* T-cells | |||
* Vaccines | |||
* Yellow Fever Vaccine | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7452821 | |||
}} | |||
{{medline-entry | |||
|title=Per2 Upregulation in Circulating Hematopoietic Progenitor Cells During Chronic HIV Infection. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32850472 | |||
|keywords=* HIV | |||
* Sirtuin 1 | |||
* hematopoietic progenitor cells | |||
* period circadian clock 2 | |||
* senescence | |||
* telomere length | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396677 | |||
}} | |||
{{medline-entry | |||
|title=COVID-19: age, Interleukin-6, C-reactive protein, and lymphocytes as key clues from a multicentre retrospective study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32802142 | |||
|keywords=* ACE2 | |||
* C-reactive protein | |||
* COVID-19 | |||
* Immunity | |||
* Immunosenescence | |||
* Interleukin-6 | |||
* Lymphocytes | |||
* Renin-angiotensin system | |||
* Severe acute respiratory syndrome coronavirus 2 | |||
* Spain | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7426672 | |||
}} | |||
{{medline-entry | |||
|title=Immunosenescence profiles are not associated with muscle strength, physical performance and sarcopenia risk in very old adults: The Newcastle 85+ Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32735896 | |||
|keywords=* immunosenescence | |||
* lymphocyte compartments | |||
* physical performance | |||
* sarcopenia | |||
* very old adults | |||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2020.111321 | |||
}} | |||
{{medline-entry | |||
|title=Homeostasis and the functional roles of [[CD4]] Treg cells in aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32717201 | |||
|keywords=* Aging | |||
* Autoimmunity | |||
* Cancer | |||
* FOXP3 | |||
* Immune senescence | |||
* Immune suppression | |||
* Inflammaging | |||
* Regulatory T cells | |||
* T helper 17 | |||
* Treg | |||
|full-text-url=https://sci-hub.do/10.1016/j.imlet.2020.07.004 | |||
}} | |||
{{medline-entry | |||
|title=A Comprehensive Evaluation of the Impact of Bovine Milk Containing Different Beta-Casein Profiles on Gut Health of Ageing Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32707687 | |||
|keywords=* A2 beta-casein | |||
* SCFAs | |||
* elderly | |||
* gut inflammation | |||
* gut microbiota | |||
* gut morphology | |||
* immunosenescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400800 | |||
}} | |||
{{medline-entry | |||
|title=Premature aging of circulating T cells predicts all-cause mortality in hemodialysis patients. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32660510 | |||
|keywords=* Hemodialysis | |||
* Inflammation | |||
* Mortality | |||
* T cell aging | |||
* naïve T cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7359274 | |||
}} | |||
{{medline-entry | |||
|title=In-depth immune cellular profiling reveals sex-specific associations with frailty. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32582361 | |||
|keywords=* Frailty | |||
* Healthy aging | |||
* Immune cellular profiling | |||
* Immune homeostasis | |||
* Immunosenescence | |||
* Sex-specific immune profile | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310472 | |||
}} | |||
{{medline-entry | |||
|title=CD70 contributes to age-associated T cell defects and overwhelming inflammatory responses. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32559178 | |||
|keywords=* CD70 | |||
* T cell aging | |||
* co-inhibitory molecules | |||
* immunosenescence | |||
* overwhelming inflammatory responses | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343466 | |||
}} | |||
{{medline-entry | |||
|title=Comparison of Overall and Comorbidity-Free Life Expectancy Between Insured Adults With and Without HIV Infection, 2000-2016. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32539152 | |||
|mesh-terms=* Adult | |||
* Chronic Disease | |||
* Cohort Studies | |||
* Comorbidity | |||
* Female | |||
* HIV Infections | |||
* Humans | |||
* Insurance, Health | |||
* Life Expectancy | |||
* Male | |||
* Middle Aged | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7296391 | |||
}} | |||
{{medline-entry | |||
|title=Comparative Analysis of Age-Related Changes in Lacrimal Glands and Meibomian Glands of a C57BL/6 Male Mouse Model. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32545199 | |||
|keywords=* aging | |||
* dry eye | |||
* inflammation | |||
* lacrimal glands | |||
* meibomian glands | |||
* oxidative stress | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7313015 | |||
}} | |||
{{medline-entry | |||
|title=Thymus aging in mice deficient in either EphB2 or EphB3, two master regulators of thymic epithelium development. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32506584 | |||
|keywords=* senescence | |||
* thymic epithelial cells | |||
* thymocytes | |||
|full-text-url=https://sci-hub.do/10.1002/dvdy.212 | |||
}} | |||
{{medline-entry | |||
|title=CD8 T-cell senescence and skewed lymphocyte subsets in young Dyskeratosis Congenita patients with PARN and DKC1 mutations. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32452087 | |||
|keywords=* | |||
DKC1 | |||
* | |||
PARN | |||
* Dyskeratosis Congenita | |||
* primary immunodeficiency | |||
* senescence | |||
* telomere | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521304 | |||
}} | |||
{{medline-entry | |||
|title=Short-Term Environmental Enrichment is a Stronger Modulator of Brain Glial Cells and Cervical Lymph Node T Cell Subtypes than Exercise or Combined Exercise and Enrichment. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32451728 | |||
|keywords=* Aging | |||
* Astrocytes | |||
* Environmental enrichment | |||
* Microglia | |||
* Physical exercise | |||
* T cells | |||
|full-text-url=https://sci-hub.do/10.1007/s10571-020-00862-x | |||
}} | |||
{{medline-entry | |||
|title=Viral and host factors related to the clinical outcome of COVID-19. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32434211 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Animals | |||
* Asymptomatic Infections | |||
* Betacoronavirus | |||
* COVID-19 | |||
* China | |||
* Cohort Studies | |||
* Coronavirus Infections | |||
* Critical Illness | |||
* Disease Progression | |||
* Evolution, Molecular | |||
* Female | |||
* Genetic Variation | |||
* Genome, Viral | |||
* Hospitalization | |||
* Host-Pathogen Interactions | |||
* Humans | |||
* Inflammation Mediators | |||
* Interleukin-6 | |||
* Interleukin-8 | |||
* Lymphocyte Count | |||
* Lymphopenia | |||
* Male | |||
* Middle Aged | |||
* Pandemics | |||
* Phylogeny | |||
* Pneumonia, Viral | |||
* Respiratory Distress Syndrome | |||
* SARS-CoV-2 | |||
* T-Lymphocytes | |||
* Time Factors | |||
* Treatment Outcome | |||
* Virulence | |||
* Virus Shedding | |||
* Young Adult | |||
* Zoonoses | |||
|full-text-url=https://sci-hub.do/10.1038/s41586-020-2355-0 | |||
}} | |||
{{medline-entry | |||
|title=Use of comedications and potential drug-drug interactions in people living with HIV in China. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32354599 | |||
|keywords=* Aging | |||
* China | |||
* Co-medication | |||
* Drug-drug interaction | |||
* HIV | |||
|full-text-url=https://sci-hub.do/10.1016/j.jiac.2020.04.003 | |||
}} | |||
{{medline-entry | |||
|title=[[CD4]] T helper 17 cell response of aged mice promotes prostate cancer cell migration and invasion. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32356608 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* CD4-Positive T-Lymphocytes | |||
* Cell Differentiation | |||
* Cell Line, Tumor | |||
* Cell Movement | |||
* Humans | |||
* Inflammation | |||
* Male | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* Models, Animal | |||
* NF-kappa B | |||
* Neoplasm Invasiveness | |||
* PC-3 Cells | |||
* Prostatic Neoplasms | |||
* Th17 Cells | |||
|keywords=* CD4+ T cell-secreted factors | |||
* PCa cells | |||
* Th17 cytokines | |||
* aging | |||
* inflammation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310589 | |||
}} | |||
{{medline-entry | |||
|title=The Rules of Human T Cell Fate [i]in vivo[/i]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32322253 | |||
|keywords=* decision | |||
* fate | |||
* half-life | |||
* labeling | |||
* lifespan | |||
* lymphocyte | |||
* mathematical model | |||
* proliferation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156550 | |||
}} | |||
{{medline-entry | |||
|title=[[CD4]]/CD8 ratio, comorbidities, and aging in treated HIV infected individuals on viral suppression. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32314818 | |||
|keywords=* CD4/CD8 ratio | |||
* HIV | |||
* aging | |||
* comorbidities | |||
|full-text-url=https://sci-hub.do/10.1002/jmv.25911 | |||
}} | |||
{{medline-entry | |||
|title=The effects of advanced maternal age on T-cell subsets at the maternal-fetal interface prior to term labor and in the offspring: a mouse study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32279324 | |||
|mesh-terms=* Adult | |||
* Aging | |||
* Animals | |||
* Female | |||
* Humans | |||
* Live Birth | |||
* Mice | |||
* Mice, Transgenic | |||
* Placenta | |||
* Pregnancy | |||
* T-Lymphocyte Subsets | |||
|keywords=* birth weight | |||
* neonate | |||
* offspring | |||
* pregnancy | |||
* preterm labor | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290081 | |||
}} | |||
{{medline-entry | |||
|title=Structural and Functional Changes in the Mesenteric Lymph Nodes in Humans during Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32248450 | |||
|keywords=* age-related involution | |||
* aging | |||
* immune system | |||
* immunomorphology | |||
* mesenteric lymph nodes | |||
|full-text-url=https://sci-hub.do/10.1007/s10517-020-04782-0 | |||
}} | |||
{{medline-entry | |||
|title=Neurocognitive Functioning is Associated with Self-Reported and Performance-Based Treatment Management Abilities in People Living with HIV with Low Health Literacy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32090235 | |||
|mesh-terms=* Adult | |||
* Cognition | |||
* Cross-Sectional Studies | |||
* HIV Infections | |||
* Health Literacy | |||
* Humans | |||
* Neuropsychological Tests | |||
* Self Report | |||
|keywords=* Adherence | |||
* Aging | |||
* Cognitive impairment | |||
* HIV/AIDS | |||
* Health illiteracy | |||
* Observational study | |||
|full-text-url=https://sci-hub.do/10.1093/arclin/acaa005 | |||
}} | |||
{{medline-entry | |||
|title=Blockade of Stat3 oncogene addiction induces cellular senescence and reveals a cell-nonautonomous activity suitable for cancer immunotherapy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32064174 | |||
|keywords=* Stat3 | |||
* immune checkpoint blockade | |||
* immunotherapy | |||
* oncogene addiction | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996562 | |||
}} | |||
{{medline-entry | |||
|title=Age-related changes in T lymphocytes of patients with head and neck squamous cell carcinoma. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32082401 | |||
|keywords=* Aging | |||
* Head and neck cancer | |||
* Immune escape | |||
* Immunosenescence | |||
* T cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7017629 | |||
}} | |||
{{medline-entry | |||
|title=Immunological history governs human stem cell memory [[CD4]] heterogeneity via the Wnt signaling pathway. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32041953 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Antigens, CD | |||
* CD4-Positive T-Lymphocytes | |||
* Gene Expression Profiling | |||
* HIV Infections | |||
* Humans | |||
* Immunologic Memory | |||
* Intercellular Signaling Peptides and Proteins | |||
* Mice | |||
* Precursor Cells, T-Lymphoid | |||
* Thymus Gland | |||
* Wnt Signaling Pathway | |||
* beta Catenin | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7010798 | |||
}} | |||
{{medline-entry | |||
|title=Estimating HIV Management and Comorbidity Costs Among Aging HIV Patients in the United States: A Systematic Review. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32011956 | |||
|mesh-terms=* Anti-HIV Agents | |||
* CD4 Lymphocyte Count | |||
* Comorbidity | |||
* Cost-Benefit Analysis | |||
* HIV Infections | |||
* Health Care Costs | |||
* Humans | |||
* Life Expectancy | |||
* United States | |||
|full-text-url=https://sci-hub.do/10.18553/jmcp.2020.26.2.104 | |||
}} | |||
{{medline-entry | |||
|title=Sex Differences in People Aging With HIV. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32032279 | |||
|mesh-terms=* Aged | |||
* Aging | |||
* Alcohol Drinking | |||
* Body Composition | |||
* CD4 Lymphocyte Count | |||
* CD4-CD8 Ratio | |||
* CD4-Positive T-Lymphocytes | |||
* Cohort Studies | |||
* Cross-Sectional Studies | |||
* Female | |||
* Frailty | |||
* HIV Infections | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Muscle Strength | |||
* Prospective Studies | |||
|full-text-url=https://sci-hub.do/10.1097/QAI.0000000000002259 | |||
}} | |||
{{medline-entry | |||
|title=Identification of Differentially Expressed miRNAs in the Response of Spleen [[CD4]] T Cells to Electroacupuncture in Senescence-Accelerated Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32026263 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Antagomirs | |||
* CD4-Positive T-Lymphocytes | |||
* Cell Differentiation | |||
* Cytokines | |||
* Down-Regulation | |||
* Electroacupuncture | |||
* Female | |||
* Gene Regulatory Networks | |||
* High-Throughput Nucleotide Sequencing | |||
* Male | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* MicroRNAs | |||
* Sequence Analysis, RNA | |||
* Spleen | |||
* Up-Regulation | |||
|keywords=* CD4+ T cell | |||
* Deep sequencing | |||
* Electroacupuncture | |||
* Immunological aging | |||
* miRNA | |||
|full-text-url=https://sci-hub.do/10.1007/s12013-020-00900-x | |||
}} | |||
{{medline-entry | |||
|title=Thymus Involution and Intravenous Drug Abuse. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32000220 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Aging | |||
* Atrophy | |||
* CD4-Positive T-Lymphocytes | |||
* CD8-Positive T-Lymphocytes | |||
* Calcinosis | |||
* Case-Control Studies | |||
* Drug Users | |||
* Female | |||
* Forensic Pathology | |||
* Hepatitis C, Chronic | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Substance Abuse, Intravenous | |||
* Thymus Gland | |||
* Young Adult | |||
|full-text-url=https://sci-hub.do/10.1097/PAF.0000000000000530 | |||
}} | |||
{{medline-entry | |||
|title=Depletion of [[CD4]] T cells provides therapeutic benefits in aged mice after ischemic stroke. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31954116 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Behavior, Animal | |||
* Brain Chemistry | |||
* Brain Ischemia | |||
* CD4-Positive T-Lymphocytes | |||
* Chemokines | |||
* Cytokines | |||
* Female | |||
* Infarction, Middle Cerebral Artery | |||
* Inflammation | |||
* Male | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Stroke | |||
* Treatment Outcome | |||
|keywords=* Age | |||
* CD4 T cells | |||
* CXCL10 | |||
* Inflammation | |||
* Stroke | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059209 | |||
}} | |||
{{medline-entry | |||
|title=Immunological and Virological Responses in Older HIV-Infected Adults Receiving Antiretroviral Therapy: An Evidence-Based Meta-Analysis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31913990 | |||
|mesh-terms=* Aged | |||
* Aging | |||
* Anti-HIV Agents | |||
* HIV Infections | |||
* Humans | |||
* Middle Aged | |||
|full-text-url=https://sci-hub.do/10.1097/QAI.0000000000002266 | |||
}} | |||
{{medline-entry | |||
|title=African Mitochondrial DNA Haplogroup L2 Is Associated With Slower Decline of β-cell Function and Lower Incidence of Diabetes Mellitus in Non-Hispanic, Black Women Living With Human Immunodeficiency Virus. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31927570 | |||
|keywords=* HIV | |||
* aging | |||
* diabetes mellitus | |||
* mitochondrial genetics | |||
|full-text-url=https://sci-hub.do/10.1093/cid/ciaa026 | |||
}} | |||
{{medline-entry | |||
|title=DP1 Activation Reverses Age-Related Hypertension Via NEDD4L-Mediated T-Bet Degradation in T Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31893939 | |||
|mesh-terms=* Aged | |||
* Aging | |||
* Animals | |||
* Antihypertensive Agents | |||
* CD4-Positive T-Lymphocytes | |||
* Cyclic AMP-Dependent Protein Kinases | |||
* Cytokines | |||
* Humans | |||
* Hypertension | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Nedd4 Ubiquitin Protein Ligases | |||
* Prostaglandin D2 | |||
* Receptors, Prostaglandin | |||
* Signal Transduction | |||
* Sp1 Transcription Factor | |||
* Superoxides | |||
* T-Box Domain Proteins | |||
* Th1 Cells | |||
* Ubiquitination | |||
|keywords=* D-prostanoid receptor 1 | |||
* aging | |||
* hypertension | |||
* lymphocyte | |||
* prostaglandin (PG) D2 | |||
|full-text-url=https://sci-hub.do/10.1161/CIRCULATIONAHA.119.042532 | |||
}} | |||
{{medline-entry | |||
|title=An Emerging Concern-High Rates of Frailty among Middle-aged and Older Individuals Living with HIV. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31885759 | |||
|keywords=* accelerated aging | |||
* anti-retroviral therapy | |||
* frailty | |||
* frailty index | |||
* geriatric syndrome | |||
* human immunodeficiency virus (HIV) | |||
* multimorbidity | |||
* vulnerability | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6887139 | |||
}} | |||
{{medline-entry | |||
|title=Higher Acuity Resource Utilization With Older Age and Poorer HIV Control in Adolescents and Young Adults in the HIV Research Network. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31904706 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Aging | |||
* Anti-Retroviral Agents | |||
* CD4 Lymphocyte Count | |||
* Drug Administration Schedule | |||
* Female | |||
* HIV Infections | |||
* HIV-1 | |||
* Humans | |||
* Male | |||
* Medication Adherence | |||
* Viral Load | |||
* Young Adult | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055514 | |||
}} | |||
{{medline-entry | |||
|title=Mitochondrial DNA Haplogroups and Frailty in Adults Living with HIV. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31822125 | |||
|keywords=* HIV | |||
* aging | |||
* frailty | |||
* haplotypes | |||
* mitochondria | |||
* sarcopenia | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7133433 | |||
}} | |||
{{medline-entry | |||
|title=Gallic acid attenuates thymic involution in the d-galactose induced accelerated aging mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31822433 | |||
|keywords=* Aging | |||
* FoxN1 | |||
* Gallic acid | |||
* Thymus | |||
* d-galactose | |||
|full-text-url=https://sci-hub.do/10.1016/j.imbio.2019.11.005 | |||
}} | |||
{{medline-entry | |||
|title=Mitochondrial mass governs the extent of human T cell senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31788930 | |||
|mesh-terms=* Adenosine Triphosphate | |||
* Adult | |||
* CD4-Positive T-Lymphocytes | |||
* CD8-Positive T-Lymphocytes | |||
* Cell Movement | |||
* Cell Proliferation | |||
* Cellular Senescence | |||
* Glucose | |||
* Glycolysis | |||
* Humans | |||
* Immunosenescence | |||
* Leukocyte Common Antigens | |||
* Microscopy, Electron, Transmission | |||
* Middle Aged | |||
* Mitochondria | |||
* Rotenone | |||
|keywords=* T cell | |||
* aging | |||
* metabolism | |||
* mitochondria | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996952 | |||
}} | |||
{{medline-entry | |||
|title=T cells and immune functions of plasma extracellular vesicles are differentially modulated from adults to centenarians. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31785146 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Extracellular Vesicles | |||
* Female | |||
* Humans | |||
* Immunosenescence | |||
* Lymphocyte Activation | |||
* Male | |||
* Middle Aged | |||
* T-Lymphocytes | |||
|keywords=* T cells | |||
* aging | |||
* centenarians | |||
* extracellular vesicles (EVs) | |||
* immunosenescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6914389 | |||
}} | |||
{{medline-entry | |||
|title=Defects in Antiviral T Cell Responses Inflicted by Aging-Associated miR-181a Deficiency. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31747595 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* CD4-Positive T-Lymphocytes | |||
* CD8-Positive T-Lymphocytes | |||
* Disease Models, Animal | |||
* Lymphocytic Choriomeningitis | |||
* Lymphocytic choriomeningitis virus | |||
* Mice | |||
* MicroRNAs | |||
|keywords=* CD8 effector T cell | |||
* T cell repertoire | |||
* antiviral response | |||
* immune aging | |||
* immunosenescence | |||
* microRNA | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6957231 | |||
}} | |||
{{medline-entry | |||
|title=Increased Prevalence of Neurocognitive Impairment in Aging People Living With Human Immunodeficiency Virus: The ANRS EP58 HAND 55-70 Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31755936 | |||
|keywords=* Frascati criteria | |||
* HAND | |||
* HIV | |||
* aging | |||
* neurocognitive impairment | |||
|full-text-url=https://sci-hub.do/10.1093/cid/ciz670 | |||
}} | |||
{{medline-entry | |||
|title=Age-associated changes in human [[CD4]] T cells point to mitochondrial dysfunction consequent to impaired autophagy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31707363 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* CD4-Positive T-Lymphocytes | |||
* Cell Respiration | |||
* Humans | |||
* Immunosenescence | |||
* Longitudinal Studies | |||
* Mitochondria | |||
* Mitophagy | |||
* Young Adult | |||
|keywords=* CD4+ T cells | |||
* aging | |||
* autophagy | |||
* mitochondria | |||
* proteomics | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874450 | |||
}} | |||
{{medline-entry | |||
|title=Sex Differences in the Blood Transcriptome Identify Robust Changes in Immune Cell Proportions with Aging and Influenza Infection. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31722210 | |||
|mesh-terms=* Aging | |||
* CD4-Positive T-Lymphocytes | |||
* Female | |||
* Humans | |||
* Influenza, Human | |||
* Male | |||
* Monocytes | |||
* Sex Characteristics | |||
* Transcriptome | |||
|keywords=* CD4(+) T cells | |||
* aging | |||
* immune system | |||
* immunology | |||
* influenza | |||
* meta-analysis | |||
* monocytes | |||
* multi-cohort analysis | |||
* sex differences | |||
* transcriptome | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856718 | |||
}} | |||
{{medline-entry | |||
|title=Going Beyond Giving Antiretroviral Therapy: Multimorbidity in Older People Aging with HIV in Nigeria. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31711310 | |||
|keywords=* ART | |||
* PLWH | |||
* aging | |||
* multimorbidity | |||
* quality of life | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071065 | |||
}} | |||
{{medline-entry | |||
|title=Alterations in composition of immune cells and impairment of anti-tumor immune response in aged oral cancer-bearing mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31683168 | |||
|mesh-terms=* Aged | |||
* Animals | |||
* Cell Line, Tumor | |||
* Cell Proliferation | |||
* Female | |||
* Humans | |||
* Immunotherapy | |||
* Mice | |||
|keywords=* Aging | |||
* Immune check-point molecules | |||
* Immunosenescence | |||
* Immunotherapy | |||
* Myeloid derived suppressor cells | |||
* Oral cancer | |||
* Regulatory T cells | |||
|full-text-url=https://sci-hub.do/10.1016/j.oraloncology.2019.104462 | |||
}} | |||
{{medline-entry | |||
|title=LTA1 is a safe, intranasal enterotoxin-based adjuvant that improves vaccine protection against influenza in young, old and B-cell-depleted (μMT) mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31641151 | |||
|mesh-terms=* Adjuvants, Immunologic | |||
* Administration, Intranasal | |||
* Aging | |||
* Animals | |||
* Antibodies | |||
* Antibody Formation | |||
* B-Lymphocytes | |||
* CD4-Positive T-Lymphocytes | |||
* Dose-Response Relationship, Immunologic | |||
* Enterotoxins | |||
* Female | |||
* Immunity, Mucosal | |||
* Immunization | |||
* Inflammation | |||
* Influenza A Virus, H1N1 Subtype | |||
* Lung | |||
* Lymphocyte Activation | |||
* Lymphocyte Depletion | |||
* Mast Cells | |||
* Mice, Inbred C57BL | |||
* Orthomyxoviridae Infections | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6805908 | |||
}} | |||
{{medline-entry | |||
|title=Thymus Imaging Detection and Size Is Inversely Associated With Metabolic Syndrome and Frailty in People With HIV. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31660382 | |||
|keywords=* HIV | |||
* aging | |||
* frailty | |||
* metabolic syndrome | |||
* thymus | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6809752 | |||
}} | |||
{{medline-entry | |||
|title=Alterations in peripheral T cell and B cell subsets in patients with osteoarthritis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31624962 | |||
|mesh-terms=* Aged | |||
* Aging | |||
* B-Lymphocyte Subsets | |||
* Case-Control Studies | |||
* Female | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Osteoarthritis, Knee | |||
* T-Lymphocyte Subsets | |||
|keywords=* B cell | |||
* Lymphocyte | |||
* Osteoarthritis | |||
* T cell | |||
|full-text-url=https://sci-hub.do/10.1007/s10067-019-04768-y | |||
}} | |||
{{medline-entry | |||
|title=Short Communication: Carotid Intima-Media Thickness Is Not Associated with Neurocognitive Impairment Among People Older than 50 Years With and Without HIV Infection from Thailand. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31588776 | |||
|mesh-terms=* Aging | |||
* Anti-Retroviral Agents | |||
* Cardiovascular Diseases | |||
* Carotid Intima-Media Thickness | |||
* Cross-Sectional Studies | |||
* Depression | |||
* Female | |||
* HIV Infections | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Neurocognitive Disorders | |||
* Quality of Life | |||
* Risk Factors | |||
* Thailand | |||
|keywords=* HIV | |||
* aging | |||
* carotid intima-media thickness | |||
* neurocognitive | |||
|full-text-url=https://sci-hub.do/10.1089/AID.2019.0139 | |||
}} | |||
{{medline-entry | |||
|title=Implications of Immune Checkpoint Expression During Aging in HIV-Infected People on Antiretroviral Therapy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31578868 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aging | |||
* Anti-HIV Agents | |||
* Antiretroviral Therapy, Highly Active | |||
* CD4-Positive T-Lymphocytes | |||
* CD8-Positive T-Lymphocytes | |||
* Cytokines | |||
* Female | |||
* Flow Cytometry | |||
* Gene Expression | |||
* HIV Infections | |||
* HIV-1 | |||
* Hepatitis A Virus Cellular Receptor 2 | |||
* Humans | |||
* Leukocytes, Mononuclear | |||
* Male | |||
* Middle Aged | |||
* Young Adult | |||
* gag Gene Products, Human Immunodeficiency Virus | |||
|keywords=* aging | |||
* immune checkpoint molecules | |||
* virus suppression | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6862963 | |||
}} | |||
{{medline-entry | |||
|title=Age-related alterations in human gut [[CD4]] T cell phenotype, T helper cell frequencies, and functional responses to enteric bacteria. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31573727 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Age Factors | |||
* Aged | |||
* Aged, 80 and over | |||
* CD4-Positive T-Lymphocytes | |||
* Female | |||
* Gastrointestinal Microbiome | |||
* Humans | |||
* Interleukin-17 | |||
* Intestinal Mucosa | |||
* Male | |||
* Middle Aged | |||
* Phenotype | |||
* Th1 Cells | |||
* Th17 Cells | |||
* Young Adult | |||
|keywords=* T helper cells | |||
* aging | |||
* gut | |||
* human | |||
|full-text-url=https://sci-hub.do/10.1002/JLB.5A0919-177RR | |||
}} | |||
{{medline-entry | |||
|title=Determinants of blood telomere length in antiretroviral treatment-naïve HIV-positive participants enrolled in the NEAT 001/ANRS 143 clinical trial. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31532902 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Anti-Retroviral Agents | |||
* Cross-Sectional Studies | |||
* Darunavir | |||
* Emtricitabine | |||
* Female | |||
* HIV Infections | |||
* Humans | |||
* Logistic Models | |||
* Male | |||
* Middle Aged | |||
* RNA, Viral | |||
* Raltegravir Potassium | |||
* Ritonavir | |||
* Telomere | |||
* Tenofovir | |||
|keywords=* HIV infection | |||
* aging | |||
* immunosenescence | |||
* telomere length | |||
* viral load | |||
|full-text-url=https://sci-hub.do/10.1111/hiv.12791 | |||
}} | |||
{{medline-entry | |||
|title=Human T Cell Differentiation Negatively Regulates Telomerase Expression Resulting in Reduced Activation-Induced Proliferation and Survival. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31497023 | |||
|mesh-terms=* Adult | |||
* Cell Differentiation | |||
* Cell Proliferation | |||
* Cell Survival | |||
* Humans | |||
* T-Lymphocytes | |||
* Telomerase | |||
|keywords=* T cell subsets | |||
* T lymphocytes | |||
* aging | |||
* alternative splicing | |||
* differentiation | |||
* hTERT | |||
* proliferation | |||
* telomerase | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6712505 | |||
}} | |||
{{medline-entry | |||
|title=Short Communication: Getting Older with HIV: Increasing Frequency of Comorbidities and Polypharmacy in Brazilian HIV Patients. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31452382 | |||
|mesh-terms=* Aged | |||
* Aging | |||
* Brazil | |||
* CD4 Lymphocyte Count | |||
* Cardiovascular Diseases | |||
* Comorbidity | |||
* Diabetes Mellitus | |||
* Female | |||
* HIV Infections | |||
* Humans | |||
* Life Expectancy | |||
* Male | |||
* Middle Aged | |||
* Neoplasms | |||
* Polypharmacy | |||
|keywords=* Brazil | |||
* HIV | |||
* aging | |||
* noncommunicable diseases | |||
|full-text-url=https://sci-hub.do/10.1089/AID.2019.0069 | |||
}} | |||
{{medline-entry | |||
|title=Gait Speed Decline Is Associated with Hemoglobin A1C, Neurocognitive Impairment, and Black Race in Persons with HIV. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31468979 | |||
|mesh-terms=* Adult | |||
* African Americans | |||
* Aging | |||
* CD4 Lymphocyte Count | |||
* Cohort Studies | |||
* Female | |||
* Glycated Hemoglobin A | |||
* HIV Infections | |||
* Humans | |||
* Longitudinal Studies | |||
* Male | |||
* Middle Aged | |||
* Neurocognitive Disorders | |||
* Odds Ratio | |||
* RNA, Viral | |||
* Risk Factors | |||
* Walking Speed | |||
|keywords=* aging | |||
* gait speed | |||
* hemoglobin A1C | |||
* neurocognitive impairment | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6862955 | |||
}} | |||
{{medline-entry | |||
|title=Noncommunicable Diseases Burden and Risk Factors in a Cohort of HIV+ Elderly Patients in Malawi. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31468993 | |||
|mesh-terms=* Adult | |||
* Age Factors | |||
* Aged | |||
* Anti-HIV Agents | |||
* Anti-Retroviral Agents | |||
* CD4 Lymphocyte Count | |||
* Comorbidity | |||
* Cost of Illness | |||
* Cross-Sectional Studies | |||
* Diabetes Mellitus | |||
* Female | |||
* HIV Infections | |||
* Humans | |||
* Hypertension | |||
* Malawi | |||
* Male | |||
* Middle Aged | |||
* Noncommunicable Diseases | |||
* Odds Ratio | |||
* Prevalence | |||
* Retrospective Studies | |||
* Risk Factors | |||
|keywords=* HIV infection | |||
* Malawi | |||
* aging | |||
* noncommunicable diseases | |||
|full-text-url=https://sci-hub.do/10.1089/AID.2019.0125 | |||
}} | |||
{{medline-entry | |||
|title=Aging promotes reorganization of the [[CD4]] T cell landscape toward extreme regulatory and effector phenotypes. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31457092 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* CD4-Positive T-Lymphocytes | |||
* High-Throughput Nucleotide Sequencing | |||
* Immunomodulation | |||
* Mice | |||
* Phenotype | |||
* Sequence Analysis, RNA | |||
* Single-Cell Analysis | |||
* T-Lymphocyte Subsets | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6703865 | |||
}} | |||
{{medline-entry | |||
|title=Prevalence of hypertension and cardiovascular risk factors among long-term AIDS survivors: A report from the field. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31448551 | |||
|mesh-terms=* Acquired Immunodeficiency Syndrome | |||
* Adult | |||
* Anti-Retroviral Agents | |||
* CD4 Lymphocyte Count | |||
* Cardiovascular Diseases | |||
* Diabetes Mellitus | |||
* Diagnostic Screening Programs | |||
* Female | |||
* HIV Infections | |||
* HIV-1 | |||
* Haiti | |||
* Humans | |||
* Hypercholesterolemia | |||
* Hypertension | |||
* Male | |||
* Middle Aged | |||
* Obesity | |||
* Prevalence | |||
* Retrospective Studies | |||
* Risk Factors | |||
* Smoking | |||
* Survivors | |||
|keywords=* HIV | |||
* aging | |||
* cardiovascular disease | |||
* hypertension | |||
* risk assessment | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896990 | |||
}} | |||
==CD44== | |||
{{medline-entry | |||
|title=Hyaluronan goes to great length. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32908962 | |||
|keywords=* aging | |||
* hyaluronan | |||
* longevity | |||
* naked mole rat | |||
* very high molecular weight hyaluronan | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7453635 | |||
}} | |||
{{medline-entry | |||
|title=Naked mole-rat very-high-molecular-mass hyaluronan exhibits superior cytoprotective properties. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32398747 | |||
|mesh-terms=* Animals | |||
* Apoptosis | |||
* Cell Cycle Checkpoints | |||
* Cell Line | |||
* Cytoprotection | |||
* Gene Expression Regulation | |||
* Gene Knockout Techniques | |||
* Humans | |||
* Hyaluronan Receptors | |||
* Hyaluronic Acid | |||
* Longevity | |||
* Mice | |||
* Mole Rats | |||
* Molecular Weight | |||
* Primary Cell Culture | |||
* Protein Interaction Maps | |||
* RNA-Seq | |||
* Signal Transduction | |||
* Species Specificity | |||
* Stress, Physiological | |||
* Tumor Suppressor Protein p53 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217962 | |||
}} | |||
{{medline-entry | |||
|title=Maturity-dependent cartilage cell plasticity and sensitivity to external perturbation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32321631 | |||
|keywords=* Aging | |||
* Articular cartilage | |||
* Osteoarthritis | |||
* Plasticity | |||
* Progenitor cells | |||
|full-text-url=https://sci-hub.do/10.1016/j.jmbbm.2020.103732 | |||
}} | |||
{{medline-entry | |||
|title=Aged Mice Exhibit Severe Exacerbations of Dry Eye Disease with an Amplified Memory Th17 Cell Response. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32289288 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Dry Eye Syndromes | |||
* Female | |||
* Immunologic Memory | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Th17 Cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7369573 | |||
}} | |||
{{medline-entry | |||
|title=Chronic circadian misalignment accelerates immune senescence and abbreviates lifespan in mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32054990 | |||
|mesh-terms=* Animals | |||
* B-Lymphocytes | |||
* Cellular Senescence | |||
* Circadian Rhythm | |||
* Disease Models, Animal | |||
* Humans | |||
* Hyaluronan Receptors | |||
* Inflammation | |||
* Jet Lag Syndrome | |||
* Longevity | |||
* Mice | |||
* Programmed Cell Death 1 Receptor | |||
* Sequence Analysis, RNA | |||
* T-Lymphocytes | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7018741 | |||
}} | |||
{{medline-entry | |||
|title=Defective induction of the proteasome associated with T-cell receptor signaling underlies T-cell senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31621149 | |||
|mesh-terms=* Animals | |||
* CD4-Positive T-Lymphocytes | |||
* Cell Proliferation | |||
* Cells, Cultured | |||
* Cellular Senescence | |||
* Cytokines | |||
* Hyaluronan Receptors | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Phenotype | |||
* Programmed Cell Death 1 Receptor | |||
* Proteasome Endopeptidase Complex | |||
* Receptors, Antigen, T-Cell | |||
* Signal Transduction | |||
|keywords=* T cell receptor signal | |||
* T cell senescence | |||
* aging | |||
* proteasome | |||
|full-text-url=https://sci-hub.do/10.1111/gtc.12728 | |||
}} | |||
==CD47== | |||
{{medline-entry | |||
|title=Aging-associated changes in [[CD47]] arrangement and interaction with thrombospondin-1 on red blood cells visualized by super-resolution imaging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32866348 | |||
|keywords=* CD47 | |||
* aging | |||
* dSTORM | |||
* red blood cells | |||
* thrombospondin-1 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7576236 | |||
}} | |||
{{medline-entry | |||
|title=[[CD47]] Promotes Age-Associated Deterioration in Angiogenesis, Blood Flow and Glucose Homeostasis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32679764 | |||
|keywords=* CD47 | |||
* aging | |||
* angiogenesis | |||
* blood flow | |||
* endothelial cells | |||
* glucose homeostasis | |||
* metabolism | |||
* self-renewal | |||
* thrombospondin-1 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407670 | |||
}} | |||
{{medline-entry | |||
|title=Unique Spatial Immune Profiling in Pancreatic Ductal Adenocarcinoma with Enrichment of Exhausted and Senescent T Cells and Diffused [[CD47]]-SIRPα Expression. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32645996 | |||
|keywords=* CD47 | |||
* T cell exhaustion | |||
* T cell senescence | |||
* draining lymph nodes | |||
* macrophage checkpoint | |||
* neoadjuvant chemotherapy | |||
* pancreatic ductal adenocarcinoma | |||
* signal regulatory protein alpha (SIRPα) | |||
* spatial heterogeneity | |||
* tumor microenvironment | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408661 | |||
}} | |||
==CD5== | |||
{{medline-entry | |||
|title=Comparative proteomic analysis identifies biomarkers for renal aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33159023 | |||
|keywords=* NMN | |||
* biomarkers | |||
* glutathionylation | |||
* proteomics | |||
* renal aging | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695359 | |||
}} | |||
==CD63== | |||
{{medline-entry | |||
|title=Cellular senescence contributes to age-dependent changes in circulating extracellular vesicle cargo and function. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31960578 | |||
|keywords=* aging | |||
* extracellular vesicles | |||
* microRNA | |||
* plasma | |||
* senescence | |||
* senolytic | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059145 | |||
}} | |||
==CD68== | |||
{{medline-entry | |||
|title=Insulin activates microglia and increases COX-2/IL-1β expression in young but not in aged hippocampus. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32422127 | |||
|keywords=* Aging | |||
* Hippocampus | |||
* Insulin | |||
* Memory | |||
* Microglia | |||
* Neuroinflammation | |||
|full-text-url=https://sci-hub.do/10.1016/j.brainres.2020.146884 | |||
}} | |||
{{medline-entry | |||
|title=Epigenetic modulation of macrophage polarization prevents lumbar disc degeneration. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32310825 | |||
|keywords=* DNA methyltransferase 1 (DNMT1) | |||
* aging | |||
* lumbar disc degeneration (LDD) | |||
* macrophage polarization | |||
* transforming growth factor beta 1 (TGFβ1) | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7202517 | |||
}} | |||
{{medline-entry | |||
|title=Cellular senescence in recurrent tonsillitis and tonsillar hypertrophy in children. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32200310 | |||
|mesh-terms=* Antigens, CD | |||
* Antigens, Differentiation, Myelomonocytic | |||
* Cellular Senescence | |||
* Child | |||
* Germinal Center | |||
* Humans | |||
* Hypertrophy | |||
* Macrophages | |||
* Palatine Tonsil | |||
* Recurrence | |||
* Tonsillectomy | |||
* Tonsillitis | |||
|keywords=* Cellular senescence | |||
* Recurrent tonsillitis | |||
* Tonsillar hypertrophy | |||
|full-text-url=https://sci-hub.do/10.1016/j.ijporl.2020.110004 | |||
}} | |||
{{medline-entry | |||
|title=Ginsenoside Rg1 supplementation clears senescence-associated β-galactosidase in exercising human skeletal muscle. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31695564 | |||
|keywords=* Cellular senescence | |||
* Endurance | |||
* Ergogenic aid | |||
* Inflammation | |||
* Macrophage | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6823780 | |||
}} | |||
{{medline-entry | |||
|title=Histopathological, immunohistochemical, and molecular studies for determination of wound age and vitality in rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31448552 | |||
|mesh-terms=* Actins | |||
* Animals | |||
* Antigens, CD | |||
* Antigens, Differentiation, Myelomonocytic | |||
* Cell Movement | |||
* Fibroblasts | |||
* Granulation Tissue | |||
* Immunohistochemistry | |||
* Macrophages | |||
* Models, Animal | |||
* Neovascularization, Physiologic | |||
* RNA, Messenger | |||
* Rats, Wistar | |||
* Re-Epithelialization | |||
* Skin | |||
* Time Factors | |||
* Transforming Growth Factor beta1 | |||
* Vascular Endothelial Growth Factor A | |||
* Wound Healing | |||
* Wounds and Injuries | |||
|keywords=* TGFb1 | |||
* VEGF | |||
* gene expression | |||
* immunohistochemistry | |||
* wound aging | |||
|full-text-url=https://sci-hub.do/10.1111/iwj.13206 | |||
}} | |||
==CD80== | |||
{{medline-entry | |||
|title=The aging common marmoset's immune system: From junior to senior. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32246726 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* CD4-CD8 Ratio | |||
* Callithrix | |||
* Female | |||
* Flow Cytometry | |||
* Immune System | |||
* Longevity | |||
* Male | |||
* Models, Animal | |||
* Sex Factors | |||
|keywords=* aging | |||
* common marmoset | |||
* immune system | |||
* immunosenescence | |||
* innate and adaptive immunity | |||
* sex | |||
|full-text-url=https://sci-hub.do/10.1002/ajp.23128 | |||
}} | |||
==CD81== | |||
{{medline-entry | |||
|title=Ovarian aging increases small extracellular vesicle [[CD81]] release in human follicular fluid and influences miRNA profiles. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32554857 | |||
|keywords=* extracellular vesicles | |||
* follicular fluid | |||
* microRNAs | |||
* reproductive aging | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343446 | |||
}} | |||
{{medline-entry | |||
|title=Older Adults with Physical Frailty and Sarcopenia Show Increased Levels of Circulating Small Extracellular Vesicles with a Specific Mitochondrial Signature. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32326435 | |||
|keywords=* aging | |||
* biomarkers | |||
* exosomes | |||
* mitochondrial dynamics | |||
* mitochondrial quality control | |||
* mitochondrial-derived vesicles (MDVs) | |||
* mitochondrial-lysosomal axis | |||
* mitophagy | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7227017 | |||
}} | |||
{{medline-entry | |||
|title=Increased production of functional small extracellular vesicles in senescent endothelial cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32101370 | |||
|keywords=* endothelium | |||
* exosomes | |||
* extracellular vesicles | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7176858 | |||
}} | |||
==CDA== | |||
{{medline-entry | |||
|title=Cumulative Dis/Advantage and Health Pattern in Late Life: A Comparison between Genders and Welfare State Regimes. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31771483 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* China | |||
* Cross-Sectional Studies | |||
* England | |||
* Female | |||
* Health Behavior | |||
* Health Status Disparities | |||
* Humans | |||
* Longevity | |||
* Male | |||
* Mexico | |||
* Middle Aged | |||
* Regression Analysis | |||
* Self Report | |||
* Sex Factors | |||
* Social Class | |||
* Social Welfare | |||
* United States | |||
|keywords=* Cumulative dis/advantage | |||
* cross-national study | |||
* health retirement study | |||
* welfare state theory | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367435 | |||
}} | |||
{{medline-entry | |||
|title=Does numerical similarity alter age-related distractibility in working memory? | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31483830 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aging | |||
* Alpha Rhythm | |||
* Attention | |||
* Evoked Potentials | |||
* Female | |||
* Healthy Volunteers | |||
* Humans | |||
* Male | |||
* Memory, Short-Term | |||
* Young Adult | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6726243 | |||
}} | |||
==CDC20== | |||
{{medline-entry | |||
|title=Premature aging syndrome showing random chromosome number instabilities with [[CDC20]] mutation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33094908 | |||
|keywords=* Cdc20 proteins | |||
* M phase cell cycle checkpoints | |||
* aging | |||
* chromosomal instability | |||
* chromosome segregation | |||
* genomic instability | |||
* premature | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7681047 | |||
}} | |||
==CDC25A== | |||
{{medline-entry | |||
|title=Babam2 Regulates Cell Cycle Progression and Pluripotency in Mouse Embryonic Stem Cells as Revealed by Induced DNA Damage. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33050379 | |||
|keywords=* Babam2 | |||
* DNA damage | |||
* cell cycle | |||
* embryonic stem cells | |||
* pluripotency | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600899 | |||
}} | |||
==CDC42== | |||
{{medline-entry | |||
|title=Effects of age-dependent changes in cell size on endothelial cell proliferation and senescence through YAP1. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31487690 | |||
|mesh-terms=* Adaptor Proteins, Signal Transducing | |||
* Adult | |||
* Aging | |||
* Animals | |||
* Cell Cycle Proteins | |||
* Cell Size | |||
* Endothelial Cells | |||
* Female | |||
* Humans | |||
* Male | |||
* Mice, Inbred C57BL | |||
* Middle Aged | |||
* Neovascularization, Physiologic | |||
* Primary Cell Culture | |||
* Transcription Factors | |||
* cdc42 GTP-Binding Protein | |||
|keywords=* aging | |||
* angiogenesis | |||
* cell proliferation | |||
* cell size | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6756888 | |||
}} | |||
==CDH1== | |||
{{medline-entry | |||
|title=Cdc6 as a novel target in cancer: Oncogenic potential, senescence and subcellular localisation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32010971 | |||
|keywords=* Cdc6 | |||
* cytoplasmic Cdc6 | |||
* pancreatic cancer | |||
* senescence | |||
* subcellular localisation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7496346 | |||
}} | |||
==CDK1== | |||
{{medline-entry | |||
|title=MicroRNAomic Transcriptomic Analysis Reveal Deregulation of Clustered Cellular Functions in Human Mesenchymal Stem Cells During in Vitro Passaging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31848878 | |||
|mesh-terms=* CDC2-CDC28 Kinases | |||
* Cell Differentiation | |||
* Cell Proliferation | |||
* Cellular Senescence | |||
* Cyclin B | |||
* Gene Expression Regulation, Developmental | |||
* Humans | |||
* Mesenchymal Stem Cells | |||
* MicroRNAs | |||
* Transcriptome | |||
* Tumor Suppressor Protein p53 | |||
* Umbilical Cord | |||
|keywords=* Cell proliferation | |||
* Cell senescence | |||
* Cellular ageing | |||
* Human Mesenchymal stem / stromal cells | |||
* miRNA-mRNA integration | |||
|full-text-url=https://sci-hub.do/10.1007/s12015-019-09924-0 | |||
}} | |||
==CDK2== | |||
{{medline-entry | |||
|title=p57 is a master regulator of human adipose derived stem cell quiescence and senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32224418 | |||
|keywords=* Human adipose derived stem cells | |||
* Quiescence | |||
* Senescence | |||
* p57(Kip2) | |||
|full-text-url=https://sci-hub.do/10.1016/j.scr.2020.101759 | |||
}} | |||
==CDK4== | |||
{{medline-entry | |||
|title=Emerging Roles for the [i]INK4a/ARF[/i] ([i]CDKN2A[/i]) Locus in Adipose Tissue: Implications for Obesity and Type 2 Diabetes. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32971832 | |||
|keywords=* adipogenesis | |||
* inflammation | |||
* insulin sensitivity | |||
* obesity | |||
* oxidative activity | |||
* senescence | |||
* type 2 diabetes | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7563355 | |||
}} | |||
{{medline-entry | |||
|title=Guilu Erxian Glue () Inhibits Chemotherapy-Induced Bone Marrow Hematopoietic Stem Cell Senescence in Mice May via p16 -Rb Signaling Pathway. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32915425 | |||
|keywords=* Chinese medicine | |||
* Guilu Erxian Glue | |||
* bone marrow suppression | |||
* hematopoietic stem cell senescence | |||
* p16INK4a | |||
|full-text-url=https://sci-hub.do/10.1007/s11655-020-3098-3 | |||
}} | |||
==CDK5== | |||
{{medline-entry | |||
|title=Age-related hyperinsulinemia leads to insulin resistance in neurons and cell-cycle-induced senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31636448 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Cell Cycle | |||
* Cell Death | |||
* Cellular Senescence | |||
* Cyclin-Dependent Kinase 5 | |||
* Excitatory Postsynaptic Potentials | |||
* Gene Expression | |||
* Glycolysis | |||
* Hexokinase | |||
* Hyperinsulinism | |||
* Inhibitory Postsynaptic Potentials | |||
* Insulin | |||
* Insulin Resistance | |||
* Liraglutide | |||
* Male | |||
* Maze Learning | |||
* Metformin | |||
* Mice | |||
* Neurons | |||
* Phosphotransferases | |||
* Primary Cell Culture | |||
* Protein-Serine-Threonine Kinases | |||
* Ubiquitination | |||
* beta Catenin | |||
|full-text-url=https://sci-hub.do/10.1038/s41593-019-0505-1 | |||
}} | |||
==CDK6== | |||
{{medline-entry | |||
|title=Saturated Fatty Acids Promote Hepatocytic Senecence through Regulation of miR-34a/Cyclin-Dependent Kinase 6. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32970940 | |||
|keywords=* cyclin-dependent kinase 6 (CDK6) | |||
* high-fat diet (HFD) | |||
* miR-34a | |||
* palmitate acid (PA) | |||
* senescence | |||
|full-text-url=https://sci-hub.do/10.1002/mnfr.202000383 | |||
}} | |||
{{medline-entry | |||
|title=Hepatoprotective effects of hydroxysafflor yellow A in D-galactose-treated aging mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32454116 | |||
|keywords=* D-galactose | |||
* Hydroxysafflor yellow A | |||
* Oxidative stress | |||
* Replicative senescence | |||
* p16 | |||
|full-text-url=https://sci-hub.do/10.1016/j.ejphar.2020.173214 | |||
}} | |||
{{medline-entry | |||
|title=Anti-cell growth and anti-cancer stem cell activity of the CDK4/6 inhibitor palbociclib in breast cancer cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31823286 | |||
|keywords=* Breast cancer | |||
* CDK4 | |||
* Cancer stem cells | |||
* Palbociclib | |||
* Senescence | |||
|full-text-url=https://sci-hub.do/10.1007/s12282-019-01035-5 | |||
}} | |||
{{medline-entry | |||
|title=Compromising the constitutive p16 expression sensitizes human neuroblastoma cells to Hsp90 inhibition and promotes premature senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31692039 | |||
|keywords=* 17AAG | |||
* Hsp90 | |||
* cancer | |||
* p16INK4a | |||
* senescence | |||
* tumor suppressor | |||
|full-text-url=https://sci-hub.do/10.1002/jcb.29493 | |||
}} | |||
==CDKN1A== | |||
{{medline-entry | |||
|title=Involvement of [[CDKN1A]] (p21) in cellular senescence in response to heat and irradiation stress during preimplantation development. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32253738 | |||
|keywords=* Cdkn1a | |||
* Heat stress | |||
* Irradiation | |||
* Preimplantation | |||
* Senescence | |||
* p21 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7193008 | |||
}} | |||
==CDKN2A== | |||
{{medline-entry | |||
|title=Association between Nrf2 and [[CDKN2A]] expression in patients with end-stage renal disease: a pilot study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32661200 | |||
|keywords=* CDKN2A | |||
* Nrf2 | |||
* aging | |||
* end-stage renal disease | |||
* inflammation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7485736 | |||
}} | |||
==CDKN2B== | |||
{{medline-entry | |||
|title=Molecular Genetics and Functional Analysis Implicate [i][[CDKN2B]]AS1-[[CDKN2B]][/i] Involvement in POAG Pathogenesis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32825664 | |||
|keywords=* African Americans | |||
* CDKN2B-AS1 | |||
* Primary open-angle glaucoma (POAG) | |||
* senescence | |||
* trabecular meshwork cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564117 | |||
}} | |||
==CFI== | |||
{{medline-entry | |||
|title=Psychosocial Resources for Hedonic Balance, Life Satisfaction and Happiness in the Elderly: A Path Analysis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32781590 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Cross-Sectional Studies | |||
* Female | |||
* Happiness | |||
* Health Status | |||
* Humans | |||
* Male | |||
* Personal Satisfaction | |||
* Quality of Life | |||
|keywords=* happiness | |||
* older adults | |||
* path analysis | |||
* psychosocial resources | |||
* subjective well-being | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7459462 | |||
}} | |||
{{medline-entry | |||
|title=Validity and Reliability of the Flourishing Scale in a Sample of Older Adults in Iran. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32546985 | |||
|mesh-terms=* Aged | |||
* Aging | |||
* Cross-Sectional Studies | |||
* Female | |||
* Geriatric Assessment | |||
* Health Status Disparities | |||
* Humans | |||
* Iran | |||
* Male | |||
* Mental Health | |||
* Psychometrics | |||
* Reproducibility of Results | |||
* Surveys and Questionnaires | |||
|keywords=* aging | |||
* factor analysis | |||
* flourishing | |||
* reliability | |||
* validity | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244746 | |||
}} | |||
{{medline-entry | |||
|title=The decision about retirement: A scale to describe representations and practices of medical doctors and nurses. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32258559 | |||
|keywords=* Aging | |||
* Job satisfaction | |||
* Retirement | |||
* Scale | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806742 | |||
}} | |||
{{medline-entry | |||
|title=Family versus intimate partners: Estimating who matters more for health in a 20-year longitudinal study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31697103 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aging | |||
* Emotions | |||
* Family Relations | |||
* Female | |||
* Health Status | |||
* Humans | |||
* Interpersonal Relations | |||
* Longitudinal Studies | |||
* Male | |||
* Middle Aged | |||
* Sexual Partners | |||
* United States | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012715 | |||
}} | |||
{{medline-entry | |||
|title=Adapting and validating the Rosenberg Self-Esteem Scale for elderly Spanish population. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31524131 | |||
|keywords=* aging | |||
* life span | |||
* self-esteem | |||
* structural equation model | |||
* validity | |||
|full-text-url=https://sci-hub.do/10.1017/S1041610219001170 | |||
}} | |||
==CFTR== | |||
{{medline-entry | |||
|title=Exercise Physiology Across the Lifespan in Cystic Fibrosis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31780953 | |||
|keywords=* aging | |||
* cystic fibrosis | |||
* exercise capacity | |||
* exercise prescription | |||
* pediatric | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856653 | |||
}} | |||
{{medline-entry | |||
|title=Reduced expression of the Ion channel [[CFTR]] contributes to airspace enlargement as a consequence of aging and in response to cigarette smoke in mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31477092 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Cystic Fibrosis Transmembrane Conductance Regulator | |||
* Gene Expression | |||
* Inhalation Exposure | |||
* Mice | |||
* Mice, Knockout | |||
* Pulmonary Emphysema | |||
* Tobacco Smoke Pollution | |||
|keywords=* Aging | |||
* CFTR | |||
* Emphysema | |||
* Smoking | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720379 | |||
}} | |||
==CGA== | |||
{{medline-entry | |||
|title=Safety and efficacy of preoperative chemoradiotherapy in fit older patients with intermediate or locally advanced rectal cancer evaluated by comprehensive geriatric assessment: A planned interim analysis of a multicenter, phase II trial. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33160954 | |||
|keywords=* Comprehensive geriatric assessment | |||
* Geriatrics | |||
* Preoperative chemoradiotherapy | |||
* Rectal cancer | |||
|full-text-url=https://sci-hub.do/10.1016/j.jgo.2020.10.016 | |||
}} | |||
{{medline-entry | |||
|title=The Protective Effect of Chlorogenic Acid on Vascular Senescence via the Nrf2/HO-1 Pathway. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32630570 | |||
|keywords=* chlorogenic acid | |||
* heme oxygenase-1 | |||
* nuclear factor erythroid 2-related factor 2 | |||
* vascular senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7350250 | |||
}} | |||
{{medline-entry | |||
|title=Association between comprehensive geriatric assessment and short-term outcomes among older adult patients with stroke: A nationwide retrospective cohort study using propensity score and instrumental variable methods. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32566923 | |||
|keywords=* Comprehensive geriatric assessment | |||
* Geriatrics | |||
* Japanese diagnosis procedure combination database | |||
* Length of stay | |||
* Mortality | |||
* Stroke | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7298723 | |||
}} | |||
{{medline-entry | |||
|title=Interventions to Improve Clinical Outcomes in Older Adults Admitted to a Surgical Service: A Systematic Review and Meta-analysis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32417101 | |||
|keywords=* Aging | |||
* comprehensive geriatric assessment | |||
* delirium | |||
* functional status | |||
* outcomes | |||
* surgery | |||
|full-text-url=https://sci-hub.do/10.1016/j.jamda.2020.03.023 | |||
}} | |||
{{medline-entry | |||
|title=A Computerized Frailty Assessment Tool at Points-of-Care: Development of a Standalone Electronic Comprehensive Geriatric Assessment/Frailty Index (eFI-[[CGA]]). | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32296673 | |||
|keywords=* aging | |||
* comprehensive geriatric assessment (CGA) | |||
* electronic assessment tools | |||
* frailty | |||
* frailty index | |||
* healthcare | |||
* older adults | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7137764 | |||
}} | |||
{{medline-entry | |||
|title=Allocating patients to geriatric medicine wards in a tertiary university hospital in England: A service evaluation of the Specialist Advice for the Frail Elderly (SAFE) team. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31942488 | |||
|keywords=* clinical frailty scale | |||
* frail older adults | |||
* geriatrics | |||
* hospital medicine | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6880728 | |||
}} | |||
{{medline-entry | |||
|title=Role of Frailty on Risk Stratification in Cardiac Surgery and Procedures. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31894551 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Cardiac Surgical Procedures | |||
* Frail Elderly | |||
* Frailty | |||
* Geriatric Assessment | |||
* Humans | |||
* Percutaneous Coronary Intervention | |||
* Risk Assessment | |||
* Transcatheter Aortic Valve Replacement | |||
|keywords=* Cardiac surgery | |||
* Comprehensive geriatric assessment | |||
* Disability | |||
* Elderly | |||
* Frailty | |||
* Geriatrics | |||
* Surgical risk scores | |||
* TAVI | |||
|full-text-url=https://sci-hub.do/10.1007/978-3-030-33330-0_11 | |||
}} | |||
{{medline-entry | |||
|title=Developing an objective structured clinical examination in comprehensive geriatric assessment - A pilot study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31745004 | |||
|mesh-terms=* Aged | |||
* Clinical Competence | |||
* Education, Medical, Graduate | |||
* Educational Measurement | |||
* Female | |||
* Geriatric Assessment | |||
* Geriatrics | |||
* Humans | |||
* Male | |||
* Pilot Projects | |||
* United Kingdom | |||
|keywords=* Comprehensive geriatric assessment | |||
* development | |||
* entrustable professional capabilities | |||
* objective structured clinical examination | |||
* summative assessment | |||
|full-text-url=https://sci-hub.do/10.4103/efh.EfH_111_18 | |||
}} | |||
{{medline-entry | |||
|title=How do doctors choose treatment for older gynecological cancer patients? A Japanese Gynecologic Oncology Group survey of gynecologic oncologists. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31728682 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Comorbidity | |||
* Female | |||
* Genital Neoplasms, Female | |||
* Geriatric Assessment | |||
* Gynecology | |||
* Humans | |||
* Hysterectomy | |||
* Japan | |||
* Lymph Node Excision | |||
* Oncologists | |||
* Surveys and Questionnaires | |||
|keywords=* Comprehensive geriatric assessment | |||
* Elderly | |||
* Geriatrics | |||
* Gynecologic cancer | |||
|full-text-url=https://sci-hub.do/10.1007/s10147-019-01574-z | |||
}} | |||
{{medline-entry | |||
|title=Validation of the Pictorial Fit-Frail Scale in a memory clinic setting. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31524122 | |||
|keywords=* aging | |||
* dementia | |||
* frail elderly | |||
* frailty | |||
* psychometrics | |||
|full-text-url=https://sci-hub.do/10.1017/S1041610219000905 | |||
}} | |||
{{medline-entry | |||
|title=Impact of Resolution of Hyponatremia on Neurocognitive and Motor Performance in Geriatric Patients. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31467370 | |||
|mesh-terms=* Activities of Daily Living | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Cognition | |||
* Female | |||
* Geriatrics | |||
* Humans | |||
* Hyponatremia | |||
* Male | |||
* Mental Status and Dementia Tests | |||
* Middle Aged | |||
* Motor Activity | |||
* Sodium | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715723 | |||
}} | |||
{{medline-entry | |||
|title=Health outcome of older hospitalized patients in internal medicine environments evaluated by Identification of Seniors at Risk (ISAR) screening and geriatric assessment. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31412787 | |||
|mesh-terms=* Accidental Falls | |||
* Aged | |||
* Aged, 80 and over | |||
* Cohort Studies | |||
* Emergency Service, Hospital | |||
* Female | |||
* Geriatric Assessment | |||
* Health Status | |||
* Hospitalization | |||
* Humans | |||
* Internal Medicine | |||
* Length of Stay | |||
* Male | |||
* Mass Screening | |||
* Patient Discharge | |||
* Risk Assessment | |||
|keywords=* CGA | |||
* Cutoff | |||
* Geriatrics | |||
* ISAR | |||
* Internal medicine | |||
* Older in-patients | |||
* Risk screening | |||
* Sensitivity | |||
* Specificity | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6694685 | |||
}} | |||
==CHI3L1== | |||
{{medline-entry | |||
|title=Postsynaptic damage and microglial activation in AD patients could be linked CXCR4/CXCL12 expression levels. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32949560 | |||
|keywords=* Aging | |||
* Alzheimer’s disease | |||
* Bioinformatics | |||
* CHI3L1 | |||
* Chitinase | |||
* NRGN | |||
|full-text-url=https://sci-hub.do/10.1016/j.brainres.2020.147127 | |||
}} | |||
==CHRNA7== | |||
{{medline-entry | |||
|title=Associations between genetic variations and global motion perception. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31432227 | |||
|mesh-terms=* Adult | |||
* Differential Threshold | |||
* Female | |||
* Genotype | |||
* Humans | |||
* Male | |||
* Motion Perception | |||
* Polymorphism, Single Nucleotide | |||
* Receptors, Nicotinic | |||
* Sensory Thresholds | |||
* Young Adult | |||
* alpha7 Nicotinic Acetylcholine Receptor | |||
|keywords=* Aging | |||
* CHRNA7 | |||
* Cholinergic system | |||
* Coherent motion | |||
* Genetic variations | |||
|full-text-url=https://sci-hub.do/10.1007/s00221-019-05627-7 | |||
}} | |||
==CHSY1== | |||
{{medline-entry | |||
|title=Loss of Chondroitin Sulfate Modification Causes Inflammation and Neurodegeneration in [i]skt[/i] Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31754016 | |||
|mesh-terms=* Age Factors | |||
* Animals | |||
* Apoptosis | |||
* Chondroitin Sulfates | |||
* Female | |||
* Glucuronosyltransferase | |||
* Inflammation | |||
* Male | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* Multifunctional Enzymes | |||
* Mutation | |||
* N-Acetylgalactosaminyltransferases | |||
* Neurodegenerative Diseases | |||
* Neurons | |||
* Protein Processing, Post-Translational | |||
* Proteins | |||
* Retinal Degeneration | |||
|keywords=* aging | |||
* chondroitin sulfate synthase | |||
* hippocampus | |||
* inflammation | |||
* mouse | |||
* myeloid cells | |||
* neurodegeneration | |||
* retina | |||
* retinal pigment epithelium | |||
* subretinal space | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6944401 | |||
}} | |||
==CISD2== | |||
{{medline-entry | |||
|title=[[CISD2]] Attenuates Inflammation and Regulates Microglia Polarization in EOC Microglial Cells-As a Potential Therapeutic Target for Neurodegenerative Dementia. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33005144 | |||
|keywords=* CISD2 | |||
* M1/M2 microglia polarization | |||
* aging | |||
* anti-inflammatory effects | |||
* neurodegenerative disease and dementia | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7479185 | |||
}} | |||
==CIT== | |||
{{medline-entry | |||
|title=Effect of sex on aging-related decline of dopamine transporter in healthy subjects. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33052524 | |||
|keywords=* 123I-FP-CIT | |||
* Aging | |||
* Dopamine plasma membrane transport proteins | |||
* SPECT | |||
* Sex | |||
|full-text-url=https://sci-hub.do/10.1007/s12149-020-01538-8 | |||
}} | |||
{{medline-entry | |||
|title=The Relationship Between the Striatal Dopaminergic Neuronal and Cognitive Function With Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32184717 | |||
|keywords=* SPECT | |||
* Wechsler Adult Intelligence Scale | |||
* aging | |||
* cognitive function | |||
* dopamine transporter | |||
* verbal function | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058549 | |||
}} | |||
==CLEC3B== | |||
{{medline-entry | |||
|title=[[CLEC3B]] p.S106G Mutant in a Caucasian Population of Successful Neurological Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31570938 | |||
|keywords=* | |||
APOE | |||
* | |||
CLEC3B | |||
* Aging | |||
* Human genetics | |||
* Human health | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7494029 | |||
}} | |||
==COL1A1== | |||
{{medline-entry | |||
|title=Remodeling process in bone of aged rats in response to resistance training. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32593709 | |||
|mesh-terms=* Age Factors | |||
* Aging | |||
* Animals | |||
* Bone Remodeling | |||
* Gene Expression Regulation | |||
* Male | |||
* Physical Conditioning, Animal | |||
* RNA, Messenger | |||
* Random Allocation | |||
* Rats | |||
* Rats, Wistar | |||
* Resistance Training | |||
|keywords=* Aging | |||
* Bone homeostasis | |||
* Function | |||
* Resistance training | |||
|full-text-url=https://sci-hub.do/10.1016/j.lfs.2020.118008 | |||
}} | |||
==COL3A1== | |||
{{medline-entry | |||
|title=Different expression of Defensin-B gene in the endometrium of mares of different age during the breeding season. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31864349 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Breeding | |||
* Defensins | |||
* Endometrium | |||
* Female | |||
* Fibrosis | |||
* Gene Expression | |||
* Horses | |||
* Inflammation | |||
* Reverse Transcriptase Polymerase Chain Reaction | |||
|keywords=* Defensin-β | |||
* Endometrium | |||
* Gene expression | |||
* Immune-modulation | |||
* Mare | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925900 | |||
}} | |||
==COMT== | |||
{{medline-entry | |||
|title=The geriatric pain experience in mice: intact cutaneous thresholds but altered responses to tonic and chronic pain. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32008855 | |||
|mesh-terms=* Acetone | |||
* Aging | |||
* Animals | |||
* Behavior | |||
* Biogenic Monoamines | |||
* Capsaicin | |||
* Chronic Pain | |||
* Disease Models, Animal | |||
* Male | |||
* Mice, Inbred C57BL | |||
* Peripheral Nerve Injuries | |||
* Physical Stimulation | |||
* Prefrontal Cortex | |||
* Sensory Thresholds | |||
|keywords=* Geriatric pain | |||
* Healthy aging | |||
* Mice | |||
* Sensory thresholds | |||
* Supraspinal plasticity | |||
* Tonic and chronic pain response | |||
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2019.12.018 | |||
}} | |||
==COPE== | |||
{{medline-entry | |||
|title=Patterns and characteristics of cognitive functioning in older patients approaching end stage kidney disease, the [[COPE]]-study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32272897 | |||
|keywords=* Cognitive function | |||
* End stage renal disease | |||
* Geriatric assessment | |||
* Geriatrics | |||
* Older patients | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7147053 | |||
}} | |||
==CORT== | |||
{{medline-entry | |||
|title=Sex differences in body composition, metabolism-related hormones, and energy homeostasis during aging in Wistar rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33075214 | |||
|keywords=* aging | |||
* body composition | |||
* energy metabolism | |||
* metabolism-related hormone | |||
* sex differences | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571994 | |||
}} | |||
{{medline-entry | |||
|title=Effects of age and social isolation on murine hippocampal biochemistry and behavior. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32866520 | |||
|keywords=* Aging | |||
* Hippocampus | |||
* Inflammation | |||
* Memory | |||
* Serotonin | |||
* Social isolation | |||
* Stress | |||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2020.111337 | |||
}} | |||
{{medline-entry | |||
|title=Interleukin 6 reduces allopregnanolone synthesis in the brain and contributes to age-related cognitive decline in mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32669383 | |||
|keywords=* Alzheimer’s disease | |||
* aging | |||
* cognitive function | |||
* enzyme regulation | |||
* inflammation | |||
* neurosteroid | |||
* progesterone | |||
* steroid hormones | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7529050 | |||
}} | |||
{{medline-entry | |||
|title=Sex- and age-dependent differences in the hormone and drinking responses to water deprivation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31967852 | |||
|mesh-terms=* Age Factors | |||
* Animals | |||
* Arginine Vasopressin | |||
* Behavior, Animal | |||
* Dehydration | |||
* Drinking | |||
* Female | |||
* Male | |||
* Rats, Wistar | |||
* Sex Factors | |||
* Sodium Chloride | |||
* Subfornical Organ | |||
* Water Deprivation | |||
|keywords=* aging | |||
* hormonal response | |||
* sex differences | |||
* sodium appetite | |||
* thirst | |||
|full-text-url=https://sci-hub.do/10.1152/ajpregu.00303.2019 | |||
}} | |||
{{medline-entry | |||
|title=Ontogeny of the adrenocortical response in an extremely altricial bird. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31545013 | |||
|mesh-terms=* Adrenal Glands | |||
* Aging | |||
* Animals | |||
* Corticosterone | |||
* Female | |||
* Hypothalamo-Hypophyseal System | |||
* Male | |||
* Parrots | |||
* Restraint, Physical | |||
* Stress, Physiological | |||
|keywords=* Venezuela | |||
* adrenocortical | |||
* altricial | |||
* birds | |||
* corticosterone | |||
* glucocorticoid | |||
* hypothalamic-pituitary-adrenal axis | |||
* ontogeny | |||
* parrots | |||
* stress | |||
|full-text-url=https://sci-hub.do/10.1002/jez.2317 | |||
}} | |||
==CP== | |||
{{medline-entry | |||
|title=A Life Course Perspective on Growing Older With Cerebral Palsy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33213304 | |||
|keywords=* aging | |||
* cerebral palsy | |||
* midlife | |||
* neurological disorders | |||
* neurology | |||
* qualitative descriptive | |||
|full-text-url=https://sci-hub.do/10.1177/1049732320971247 | |||
}} | |||
{{medline-entry | |||
|title=The molecular anatomy and functions of the choroid plexus in healthy and diseased brain. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32750317 | |||
|keywords=* Aging | |||
* Alzheimer's disease | |||
* Choroid plexus | |||
* Development | |||
* Multiple sclerosis | |||
* Neuroprotection | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbamem.2020.183430 | |||
}} | |||
{{medline-entry | |||
|title=The effects and mechanism of collagen peptide and elastin peptide on skin aging induced by D-galactose combined with ultraviolet radiation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32717457 | |||
|keywords=* Collagen | |||
* D-galactose | |||
* Elastin | |||
* Skin aging | |||
* Ultraviolet | |||
|full-text-url=https://sci-hub.do/10.1016/j.jphotobiol.2020.111964 | |||
}} | |||
{{medline-entry | |||
|title=Model based strategies towards protein A resin lifetime optimization and supervision. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32709318 | |||
|mesh-terms=* Algorithms | |||
* Chromatography | |||
* Kinetics | |||
* Least-Squares Analysis | |||
* Ligands | |||
* Models, Theoretical | |||
* Principal Component Analysis | |||
* Resins, Plant | |||
* Staphylococcal Protein A | |||
* Statistics as Topic | |||
|keywords=* Cleaning procedures | |||
* Hybrid modeling | |||
* Multivariate data analysis | |||
* Protein A chromatography | |||
* Resin aging | |||
* Resin lifetime | |||
|full-text-url=https://sci-hub.do/10.1016/j.chroma.2020.461261 | |||
}} | |||
{{medline-entry | |||
|title=The influence of age and environmental conditions on supplement intake by beef cattle winter grazing northern mixed-grass rangelands. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32658282 | |||
|mesh-terms=* Aging | |||
* Animal Feed | |||
* Animal Husbandry | |||
* Animals | |||
* Cattle | |||
* Diet | |||
* Dietary Supplements | |||
* Ecosystem | |||
* Female | |||
* Poaceae | |||
* Seasons | |||
* Weather | |||
|keywords=* beef cattle | |||
* cow age | |||
* environment | |||
* supplement intake | |||
* winter grazing | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7455287 | |||
}} | |||
{{medline-entry | |||
|title=Cyclophosphamide, a cancer chemotherapy drug-induced early onset of reproductive senescence and alterations in reproductive performance and their prevention in mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32536211 | |||
|keywords=* Cyclophosphamide | |||
* Decalepis hamiltonii | |||
* premature ovarian failure | |||
* reproductive performance | |||
* reproductive senescence | |||
* uterus | |||
|full-text-url=https://sci-hub.do/10.1080/01480545.2020.1774773 | |||
}} | |||
{{medline-entry | |||
|title=Asymptomatic [i]Clostridium perfringens[/i] Inhabitation in Intestine Can Cause Inflammation, Apoptosis, and Disorders in Brain. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31928429 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Apoptosis | |||
* Asymptomatic Infections | |||
* Brain | |||
* Brain Diseases | |||
* Clostridium Infections | |||
* Clostridium perfringens | |||
* Disease Models, Animal | |||
* Feces | |||
* Food Microbiology | |||
* Gene Expression | |||
* Humans | |||
* Inflammation | |||
* Intestines | |||
* Liver | |||
* Male | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Organ Size | |||
* Oxidative Stress | |||
* Risk Factors | |||
* Spleen | |||
|keywords=* Clostridium perfringens | |||
* brain damage | |||
* brain disorder | |||
* gut microbiota | |||
|full-text-url=https://sci-hub.do/10.1089/fpd.2019.2677 | |||
}} | |||
{{medline-entry | |||
|title=The Role of the Clinical Pharmacist in the Management of People Living with HIV in the Modern Antiretroviral Era. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31834321 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Anti-Retroviral Agents | |||
* Disease Management | |||
* Disease Transmission, Infectious | |||
* Female | |||
* HIV Infections | |||
* Humans | |||
* Male | |||
* Medication Adherence | |||
* Middle Aged | |||
* Pharmacists | |||
* Professional Role | |||
* Treatment Outcome | |||
|keywords=* Aging | |||
* Antiretroviral therapy | |||
* Clinical pharmacist | |||
* Comorbidities | |||
* HIV | |||
|full-text-url=https://sci-hub.do/10.24875/AIDSRev.19000089 | |||
}} | |||
{{medline-entry | |||
|title=A clinically feasible method for the assessment and characterization of pain in patients with chronic pancreatitis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31787527 | |||
|mesh-terms=* Adult | |||
* Aging | |||
* Case-Control Studies | |||
* Cross-Sectional Studies | |||
* Humans | |||
* Middle Aged | |||
* Pain | |||
* Pain Measurement | |||
* Pancreatitis, Chronic | |||
* Sex Factors | |||
|keywords=* Central sensitization | |||
* Chronic pancreatitis | |||
* Nociception | |||
* Pain | |||
|full-text-url=https://sci-hub.do/10.1016/j.pan.2019.11.007 | |||
}} | |||
{{medline-entry | |||
|title=Differences in geometric strength at the contralateral hip between men with hip fracture and non-fractured comparators. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31812699 | |||
|keywords=* Aging | |||
* DXA | |||
* Fracture prevention | |||
* Injury/fracture healing | |||
* Osteoporosis | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037571 | |||
}} | |||
{{medline-entry | |||
|title=Factors associated with the number of clinical pharmacy recommendations: findings from an observational study in geriatric inpatients. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31642397 | |||
|keywords=* Clinical pharmacy | |||
* geriatrics | |||
* inpatients | |||
* polypharmacy | |||
* risk stratification | |||
|full-text-url=https://sci-hub.do/10.1080/17843286.2019.1683128 | |||
}} | |||
{{medline-entry | |||
|title=Protection against oxidative stress and anti-aging effect in Drosophila of royal jelly-collagen peptide. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31622731 | |||
|mesh-terms=* Aging | |||
* Amino Acids | |||
* Animals | |||
* Body Weight | |||
* Collagen | |||
* Drosophila | |||
* Fatty Acids | |||
* Feeding Behavior | |||
* Hydrogen Peroxide | |||
* Longevity | |||
* Molecular Weight | |||
* Oxidative Stress | |||
* Paraquat | |||
|keywords=* Anti-aging | |||
* Antioxidant activity | |||
* Collagen | |||
* Drosophila | |||
* Royal jelly | |||
|full-text-url=https://sci-hub.do/10.1016/j.fct.2019.110881 | |||
}} | |||
==CPM== | |||
{{medline-entry | |||
|title=Test-Retest Instability of Temporal Summation and Conditioned Pain Modulation Measures in Older Adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33083842 | |||
|keywords=* Aging | |||
* Anxiety | |||
* Conditioned Pain Modulation | |||
* Pain Catastrophizing | |||
* Reliability | |||
* Temporal Summation of Pain | |||
|full-text-url=https://sci-hub.do/10.1093/pm/pnaa288 | |||
}} | |||
{{medline-entry | |||
|title=Age does not affect sex effect of conditioned pain modulation of pressure and thermal pain across 2 conditioning stimuli. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32072094 | |||
|keywords=* Aging | |||
* CPM duration | |||
* Conditioned pain modulation | |||
* Conditioning stimulus | |||
* Sex differences | |||
* Test stimulus | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7004505 | |||
}} | |||
{{medline-entry | |||
|title=The Decline of Endogenous Pain Modulation With Aging: A Meta-Analysis of Temporal Summation and Conditioned Pain Modulation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31562994 | |||
|keywords=* Aging | |||
* conditioned pain modulation | |||
* meta-analysis | |||
* pain modulation | |||
* temporal summation | |||
|full-text-url=https://sci-hub.do/10.1016/j.jpain.2019.09.005 | |||
}} | |||
==CPNE1== | |||
{{medline-entry | |||
|title=Prevalent intron retention fine-tunes gene expression and contributes to cellular senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33274830 | |||
|keywords=* CPNE1 | |||
* U2AF1 | |||
* intron retention | |||
* senescence | |||
* splicing factor | |||
|full-text-url=https://sci-hub.do/10.1111/acel.13276 | |||
}} | |||
==CPT1A== | |||
{{medline-entry | |||
|title=Alteration of fatty acid oxidation by increased [[CPT1A]] on replicative senescence of placenta-derived mesenchymal stem cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31900237 | |||
|keywords=* CPT1A | |||
* Fatty acid | |||
* Mitochondria | |||
* Placenta-derived mesenchymal stem cell | |||
* Senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941254 | |||
}} | |||
==CPT1C== | |||
{{medline-entry | |||
|title=Carnitine palmitoyltransferase 1C reverses cellular senescence of MRC-5 fibroblasts via regulating lipid accumulation and mitochondrial function. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32632982 | |||
|keywords=* MRC-5 fibroblasts | |||
* carnitine palmitoyltransferase 1C (CPT1C) | |||
* cellular senescence | |||
* lipidomics | |||
* mitochondrial function | |||
|full-text-url=https://sci-hub.do/10.1002/jcp.29906 | |||
}} | |||
{{medline-entry | |||
|title=Carnitine palmitoyltransferase 1C contributes to progressive cellular senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32289751 | |||
|keywords=* carnitine palmitoyltransferase 1C | |||
* metabolic reprogramming | |||
* mitochondria | |||
* senescence | |||
* stable transfection | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7202531 | |||
}} | |||
==CPT2== | |||
{{medline-entry | |||
|title=The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32729662 | |||
|keywords=* EGCG | |||
* free fatty acid | |||
* high-fat dietary | |||
* lifespan | |||
* proteomics | |||
* transcriptome | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511879 | |||
}} | |||
==CR1== | |||
{{medline-entry | |||
|title=Single Nucleotide Polymorphisms in Alzheimer's Disease Risk Genes Are Associated with Intrinsic Connectivity in Middle Age. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32986668 | |||
|keywords=* Aging | |||
* Alzheimer’s disease | |||
* middle aged | |||
* neuroimaging | |||
* single nucleotide | |||
polymorphism | |||
|full-text-url=https://sci-hub.do/10.3233/JAD-200444 | |||
}} | |||
{{medline-entry | |||
|title=The whale shark genome reveals how genomic and physiological properties scale with body size. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32753383 | |||
|mesh-terms=* Adaptation, Physiological | |||
* Animals | |||
* Base Sequence | |||
* Body Size | |||
* Genome | |||
* Genomics | |||
* Longevity | |||
* Sharks | |||
* Temperature | |||
|keywords=* body size | |||
* lifespan | |||
* metabolic rate | |||
* neural genes | |||
* whale shark | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456109 | |||
}} | |||
==CRABP2== | |||
{{medline-entry | |||
|title=Preconception resveratrol intake against infertility: Friend or foe? | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32273814 | |||
|keywords=* aging | |||
* assisted reproductive technology | |||
* infertility | |||
* resveratrol | |||
* sirtuin | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138940 | |||
}} | |||
==CRBN== | |||
{{medline-entry | |||
|title=Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32332723 | |||
|mesh-terms=* Adaptor Proteins, Signal Transducing | |||
* Aging | |||
* Aniline Compounds | |||
* Animals | |||
* Blood Platelets | |||
* Cell Line | |||
* Cellular Senescence | |||
* Female | |||
* Humans | |||
* Male | |||
* Mice | |||
* Mice, Transgenic | |||
* Models, Animal | |||
* Primary Cell Culture | |||
* Proteolysis | |||
* Sulfonamides | |||
* Ubiquitin-Protein Ligases | |||
* bcl-X Protein | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181703 | |||
}} | |||
==CRP== | |||
{{medline-entry | |||
|title=Omega-3 supplementation improves isometric strength but not muscle anabolic and catabolic signaling in response to resistance exercise in healthy older adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33284965 | |||
|keywords=* Muscle wasting | |||
* aging | |||
* anabolic resistance | |||
* inflammation | |||
* resistance training | |||
* sarcopenia | |||
|full-text-url=https://sci-hub.do/10.1093/gerona/glaa309 | |||
}} | |||
{{medline-entry | |||
|title=Circulating angiopoietin-like protein 2 levels and arterial stiffness in patients receiving maintenance hemodialysis: A cross-sectional study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33197687 | |||
|keywords=* Angiopoietin-like protein (ANGPTL) 2 | |||
* Cardio-ankle vascular index (CAVI) | |||
* Chronic inflammation | |||
* Hemodialysis | |||
* Senescence | |||
|full-text-url=https://sci-hub.do/10.1016/j.atherosclerosis.2020.10.890 | |||
}} | |||
{{medline-entry | |||
|title=Cardiovascular rehabilitation in patients aged 70-year-old or older: benefits on functional capacity, physical activity and metabolic profile in younger [i]vs[/i]. older patients. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33117418 | |||
|keywords=* Aging | |||
* Cardiovascular prevention | |||
* Exercise-based cardiac rehabilitation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568038 | |||
}} | |||
{{medline-entry | |||
|title=rRT-PCR Results of a Covid-19 Diagnosed Geriatric Patient. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33103060 | |||
|keywords=* COVID-19 | |||
* False negative reactions | |||
* Geriatrics | |||
* Mass screening | |||
* Reverse transcriptase polymerase chain reaction | |||
* SARS-CoV-2 | |||
* Tomography | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567648 | |||
}} | |||
{{medline-entry | |||
|title=The Association of Aging Biomarkers, Interstitial Lung Abnormalities, and Mortality. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33080140 | |||
|keywords=* aging | |||
* growth differentiation factor 15 | |||
* idiopathic pulmonary fibrosis | |||
* interstitial lung abnormalities | |||
* mortality | |||
|full-text-url=https://sci-hub.do/10.1164/rccm.202007-2993OC | |||
}} | |||
{{medline-entry | |||
|title=A Novel Fortified Dairy Product and Sarcopenia Measures in Sarcopenic Older Adults: A Double-Blind Randomized Controlled Trial. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33067129 | |||
|keywords=* Functional food | |||
* aging | |||
* beta-hydroxy beta-methylbutyrate | |||
* muscle strength | |||
* sarcopenia | |||
* vitamin D | |||
|full-text-url=https://sci-hub.do/10.1016/j.jamda.2020.08.035 | |||
}} | |||
{{medline-entry | |||
|title=Age-Related Colonic Mucosal Microbiome Community Shifts in Monkeys. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33021628 | |||
|keywords=* Aging | |||
* Microbial co-occurrences | |||
* Mucosal microbiome | |||
* Systemic inflammation | |||
|full-text-url=https://sci-hub.do/10.1093/gerona/glaa256 | |||
}} | |||
{{medline-entry | |||
|title=The relationship between frailty and serum alpha klotho levels in geriatric patients. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32905907 | |||
|keywords=* Aging | |||
* Biomarkers | |||
* Frailty syndrome | |||
* Geriatric syndrome | |||
* Sarcopenia | |||
|full-text-url=https://sci-hub.do/10.1016/j.archger.2020.104225 | |||
}} | |||
{{medline-entry | |||
|title=ZMPSTE24 Is Associated with Elevated Inflammation and Progerin mRNA. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32872320 | |||
|keywords=* ZMPSTE24 | |||
* aging | |||
* inflammation | |||
* lamin A/C | |||
* progerin | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7563344 | |||
}} | |||
{{medline-entry | |||
|title=Cultural and life style practices associated with low inflammatory physiology in Japanese adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32805392 | |||
|keywords=* Aging | |||
* Bathing | |||
* C-reactive protein | |||
* Diet | |||
* Inflammation | |||
* Interleukin-6 | |||
* Japan | |||
* Tea | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7544652 | |||
}} | |||
{{medline-entry | |||
|title=Moderate- to high intensity aerobic and resistance exercise reduces peripheral blood regulatory cell populations in older adults with rheumatoid arthritis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32467712 | |||
|keywords=* Aging | |||
* Breg cells | |||
* Exercise | |||
* IL-10 | |||
* Rheumatoid arthritis | |||
* T cells | |||
* Treg cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7229606 | |||
}} | |||
{{medline-entry | |||
|title=PTSD and the klotho longevity gene: Evaluation of longitudinal effects on inflammation via DNA methylation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32438247 | |||
|keywords=* Accelerated aging | |||
* Inflammation | |||
* Klotho | |||
* Methylation | |||
* PTSD | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7293549 | |||
}} | |||
{{medline-entry | |||
|title=Bereavement is associated with reduced systemic inflammation: C-reactive protein before and after widowhood. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32283288 | |||
|keywords=* Aging | |||
* Bereavement | |||
* C-reactive protein | |||
* Health | |||
* Inflammation | |||
* Widowhood | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415735 | |||
}} | |||
{{medline-entry | |||
|title=The Impact of Age on the Prevalence of Sarcopenic Obesity in Bariatric Surgery Candidates. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32249368 | |||
|keywords=* Aging | |||
* Bariatric surgery | |||
* Elderly | |||
* Obesity | |||
* Sarcopenia | |||
|full-text-url=https://sci-hub.do/10.1007/s11695-019-04198-4 | |||
}} | |||
{{medline-entry | |||
|title=Intake of dietary advanced glycation end products influences inflammatory markers, immune phenotypes, and antiradical capacity of healthy elderly in a little-studied population. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32148813 | |||
|keywords=* CRP | |||
* advanced glycationed end products | |||
* aging | |||
* dAGE | |||
* immunity | |||
* inflammation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020308 | |||
}} | |||
{{medline-entry | |||
|title=Intentional Switching Between Bimanual Coordination Patterns in Older Adults: Is It Mediated by Inhibition Processes? | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32132919 | |||
|keywords=* Stroop task | |||
* aging | |||
* bimanual coordination | |||
* inhibition | |||
* mediation analysis | |||
* switching | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7041435 | |||
}} | |||
{{medline-entry | |||
|title=Shorter Telomere Length in Peripheral Blood Leukocytes Is Associated with Post-Traumatic Chronic Osteomyelitis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32125944 | |||
|keywords=* aging | |||
* post-traumatic chronic osteomyelitis | |||
* telomere | |||
|full-text-url=https://sci-hub.do/10.1089/sur.2019.326 | |||
}} | |||
{{medline-entry | |||
|title=Risk Factors of Progression to Frailty: Findings from the Singapore Longitudinal Ageing Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31886815 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Disease Progression | |||
* Female | |||
* Frail Elderly | |||
* Frailty | |||
* Geriatric Assessment | |||
* Humans | |||
* Independent Living | |||
* Longitudinal Studies | |||
* Male | |||
* Nutrition Assessment | |||
* Nutritional Status | |||
* Physical Examination | |||
* Risk Factors | |||
* Singapore | |||
* Socioeconomic Factors | |||
|keywords=* Frailty | |||
* longitudinal | |||
* risk factors | |||
* transition | |||
|full-text-url=https://sci-hub.do/10.1007/s12603-019-1277-8 | |||
}} | |||
{{medline-entry | |||
|title=Physical Function and Strength in Relation to Inflammation in Older Adults with Obesity and Increased Cardiometabolic Risk. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31781724 | |||
|mesh-terms=* Aged | |||
* Aging | |||
* Cardiovascular Diseases | |||
* Female | |||
* Humans | |||
* Inflammation | |||
* Male | |||
* Muscle Strength | |||
* Obesity | |||
* Physical Exertion | |||
|keywords=* Inflammation | |||
* cardiovascular disease risk factors | |||
* obesity | |||
* physical activity | |||
* physical function | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996491 | |||
}} | |||
{{medline-entry | |||
|title=Key diagnostic characteristics of fever of unknown origin in Japanese patients: a prospective multicentre study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31748308 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Female | |||
* Fever of Unknown Origin | |||
* Humans | |||
* Japan | |||
* Male | |||
* Middle Aged | |||
* Prospective Studies | |||
* Young Adult | |||
|keywords=* Japan | |||
* aging population | |||
* elderly | |||
* erythrocyte sedimentation rate | |||
* fever of unknown origin | |||
* prospective studies | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6886908 | |||
}} | |||
{{medline-entry | |||
|title=Decrease in Serum Vitamin D Level of Older Patients with Fatigue. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31635199 | |||
|mesh-terms=* Aged | |||
* Cohort Studies | |||
* Fatigue | |||
* Female | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Vitamin D | |||
* Vitamin D Deficiency | |||
|keywords=* aging | |||
* mental fatigue | |||
* older | |||
* physical fatigue | |||
* sex differences | |||
* vitamin D | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6836014 | |||
}} | |||
{{medline-entry | |||
|title=The Association between Frailty Indicators and Blood-Based Biomarkers in Early-Old Community Dwellers of Thailand. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31533354 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Biomarkers | |||
* C-Reactive Protein | |||
* CD4-CD8 Ratio | |||
* Cross-Sectional Studies | |||
* Female | |||
* Frail Elderly | |||
* Frailty | |||
* Humans | |||
* Independent Living | |||
* Interleukin-6 | |||
* Male | |||
* Middle Aged | |||
* Thailand | |||
|keywords=* C-reactive protein | |||
* Thailand | |||
* aging | |||
* cross-sectional study | |||
* frailty | |||
* frailty biomarkers | |||
* fried’s phenotypes | |||
* interleukin-6 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6765843 | |||
}} | |||
{{medline-entry | |||
|title=Associations of C-reactive protein and homocysteine concentrations with the impairment of intrinsic capacity domains over a 5-year follow-up among community-dwelling older adults at risk of cognitive decline (MAPT Study). | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31493520 | |||
|mesh-terms=* Activities of Daily Living | |||
* Aged | |||
* Biomarkers | |||
* Body Mass Index | |||
* C-Reactive Protein | |||
* Cognitive Dysfunction | |||
* Depression | |||
* Female | |||
* Follow-Up Studies | |||
* Geriatric Assessment | |||
* Hand Strength | |||
* Homocysteine | |||
* Humans | |||
* Independent Living | |||
* Inflammation | |||
* Male | |||
* Mobility Limitation | |||
* Neuropsychological Tests | |||
* Prospective Studies | |||
* Risk Factors | |||
* Time Factors | |||
|keywords=* Aging | |||
* C-reactive protein | |||
* Homocysteine | |||
* Inflammation | |||
* Intrinsic capacity | |||
* Older adults | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2019.110716 | |||
}} | |||
{{medline-entry | |||
|title=Longitudinal analysis of loneliness and inflammation at older ages: English longitudinal study of ageing. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31494341 | |||
|mesh-terms=* Age Factors | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* C-Reactive Protein | |||
* England | |||
* Female | |||
* Ferritins | |||
* Fibrinogen | |||
* Humans | |||
* Inflammation | |||
* Loneliness | |||
* Longitudinal Studies | |||
* Male | |||
* Middle Aged | |||
|keywords=* C-reactive protein | |||
* Ferritin | |||
* Fibrinogen | |||
* Inflammation | |||
* Loneliness | |||
|full-text-url=https://sci-hub.do/10.1016/j.psyneuen.2019.104421 | |||
}} | |||
{{medline-entry | |||
|title=The cortisol burden in elderly subjects with metabolic syndrome and its association with low-grade inflammation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31471891 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Echocardiography | |||
* Female | |||
* Humans | |||
* Hydrocortisone | |||
* Inflammation | |||
* Male | |||
* Metabolic Syndrome | |||
|keywords=* Aging | |||
* Cortisol | |||
* Inflammation | |||
* Metabolic syndrome | |||
|full-text-url=https://sci-hub.do/10.1007/s40520-019-01322-3 | |||
}} | |||
{{medline-entry | |||
|title=Recurrent circadian fasting (RCF) improves blood pressure, biomarkers of cardiometabolic risk and regulates inflammation in men. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31426866 | |||
|mesh-terms=* Adult | |||
* Biomarkers | |||
* Blood Pressure | |||
* C-Reactive Protein | |||
* Cardiovascular Diseases | |||
* Circadian Rhythm | |||
* Diet | |||
* Energy Intake | |||
* Fasting | |||
* Heart Rate | |||
* Humans | |||
* Inflammation | |||
* Male | |||
* Metabolic Diseases | |||
* Middle Aged | |||
* Nutritional Physiological Phenomena | |||
* Regression Analysis | |||
* Risk Factors | |||
* Young Adult | |||
|keywords=* Aging | |||
* Health benefits | |||
* Inflammation | |||
* Recurrent fasting | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700786 | |||
}} | |||
{{medline-entry | |||
|title=Characteristics of patients with rheumatoid arthritis undergoing primary total joint replacement: A 14-year trend analysis (2004-2017). | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31393198 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Antirheumatic Agents | |||
* Arthritis, Rheumatoid | |||
* Arthroplasty, Replacement | |||
* Arthroplasty, Replacement, Knee | |||
* Biological Products | |||
* Drug Utilization | |||
* Female | |||
* Humans | |||
* Japan | |||
* Male | |||
* Middle Aged | |||
* Postoperative Complications | |||
|keywords=* C-reactive protein | |||
* Rheumatoid arthritis | |||
* aging | |||
* arthroplasty | |||
* drug therapy | |||
|full-text-url=https://sci-hub.do/10.1080/14397595.2019.1649111 | |||
}} | |||
==CS== | |||
{{medline-entry | |||
|title=Acute effect of bodyweight-based strength training on blood pressure of hypertensive older adults: A randomized crossover clinical trial. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33198514 | |||
|keywords=* Exercise | |||
* aging | |||
* hypertension | |||
* hypotension | |||
* resistance training | |||
|full-text-url=https://sci-hub.do/10.1080/10641963.2020.1847130 | |||
}} | |||
{{medline-entry | |||
|title=Particle growth with photochemical age from new particle formation to haze in the winter of Beijing, China. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33207435 | |||
|keywords=* Condensation sink | |||
* Haze | |||
* New particle formation | |||
* Photochemical aging | |||
* Pollution evolution | |||
|full-text-url=https://sci-hub.do/10.1016/j.scitotenv.2020.142207 | |||
}} | |||
{{medline-entry | |||
|title=Effect of aging on stabilization of Cd and Ni by biochars and enzyme activities in a historically contaminated alkaline agricultural soil simulated with wet-dry and freeze-thaw cycling. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33143976 | |||
|keywords=* Accelerated aging | |||
* Biochar | |||
* Cadmium | |||
* Enzyme activity | |||
* Heavy metal stabilization | |||
* Soil remediation | |||
|full-text-url=https://sci-hub.do/10.1016/j.envpol.2020.115846 | |||
}} | |||
{{medline-entry | |||
|title=Cockayne syndrome proteins [[CS]]A and [[CS]]B maintain mitochondrial homeostasis through NAD signaling. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33166073 | |||
|keywords=* AMPK | |||
* Cockayne syndrome | |||
* NAD+ | |||
* accelerated ageing | |||
* aging | |||
* mitochondrial maintenance | |||
* mitophagy | |||
|full-text-url=https://sci-hub.do/10.1111/acel.13268 | |||
}} | |||
{{medline-entry | |||
|title=Vision Impairment and Participation in Cognitively Stimulating Activities: The Health ABC Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32710546 | |||
|keywords=* Cognition | |||
* Cognitive Aging | |||
* Sensory | |||
* Vision loss | |||
|full-text-url=https://sci-hub.do/10.1093/gerona/glaa184 | |||
}} | |||
{{medline-entry | |||
|title=Suspension training vs. traditional resistance training: effects on muscle mass, strength and functional performance in older adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32700098 | |||
|keywords=* Aging | |||
* Functionality | |||
* Instability resistance training | |||
* Muscle hypertrophy | |||
* TRX training | |||
|full-text-url=https://sci-hub.do/10.1007/s00421-020-04446-x | |||
}} | |||
{{medline-entry | |||
|title=Generational Differences in the 10-year Incidence of Impaired Contrast Sensitivity. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32693658 | |||
|keywords=* Aging | |||
* Birth Cohort Effect | |||
* Contrast Sensitivity | |||
* Epidemiology | |||
* Visual Function | |||
|full-text-url=https://sci-hub.do/10.1080/09286586.2020.1791909 | |||
}} | |||
{{medline-entry | |||
|title=Inducible aging in Hydra oligactis implicates sexual reproduction, loss of stem cells, and genome maintenance as major pathways. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32578072 | |||
|keywords=* Aging | |||
* Cold-sensitive | |||
* DNA repair | |||
* Gametogenesis | |||
* Hydra oligactis | |||
* Transcriptome | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7394996 | |||
}} | |||
{{medline-entry | |||
|title=Noradrenergic Responsiveness Supports Selective Attention across the Adult Lifespan. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32317388 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aging | |||
* Attention | |||
* Brain Waves | |||
* Cortical Synchronization | |||
* Humans | |||
* Male | |||
* Norepinephrine | |||
* Reflex, Pupillary | |||
|keywords=* cognitive aging | |||
* locus coeruleus | |||
* noradrenaline | |||
* norepinephrine | |||
* rhythmic neural activity | |||
* selective attention | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7252473 | |||
}} | |||
{{medline-entry | |||
|title=Cellular senescence: from anti-cancer weapon to anti-aging target. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32060861 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Antineoplastic Agents | |||
* Breast Neoplasms | |||
* Cell Proliferation | |||
* Cell Transformation, Neoplastic | |||
* Cellular Senescence | |||
* Cyclin-Dependent Kinases | |||
* Drug Discovery | |||
* Female | |||
* Humans | |||
* Piperazines | |||
* Protein Kinase Inhibitors | |||
* Pyridines | |||
|keywords=* cancer | |||
* cellular senescence | |||
* healthy aging | |||
* pro-senescence cancer therapy | |||
* senolytic therapies | |||
|full-text-url=https://sci-hub.do/10.1007/s11427-019-1629-6 | |||
}} | |||
{{medline-entry | |||
|title=Extra-mitochondrial citrate synthase initiates calcium oscillation and suppresses age-dependent sperm dysfunction. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31857692 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Calcium Signaling | |||
* Citrate (si)-Synthase | |||
* Citric Acid Cycle | |||
* Female | |||
* Infertility, Male | |||
* Male | |||
* Metabolome | |||
* Mice | |||
* Ovum | |||
* Spermatozoa | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096335 | |||
}} | |||
{{medline-entry | |||
|title=Pathogenesis of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31737341 | |||
|keywords=* Airway inflammation | |||
* autophagy | |||
* cellular senescence | |||
* chronic obstructive pulmonary disease (COPD) | |||
* necroptosis | |||
* oxidative stress | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6831915 | |||
}} | |||
{{medline-entry | |||
|title=Possible Role of Amyloid Cross-Seeding in Evolvability and Neurodegenerative Disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31524179 | |||
|mesh-terms=* Aging | |||
* Amyloidogenic Proteins | |||
* Animals | |||
* Biological Evolution | |||
* Brain | |||
* Female | |||
* Humans | |||
* Inheritance Patterns | |||
* Models, Neurological | |||
* Neurodegenerative Diseases | |||
* Pregnancy | |||
* Stress, Physiological | |||
|keywords=* Alzheimer’s disease | |||
* Parkinson’s disease | |||
* amyloid cascade hypothesis | |||
* amyloidogenic proteins | |||
* antimicrobial protection model | |||
* cross-seeding | |||
* evolvability hypothesis | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6839461 | |||
}} | |||
{{medline-entry | |||
|title=Targeting p16-induced senescence prevents cigarette smoke-induced emphysema by promoting IGF1/Akt1 signaling in mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31428695 | |||
|mesh-terms=* Alveolar Epithelial Cells | |||
* Animals | |||
* Cell Proliferation | |||
* Cellular Senescence | |||
* Cyclin-Dependent Kinase Inhibitor p16 | |||
* Cytokines | |||
* Emphysema | |||
* Insulin-Like Growth Factor I | |||
* Lung | |||
* Mice, Inbred C57BL | |||
* Models, Biological | |||
* Promoter Regions, Genetic | |||
* Proto-Oncogene Proteins c-akt | |||
* Pulmonary Disease, Chronic Obstructive | |||
* RNA, Messenger | |||
* Signal Transduction | |||
* Smoking | |||
|keywords=* Molecular biology | |||
* Senescence | |||
* Stem cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689060 | |||
}} | |||
==CSF1R== | |||
{{medline-entry | |||
|title=[[CSF1R]] inhibitor PLX5622 and environmental enrichment additively improve metabolic outcomes in middle-aged female mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32007953 | |||
|keywords=* CSF1R | |||
* adipose | |||
* aging | |||
* environmental enrichment | |||
* microglia | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7041757 | |||
}} | |||
{{medline-entry | |||
|title=Modulation of Microglia by Voluntary Exercise or [[CSF1R]] Inhibition Prevents Age-Related Loss of Functional Motor Units. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31693894 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Cell Line | |||
* Databases, Genetic | |||
* Humans | |||
* Induced Pluripotent Stem Cells | |||
* Macrophages | |||
* Male | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Microglia | |||
* Motor Neurons | |||
* Muscle, Skeletal | |||
* Neuromuscular Junction | |||
* Neuronal Plasticity | |||
* Physical Conditioning, Animal | |||
* RNA-Seq | |||
* Receptors, Granulocyte-Macrophage Colony-Stimulating Factor | |||
* Spinal Cord | |||
|keywords=* CSF1R inhibition | |||
* aging | |||
* exercise | |||
* innervation | |||
* microglia | |||
* motor unit | |||
* neuroinflammation | |||
* neuromuscular junction | |||
* neuromuscular system | |||
* spinal cord | |||
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2019.10.003 | |||
}} | |||
==CTCF== | |||
{{medline-entry | |||
|title=New targeted approaches for epigenetic age predictions. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32580727 | |||
|keywords=* Aging | |||
* Amplicon sequencing | |||
* Blood | |||
* Buccal swabs | |||
* CTCF | |||
* DNA methylation | |||
* Droplet digital PCR | |||
* Epigenetic | |||
* Human | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7315536 | |||
}} | |||
==CTH== | |||
{{medline-entry | |||
|title=Anterior Cingulate Structure and Perfusion is Associated with Cerebrospinal Fluid Tau among Cognitively Normal Older Adult APOEɛ4 Carriers. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31743999 | |||
|keywords=* APOE | |||
* Aging | |||
* Alzheimer’s disease | |||
* cerebral blood flow | |||
* cognition | |||
* cognitive decline | |||
* grey matter | |||
* magnetic resonance imaging | |||
* tau proteins | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310575 | |||
}} | |||
==CTLA4== | |||
{{medline-entry | |||
|title=Horticultural Therapy Reduces Biomarkers of Immunosenescence and Inflammaging in Community-Dwelling Older Adults: A Feasibility Pilot Randomized Controlled Trial. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33070170 | |||
|keywords=* CTLA-4 | |||
* Geroscience | |||
* IL-6 | |||
* Immunosenescence | |||
* Inflammaging | |||
|full-text-url=https://sci-hub.do/10.1093/gerona/glaa271 | |||
}} | |||
==CTRL== | |||
{{medline-entry | |||
|title=Aging reduces the maximal level of peripheral fatigue tolerable and impairs exercise capacity. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32966120 | |||
|keywords=* aging | |||
* critical torque | |||
* exercise performance | |||
* group III/IV muscle afferents | |||
* neuromuscular fatigue | |||
|full-text-url=https://sci-hub.do/10.1152/ajpregu.00151.2020 | |||
}} | |||
{{medline-entry | |||
|title=miR-146a Plasma Levels Are Not Altered in Alzheimer's Disease but Correlate With Age and Illness Severity. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32009940 | |||
|keywords=* Alzheimer’s disease | |||
* aging | |||
* blood | |||
* miR-146a | |||
* microRNA | |||
* plasma | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6978630 | |||
}} | |||
{{medline-entry | |||
|title=Centrally-mediated regulation of peripheral fatigue during knee extensor exercise and consequences on the force-duration relationship in older men. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31397211 | |||
|keywords=* Aging | |||
* critical torque | |||
* group III/IV muscle afferents | |||
|full-text-url=https://sci-hub.do/10.1080/17461391.2019.1655099 | |||
}} | |||
==CTSA== | |||
{{medline-entry | |||
|title=A [[CTSA]]-based consultation service to advance research on special and underserved populations. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33244406 | |||
|keywords=* faculty development | |||
* geriatrics | |||
* grant review | |||
* grant studio | |||
* pediatrics | |||
* peer review | |||
* research consultation service | |||
* special populations | |||
* underrepresented minorities | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7681147 | |||
}} | |||
==CTSB== | |||
{{medline-entry | |||
|title=Myocardial cathepsin D is downregulated in sudden cardiac death. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32176724 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Cathepsin D | |||
* Death, Sudden, Cardiac | |||
* Down-Regulation | |||
* Female | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Myocardium | |||
* Substrate Specificity | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7075574 | |||
}} | |||
==CX3CL1== | |||
{{medline-entry | |||
|title=Two forms of [[CX3CL1]] display differential activity and rescue cognitive deficits in [[CX3CL1]] knockout mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32410624 | |||
|keywords=* Aging | |||
* CX3CL1 | |||
* Cognition | |||
* Fractalkine | |||
* Long-term potentiation | |||
* Microglia | |||
* Neurodegeneration | |||
* Neurogenesis | |||
* Neuroinflammation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7227354 | |||
}} | |||
==CX3CR1== | |||
{{medline-entry | |||
|title=Monocytes present age-related changes in phospholipid concentration and decreased energy metabolism. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32107839 | |||
|keywords=* DNA methylation | |||
* aging | |||
* glucose metabolism | |||
* monocytes | |||
* phosphatidylcholines | |||
* transcriptome | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189998 | |||
}} | |||
{{medline-entry | |||
|title=Muscle Injury Induces Postoperative Cognitive Dysfunction. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32066806 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Brain | |||
* Brain-Derived Neurotrophic Factor | |||
* CX3C Chemokine Receptor 1 | |||
* Cytokines | |||
* Disease Models, Animal | |||
* Hippocampus | |||
* Humans | |||
* Male | |||
* Mice | |||
* Microglia | |||
* Muscle, Skeletal | |||
* Nerve Growth Factor | |||
* Postoperative Cognitive Complications | |||
* Postoperative Complications | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7026159 | |||
}} | |||
==CXCL1== | |||
{{medline-entry | |||
|title=Contusion spinal cord injury upregulates p53 protein expression in rat soleus muscle at multiple timepoints but not key senescence cytokines. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32026570 | |||
|keywords=* SASP | |||
* cytokines | |||
* inflammation | |||
* paralysis | |||
* senescence | |||
* spinal cord injury | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7002538 | |||
}} | |||
{{medline-entry | |||
|title=Systemic Inflammation and the Increased Risk of Inflamm-Aging and Age-Associated Diseases in People Living With HIV on Long Term Suppressive Antiretroviral Therapy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31507593 | |||
|mesh-terms=* Adult | |||
* Aging | |||
* Anti-HIV Agents | |||
* Antiretroviral Therapy, Highly Active | |||
* Biomarkers | |||
* CD4 Lymphocyte Count | |||
* Computational Biology | |||
* Cross-Sectional Studies | |||
* Disease Susceptibility | |||
* Duration of Therapy | |||
* Female | |||
* HIV Infections | |||
* Humans | |||
* Inflammation | |||
* Male | |||
* Metabolome | |||
* Metabolomics | |||
* Middle Aged | |||
* Proteomics | |||
* Telomere Homeostasis | |||
* Viral Load | |||
|keywords=* HIV | |||
* India | |||
* LMIC (lower middle income country) | |||
* inflammation markers | |||
* long term antiretroviral therapy | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718454 | |||
}} | |||
==CXCL10== | |||
{{medline-entry | |||
|title=Age-related decline of interferon-gamma responses in macrophage impairs satellite cell proliferation and regeneration. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32725722 | |||
|keywords=* Aging | |||
* CXCL10 | |||
* IFN-γ | |||
* Macrophage | |||
* Muscle regeneration | |||
* Single-cell RNA sequence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567146 | |||
}} | |||
==CXCL11== | |||
{{medline-entry | |||
|title=Endothelial cells under therapy-induced senescence secrete [[CXCL11]], which increases aggressiveness of breast cancer cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32659248 | |||
|keywords=* CXCL11 | |||
* Endothelial cells | |||
* Therapy-induced senescence | |||
* Tumor microenvironment | |||
|full-text-url=https://sci-hub.do/10.1016/j.canlet.2020.06.019 | |||
}} | |||
==CXCL12== | |||
{{medline-entry | |||
|title=Co-option of Neutrophil Fates by Tissue Environments. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33098771 | |||
|keywords=* angiogenesis | |||
* immune heterogeneity | |||
* immune niche | |||
* innate immunity | |||
* neutrophil lifespan | |||
* neutrophils | |||
* single-cell analysis | |||
* tissue-resident cells | |||
|full-text-url=https://sci-hub.do/10.1016/j.cell.2020.10.003 | |||
}} | |||
{{medline-entry | |||
|title=Heme oxygenase-1 deficiency triggers exhaustion of hematopoietic stem cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31885181 | |||
|keywords=* aging | |||
* bone marrow | |||
* cxcl12-abudant reticular cells | |||
* endothelial cells | |||
* niche | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7001511 | |||
}} | |||
{{medline-entry | |||
|title=Global Transcriptomic Profiling of the Bone Marrow Stromal Microenvironment during Postnatal Development, Aging, and Inflammation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31801092 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Bone Marrow | |||
* Bone Marrow Cells | |||
* Cell Differentiation | |||
* Cells, Cultured | |||
* Cellular Microenvironment | |||
* Chemokine CXCL12 | |||
* Embryonic Development | |||
* Endothelial Cells | |||
* Gene Expression Profiling | |||
* Hematopoiesis | |||
* Hematopoietic Stem Cells | |||
* Inflammation | |||
* Male | |||
* Mesenchymal Stem Cells | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Stem Cell Niche | |||
* Transcriptome | |||
|keywords=* aging | |||
* bone marrow microenvironment | |||
* hematopoietic stem cells | |||
* inflammation | |||
* niches | |||
* stromal cells | |||
* transcriptomics | |||
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2019.11.004 | |||
}} | |||
==CXCL13== | |||
{{medline-entry | |||
|title=RNA-seq data from C-X-C chemokine receptor type 5 (CXCR5) gene knockout aged mice with retinal degeneration phenotype. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32642521 | |||
|keywords=* CXCR5 | |||
* FastQC | |||
* RNA-Seq | |||
* aging | |||
* choroid | |||
* mice | |||
* retina | |||
* retinal degeneration | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334305 | |||
}} | |||
==CXCL14== | |||
{{medline-entry | |||
|title=Identification of genes associated with endometrial cell aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33258951 | |||
|keywords=* CXCL12 | |||
* CXCL14 | |||
* IL17RB | |||
* endometrial cell aging | |||
* infertility | |||
* quantitative | |||
immunohistochemistry | |||
|full-text-url=https://sci-hub.do/10.1093/molehr/gaaa078 | |||
}} | |||
==CXCL8== | |||
{{medline-entry | |||
|title=Cerebrovascular Senescence Is Associated With Tau Pathology in Alzheimer's Disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33041998 | |||
|keywords=* Alzheimer's disease | |||
* endothelial senescence | |||
* gene expression | |||
* neurofibrillary tangles | |||
* plasma biomarkers | |||
* tau pathology | |||
* vascular dysfunction | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7525127 | |||
}} | |||
==CXCL9== | |||
{{medline-entry | |||
|title=[[CXCL9]] and CXCL10 display an age-dependent profile in Chagas patients: a cohort study of aging in Bambui, Brazil. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32393333 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Biomarkers | |||
* Brazil | |||
* Chagas Disease | |||
* Chemokine CXCL10 | |||
* Chemokine CXCL9 | |||
* Cohort Studies | |||
* Electrocardiography | |||
* Female | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Trypanosoma cruzi | |||
|keywords=* Chagas disease | |||
* Chemokines | |||
* Cohort | |||
* Cytokines | |||
* Immune biomarkers | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7216412 | |||
}} | |||
==CXCR2== | |||
{{medline-entry | |||
|title=CXCL5-[[CXCR2]] signaling is a senescence-associated secretory phenotype in preimplantation embryos. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32959976 | |||
|keywords=* CXCL5 | |||
* CXCR2 | |||
* SASP | |||
* aging | |||
* infertility | |||
* preimplantation embryo | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7576282 | |||
}} | |||
{{medline-entry | |||
|title=Senescence in Wound Repair: Emerging Strategies to Target Chronic Healing Wounds. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32850866 | |||
|keywords=* ageing | |||
* diabetes | |||
* senescence | |||
* senolytics | |||
* wound healing | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431694 | |||
}} | |||
==CXCR3== | |||
{{medline-entry | |||
|title=Senescent hepatocytes enhance natural killer cell activity via the CXCL-10/[[CXCR3]] axis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31616512 | |||
|keywords=* chemokine | |||
* hepatocyte | |||
* natural killer cell | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6781833 | |||
}} | |||
==CXCR4== | |||
{{medline-entry | |||
|title=Aging-Related Reduced Expression of [[CXCR4]] on Bone Marrow Mesenchymal Stromal Cells Contributes to Hematopoietic Stem and Progenitor Cell Defects. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32418119 | |||
|keywords=* Aging | |||
* CXCR4 and ROS | |||
* HSPC | |||
* MSC | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7395885 | |||
}} | |||
{{medline-entry | |||
|title=Transfer of a human gene variant associated with exceptional longevity improves cardiac function in obese type 2 diabetic mice through induction of the SDF-1/[[CXCR4]] signalling pathway. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32384208 | |||
|keywords=* BPIFB4 | |||
* Cardiomyopathy | |||
* Diabetes | |||
* Gene therapy | |||
* Longevity | |||
|full-text-url=https://sci-hub.do/10.1002/ejhf.1840 | |||
}} | |||
{{medline-entry | |||
|title=Stromal Cell-Derived Factor 1 Protects Brain Vascular Endothelial Cells from Radiation-Induced Brain Damage. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31658727 | |||
|mesh-terms=* Animals | |||
* Blood Vessels | |||
* Brain | |||
* Cell Line | |||
* Cellular Senescence | |||
* Chemokine CXCL12 | |||
* Cranial Irradiation | |||
* Disease Models, Animal | |||
* Down-Regulation | |||
* Endothelial Cells | |||
* Female | |||
* Gene Expression Regulation | |||
* Humans | |||
* Lipopeptides | |||
* Mice | |||
* Receptors, CXCR4 | |||
* Signal Transduction | |||
|keywords=* CXCR4 | |||
* SDF-1 | |||
* brain disorder | |||
* endothelial dysfunction | |||
* ionizing radiation | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6830118 | |||
}} | |||
==CYP11B1== | |||
{{medline-entry | |||
|title=Intratumoral heterogeneity of the tumor cells based on in situ cortisol excess in cortisol-producing adenomas; ∼An association among morphometry, genotype and cellular senescence∼. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33002589 | |||
|keywords=* CYP11B1 | |||
* CYP17A | |||
* Cellular senescence | |||
* Compact and clear cells | |||
* Cortisol-producing adenoma | |||
* PRKACA | |||
|full-text-url=https://sci-hub.do/10.1016/j.jsbmb.2020.105764 | |||
}} | |||
==CYP1A1== | |||
{{medline-entry | |||
|title=Genome-wide scan identified genetic variants associated with skin aging in a Chinese female population. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31522824 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Asian Continental Ancestry Group | |||
* Cheek | |||
* Cohort Studies | |||
* Cytochrome P-450 CYP1A1 | |||
* European Continental Ancestry Group | |||
* Female | |||
* Genome-Wide Association Study | |||
* Humans | |||
* Middle Aged | |||
* Polymorphism, Single Nucleotide | |||
* Risk Factors | |||
* Skin Aging | |||
* Skin Pigmentation | |||
|keywords=* Candidate SNPs | |||
* Chinese Han females | |||
* GWAS | |||
* Skin aging | |||
|full-text-url=https://sci-hub.do/10.1016/j.jdermsci.2019.08.010 | |||
}} | |||
==CYP26B1== | |||
{{medline-entry | |||
|title=Increased Retinoic Acid Catabolism in Olfactory Sensory Neurons Activates Dormant Tissue-Specific Stem Cells and Accelerates Age-Related Metaplasia. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32385093 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Female | |||
* Isotretinoin | |||
* Male | |||
* Metaplasia | |||
* Mice | |||
* Neural Stem Cells | |||
* Neurogenesis | |||
* Olfactory Mucosa | |||
* Olfactory Receptor Neurons | |||
* Retinoic Acid 4-Hydroxylase | |||
|keywords=* aging | |||
* inositol-1,4,5-triphosphate | |||
* metaplasia | |||
* olfactory epithelium | |||
* retinoic acid | |||
* stem cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244205 | |||
}} | |||
==CYP2C19== | |||
{{medline-entry | |||
|title=Physiologically Based Pharmacokinetic Approach Can Successfully Predict Pharmacokinetics of Citalopram in Different Patient Populations. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31750550 | |||
|keywords=* citalopram | |||
* genetic polymorphism | |||
* geriatrics | |||
* physiologically based pharmacokinetic modeling | |||
|full-text-url=https://sci-hub.do/10.1002/jcph.1541 | |||
}} | |||
{{medline-entry | |||
|title=Longitudinal exposure of English primary care patients to pharmacogenomic drugs: An analysis to inform design of pre-emptive pharmacogenomic testing. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31454087 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Cytochrome P-450 CYP2C19 | |||
* Cytochrome P-450 CYP2D6 | |||
* Drug Prescriptions | |||
* Female | |||
* Humans | |||
* Liver-Specific Organic Anion Transporter 1 | |||
* Longitudinal Studies | |||
* Male | |||
* Middle Aged | |||
* Pharmaceutical Preparations | |||
* Pharmacogenomic Testing | |||
* Precision Medicine | |||
* Primary Health Care | |||
* United Kingdom | |||
|keywords=* clinical pharmacology | |||
* general practice | |||
* pharmacogenomics | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955399 | |||
}} | |||
==CYP2E1== | |||
{{medline-entry | |||
|title=DNA methylation and histone acetylation changes to cytochrome P450 2E1 regulation in normal aging and impact on rates of drug metabolism in the liver. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32221779 | |||
|keywords=* Aging | |||
* Cyp2e1 | |||
* DNA methylation | |||
* Drug metabolism | |||
* Histone acetylation | |||
* Pharmacokinetics | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7287002 | |||
}} | |||
==CYP7A1== | |||
{{medline-entry | |||
|title=Age-associated changes of cytochrome P450 and related phase-2 gene/proteins in livers of rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31396457 | |||
|keywords=* Aging | |||
* Cytochrome P450’s | |||
* Nuclear receptors | |||
* Ontogeny | |||
* Rat liver | |||
* mRNA/protein expression | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6681801 | |||
}} | |||
==DBI== | |||
{{medline-entry | |||
|title=Quantifying cumulative anticholinergic and sedative drug load among US Medicare Beneficiaries. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33000867 | |||
|keywords=* aging | |||
* cholinergic antagonists | |||
* drug burden index | |||
* drug utilization | |||
* hypnotics and sedatives | |||
* inappropriate prescribing | |||
* pharmacoepidemiology | |||
|full-text-url=https://sci-hub.do/10.1002/pds.5144 | |||
}} | |||
{{medline-entry | |||
|title=Drug Burden Index and Cognitive and Physical Function in Aged Care Residents: A Longitudinal Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32736845 | |||
|keywords=* Cognitive function | |||
* anti-muscarinics | |||
* benzodiazepines | |||
* geriatrics | |||
* longitudinal | |||
* mobility impairment | |||
* physical function | |||
* polypharmacy | |||
|full-text-url=https://sci-hub.do/10.1016/j.jamda.2020.05.037 | |||
}} | |||
{{medline-entry | |||
|title=Using the Drug Burden Index to identify older adults at highest risk for medication-related falls. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32532276 | |||
|keywords=* Accidental falls | |||
* Aging | |||
* Health services | |||
* Medication | |||
* Medication therapy management | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7291506 | |||
}} | |||
{{medline-entry | |||
|title=Impact of STEADI-Rx: A Community Pharmacy-Based Fall Prevention Intervention. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32315461 | |||
|keywords=* aging | |||
* community pharmacy | |||
* falls | |||
* health services | |||
* medication | |||
|full-text-url=https://sci-hub.do/10.1111/jgs.16459 | |||
}} | |||
==DBP== | |||
{{medline-entry | |||
|title=Do baseline blood pressure and type of exercise influence level of reduction induced by training in hypertensive older adults? A meta-analysis of controlled trials. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32795629 | |||
|keywords=* Aged | |||
* Aging | |||
* Exercise | |||
* Exercise therapy | |||
* High blood pressure | |||
* Hypertension | |||
* Resistance training | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2020.111052 | |||
}} | |||
{{medline-entry | |||
|title=Attenuated aortic blood pressure responses to metaboreflex activation in older adults with dynapenia. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32502600 | |||
|keywords=* Aging | |||
* Diastolic pressure | |||
* Handgrip strength | |||
* Post-exercise muscle ischemia | |||
* Walking performance | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2020.110984 | |||
}} | |||
{{medline-entry | |||
|title=The Effect of Blood Pressure on Cognitive Performance. An 8-Year Follow-Up of the Tromsø Study, Comprising People Aged 45-74 Years. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32373010 | |||
|keywords=* aging | |||
* blood pressure | |||
* cognitive performance | |||
* dementia | |||
* sex differences | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7186429 | |||
}} | |||
{{medline-entry | |||
|title=Low Diastolic Blood Pressure and Cognitive Decline in Korean Elderly People: The Korean Longitudinal Study on Cognitive Aging and Dementia. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31995969 | |||
|keywords=* Cognition | |||
* Diastolic blood pressure | |||
* Senility | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6992855 | |||
}} | |||
{{medline-entry | |||
|title=Diastolic Blood Pressure Is Associated With Regional White Matter Lesion Load: The Northern Manhattan Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31910743 | |||
|mesh-terms=* Aged | |||
* Arterial Pressure | |||
* Blood Pressure | |||
* Brain | |||
* Cohort Studies | |||
* Diastole | |||
* Female | |||
* Frontal Lobe | |||
* Humans | |||
* Hypertension | |||
* Linear Models | |||
* Magnetic Resonance Imaging | |||
* Male | |||
* Middle Aged | |||
* Organ Size | |||
* Parietal Lobe | |||
* Prospective Studies | |||
* Systole | |||
* Temporal Lobe | |||
* White Matter | |||
|keywords=* American Heart Association | |||
* blood pressure | |||
* cerebrovascular disease | |||
* cognitive aging | |||
* white matter | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219602 | |||
}} | |||
{{medline-entry | |||
|title=Orthostatic Hypotension and Novel Blood Pressure Associated Gene Variants in Older Adults: Data From the TILDA Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31821404 | |||
|keywords=* Aging | |||
* Blood pressure | |||
* Cardiovascular | |||
* Genetics | |||
* Single-nucleotide polymorphism | |||
|full-text-url=https://sci-hub.do/10.1093/gerona/glz286 | |||
}} | |||
{{medline-entry | |||
|title=Blood pressure and hypertension prevalence among oldest-old in China for 16 year: based on CLHLS. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31500574 | |||
|mesh-terms=* Aged, 80 and over | |||
* Blood Pressure | |||
* Blood Pressure Determination | |||
* China | |||
* Female | |||
* Health Surveys | |||
* Humans | |||
* Hypertension | |||
* Longevity | |||
* Longitudinal Studies | |||
* Male | |||
* Prevalence | |||
|keywords=* Blood pressure | |||
* Epidemiology | |||
* Hypertension | |||
* Oldest-old | |||
* Prevalence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6734230 | |||
}} | |||
{{medline-entry | |||
|title=The age-related blood pressure trajectories from young-old adults to centenarians: A cohort study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31443986 | |||
|mesh-terms=* Age Factors | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Blood Pressure | |||
* Cohort Studies | |||
* Female | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
|keywords=* Antihypertensive therapy | |||
* Birth cohort effect | |||
* Blood pressure | |||
* Cohort study | |||
* Heart disease | |||
* Survival | |||
|full-text-url=https://sci-hub.do/10.1016/j.ijcard.2019.08.011 | |||
}} | |||
==DCC== | |||
{{medline-entry | |||
|title=X Chromosome Domain Architecture Regulates Caenorhabditis elegans Lifespan but Not Dosage Compensation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31495695 | |||
|mesh-terms=* Adenosine Triphosphatases | |||
* Animals | |||
* Caenorhabditis elegans | |||
* Caenorhabditis elegans Proteins | |||
* DNA-Binding Proteins | |||
* Dosage Compensation, Genetic | |||
* Gene Expression Regulation | |||
* Longevity | |||
* Multiprotein Complexes | |||
* X Chromosome | |||
|keywords=* X chromosome dosage compensation | |||
* aging | |||
* condensin | |||
* gene expression | |||
* higher-order chromosome structure | |||
* lifespan | |||
* proteotoxic stress | |||
* topologically associating domains | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6810858 | |||
}} | |||
==DCN== | |||
{{medline-entry | |||
|title=Decorin inhibits the insulin-like growth factor I signaling in bone marrow mesenchymal stem cells of aged humans. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33257596 | |||
|keywords=* IGF-I | |||
* aging | |||
* bone marrow mesenchymal stem cell | |||
* osteoporosis | |||
* small leucine-rich proteoglycan | |||
|full-text-url=https://sci-hub.do/10.18632/aging.202166 | |||
}} | |||
==DCX== | |||
{{medline-entry | |||
|title=GSK-3β activation accelerates early-stage consumption of Hippocampal Neurogenesis in senescent mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32863953 | |||
|keywords=* Adult hippocampal neurogenesis | |||
* Glycogen synthase kinase-3β | |||
* Senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449917 | |||
}} | |||
{{medline-entry | |||
|title=Doublecortin and IGF-1R protein levels are reduced in spite of unchanged DNA methylation in the hippocampus of aged rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32236698 | |||
|keywords=* Aging | |||
* DNA methylation | |||
* Doublecortin | |||
* Hippocampus | |||
* IGF-1R | |||
* mGluR5 | |||
|full-text-url=https://sci-hub.do/10.1007/s00726-020-02834-3 | |||
}} | |||
==DDB1== | |||
{{medline-entry | |||
|title=DCAF1 regulates Treg senescence via the ROS axis during immunological aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32730228 | |||
|keywords=* Aging | |||
* Cellular senescence | |||
* Immunology | |||
* Inflammatory bowel disease | |||
* T cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7598062 | |||
}} | |||
==DDC== | |||
{{medline-entry | |||
|title=N-Acetyl Cysteine Attenuates the Sarcopenia and Muscle Apoptosis Induced by Chronic Liver Disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31530262 | |||
|mesh-terms=* Acetylcysteine | |||
* Aging | |||
* Animals | |||
* Apoptosis | |||
* Disease Models, Animal | |||
* End Stage Liver Disease | |||
* Humans | |||
* Mice | |||
* Muscle Fibers, Skeletal | |||
* Muscular Atrophy | |||
* Oxidative Stress | |||
* Pyridines | |||
* Sarcopenia | |||
|keywords=* Sarcopenia | |||
* UPP oxidative stress | |||
* apoptosis | |||
* chronic liver disease | |||
* hepatotoxin. | |||
|full-text-url=https://sci-hub.do/10.2174/1566524019666190917124636 | |||
}} | |||
==DDO== | |||
{{medline-entry | |||
|title=New insights on the influence of free d-aspartate metabolism in the mammalian brain during prenatal and postnatal life. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32561430 | |||
|keywords=* Brain aging | |||
* Cell death | |||
* L-Glutamate | |||
* NMDA receptors | |||
* d-Aspartate | |||
* d-Aspartate oxidase | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbapap.2020.140471 | |||
}} | |||
==DDT== | |||
{{medline-entry | |||
|title=Prognostic Value of a Test of Central Auditory Function in Conversion from Mild Cognitive Impairment to Dementia. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32388503 | |||
|keywords=* Aging | |||
* Alzheimer’s disease | |||
* Auditory processing | |||
* Cognition | |||
* Dichotic Digits Test | |||
|full-text-url=https://sci-hub.do/10.1159/000506621 | |||
}} | |||
{{medline-entry | |||
|title=Uptake kinetics of four hydrophobic organic pollutants in the earthworm Eisenia andrei in aged laboratory-contaminated natural soils. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32061977 | |||
|mesh-terms=* Animals | |||
* DDT | |||
* Hexachlorocyclohexane | |||
* Hydrophobic and Hydrophilic Interactions | |||
* Kinetics | |||
* Oligochaeta | |||
* Polychlorinated Biphenyls | |||
* Pyrenes | |||
* Soil Pollutants | |||
|keywords=* Aging | |||
* BAFs | |||
* Bioaccumulation | |||
* HOCs | |||
* Laboratory-contaminated soils | |||
|full-text-url=https://sci-hub.do/10.1016/j.ecoenv.2020.110317 | |||
}} | |||
{{medline-entry | |||
|title=Adult exposure to insecticides causes persistent behavioral and neurochemical alterations in zebrafish. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31911208 | |||
|keywords=* Aging | |||
* Anxiety-related behavior | |||
* DDT | |||
* Neurobehavioral toxicology | |||
* Zebrafish | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7061078 | |||
}} | |||
{{medline-entry | |||
|title=Second generation effects of larval metal pollutant exposure on reproduction, longevity and insecticide tolerance in the major malaria vector Anopheles arabiensis (Diptera: Culicidae). | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31910892 | |||
|mesh-terms=* Animals | |||
* Anopheles | |||
* Drug Resistance | |||
* Female | |||
* Fertility | |||
* Insecticides | |||
* Larva | |||
* Male | |||
* Metals | |||
* Reproduction | |||
* Water Pollutants | |||
|keywords=* Anopheles arabiensis | |||
* Insecticide resistance | |||
* Longevity | |||
* Transgenerational effects | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947826 | |||
}} | |||
{{medline-entry | |||
|title=Protective effect of Pedro-Ximénez must against p,p'-DDE-induced liver damages in aged Mus spretus mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31765701 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Antioxidants | |||
* Chemical and Drug Induced Liver Injury | |||
* Dichlorodiphenyl Dichloroethylene | |||
* Down-Regulation | |||
* Liver | |||
* Male | |||
* Mice | |||
* Oxidative Stress | |||
* Pesticides | |||
* Plant Extracts | |||
* Polyphenols | |||
* Transcriptome | |||
* Up-Regulation | |||
* Vitis | |||
|keywords=* Aging | |||
* Hepatoprotection | |||
* Mus spretus | |||
* Organochlorine | |||
* Oxidative damage | |||
* Pedro-ximénez grape must | |||
* Transcriptional analysis | |||
* p,p'-DDE | |||
|full-text-url=https://sci-hub.do/10.1016/j.fct.2019.110984 | |||
}} | |||
{{medline-entry | |||
|title=Low-dose endosulfan inhibits proliferation and induces senescence and pro-inflammatory cytokine production in human lymphocytes, preferentially impacting cytotoxic cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31589084 | |||
|mesh-terms=* Adult | |||
* B-Lymphocytes | |||
* Cell Proliferation | |||
* Cells, Cultured | |||
* Cellular Senescence | |||
* Cytokines | |||
* Dose-Response Relationship, Drug | |||
* Endosulfan | |||
* Female | |||
* Healthy Volunteers | |||
* Humans | |||
* Inflammation Mediators | |||
* Insecticides | |||
* Killer Cells, Natural | |||
* Male | |||
* Primary Cell Culture | |||
* T-Lymphocytes, Cytotoxic | |||
* Young Adult | |||
|keywords=* Endosulfan | |||
* Immunosenescence | |||
* NK cells | |||
* PBMC | |||
* cytotoxic cells | |||
* interferon | |||
* organochlorine pesticide | |||
* senescence | |||
|full-text-url=https://sci-hub.do/10.1080/1547691X.2019.1668513 | |||
}} | |||
==DKC1== | |||
{{medline-entry | |||
|title=Successful liver transplantation in short telomere syndromes without bone marrow failure due to [[DKC1]] mutation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32166868 | |||
|keywords=* DKC1 | |||
* cell death: senescence | |||
* cirrhosis | |||
* hepatopulmonary syndrome | |||
* liver transplantation | |||
* short telomere syndromes | |||
|full-text-url=https://sci-hub.do/10.1111/petr.13695 | |||
}} | |||
==DLD== | |||
{{medline-entry | |||
|title=A preliminary study of cerebral blood flow, aging and dementia in people with Down syndrome. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32996650 | |||
|keywords=* Alzheimer's disease | |||
* Down syndrome | |||
* aging | |||
* cerebral blood flow | |||
* neuroimaging | |||
|full-text-url=https://sci-hub.do/10.1111/jir.12784 | |||
}} | |||
==DLGAP2== | |||
{{medline-entry | |||
|title=Cross-Species Analyses Identify Dlgap2 as a Regulator of Age-Related Cognitive Decline and Alzheimer's Dementia. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32877673 | |||
|keywords=* Alzheimer’s | |||
* Diversity Outbred | |||
* Dlgap2 | |||
* GWAS | |||
* aging | |||
* cognition | |||
* genetic diversity | |||
* resilience | |||
* spines | |||
* susceptibility | |||
* translational | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7502175 | |||
}} | |||
==DLX5== | |||
{{medline-entry | |||
|title=Inhibition of microRNA-27b-3p relieves osteoarthritis pain via regulation of KDM4B-dependent [[DLX5]]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32856377 | |||
|keywords=* adipogenic differentiation | |||
* cell senescence | |||
* distal-less homeobox 5 | |||
* lysine demethylase 4B | |||
* mesenchymal stem cells | |||
* microRNA-27b-3p | |||
* osteoarthritis pain | |||
* osteogenic differentiation | |||
|full-text-url=https://sci-hub.do/10.1002/biof.1670 | |||
}} | |||
==DMD== | |||
{{medline-entry | |||
|title=Aldehyde dehydrogenases contribute to skeletal muscle homeostasis in healthy, aging, and Duchenne muscular dystrophy patients. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32157826 | |||
|keywords=* Aging | |||
* Aldehyde dehydrogenase | |||
* Dog model | |||
* Duchenne muscular dystrophy | |||
* Human | |||
* Myogenic | |||
* Non-human primate | |||
* Skeletal muscle | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7432589 | |||
}} | |||
{{medline-entry | |||
|title=Life expectancy at birth in Duchenne muscular dystrophy: a systematic review and meta-analysis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32107739 | |||
|mesh-terms=* Female | |||
* Humans | |||
* Life Expectancy | |||
* Male | |||
* Muscular Dystrophy, Duchenne | |||
* Parturition | |||
* Pregnancy | |||
* Prognosis | |||
* Quality of Life | |||
* Respiration, Artificial | |||
* Survival | |||
|keywords=* Mechanical ventilation | |||
* Mortality | |||
* Prognosis | |||
* Survival | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7387367 | |||
}} | |||
{{medline-entry | |||
|title=Renal dysfunction can occur in advanced-stage Duchenne muscular dystrophy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31725904 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Aging | |||
* Child | |||
* Child, Preschool | |||
* Cystatin C | |||
* Disease Progression | |||
* Female | |||
* Heart Diseases | |||
* Heart Function Tests | |||
* Humans | |||
* Kidney Diseases | |||
* Kidney Function Tests | |||
* Male | |||
* Muscular Dystrophy, Duchenne | |||
* Risk Factors | |||
* Young Adult | |||
|keywords=* Duchenne muscular dystrophy | |||
* advanced stage | |||
* cystatin C | |||
* ejection fraction | |||
* fractional shortening | |||
* renal dysfunction | |||
|full-text-url=https://sci-hub.do/10.1002/mus.26757 | |||
}} | |||
==DNAJB9== | |||
{{medline-entry | |||
|title=[[DNAJB9]] Inhibits p53-Dependent Oncogene-Induced Senescence and Induces Cell Transformation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32264658 | |||
|keywords=* DNAJB9 | |||
* RAS | |||
* p53 | |||
* senescence | |||
* transformation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191047 | |||
}} | |||
==DNMT1== | |||
{{medline-entry | |||
|title=DNA Methyltransferase 1 ([[DNMT1]]) Function Is Implicated in the Age-Related Loss of Cortical Interneurons. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32793592 | |||
|keywords=* DNA methylation | |||
* GABA | |||
* aging | |||
* cerebral cortex | |||
* inhibitory interneurons | |||
* proteostasis | |||
* synapse | |||
* transcriptional control | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7387673 | |||
}} | |||
==DNMT3A== | |||
{{medline-entry | |||
|title=Epigenetic regulation of miR-29a/miR-30c/[[DNMT3A]] axis controls SOD2 and mitochondrial oxidative stress in human mesenchymal stem cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32961441 | |||
|keywords=* Cellular senescence | |||
* DNMT3A | |||
* Human mesenchymal stem cells | |||
* Mitochondrial oxidative stress | |||
* SOD2 | |||
* microRNAs | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7509080 | |||
}} | |||
{{medline-entry | |||
|title=Collagens and DNA methyltransferases in mare endometrosis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31512314 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Collagen | |||
* DNA (Cytosine-5-)-Methyltransferases | |||
* DNA Methylation | |||
* Endometritis | |||
* Endometrium | |||
* Female | |||
* Fibrosis | |||
* Horse Diseases | |||
* Horses | |||
* RNA, Messenger | |||
|keywords=* DNA methylation | |||
* collagen | |||
* endometrium | |||
* epigenetic | |||
* fibrosis | |||
* mare | |||
|full-text-url=https://sci-hub.do/10.1111/rda.13515 | |||
}} | |||
{{medline-entry | |||
|title=Age-related clonal haemopoiesis is associated with increased epigenetic age. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31430471 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Epigenesis, Genetic | |||
* Female | |||
* Hematopoiesis | |||
* Humans | |||
* Longitudinal Studies | |||
* Male | |||
* Risk Factors | |||
* Scotland | |||
|full-text-url=https://sci-hub.do/10.1016/j.cub.2019.07.011 | |||
}} | |||
==DNMT3L== | |||
{{medline-entry | |||
|title=Transient [[DNMT3L]] Expression Reinforces Chromatin Surveillance to Halt Senescence Progression in Mouse Embryonic Fibroblast. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32195249 | |||
|keywords=* DNA methyltransferase 3-like (DNMT3L) | |||
* chromatin surveillance | |||
* epigenetics | |||
* polycomb repressive complex 2 (PRC2) | |||
* senescence | |||
* transposable element (TE) | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064442 | |||
}} | |||
==DOCK11== | |||
{{medline-entry | |||
|title=[Immunosenescence: The Forefront of Infection and Trophic Control]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32115558 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* B-Lymphocytes | |||
* Cytokinesis | |||
* Gene Expression | |||
* Guanine Nucleotide Exchange Factors | |||
* Humans | |||
* Immunoglobulin M | |||
* Immunosenescence | |||
* Mice | |||
* Nutritional Status | |||
* Streptococcus pneumoniae | |||
|keywords=* B-1a B cell | |||
* dedicator of cytokinesis 11 | |||
* immunosenescence | |||
|full-text-url=https://sci-hub.do/10.1248/yakushi.19-00193-3 | |||
}} | |||
==DPP4== | |||
{{medline-entry | |||
|title=Age-Dependent Assessment of Genes Involved in Cellular Senescence, Telomere, and Mitochondrial Pathways in Human Lung Tissue of Smokers, COPD, and IPF: Associations With SARS-CoV-2 COVID-19 ACE2-TMPRSS2-Furin-[[DPP4]] Axis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33013423 | |||
|keywords=* DNA damage | |||
* aging | |||
* cellular senescence | |||
* chronic obstructive pulmonary diseases | |||
* idiopathic pulmonary fibrosis | |||
* mitochondria | |||
* smokers | |||
* telomere | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7510459 | |||
}} | |||
{{medline-entry | |||
|title=Dipeptidyl peptidase-4 inhibition improves endothelial senescence by activating AMPK/SIRT1/Nrf2 signaling pathway. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32251672 | |||
|keywords=* Aging | |||
* Dipeptidyl peptidase-4 | |||
* Endothelium | |||
* Oxidative stress | |||
* Vascular | |||
|full-text-url=https://sci-hub.do/10.1016/j.bcp.2020.113951 | |||
}} | |||
{{medline-entry | |||
|title=Molecular crosstalk between Y5 receptor and neuropeptide Y drives liver cancer. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31999643 | |||
|keywords=* Aging | |||
* Cancer | |||
* Hepatology | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190991 | |||
}} | |||
==DPP6== | |||
{{medline-entry | |||
|title=A novel structure associated with aging is augmented in the [[DPP6]]-KO mouse brain. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33225987 | |||
|keywords=* Aging dementia | |||
* Alzheimer’s disease | |||
* DPP6 | |||
* Presynaptic terminals | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7682109 | |||
}} | |||
==DPYSL2== | |||
{{medline-entry | |||
|title=Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31733664 | |||
|mesh-terms=* Alcohol Drinking | |||
* Alzheimer Disease | |||
* Amyloid beta-Protein Precursor | |||
* Animals | |||
* Behavior, Animal | |||
* Brain | |||
* Disease Models, Animal | |||
* Mice, Transgenic | |||
* tau Proteins | |||
|keywords=* Aging | |||
* Amyloid beta | |||
* Ethanol | |||
* GSK | |||
* Immunohistochemistry | |||
* Morris Water Maze | |||
* Prepulse inhibition | |||
* Self-administration | |||
* Tau pathology | |||
* Transgenic mouse model | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939615 | |||
}} | |||
==DRD1== | |||
{{medline-entry | |||
|title=Impact of dopamine-related genetic variants on physical activity in old age - a cohort study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32448293 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Cohort Studies | |||
* Exercise | |||
* Humans | |||
* Receptors, Dopamine | |||
* Sedentary Behavior | |||
* Sweden | |||
|keywords=* Accelerometery | |||
* Aging | |||
* Dopamine | |||
* Genes | |||
* Physical activity | |||
* Sedentary behaviour | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245799 | |||
}} | |||
==DRD2== | |||
{{medline-entry | |||
|title=Cortical thickness mediates the relationship between [[DRD2]] C957T polymorphism and executive function across the adult lifespan. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33179159 | |||
|keywords=* Aging | |||
* Cortical thickness | |||
* DRD2 | |||
* Dopamine | |||
* Executive function | |||
|full-text-url=https://sci-hub.do/10.1007/s00429-020-02169-5 | |||
}} | |||
{{medline-entry | |||
|title=The relationship of age and [[DRD2]] polymorphisms to frontostriatal brain activity and working memory performance. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31629117 | |||
|mesh-terms=* Aging | |||
* Brain | |||
* Humans | |||
* Memory, Short-Term | |||
* Polymorphism, Genetic | |||
* Receptors, Dopamine D2 | |||
|keywords=* Aging | |||
* C957T | |||
* DRD2 | |||
* Dopamine | |||
* Working memory | |||
* fMRI | |||
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2019.08.022 | |||
}} | |||
==DSPP== | |||
{{medline-entry | |||
|title=Effects of [i]p[/i]-Cresol on Senescence, Survival, Inflammation, and Odontoblast Differentiation in Canine Dental Pulp Stem Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32967298 | |||
|keywords=* aged teeth | |||
* apoptosis | |||
* dental pulp stem cells | |||
* differentiation | |||
* pulp regeneration | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555360 | |||
}} | |||
==DST== | |||
{{medline-entry | |||
|title=Ancestral germen/soma distinction in microbes: Expanding the disposable soma theory of aging to all unicellular lineages. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32268207 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Biological Evolution | |||
* DNA Replication | |||
* Humans | |||
* Phylogeny | |||
|keywords=* Aging | |||
* Asymmetric cell division | |||
* DNA replication | |||
* Disposable Soma Theory | |||
* Epigenetics | |||
* Evolution | |||
* Germen/Soma | |||
* Prokaryotes | |||
* Protists | |||
* Rejuvenation | |||
* Unicellular | |||
|full-text-url=https://sci-hub.do/10.1016/j.arr.2020.101064 | |||
}} | |||
==DUSP1== | |||
{{medline-entry | |||
|title=miR-1468-3p Promotes Aging-Related Cardiac Fibrosis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32348937 | |||
|keywords=* aging | |||
* cardiac fibrosis | |||
* dual-specificity phosphatases | |||
* extracellular matrix | |||
* miR-1468-3p | |||
* microRNA | |||
* p38 | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191129 | |||
}} | |||
==DUSP8== | |||
{{medline-entry | |||
|title=MiR-21-5p/dual-specificity phosphatase 8 signalling mediates the anti-inflammatory effect of haem oxygenase-1 in aged intracerebral haemorrhage rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31400088 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Antagomirs | |||
* Anti-Inflammatory Agents | |||
* Cells, Cultured | |||
* Cerebral Hemorrhage | |||
* Dual-Specificity Phosphatases | |||
* HEK293 Cells | |||
* Heme Oxygenase-1 | |||
* Hemin | |||
* Humans | |||
* Male | |||
* MicroRNAs | |||
* Rats | |||
* Rats, Sprague-Dawley | |||
* Signal Transduction | |||
|keywords=* aging | |||
* dual-specificity phosphatase 8 | |||
* haem oxygenase-1 | |||
* intracerebral haemorrhage | |||
* microRNA | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826124 | |||
}} | |||
==DUT== | |||
{{medline-entry | |||
|title=Simultaneous liquefaction, saccharification, and fermentation of L-lactic acid using aging paddy rice with hull by an isolated thermotolerant Enterococcus faecalis [[DUT]]1805. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32388689 | |||
|keywords=* Aging paddy rice with hull (APRH) | |||
* Corn steep liquor powder (CSLP) | |||
* High-thermotolerance | |||
* Lactic acid | |||
* Saccharification and fermentation (SLSF) | |||
* Simultaneous liquification | |||
|full-text-url=https://sci-hub.do/10.1007/s00449-020-02364-y | |||
}} | |||
==DYRK1A== | |||
{{medline-entry | |||
|title=Altered age-linked regulation of plasma [[DYRK1A]] in elderly cognitive complainers (INSIGHT-preAD study) with high brain amyloid load. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32642550 | |||
|keywords=* Alzheimer's disease | |||
* aging | |||
* blood marker | |||
* immunometric test | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7331462 | |||
}} | |||
==E2F1== | |||
{{medline-entry | |||
|title=Regulation of [[E2F1]] activity via PKA-mediated phosphorylations. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33110360 | |||
|keywords=* E2F1 | |||
* PKA | |||
* cell cycle | |||
* forskolin | |||
* proliferation | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7585165 | |||
}} | |||
{{medline-entry | |||
|title=Astragaloside IV ameliorates radiation-induced senescence via antioxidative mechanism. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32412100 | |||
|keywords=* cell signal pathway | |||
* nerve cells | |||
* radiation | |||
* senescence | |||
|full-text-url=https://sci-hub.do/10.1111/jphp.13284 | |||
}} | |||
==ECD== | |||
{{medline-entry | |||
|title=Outcome of Descemet Membrane Endothelial Keratoplasty Using Corneas from Donors ≥80 Years of Age. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31837315 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Cell Count | |||
* Cornea | |||
* Descemet Stripping Endothelial Keratoplasty | |||
* Donor Selection | |||
* Endothelium, Corneal | |||
* Female | |||
* Fuchs' Endothelial Dystrophy | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Retrospective Studies | |||
* Tissue Donors | |||
* Treatment Outcome | |||
* Visual Acuity | |||
* Young Adult | |||
|full-text-url=https://sci-hub.do/10.1016/j.ajo.2019.12.001 | |||
}} | |||
==EDA== | |||
{{medline-entry | |||
|title=Interplay between aging, lung inflammation/remodeling, and fibronectin [[EDA]] in lung cancer progression. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33222614 | |||
|keywords=* Lung cancer | |||
* aging | |||
* fibronectin EDA | |||
* fibrosis | |||
* inflammation | |||
* lewis lung carcinoma | |||
* metastasis | |||
|full-text-url=https://sci-hub.do/10.1080/15384047.2020.1831372 | |||
}} | |||
{{medline-entry | |||
|title=Arousal Detection in Elderly People from Electrodermal Activity Using Musical Stimuli. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32854302 | |||
|keywords=* aging adults | |||
* arousal | |||
* electrodermal activity | |||
* musical genres | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506973 | |||
}} | |||
{{medline-entry | |||
|title=The structure of agricultural microplastics (PT, PU and UF) and their sorption capacities for PAHs and PHE derivates under various salinity and oxidation treatments. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31761592 | |||
|mesh-terms=* Adsorption | |||
* Agriculture | |||
* Ecosystem | |||
* Environmental Pollutants | |||
* Hydrogen Peroxide | |||
* Microplastics | |||
* Models, Chemical | |||
* Naphthalenes | |||
* Organic Chemicals | |||
* Phenanthrenes | |||
* Plastics | |||
* Polycyclic Aromatic Hydrocarbons | |||
* Polyethylene | |||
* Polypropylenes | |||
* Polyurethanes | |||
* Polyuria | |||
* Pyrenes | |||
* Salinity | |||
|keywords=* Aging | |||
* Microplastics | |||
* Polycyclic aromatic hydrocarbons | |||
* Salinity | |||
* Sorption | |||
|full-text-url=https://sci-hub.do/10.1016/j.envpol.2019.113525 | |||
}} | |||
==EDARADD== | |||
{{medline-entry | |||
|title=Age prediction in living: Forensic epigenetic age estimation based on blood samples. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32721866 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Aged | |||
* Aging | |||
* Child | |||
* Child, Preschool | |||
* CpG Islands | |||
* Cyclic Nucleotide Phosphodiesterases, Type 4 | |||
* DNA Methylation | |||
* Edar-Associated Death Domain Protein | |||
* Fatty Acid Elongases | |||
* Female | |||
* Forensic Genetics | |||
* Humans | |||
* Infant | |||
* LIM-Homeodomain Proteins | |||
* Male | |||
* Middle Aged | |||
* Muscle Proteins | |||
* Polymerase Chain Reaction | |||
* Transcription Factors | |||
* Young Adult | |||
|keywords=* Age the living | |||
* CpGs | |||
* DNA methylation age | |||
* Forensic epigenetics | |||
* Forensic sciences | |||
|full-text-url=https://sci-hub.do/10.1016/j.legalmed.2020.101763 | |||
}} | |||
==EDF1== | |||
{{medline-entry | |||
|title=Silencing of FOREVER YOUNG FLOWER Like Genes from Phalaenopsis Orchids Promotes Flower Senescence and Abscission. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33237274 | |||
|keywords=* | |||
FOREVER YOUNG FLOWER | |||
* | |||
Phalaenopsis orchids | |||
* Abscission | |||
* Ethylene responses | |||
* MADS-box gene | |||
* Senescence | |||
|full-text-url=https://sci-hub.do/10.1093/pcp/pcaa145 | |||
}} | |||
==EFS== | |||
{{medline-entry | |||
|title=The aging bladder phenotype is not the direct consequence of bladder aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31452236 | |||
|mesh-terms=* Adrenergic beta-Agonists | |||
* Aging | |||
* Animals | |||
* Carbachol | |||
* Cholinergic Agonists | |||
* Electric Stimulation | |||
* Female | |||
* Isoproterenol | |||
* Male | |||
* Mice | |||
* Mucous Membrane | |||
* Muscle Contraction | |||
* Myography | |||
* Phenotype | |||
* Receptor, Muscarinic M3 | |||
* Receptors, Adrenergic, beta-2 | |||
* Urinary Bladder | |||
* Urination | |||
|keywords=* aging | |||
* control physiology | |||
* resilience | |||
* urinary dysfunction | |||
|full-text-url=https://sci-hub.do/10.1002/nau.24149 | |||
}} | |||
==EGF== | |||
{{medline-entry | |||
|title=Acute, exercise-induced alterations in cytokines and chemokines in the blood distinguish physically active and sedentary aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33289019 | |||
|keywords=* growth factors | |||
* human aging | |||
* inflammation | |||
* physical activity | |||
|full-text-url=https://sci-hub.do/10.1093/gerona/glaa310 | |||
}} | |||
{{medline-entry | |||
|title=Proinflammation, profibrosis, and arterial aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33103036 | |||
|keywords=* aging | |||
* artery | |||
* collagen | |||
* profibrosis | |||
* proinflammation | |||
* stiffening | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574637 | |||
}} | |||
{{medline-entry | |||
|title=Hinokitiol induces cell death and inhibits epidermal growth factor-induced cell migration and signaling pathways in human cervical adenocarcinoma. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32917321 | |||
|keywords=* Autophagy | |||
* Epidermal growth factor | |||
* Hinokitiol | |||
* Senescence | |||
* c-Jun N-Terminal kinase | |||
|full-text-url=https://sci-hub.do/10.1016/j.tjog.2020.07.013 | |||
}} | |||
{{medline-entry | |||
|title=Activation of epidermal growth factor receptor signaling mediates cellular senescence induced by certain pro-inflammatory cytokines. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32323422 | |||
|keywords=* EGFR | |||
* HUVEC | |||
* IMR90 | |||
* Ras signaling | |||
* pro-inflammatory cytokine | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7253070 | |||
}} | |||
{{medline-entry | |||
|title=Insulin Signaling in Intestinal Stem and Progenitor Cells as an Important Determinant of Physiological and Metabolic Traits in [i]Drosophila[/i]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32225024 | |||
|keywords=* ISC | |||
* fruit fly | |||
* insulin signaling pathway | |||
* lifespan | |||
* metabolism | |||
* midgut | |||
* progenitor cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7226132 | |||
}} | |||
{{medline-entry | |||
|title=Different cellular properties and loss of nuclear signalling of porcine epidermal growth factor receptor with aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32001323 | |||
|mesh-terms=* Animals | |||
* ErbB Receptors | |||
* Signal Transduction | |||
* Swine | |||
|keywords=* Aging | |||
* Cell behaviour | |||
* EGF | |||
* EGFR | |||
* Signalling pathway | |||
|full-text-url=https://sci-hub.do/10.1016/j.ygcen.2020.113415 | |||
}} | |||
==EGFR== | |||
{{medline-entry | |||
|title=Type I Collagen Aging Increases Expression and Activation of [[EGFR]] and Induces Resistance to Erlotinib in Lung Carcinoma in 3D Matrix Model. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33014812 | |||
|keywords=* EGFR | |||
* Erlotinib | |||
* Type I collagen | |||
* aging | |||
* resistance | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511549 | |||
}} | |||
{{medline-entry | |||
|title=Comparative effectiveness and cost-effectiveness of three first-line [[EGFR]]-tyrosine kinase inhibitors: Analysis of real-world data in a tertiary hospital in Taiwan. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32267879 | |||
|mesh-terms=* Afatinib | |||
* Aged | |||
* Carcinoma, Non-Small-Cell Lung | |||
* Cost-Benefit Analysis | |||
* Erlotinib Hydrochloride | |||
* Female | |||
* Gefitinib | |||
* Humans | |||
* Life Expectancy | |||
* Lung Neoplasms | |||
* Male | |||
* Propensity Score | |||
* Protein Kinase Inhibitors | |||
* Quality of Life | |||
* Survival Rate | |||
* Taiwan | |||
* Tertiary Care Centers | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7141611 | |||
}} | |||
{{medline-entry | |||
|title=An Optogenetic Method to Study Signal Transduction in Intestinal Stem Cell Homeostasis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32201167 | |||
|mesh-terms=* Animals | |||
* Cell Communication | |||
* Cell Proliferation | |||
* Cells, Cultured | |||
* Drosophila Proteins | |||
* Drosophila melanogaster | |||
* Gene Expression Regulation | |||
* Gene Regulatory Networks | |||
* Homeostasis | |||
* Intestinal Mucosa | |||
* Light | |||
* Longevity | |||
* Optogenetics | |||
* Signal Transduction | |||
* Stem Cells | |||
|keywords=* Drosophila | |||
* EGFR | |||
* Toll | |||
* optogenetics | |||
* stem cells | |||
|full-text-url=https://sci-hub.do/10.1016/j.jmb.2020.03.019 | |||
}} | |||
{{medline-entry | |||
|title=Treatment-Induced Tumor Dormancy through YAP-Mediated Transcriptional Reprogramming of the Apoptotic Pathway. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31935369 | |||
|mesh-terms=* Adaptor Proteins, Signal Transducing | |||
* Animals | |||
* Apoptosis | |||
* Cell Cycle Proteins | |||
* Cell Line, Tumor | |||
* Cell Proliferation | |||
* Cell Survival | |||
* Cellular Senescence | |||
* Drug Resistance, Neoplasm | |||
* ErbB Receptors | |||
* Female | |||
* Gene Deletion | |||
* Gene Expression Regulation, Neoplastic | |||
* Humans | |||
* Lung Neoplasms | |||
* MAP Kinase Kinase 1 | |||
* Male | |||
* Mice | |||
* Mice, Knockout | |||
* Mutation | |||
* Signal Transduction | |||
* Transcription Factors | |||
* Transcription, Genetic | |||
|keywords=* YAP | |||
* dormancy | |||
* drug resistance | |||
* drug tolerance | |||
* epidermal growth factor receptor | |||
* lung cancer | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146079 | |||
}} | |||
{{medline-entry | |||
|title=Association between [[EGFR]] mutation and ageing, history of pneumonia and gastroesophageal reflux disease among patients with advanced lung cancer. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31634646 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Case-Control Studies | |||
* ErbB Receptors | |||
* Female | |||
* Gastroesophageal Reflux | |||
* Humans | |||
* Lung Neoplasms | |||
* Male | |||
* Middle Aged | |||
* Mutation | |||
* Pneumonia | |||
* Republic of Korea | |||
* Retrospective Studies | |||
* Risk Factors | |||
* Young Adult | |||
|keywords=* Ageing | |||
* EGFR mutation | |||
* GERD | |||
* Lung cancer | |||
* Pneumonia | |||
* Risk factors | |||
|full-text-url=https://sci-hub.do/10.1016/j.ejca.2019.09.010 | |||
}} | |||
==EHF== | |||
{{medline-entry | |||
|title=Extended high frequency hearing and speech perception implications in adults and children. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32111404 | |||
|keywords=* Aging | |||
* Development | |||
* Extended high frequency audiometry | |||
* Otitis media | |||
* Ototoxicity | |||
* Speech in noise | |||
* Speech perception | |||
* Tinnitus | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431381 | |||
}} | |||
==EIF4E== | |||
{{medline-entry | |||
|title=Transcriptomic evidence that insulin signalling pathway regulates the ageing of subterranean termite castes. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32424344 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Insulin | |||
* Isoptera | |||
* Molecular Sequence Annotation | |||
* Signal Transduction | |||
* Transcriptome | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235038 | |||
}} | |||
==ELF3== | |||
{{medline-entry | |||
|title=High Ambient Temperature Accelerates Leaf Senescence via PHYTOCHROME-INTERACTING FACTOR 4 and 5 in [i]Arabidopsis[/i]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32732458 | |||
|keywords=* Arabidopsis | |||
* PIF4 | |||
* phytochrome | |||
* senescence | |||
* temperature | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7398796 | |||
}} | |||
==ELOVL2== | |||
{{medline-entry | |||
|title=[[ELOVL2]]: Not just a biomarker of aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33043173 | |||
|keywords=* Aging | |||
* Macular degeneration | |||
* Membrane structure | |||
* Polyunsaturated fatty acids | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7544151 | |||
}} | |||
{{medline-entry | |||
|title=The lipid elongation enzyme [[ELOVL2]] is a molecular regulator of aging in the retina. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31943697 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Cell Line | |||
* DNA Methylation | |||
* Decitabine | |||
* Down-Regulation | |||
* Fatty Acid Elongases | |||
* Fatty Acids, Unsaturated | |||
* Female | |||
* Humans | |||
* Macular Degeneration | |||
* Male | |||
* Mice | |||
* Mice, Transgenic | |||
* Point Mutation | |||
* Promoter Regions, Genetic | |||
* Retina | |||
* Retinal Pigment Epithelium | |||
|keywords=* DNA methylation | |||
* ELOVL2 | |||
* PUFA | |||
* age-related macular degeneration | |||
* aging | |||
* retina | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996962 | |||
}} | |||
==EN1== | |||
{{medline-entry | |||
|title=Electrochemically detecting DNA methylation in the [[EN1]] gene promoter: implications for understanding ageing and disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33135722 | |||
|keywords=* Aging | |||
* biosensor | |||
* electrochemistry | |||
* methylation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7670582 | |||
}} | |||
==ENO1== | |||
{{medline-entry | |||
|title=Reduced expression of enolase-1 correlates with high intracellular glucose levels and increased senescence in cisplatin-resistant ovarian cancer cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32355541 | |||
|keywords=* ENO1 | |||
* Enolase | |||
* beta-Gal | |||
* cisplatin resistance | |||
* glucose | |||
* ovarian cancer | |||
* p21 | |||
* p53 | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191177 | |||
}} | |||
==ENTPD7== | |||
{{medline-entry | |||
|title=Inhibition of lung cancer cells and Ras/Raf/MEK/ERK signal transduction by ectonucleoside triphosphate phosphohydrolase-7 ([[ENTPD7]]). | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31443651 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Animals | |||
* Apoptosis | |||
* Apyrase | |||
* Biomarkers | |||
* Cell Line, Tumor | |||
* Cell Proliferation | |||
* Cells, Cultured | |||
* Female | |||
* Gene Expression Regulation, Neoplastic | |||
* Gene Silencing | |||
* Humans | |||
* Lung Neoplasms | |||
* MAP Kinase Signaling System | |||
* Male | |||
* Mice | |||
* Mice, Inbred BALB C | |||
* Mice, Nude | |||
* Middle Aged | |||
* Mitogen-Activated Protein Kinases | |||
* Plasmids | |||
* Signal Transduction | |||
* Survival Analysis | |||
* raf Kinases | |||
* ras Proteins | |||
|keywords=* Ectonucleoside triphosphate phosphohydrolase-7 | |||
* Lung cancer | |||
* Proliferation | |||
* Senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6708200 | |||
}} | |||
==EPO== | |||
{{medline-entry | |||
|title=Regulation of muscle and metabolic physiology by hypothalamic erythropoietin independently of its peripheral action. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32029230 | |||
|keywords=* Aging | |||
* Brain | |||
* Erythropoietin | |||
* Glucose tolerance | |||
* Hypothalamus | |||
* Metabolism | |||
* Muscle | |||
* Obesity | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938905 | |||
}} | |||
{{medline-entry | |||
|title=Red Blood Cell Lifespan Shortening in Patients with Early-Stage Chronic Kidney Disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31550724 | |||
|mesh-terms=* Anemia | |||
* Erythrocytes | |||
* Female | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Renal Insufficiency, Chronic | |||
|keywords=* Chronic kidney disease | |||
* Erythropoietin | |||
* Levitt’s CO breath test | |||
* Red blood cell lifespan | |||
* Renal anemia | |||
|full-text-url=https://sci-hub.do/10.1159/000502525 | |||
}} | |||
==ERCC1== | |||
{{medline-entry | |||
|title=Chronic Sildenafil Treatment Improves Vasomotor Function in a Mouse Model of Accelerated Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32630010 | |||
|keywords=* aging | |||
* cGMP | |||
* guanylate cyclase | |||
* hypertension | |||
* nitric oxide | |||
* phosphodiesterase | |||
* sildenafil | |||
* vascular dysfunction | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7369923 | |||
}} | |||
{{medline-entry | |||
|title=Local endothelial DNA repair deficiency causes aging-resembling endothelial-specific dysfunction. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32202295 | |||
|mesh-terms=* Age Factors | |||
* Aging | |||
* Animals | |||
* Capillary Permeability | |||
* Cellular Senescence | |||
* Cyclin-Dependent Kinase Inhibitor p21 | |||
* DNA Damage | |||
* DNA Repair | |||
* DNA-Binding Proteins | |||
* Endonucleases | |||
* Endothelial Cells | |||
* Endothelium, Vascular | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* Nitric Oxide | |||
* Nitric Oxide Synthase Type III | |||
* Superoxides | |||
* Vascular Stiffness | |||
* Vasodilation | |||
|keywords=* DNA damage | |||
* aging | |||
* endothelial dysfunction | |||
* endothelium-dependent dilation | |||
* nitric oxide | |||
|full-text-url=https://sci-hub.do/10.1042/CS20190124 | |||
}} | |||
{{medline-entry | |||
|title=Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31981461 | |||
|keywords=* DNA repair | |||
* ERCC1-XPF | |||
* aging | |||
* cellular senescence | |||
* endogenous DNA damage | |||
* progeria | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059165 | |||
}} | |||
{{medline-entry | |||
|title=Deficiency in the DNA repair protein [[ERCC1]] triggers a link between senescence and apoptosis in human fibroblasts and mouse skin. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31737985 | |||
|keywords=* DNA damage repair | |||
* aging | |||
* cell death | |||
* senescence-associated secretory phenotype | |||
* tumor necrosis factor α | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059167 | |||
}} | |||
==ERF== | |||
{{medline-entry | |||
|title=Angiotensin-Converting Enzyme Gene D/I Polymorphism in Relation to Endothelial Function and Endothelial-Released Factors in Chinese Women. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33041838 | |||
|keywords=* ACE D/I gene polymorphism | |||
* Chinese women | |||
* aging | |||
* endothelial function | |||
* endothelial-released factors | |||
* menopause | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7526498 | |||
}} | |||
{{medline-entry | |||
|title=Projections of Ambient Temperature- and Air Pollution-Related Mortality Burden Under Combined Climate Change and Population Aging Scenarios: a Review. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32542573 | |||
|keywords=* Air pollution | |||
* Climate change | |||
* Mortality | |||
* Population aging | |||
* Projection | |||
* Temperature | |||
|full-text-url=https://sci-hub.do/10.1007/s40572-020-00281-6 | |||
}} | |||
{{medline-entry | |||
|title=Exome Sequencing Analysis Identifies Rare Variants in [i]ATM[/i] and [i]RPL8[/i] That Are Associated With Shorter Telomere Length. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32425970 | |||
|keywords=* ATM | |||
* RPL8 | |||
* aging | |||
* meta-analysis | |||
* telomere | |||
* whole exome sequencing | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7204400 | |||
}} | |||
==ERG== | |||
{{medline-entry | |||
|title=Effect of age and sex on neurodevelopment and neurodegeneration in the healthy eye: Longitudinal functional and structural study in the Long-Evans rat. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32882213 | |||
|keywords=* Aging | |||
* Electroretinography | |||
* Neurodegeneration | |||
* Neurodevelopment | |||
* Optical coherence tomography | |||
* Retina | |||
* Sex | |||
|full-text-url=https://sci-hub.do/10.1016/j.exer.2020.108208 | |||
}} | |||
{{medline-entry | |||
|title=Mice With a Combined Deficiency of Superoxide Dismutase 1 (Sod1), DJ-1 (Park7), and Parkin (Prkn) Develop Spontaneous Retinal Degeneration With Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31487745 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Biomarkers | |||
* Electroretinography | |||
* Enzyme-Linked Immunosorbent Assay | |||
* Immunohistochemistry | |||
* Malondialdehyde | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* Microscopy, Electron, Transmission | |||
* Mitochondria | |||
* Oxidative Stress | |||
* Protein Deglycase DJ-1 | |||
* Retina | |||
* Retinal Degeneration | |||
* Retinal Pigment Epithelium | |||
* Superoxide Dismutase-1 | |||
* Tomography, Optical Coherence | |||
* Ubiquitin-Protein Ligases | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733419 | |||
}} | |||
==ESPL1== | |||
{{medline-entry | |||
|title=Identification and genomic analysis of pedigrees with exceptional longevity identifies candidate rare variants. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32574725 | |||
|keywords=* Genomics | |||
* Longevity | |||
* Pedigree | |||
* Rare variant sharing | |||
* Utah population database | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7461696 | |||
}} | |||
==ETS1== | |||
{{medline-entry | |||
|title=The transcription factor [[ETS1]] promotes apoptosis resistance of senescent cholangiocytes by epigenetically up-regulating the apoptosis suppressor BCL2L1. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31659122 | |||
|mesh-terms=* ATP Binding Cassette Transporter, Subfamily B | |||
* Animals | |||
* Apoptosis | |||
* Cellular Senescence | |||
* Hepatocytes | |||
* Humans | |||
* Lipopolysaccharides | |||
* Liver | |||
* Mice | |||
* Proto-Oncogene Protein c-ets-1 | |||
* Transcription Factors | |||
* bcl-X Protein | |||
|keywords=* BCL2 like 1 (BCL2L1) | |||
* apoptosis | |||
* cholangiocyte | |||
* chromatin modification | |||
* epigenetics | |||
* gene expression | |||
* primary sclerosing cholangitis (PSC) | |||
* senescence | |||
* transcription factor | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6901313 | |||
}} | |||
==EVL== | |||
{{medline-entry | |||
|title=Health Years in Total: A New Health Objective Function for Cost-Effectiveness Analysis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31952678 | |||
|mesh-terms=* Cost-Benefit Analysis | |||
* Health Care Costs | |||
* Health Status | |||
* Health Status Indicators | |||
* Humans | |||
* Life Expectancy | |||
* Quality of Life | |||
* Quality-Adjusted Life Years | |||
* Time Factors | |||
|keywords=* cost-effectiveness | |||
* equal value of life | |||
* health years in total | |||
* quality-adjusted life-year | |||
* thresholds | |||
|full-text-url=https://sci-hub.do/10.1016/j.jval.2019.10.014 | |||
}} | |||
==EZH2== | |||
{{medline-entry | |||
|title=Linking gene expression and phenotypic changes in the developmental and evolutionary origins of osteosclerosis in the ribs of bowhead whales (Balaena mysticetus). | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32729176 | |||
|keywords=* Cetacea | |||
* aging | |||
* bone | |||
* hyperostosis | |||
* osteoblasts | |||
* whales | |||
|full-text-url=https://sci-hub.do/10.1002/jez.b.22990 | |||
}} | |||
{{medline-entry | |||
|title=[[EZH2]] is involved in vulnerability to neuroinflammation and depression-like behaviors induced by chronic stress in different aged mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32553389 | |||
|keywords=* Aging | |||
* CUMS | |||
* Cytokines | |||
* Depresion | |||
* EZH2 | |||
* Microglia | |||
|full-text-url=https://sci-hub.do/10.1016/j.jad.2020.03.154 | |||
}} | |||
{{medline-entry | |||
|title=A positive feedback loop between [[EZH2]] and NOX4 regulates nucleus pulposus cell senescence in age-related intervertebral disc degeneration. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32025238 | |||
|keywords=* Epigenetic histone modification | |||
* Intervertebral disc degeneration | |||
* Nucleus pulposus cell senescence | |||
* Wnt/β-catenin signaling pathway | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6995653 | |||
}} | |||
{{medline-entry | |||
|title=Perinatal exposure to bisphenol A impacts in the mammary gland morphology of adult Mongolian gerbils. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31917966 | |||
|mesh-terms=* Actins | |||
* Aging | |||
* Animals | |||
* Benzhydryl Compounds | |||
* Cell Proliferation | |||
* Collagen | |||
* Enhancer of Zeste Homolog 2 Protein | |||
* Female | |||
* Gerbillinae | |||
* Histones | |||
* Mammary Glands, Animal | |||
* Phenols | |||
* Pregnancy | |||
* Prenatal Exposure Delayed Effects | |||
|keywords=* BPA | |||
* EZH2 | |||
* Environment pollutant | |||
* Estrogen | |||
* Morphologic alterations | |||
* Phospho-histone-h3 | |||
|full-text-url=https://sci-hub.do/10.1016/j.yexmp.2020.104374 | |||
}} | |||
==F2== | |||
{{medline-entry | |||
|title=Environmental risk assessment of glufosinate-resistant soybean by pollen-mediated gene flow under field conditions in the region of the genetic origin. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33189381 | |||
|keywords=* Glufosinate resistance | |||
* Relative fitness | |||
* Seed longevity | |||
* Transgene flow | |||
* Weed risk | |||
|full-text-url=https://sci-hub.do/10.1016/j.scitotenv.2020.143073 | |||
}} | |||
{{medline-entry | |||
|title=Gestational arsenite exposure augments hepatic tumors of C3H mice by promoting senescence in F1 and [[F2]] offspring via different pathways. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33010264 | |||
|keywords=* Arsenic | |||
* Liver | |||
* Multigenerational Effect | |||
* SASP | |||
* Senescence | |||
* Tumor | |||
|full-text-url=https://sci-hub.do/10.1016/j.taap.2020.115259 | |||
}} | |||
{{medline-entry | |||
|title=Familial Longevity is Associated with an Attenuated Thyroidal Response to Recombinant Human Thyroid Stimulating Hormone. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32303766 | |||
|keywords=* Thyroid | |||
* longevity | |||
* recombinant human TSH | |||
* responsivity | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7239378 | |||
}} | |||
{{medline-entry | |||
|title=Conclusions from a behavioral aging study on male and female [[F2]] hybrid mice on age-related behavior, buoyancy in water-based tests, and an ethical method to assess lifespan. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31509518 | |||
|mesh-terms=* Adiposity | |||
* Aging | |||
* Animals | |||
* Exploratory Behavior | |||
* Female | |||
* Male | |||
* Memory | |||
* Mice, Inbred BALB C | |||
* Mice, Inbred C57BL | |||
* Swimming | |||
|keywords=* F2 hybrid mice | |||
* aging | |||
* exploratory activity | |||
* sex comparison | |||
* water-based behavioral tests | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6756906 | |||
}} | |||
{{medline-entry | |||
|title=In utero exposure to acetaminophen and ibuprofen leads to intergenerational accelerated reproductive aging in female mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31428698 | |||
|mesh-terms=* Acetaminophen | |||
* Aging | |||
* Animals | |||
* Animals, Newborn | |||
* Cell Proliferation | |||
* Female | |||
* Fertility | |||
* Forkhead Box Protein O3 | |||
* Germ Cells | |||
* Ibuprofen | |||
* Luteolysis | |||
* Mice | |||
* Ovary | |||
* Pregnancy | |||
* Prenatal Exposure Delayed Effects | |||
* Proto-Oncogene Proteins c-akt | |||
* Reproduction | |||
* Signal Transduction | |||
|keywords=* Infertility | |||
* Oogenesis | |||
* Risk factors | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6692356 | |||
}} | |||
==F3== | |||
{{medline-entry | |||
|title=A Comprehensive Analysis of Age and Gender Effects in European Portuguese Oral Vowels. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33293174 | |||
|keywords=* Acoustic | |||
* Aging voice | |||
* European Portuguese | |||
* Oral vowel | |||
|full-text-url=https://sci-hub.do/10.1016/j.jvoice.2020.10.021 | |||
}} | |||
{{medline-entry | |||
|title=Prenatal exposure to an environmentally relevant phthalate mixture accelerates biomarkers of reproductive aging in a multiple and transgenerational manner in female mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33129917 | |||
|keywords=* cyclicity | |||
* hormone | |||
* mixture | |||
* ovary | |||
* phthalates | |||
* reproductive aging | |||
* transgenerational | |||
|full-text-url=https://sci-hub.do/10.1016/j.reprotox.2020.10.009 | |||
}} | |||
{{medline-entry | |||
|title=Combining Frontal Transcranial Direct Current Stimulation With Walking Rehabilitation to Enhance Mobility and Executive Function: A Pilot Clinical Trial. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32808403 | |||
|keywords=* Aging | |||
* cognition | |||
* rehabilitation | |||
* transcranial direct current stimulation | |||
* walking | |||
|full-text-url=https://sci-hub.do/10.1111/ner.13250 | |||
}} | |||
{{medline-entry | |||
|title=Multigenerational exposure to TiO nanoparticles in soil stimulates stress resistance and longevity of survived C. elegans via activating insulin/IGF-like signaling. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32203849 | |||
|mesh-terms=* Animals | |||
* Caenorhabditis elegans | |||
* Caenorhabditis elegans Proteins | |||
* Insulin | |||
* Longevity | |||
* Nanoparticles | |||
* Oxidative Stress | |||
* Soil | |||
* Titanium | |||
|keywords=* Insulin/IGF-like signaling | |||
* Longevity | |||
* Multigenerational toxicity | |||
* Nanomaterial | |||
* Soil nematode | |||
|full-text-url=https://sci-hub.do/10.1016/j.envpol.2020.114376 | |||
}} | |||
{{medline-entry | |||
|title=Co-expression network analysis identified hub genes critical to triglyceride and free fatty acid metabolism as key regulators of age-related vascular dysfunction in mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31514170 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Fatty Acids, Nonesterified | |||
* Gene Expression Profiling | |||
* Gene Expression Regulation | |||
* Gene Regulatory Networks | |||
* Lipid Metabolism | |||
* Mice | |||
* Microarray Analysis | |||
* Signal Transduction | |||
* Triglycerides | |||
* Vascular Diseases | |||
|keywords=* aging | |||
* co-expression network | |||
* hub gene | |||
* module | |||
* mouse | |||
* vascular dysfunction | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6781998 | |||
}} | |||
==F5== | |||
{{medline-entry | |||
|title=Methylation signatures in peripheral blood are associated with marked age acceleration and disease progression in patients with primary sclerosing cholangitis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32039401 | |||
|keywords=* ALP, alkaline phosphatase | |||
* ALT, alanine aminotransferase | |||
* Aging | |||
* BMI, body mass index | |||
* DNAm, DNA methylation | |||
* ELF, enhanced liver fibrosis | |||
* FDR, false discovery rate | |||
* GGT, gamma-glutamyltransferase | |||
* IBD, inflammatory bowel disease | |||
* IL, interleukin | |||
* LOXL2, lysyl oxidase-like-2 | |||
* NASH, non-alcoholic steatohepatitis | |||
* PSC, primary sclerosing cholangitis | |||
* SMA, smooth muscle actin | |||
* UDCA, ursodeoxycholic acid | |||
* biomarker | |||
* inflammatory bowel disease | |||
* primary sclerosing cholangitis | |||
* prognosis | |||
* ursodeoxycholic acid | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7005566 | |||
}} | |||
{{medline-entry | |||
|title=Fermentation of Blackberry with [i]L. plantarum[/i] JBMI [[F5]] Enhance the Protection Effect on UVB-Mediated Photoaging in Human Foreskin Fibroblast and Hairless Mice through Regulation of MAPK/NF-κB Signaling. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31614689 | |||
|mesh-terms=* Animals | |||
* Cell Line | |||
* Cell Survival | |||
* Female | |||
* Fermentation | |||
* Fibroblasts | |||
* Foreskin | |||
* Fruit | |||
* Lactobacillus plantarum | |||
* Male | |||
* Mice | |||
* Mice, Hairless | |||
* Plant Extracts | |||
* Rubus | |||
* Skin Aging | |||
* Ultraviolet Rays | |||
|keywords=* Lactobacillus plantarum | |||
* MMPs | |||
* fermented blackberry | |||
* photoaging | |||
* skin aging | |||
* type I procollagen | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835613 | |||
}} | |||
==F7== | |||
{{medline-entry | |||
|title=The Pattern of Mu Rhythm Modulation During Emotional Destination Memory: Comparison Between Mild Cognitive Impairment Patients and Healthy Controls. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31524160 | |||
|mesh-terms=* Aged | |||
* Aging | |||
* Cognitive Dysfunction | |||
* Electroencephalography | |||
* Emotions | |||
* Female | |||
* Frontal Lobe | |||
* Humans | |||
* Male | |||
* Memory | |||
* Neurophysiological Monitoring | |||
* Neuropsychological Tests | |||
* Task Performance and Analysis | |||
* Temporal Lobe | |||
|keywords=* Emotional destination memory | |||
* Mu suppression | |||
* fronto-temporal | |||
* mild cognitive impairment | |||
* mirror neurons | |||
|full-text-url=https://sci-hub.do/10.3233/JAD-190311 | |||
}} | |||
==FAAH== | |||
{{medline-entry | |||
|title=Endocannabinoid genetic variation enhances vulnerability to THC reward in adolescent female mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32095523 | |||
|mesh-terms=* Aging | |||
* Amidohydrolases | |||
* Animals | |||
* Axons | |||
* Choice Behavior | |||
* Dronabinol | |||
* Endocannabinoids | |||
* Female | |||
* Genetic Variation | |||
* Male | |||
* Mice, Inbred C57BL | |||
* Nerve Net | |||
* Nucleus Accumbens | |||
* Polymorphism, Single Nucleotide | |||
* Receptor, Cannabinoid, CB1 | |||
* Reward | |||
* Tyrosine 3-Monooxygenase | |||
* Ventral Tegmental Area | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7015690 | |||
}} | |||
==FABP3== | |||
{{medline-entry | |||
|title=[[FABP3]]-mediated membrane lipid saturation alters fluidity and induces ER stress in skeletal muscle with aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33168829 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Cell Line | |||
* Endoplasmic Reticulum Stress | |||
* Eukaryotic Initiation Factor-2 | |||
* Fatty Acid Binding Protein 3 | |||
* Female | |||
* Gene Knockdown Techniques | |||
* Lipidomics | |||
* Membrane Fluidity | |||
* Membrane Lipids | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* Muscle, Skeletal | |||
* Myoblasts | |||
* Phospholipids | |||
* Protein-Serine-Threonine Kinases | |||
* Sarcopenia | |||
* Up-Regulation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7653047 | |||
}} | |||
{{medline-entry | |||
|title=Autophagy receptor OPTN (optineurin) regulates mesenchymal stem cell fate and bone-fat balance during aging by clearing [[FABP3]]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33143524 | |||
|keywords=* Adipogenesis | |||
* autophagy | |||
* bone metabolism | |||
* fabp3 | |||
* mesenchymal stem cell | |||
* optineurin | |||
* osteogenesis | |||
* osteoporosis | |||
* senescence | |||
|full-text-url=https://sci-hub.do/10.1080/15548627.2020.1839286 | |||
}} | |||
{{medline-entry | |||
|title=Myokines as biomarkers of frailty and cardiovascular disease risk in females. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32017952 | |||
|keywords=* Aging | |||
* Biomarkers | |||
* Cardiovascular disease | |||
* Females | |||
* Frailty | |||
* Myokines | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2020.110859 | |||
}} | |||
==FADS1== | |||
{{medline-entry | |||
|title=Aging and [[FADS1]] polymorphisms decrease the biosynthetic capacity of long-chain PUFAs: A human trial using [U- C]linoleic acid. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31492428 | |||
|mesh-terms=* Adult | |||
* Age Factors | |||
* Aged | |||
* Aging | |||
* Alleles | |||
* Arachidonic Acid | |||
* Area Under Curve | |||
* Fatty Acid Desaturases | |||
* Fatty Acids, Unsaturated | |||
* Female | |||
* Healthy Volunteers | |||
* Humans | |||
* Linoleic Acid | |||
* Male | |||
* Polymorphism, Single Nucleotide | |||
|keywords=* Aging | |||
* Arachidonic acid | |||
* Fatty acid conversion | |||
* Linoleic acid | |||
* Lipid metabolism | |||
* Long-chain polyunsaturated fatty acid | |||
|full-text-url=https://sci-hub.do/10.1016/j.plefa.2019.07.003 | |||
}} | |||
==FANCD2== | |||
{{medline-entry | |||
|title=TFG-maintaining stability of overlooked [[FANCD2]] confers early DNA-damage response. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33099537 | |||
|keywords=* DNA damage response | |||
* FANCD2 | |||
* TFG | |||
* aging and cancer | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7655164 | |||
}} | |||
==FAP== | |||
{{medline-entry | |||
|title=Rapamycin Extends Life Span in Apc Colon Cancer [[FAP]] Model. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33132009 | |||
|keywords=* Aging | |||
* Crypt stem cells | |||
* eEF2K | |||
* mTORC1 | |||
* rpS6 | |||
|full-text-url=https://sci-hub.do/10.1016/j.clcc.2020.08.006 | |||
}} | |||
{{medline-entry | |||
|title=Exercise enhances skeletal muscle regeneration by promoting senescence in fibro-adipogenic progenitors. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32060352 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Apoptosis | |||
* Exercise Therapy | |||
* Female | |||
* Humans | |||
* Mesenchymal Stem Cells | |||
* Mice | |||
* Mice, Inbred BALB C | |||
* Mice, Inbred C57BL | |||
* Muscle, Skeletal | |||
* Muscular Diseases | |||
* Regeneration | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7021787 | |||
}} | |||
{{medline-entry | |||
|title=Control of Muscle Fibro-Adipogenic Progenitors by Myogenic Lineage is Altered in Aging and Duchenne Muscular Dystrophy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31865646 | |||
|mesh-terms=* Adipogenesis | |||
* Adolescent | |||
* Adult | |||
* Adult Stem Cells | |||
* Aged | |||
* Aging | |||
* Cells, Cultured | |||
* Child | |||
* Child, Preschool | |||
* Female | |||
* Humans | |||
* Infant | |||
* Male | |||
* Middle Aged | |||
* Muscle Development | |||
* Muscular Dystrophy, Duchenne | |||
* Myoblasts | |||
* Young Adult | |||
|keywords=Adipocytes; Myofibroblasts; Muscle progenitors; Myopathies | |||
|full-text-url=https://sci-hub.do/10.33594/000000196 | |||
}} | |||
==FAS== | |||
{{medline-entry | |||
|title=Five-year change in maximum tongue pressure and physical function in community-dwelling elderly adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32952883 | |||
|keywords=* Aging | |||
* Biological age | |||
* Elderly | |||
* Physical function | |||
* Tongue pressure | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486543 | |||
}} | |||
{{medline-entry | |||
|title=Inhibition of USP7 activity selectively eliminates senescent cells in part via restoration of p53 activity. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32064756 | |||
|keywords=* MDM2 | |||
* Senescence | |||
* USP7 | |||
* apoptosis | |||
* p53 | |||
* senolytics | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059172 | |||
}} | |||
==FES== | |||
{{medline-entry | |||
|title=An outpatient Tai Chi program: Effects on veterans' functional outcomes. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33241873 | |||
|keywords=* Tai Chi | |||
* balance | |||
* exercise | |||
* gait | |||
* geriatrics | |||
|full-text-url=https://sci-hub.do/10.1111/nuf.12532 | |||
}} | |||
{{medline-entry | |||
|title=Gait Function in Adults Aged 50 Years and Older With Spina Bifida. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33166524 | |||
|keywords=* Adult | |||
* Aging | |||
* Gait analysis | |||
* Myelomeningocele | |||
* Rehabilitation | |||
|full-text-url=https://sci-hub.do/10.1016/j.apmr.2020.10.118 | |||
}} | |||
{{medline-entry | |||
|title=A Single Question as a Screening Tool to Assess Fear of Falling in Young-Old Community-Dwelling Persons. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32165062 | |||
|keywords=* FES-I | |||
* elderly | |||
* fear of falling | |||
* healthy aging | |||
* older adults | |||
|full-text-url=https://sci-hub.do/10.1016/j.jamda.2020.01.101 | |||
}} | |||
{{medline-entry | |||
|title=Fall-related efficacy is a useful and independent index to detect fall risk in Japanese community-dwelling older people: a 1-year longitudinal study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31664911 | |||
|mesh-terms=* Accidental Falls | |||
* Activities of Daily Living | |||
* Aged | |||
* Aging | |||
* Female | |||
* Geriatric Assessment | |||
* Humans | |||
* Independent Living | |||
* Japan | |||
* Longitudinal Studies | |||
* Male | |||
* Physical Functional Performance | |||
* Postural Balance | |||
* Risk Factors | |||
* Walking Speed | |||
|keywords=* Accidental falls | |||
* Aged | |||
* Fall-related efficacy | |||
* Japanese | |||
* Physical performance | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6820944 | |||
}} | |||
{{medline-entry | |||
|title=Investigating Changes in Real-time Conscious Postural Processing by Older Adults during Different Stance Positions Using Electroencephalography Coherence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31514583 | |||
|mesh-terms=* Accidental Falls | |||
* Aged | |||
* Aging | |||
* Brain | |||
* Electroencephalography | |||
* Fear | |||
* Female | |||
* Humans | |||
* Male | |||
* Movement | |||
* Postural Balance | |||
* Posture | |||
|full-text-url=https://sci-hub.do/10.1080/0361073X.2019.1664450 | |||
}} | |||
==FEV== | |||
{{medline-entry | |||
|title=Prediction of Lung Function in Adolescence Using Epigenetic Aging: A Machine Learning Approach. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33182250 | |||
|keywords=* epigenetic aging | |||
* feature selection | |||
* hyperparameter tuning | |||
* lung function | |||
* machine learning | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712054 | |||
}} | |||
{{medline-entry | |||
|title=Effect of Age on the Efficacy and Safety of Once-Daily Single-Inhaler Triple Therapy Fluticasone Furoate/Umeclidinium/Vilanterol in Patients With Chronic Obstructive Pulmonary Disease: A Post Hoc Analysis of the IMPACT Trial. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33031829 | |||
|keywords=* COPD | |||
* aging | |||
* exacerbations | |||
* safety | |||
* single-inhaler triple therapy | |||
|full-text-url=https://sci-hub.do/10.1016/j.chest.2020.09.253 | |||
}} | |||
{{medline-entry | |||
|title=A comprehensive analysis of factors related to lung function in older adults: Cross-sectional findings from the Canadian Longitudinal Study on Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33010732 | |||
|keywords=* Aging | |||
* Determinants | |||
* Lung function | |||
* Sex | |||
* Spirometry | |||
|full-text-url=https://sci-hub.do/10.1016/j.rmed.2020.106157 | |||
}} | |||
{{medline-entry | |||
|title=Risk factors associated with the detection of pulmonary emphysema in older asymptomatic respiratory subjects. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32517728 | |||
|keywords=* Aging | |||
* COPD | |||
* Klotho | |||
* Pulmonary emphysema | |||
* Risk factors | |||
* Telomere length | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7285611 | |||
}} | |||
{{medline-entry | |||
|title=Tiotropium Respimat Efficacy and Safety in Asthma: Relationship to Age. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32320797 | |||
|keywords=* Aging | |||
* Asthma | |||
* Long-acting muscarinic antagonist | |||
* Long-acting β(2)-agonists | |||
* Pharmacotherapy | |||
|full-text-url=https://sci-hub.do/10.1016/j.jaip.2020.04.013 | |||
}} | |||
{{medline-entry | |||
|title=Current Bronchodilator Responsiveness Criteria Underestimate Asthma in Older Adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32071132 | |||
|keywords=* aging | |||
* albuterol | |||
* asthma | |||
* bronchodilator effect | |||
* lung diseases | |||
* older adult | |||
* spirometry | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7538007 | |||
}} | |||
{{medline-entry | |||
|title=Physical performances show conflicting associations in aged manual workers. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32042126 | |||
|mesh-terms=* Aged | |||
* Aging | |||
* Body Composition | |||
* Body Mass Index | |||
* Cardiorespiratory Fitness | |||
* Cross-Sectional Studies | |||
* Hand Strength | |||
* Humans | |||
* Lung | |||
* Male | |||
* Middle Aged | |||
* Physical Functional Performance | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7010773 | |||
}} | |||
{{medline-entry | |||
|title=[[FEV]] as a Standalone Spirometric Predictor and the Attributable Fraction for Death in Older Persons. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31662447 | |||
|keywords=* aging | |||
* average attributable fraction | |||
* death | |||
* relative risk | |||
* spirometry | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055488 | |||
}} | |||
{{medline-entry | |||
|title=An Individualized Prediction Model for Long-term Lung Function Trajectory and Risk of COPD in the General Population. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31542453 | |||
|mesh-terms=* Adult | |||
* Age Factors | |||
* Aging | |||
* Alcohol Drinking | |||
* Algorithms | |||
* Alkaline Phosphatase | |||
* Body Height | |||
* Bronchodilator Agents | |||
* Cigarette Smoking | |||
* Cohort Studies | |||
* Cough | |||
* Dyspnea | |||
* Electrocardiography | |||
* Female | |||
* Forced Expiratory Volume | |||
* Hematocrit | |||
* Humans | |||
* Leukocyte Count | |||
* Longitudinal Studies | |||
* Lung | |||
* Machine Learning | |||
* Male | |||
* Middle Aged | |||
* Pulmonary Disease, Chronic Obstructive | |||
* Risk Assessment | |||
* Serum Albumin | |||
* Serum Globulins | |||
* Sex Factors | |||
* Spirometry | |||
* Triglycerides | |||
* Vital Capacity | |||
|keywords=* COPD | |||
* FEV(1) | |||
* FEV(1)/FVC | |||
* airflow limitation | |||
* lung function | |||
* predictive modeling | |||
|full-text-url=https://sci-hub.do/10.1016/j.chest.2019.09.003 | |||
}} | |||
{{medline-entry | |||
|title=Telomere length and lung function in a population-based cohort of children and mid-life adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31456360 | |||
|mesh-terms=* Aged | |||
* Asthma | |||
* Body Mass Index | |||
* Child | |||
* Cohort Studies | |||
* Cross-Sectional Studies | |||
* Exercise | |||
* Female | |||
* Forced Expiratory Volume | |||
* Humans | |||
* Lung | |||
* Male | |||
* Respiratory Function Tests | |||
* Risk Factors | |||
* Smoking | |||
* Spirometry | |||
* Telomere | |||
* Vital Capacity | |||
|keywords=* aging | |||
* cell senescence | |||
* life course | |||
* national cohort | |||
* spirometry | |||
|full-text-url=https://sci-hub.do/10.1002/ppul.24489 | |||
}} | |||
==FGA== | |||
{{medline-entry | |||
|title=Goal Pursuit, Goal Adjustment, and Pain in Middle-Aged Adults Aging With Physical Disability. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31718416 | |||
|mesh-terms=* Adaptation, Psychological | |||
* Aged | |||
* Aging | |||
* Depression | |||
* Disabled Persons | |||
* Female | |||
* Goals | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Multiple Sclerosis | |||
* Muscular Dystrophies | |||
* Pain | |||
* Postpoliomyelitis Syndrome | |||
* Spinal Cord Injuries | |||
|keywords=* aging | |||
* disability | |||
* goal management | |||
* pain | |||
* psychological adaptation | |||
|full-text-url=https://sci-hub.do/10.1177/0898264319827142 | |||
}} | |||
{{medline-entry | |||
|title=Tenacious Goal Pursuit, Flexible Goal Adjustment, and Life Satisfaction Among Chinese Older Adult Couples. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31547780 | |||
|keywords=* flexible goal adjustment | |||
* life satisfaction | |||
* older couples | |||
* self-perceptions of aging | |||
* tenacious goal pursuit | |||
|full-text-url=https://sci-hub.do/10.1177/0164027519876125 | |||
}} | |||
==FGF19== | |||
{{medline-entry | |||
|title=Bile acid receptor agonists in primary biliary cholangitis: Regulation of the cholangiocyte secretome and downstream T cell differentiation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32123836 | |||
|keywords=* FGF19 | |||
* FXR | |||
* TGR5 | |||
* autoimmunity | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996327 | |||
}} | |||
==FGF2== | |||
{{medline-entry | |||
|title=The influence of fibroblast growth factor 2 on the senescence of human adipose-derived mesenchymal stem cells during long-term culture. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31840944 | |||
|keywords=* cell proliferation | |||
* cellular senescence | |||
* fibroblast growth factor 2 | |||
* long-term culture | |||
* mesenchymal stem cell | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7103622 | |||
}} | |||
==FGF21== | |||
{{medline-entry | |||
|title=Differential effects of sulfur amino acid-restricted and low-calorie diets on gut microbiome profile and bile acid composition in male C57BL6/J mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33106871 | |||
|keywords=* Clostridales | |||
* firmicutes | |||
* lifespan | |||
* methionine restriction | |||
* sulfur metabolism | |||
|full-text-url=https://sci-hub.do/10.1093/gerona/glaa270 | |||
}} | |||
{{medline-entry | |||
|title=Relationship between physical activity and circulating fibroblast growth factor 21 in middle-aged and older adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32911033 | |||
|keywords=* Accelerometer | |||
* Activity intensity | |||
* Aging | |||
* FGF21 | |||
* Physical activity | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2020.111081 | |||
}} | |||
{{medline-entry | |||
|title=Exercise and dietary intervention ameliorate high-fat diet-induced NAFLD and liver aging by inducing lipophagy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32863214 | |||
|keywords=* Aging | |||
* Exercise | |||
* FGF21 | |||
* Lipophagy | |||
* Nonalcoholic fatty liver disease (NAFLD) | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7365984 | |||
}} | |||
{{medline-entry | |||
|title=Mitochondria, immunosenescence and inflammaging: a role for mitokines? | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32757036 | |||
|keywords=* Human ageing | |||
* Immunosenescence | |||
* Inflammaging | |||
* Mitochondrial metabolism | |||
* Mitokines | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7666292 | |||
}} | |||
{{medline-entry | |||
|title=Age-at-onset-dependent effects of sulfur amino acid restriction on markers of growth and stress in male F344 rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32573078 | |||
|keywords=* ER stress | |||
* cysteine | |||
* glutathione | |||
* hormesis | |||
* lifespan | |||
* methionine | |||
* trade-offs | |||
* translational | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7426777 | |||
}} | |||
{{medline-entry | |||
|title=Fibroblast growth factor 21 prolongs lifespan and improves stress tolerance in the silkworm, [i]Bombyx mori[/i]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32309367 | |||
|keywords=* Bombyx mori | |||
* fibroblast growth factor 21 (FGF21) | |||
* lifespan | |||
* oxidation resistance | |||
* stress tolerance | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154471 | |||
}} | |||
{{medline-entry | |||
|title=Neurogenesis and prolongevity signaling in young germ-free mice transplanted with the gut microbiota of old mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31723038 | |||
|mesh-terms=* Animals | |||
* Butyrates | |||
* Fecal Microbiota Transplantation | |||
* Fibroblast Growth Factors | |||
* Gastrointestinal Microbiome | |||
* Germ-Free Life | |||
* Hippocampus | |||
* Intestines | |||
* Liver | |||
* Longevity | |||
* Male | |||
* Metabolome | |||
* Mice, Inbred C57BL | |||
* Microtubule-Associated Proteins | |||
* Neurogenesis | |||
* Neurons | |||
* Neuropeptides | |||
* Phenotype | |||
* Proton Magnetic Resonance Spectroscopy | |||
|full-text-url=https://sci-hub.do/10.1126/scitranslmed.aau4760 | |||
}} | |||
{{medline-entry | |||
|title=Fibroblast Growth Factor 21 Mediates the Associations between Exercise, Aging, and Glucose Regulation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31490857 | |||
|mesh-terms=* Adiponectin | |||
* Adult | |||
* Aging | |||
* Blood Glucose | |||
* Blood Pressure | |||
* Body Mass Index | |||
* Diabetes Mellitus, Type 2 | |||
* Exercise | |||
* Female | |||
* Fibroblast Growth Factors | |||
* Glucose Tolerance Test | |||
* Humans | |||
* Insulin | |||
* Lipids | |||
* Male | |||
* Middle Aged | |||
* Risk Factors | |||
|full-text-url=https://sci-hub.do/10.1249/MSS.0000000000002150 | |||
}} | |||
{{medline-entry | |||
|title=Effects of Moderate Chronic Food Restriction on the Development of Postprandial Dyslipidemia with Ageing. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31405194 | |||
|mesh-terms=* Adiposity | |||
* Aging | |||
* Animals | |||
* Basic Helix-Loop-Helix Leucine Zipper Transcription Factors | |||
* Blood Glucose | |||
* Diet, Fat-Restricted | |||
* Dietary Fats | |||
* Disease Models, Animal | |||
* Dyslipidemias | |||
* Glucagon | |||
* Insulin | |||
* Lipids | |||
* Liver | |||
* Metabolic Syndrome | |||
* Postprandial Period | |||
* Rats | |||
* Rats, Wistar | |||
* Triglycerides | |||
|keywords=* ChREBP | |||
* adipose tissue | |||
* ageing | |||
* oral lipid loading test | |||
* postprandial hypertrigliceridemia | |||
* postprandial thermogenesis | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723802 | |||
}} | |||
==FGF23== | |||
{{medline-entry | |||
|title=Phosphate as a Pathogen of Arteriosclerosis and Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33028781 | |||
|keywords=* Aging | |||
* Calciprotein particles (CPPs) | |||
* Fibroblast growth factor-23 (FGF23) | |||
* Inflammation | |||
* Klotho | |||
* Phosphate | |||
* Vascular calcification | |||
|full-text-url=https://sci-hub.do/10.5551/jat.RV17045 | |||
}} | |||
{{medline-entry | |||
|title=Plasma Soluble αKlotho, Serum Fibroblast Growth Factor 23, and Mobility Disability in Community-Dwelling Older Adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32405607 | |||
|keywords=* aging | |||
* chronic kidney disease | |||
* fibroblast growth factor 23 | |||
* mobility disability | |||
* αKlotho | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7209777 | |||
}} | |||
{{medline-entry | |||
|title=Protective effect of Polygonatum sibiricum Polysaccharide on D-galactose-induced aging rats model. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32042011 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Calcium | |||
* Dietary Carbohydrates | |||
* Fibroblast Growth Factors | |||
* Galactose | |||
* Glucuronidase | |||
* Male | |||
* Oxidative Stress | |||
* Phosphorus | |||
* Phytochemicals | |||
* Polygonatum | |||
* Polysaccharides | |||
* Protective Agents | |||
* Rats | |||
* Rats, Sprague-Dawley | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7010663 | |||
}} | |||
{{medline-entry | |||
|title=[[FGF23]] expression is stimulated in transgenic α-Klotho longevity mouse model. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31801907 | |||
|mesh-terms=* Aldosterone | |||
* Animals | |||
* Bone and Bones | |||
* Cardiovascular Diseases | |||
* Disease Models, Animal | |||
* Female | |||
* Fibroblast Growth Factors | |||
* Gene Knockout Techniques | |||
* Glucuronidase | |||
* Kidney | |||
* Longevity | |||
* Male | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Mice, Transgenic | |||
* Osteoblasts | |||
* Protein Isoforms | |||
* Transcriptome | |||
|keywords=* Bone Biology | |||
* Cardiovascular disease | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962016 | |||
}} | |||
{{medline-entry | |||
|title=Fibroblast growth factor 23 and symmetric dimethylarginine concentrations in geriatric cats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31568615 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Arginine | |||
* Biomarkers | |||
* Cats | |||
* Cross-Sectional Studies | |||
* Female | |||
* Fibroblast Growth Factors | |||
* Male | |||
* Reference Values | |||
* Retrospective Moral Judgment | |||
|keywords=* azotemia | |||
* feline | |||
* phosphate | |||
* renal | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6872607 | |||
}} | |||
==FGFR1== | |||
{{medline-entry | |||
|title=Alignment of Alzheimer's disease amyloid β-peptide and klotho. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32999998 | |||
|keywords=* Alzheimer’s disease | |||
* HSV-1 | |||
* aging | |||
* alignment | |||
* klotho | |||
* neurodegeneration | |||
* neuroinflammation | |||
* protein | |||
* ubiquitin | |||
* β-amyloid | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521834 | |||
}} | |||
{{medline-entry | |||
|title=Satellite cell-specific ablation of Cdon impairs integrin activation, FGF signalling, and muscle regeneration. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32103583 | |||
|keywords=* Cdon | |||
* Cellular senescence | |||
* FGFR | |||
* Growth factor signalling | |||
* Muscle regeneration | |||
* Satellite cell | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7432598 | |||
}} | |||
==FGFR4== | |||
{{medline-entry | |||
|title=[[FGFR4]] Inhibitor BLU9931 Attenuates Pancreatic Cancer Cell Proliferation and Invasion While Inducing Senescence: Evidence for Senolytic Therapy Potential in Pancreatic Cancer. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33066597 | |||
|keywords=* FGFR4 | |||
* FGFR4 inhibitor | |||
* growth | |||
* invasion | |||
* pancreatic cancer | |||
* senescence | |||
* senolytic therapy | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602396 | |||
}} | |||
==FGR== | |||
{{medline-entry | |||
|title=Aurora kinase mRNA expression is reduced with increasing gestational age and in severe early onset fetal growth restriction. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32452402 | |||
|keywords=* Aurora kinase | |||
* Cellular senescence | |||
* FGR | |||
* Preeclampsia | |||
|full-text-url=https://sci-hub.do/10.1016/j.placenta.2020.04.012 | |||
}} | |||
==FH== | |||
{{medline-entry | |||
|title=Genetic Factors of Alzheimer's Disease Modulate How Diet is Associated with Long-Term Cognitive Trajectories: A UK Biobank Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33252089 | |||
|keywords=* APOE4 | |||
* Aging | |||
* Mediterranean diet | |||
* cognitive decline | |||
* functional food | |||
* lamb | |||
* nutrition policy | |||
* preventive medicine | |||
* red wine | |||
* salt | |||
|full-text-url=https://sci-hub.do/10.3233/JAD-201058 | |||
}} | |||
{{medline-entry | |||
|title=Volumetric alterations in the hippocampal subfields of subjects at increased risk of dementia. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32311609 | |||
|mesh-terms=* Adult | |||
* Aging | |||
* Alzheimer Disease | |||
* Apolipoproteins E | |||
* Atrophy | |||
* Dementia | |||
* Diffusion Magnetic Resonance Imaging | |||
* Educational Status | |||
* Female | |||
* Genotype | |||
* Hippocampus | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Organ Size | |||
* Risk | |||
|keywords=* Alzheimer's disease | |||
* Dementia | |||
* Hippocampal subfields | |||
* Hippocampus | |||
* Preclinical dementia | |||
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2020.03.006 | |||
}} | |||
{{medline-entry | |||
|title=Macroscopic hematuria as a risk factor for hypertension in ageing people with hemophilia and a family history of hypertension. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32118768 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Cross-Sectional Studies | |||
* Female | |||
* Hematuria | |||
* Hemophilia A | |||
* Humans | |||
* Hypertension | |||
* Israel | |||
* Logistic Models | |||
* Male | |||
* Middle Aged | |||
* Risk Factors | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7478422 | |||
}} | |||
{{medline-entry | |||
|title=LDL Receptor Deficiency Does not Alter Brain Amyloid-β Levels but Causes an Exacerbation of Apoptosis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31815695 | |||
|mesh-terms=* Aging | |||
* Amyloid beta-Protein Precursor | |||
* Animals | |||
* Apoptosis | |||
* Brain Chemistry | |||
* Caspase 3 | |||
* Cholesterol | |||
* Gene Expression | |||
* Hippocampus | |||
* Male | |||
* Maze Learning | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* Prefrontal Cortex | |||
* Receptors, LDL | |||
|keywords=* Familial hypercholesterolemia | |||
* LDLr-/- mice | |||
* amyloid-β | |||
* apoptosis | |||
* memory impairment | |||
|full-text-url=https://sci-hub.do/10.3233/JAD-190742 | |||
}} | |||
==FNDC5== | |||
{{medline-entry | |||
|title=Irisin Correlates Positively With BMD in a Cohort of Older Adult Patients and Downregulates the Senescent Marker p21 in Osteoblasts. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33053231 | |||
|keywords=* BONE-MUSCLE INTERACTIONS | |||
* IRISIN | |||
* OSTEOPOROSIS | |||
* SARCOPENIA | |||
* SENESCENCE | |||
|full-text-url=https://sci-hub.do/10.1002/jbmr.4192 | |||
}} | |||
{{medline-entry | |||
|title=[Investigation of signal molecules in saliva: prospects of application for diagnostics of myocardial infarction and the aging rate of different age people.] | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31512422 | |||
|mesh-terms=* Aged | |||
* Aging | |||
* Biomarkers | |||
* Cytokines | |||
* Humans | |||
* Middle Aged | |||
* Myocardial Infarction | |||
* Saliva | |||
* Tumor Necrosis Factor-alpha | |||
|keywords=* aging | |||
* diagnosis | |||
* myocardial infarction | |||
* saliva | |||
* signaling molecules | |||
}} | |||
==FOS== | |||
{{medline-entry | |||
|title=Muscle atrophy-related myotube-derived exosomal microRNA in neuronal dysfunction: Targeting both coding and long noncoding RNAs. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32233025 | |||
|keywords=* HIF-1α-AS2 | |||
* aging | |||
* lncRNAs | |||
* miR-29b-3p | |||
* muscle atrophy | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7253071 | |||
}} | |||
==FOSL2== | |||
{{medline-entry | |||
|title=LncRNA GUARDIN suppresses cellular senescence through a LRP130-PGC1α-FOXO4-p21-dependent signaling axis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32149459 | |||
|keywords=* | |||
GUARDIN | |||
* LRP130-PGC1α | |||
* cellular senescence | |||
* lncRNAs | |||
* p21 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132339 | |||
}} | |||
==FOXA1== | |||
{{medline-entry | |||
|title=Analyses of an epigenetic switch involved in the activation of pioneer factor [[FOXA1]] leading to the prognostic value of estrogen receptor and [[FOXA1]] co-expression in breast cancer. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31562808 | |||
|mesh-terms=* Breast Neoplasms | |||
* Down-Regulation | |||
* Epigenesis, Genetic | |||
* Female | |||
* Gene Expression Regulation, Neoplastic | |||
* Hepatocyte Nuclear Factor 3-alpha | |||
* Humans | |||
* Middle Aged | |||
* Prognosis | |||
* RNA, Messenger | |||
* Receptor, ErbB-2 | |||
* Receptors, Estrogen | |||
* Receptors, Progesterone | |||
* Transcriptome | |||
* Up-Regulation | |||
|keywords=* FOXA1 | |||
* age-related diseases | |||
* aging | |||
* breast cancer | |||
* hormone receptor | |||
* methylation | |||
* prognosis | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6782010 | |||
}} | |||
==FOXM1== | |||
{{medline-entry | |||
|title=Sirtuin 6 deficiency induces endothelial cell senescence via downregulation of forkhead box M1 expression. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33171439 | |||
|keywords=* FOXM1 | |||
* SIRT6 | |||
* cell cycle | |||
* endothelial cell | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695388 | |||
}} | |||
==FOXN1== | |||
{{medline-entry | |||
|title=Thymic rejuvenation via [[FOXN1]]-reprogrammed embryonic fibroblasts (FREFs) to counteract age-related inflammation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32790650 | |||
|keywords=* Aging | |||
* Immunology | |||
* Immunotherapy | |||
* T cell development | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7526556 | |||
}} | |||
==FOXO1== | |||
{{medline-entry | |||
|title=l-Theanine attenuates liver aging by inhibiting advanced glycation end products in d-galactose-induced rats and reversing an imbalance of oxidative stress and inflammation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31899338 | |||
|keywords=* AGEs | |||
* Inflammatory response | |||
* Liver aging | |||
* Oxidative stress | |||
* l-Theanine | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2019.110823 | |||
}} | |||
==FOXO3== | |||
{{medline-entry | |||
|title=The DNA methylation of [[FOXO3]] and TP53 as a blood biomarker of late-onset asthma. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33298101 | |||
|keywords=* Aging | |||
* DNA methylation | |||
* FOXO3 | |||
* Late-onset asthma | |||
* TP53 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7726856 | |||
}} | |||
{{medline-entry | |||
|title=[[FOXO3]] targets are reprogrammed as Huntington's disease neural cells and striatal neurons face senescence with p16 increase. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33156570 | |||
|keywords=* neurodegenerative disease | |||
* neuronal differentiation | |||
* neuronal senescence | |||
* response mechanisms | |||
* temporal dynamics | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7681055 | |||
}} | |||
{{medline-entry | |||
|title=Astaxanthin as a Putative Geroprotector: Molecular Basis and Focus on Brain Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32635607 | |||
|keywords=* FOXO3 | |||
* NRF2 | |||
* SIRT1 | |||
* astaxanthin | |||
* geroprotector | |||
* longevity | |||
* neuroprotection | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7401246 | |||
}} | |||
{{medline-entry | |||
|title=Inflamma-miR-21 Negatively Regulates Myogenesis during Ageing. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32340146 | |||
|keywords=* IL6 | |||
* IL6R | |||
* aging | |||
* cachexia | |||
* miR-21 | |||
* microRNA | |||
* muscle | |||
* regeneration | |||
* sarcopenia | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7222422 | |||
}} | |||
{{medline-entry | |||
|title=Variable DNA methylation of aging-related genes is associated with male COPD. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31684967 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Age Factors | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Case-Control Studies | |||
* CpG Islands | |||
* DNA Methylation | |||
* Databases, Genetic | |||
* Female | |||
* Forced Expiratory Volume | |||
* Forkhead Transcription Factors | |||
* Genetic Predisposition to Disease | |||
* Humans | |||
* Lung | |||
* Male | |||
* Middle Aged | |||
* Pulmonary Disease, Chronic Obstructive | |||
* Risk Assessment | |||
* Risk Factors | |||
* Severity of Illness Index | |||
* Sex Factors | |||
* Transcriptome | |||
* Vital Capacity | |||
* Young Adult | |||
|keywords=* Aging | |||
* Aging-related genes | |||
* COPD | |||
* DNA methylation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6829949 | |||
}} | |||
{{medline-entry | |||
|title=A conserved role of the insulin-like signaling pathway in diet-dependent uric acid pathologies in Drosophila melanogaster. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31415568 | |||
|mesh-terms=* Animals | |||
* Animals, Genetically Modified | |||
* Cohort Studies | |||
* Disease Models, Animal | |||
* Drosophila melanogaster | |||
* Feeding Behavior | |||
* Female | |||
* Gene Knockdown Techniques | |||
* Gout | |||
* Humans | |||
* Insulin | |||
* Kidney Calculi | |||
* Longevity | |||
* Male | |||
* Metabolic Networks and Pathways | |||
* Middle Aged | |||
* NADPH Oxidases | |||
* Polymorphism, Single Nucleotide | |||
* Purines | |||
* Signal Transduction | |||
* Urate Oxidase | |||
* Uric Acid | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695094 | |||
}} | |||
==FOXO4== | |||
{{medline-entry | |||
|title=[[FOXO4]]-DRI alleviates age-related testosterone secretion insufficiency by targeting senescent Leydig cells in aged mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31959736 | |||
|keywords=* FOXO4-DRI | |||
* Leydig cell | |||
* male late-onset hypogonadism | |||
* senescence | |||
* senolytics | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7053614 | |||
}} | |||
==FOXP1== | |||
{{medline-entry | |||
|title=GATA6 regulates aging of human mesenchymal stem/stromal cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33252174 | |||
|keywords=* aging | |||
* cell signaling | |||
* mesenchymal stem cells | |||
* reprogramming | |||
* transcription factors | |||
|full-text-url=https://sci-hub.do/10.1002/stem.3297 | |||
}} | |||
==FSHR== | |||
{{medline-entry | |||
|title=[[FSHR]] ablation induces depression-like behaviors. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32203083 | |||
|keywords=* FSH | |||
* ROS | |||
* aging | |||
* antioxidants | |||
* depression | |||
* metabolism | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7468367 | |||
}} | |||
{{medline-entry | |||
|title=Direct actions of gonadotropins beyond the reproductive system and their role in human aging and neoplasia [Bezpośrednie działanie gonadotropin poza układem rozrodczym i ich rola w starzeniu się i nowotworzeniu u człowieka]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31681968 | |||
|mesh-terms=* Aging | |||
* Female | |||
* Gonadotropin-Releasing Hormone | |||
* Gonadotropins | |||
* Humans | |||
* Hypothalamo-Hypophyseal System | |||
* Luteinizing Hormone | |||
* Male | |||
* Receptors, FSH | |||
* Receptors, LH | |||
|keywords=* aging | |||
* folitropin | |||
* lutropin | |||
* neoplasia | |||
|full-text-url=https://sci-hub.do/10.5603/EP.a2019.0034 | |||
}} | |||
==FTO== | |||
{{medline-entry | |||
|title=Decreased expression of m A demethylase [[FTO]] in ovarian aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33221958 | |||
|keywords=* Epigenetics | |||
* FTO | |||
* Ovarian aging | |||
* Ovarian reserve | |||
* m6A | |||
|full-text-url=https://sci-hub.do/10.1007/s00404-020-05895-7 | |||
}} | |||
==FYN== | |||
{{medline-entry | |||
|title=An inhibitor role of Nrf2 in the regulation of myocardial senescence and dysfunction after myocardial infarction. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32781064 | |||
|mesh-terms=* Animals | |||
* Cardiomyopathies | |||
* Cellular Senescence | |||
* Echocardiography | |||
* Gene Silencing | |||
* Male | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* Myocardial Infarction | |||
* Myocardium | |||
* Myocytes, Cardiac | |||
* NF-E2-Related Factor 2 | |||
* RNA, Small Interfering | |||
* Ventricular Remodeling | |||
|keywords=* Cellular senescence | |||
* Myocardial infarction | |||
* Nrf2 | |||
* Oxidative stress | |||
|full-text-url=https://sci-hub.do/10.1016/j.lfs.2020.118199 | |||
}} | |||
==G6PD== | |||
{{medline-entry | |||
|title=[[G6PD]] overexpression protects from oxidative stress and age-related hearing loss. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33222382 | |||
|keywords=* ARHL | |||
* NADPH | |||
* TrxR | |||
* aging | |||
* glutathione | |||
|full-text-url=https://sci-hub.do/10.1111/acel.13275 | |||
}} | |||
{{medline-entry | |||
|title=The Sickle Effect: The Silent Titan Affecting Glycated Hemoglobin Reliability. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32923278 | |||
|keywords=* diabetes | |||
* genetics | |||
* glycosylated hemoglobin | |||
* hba1c | |||
* hbas | |||
* race | |||
* rbc lifespan | |||
* sickle cell trait | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486097 | |||
}} | |||
{{medline-entry | |||
|title=DNA damage and synaptic and behavioural disorders in glucose-6-phosphate dehydrogenase-deficient mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31581069 | |||
|mesh-terms=* Animals | |||
* Brain | |||
* DNA Breaks, Double-Stranded | |||
* DNA Breaks, Single-Stranded | |||
* DNA Damage | |||
* Disease Models, Animal | |||
* Enzyme Activation | |||
* Female | |||
* Glucosephosphate Dehydrogenase | |||
* Glucosephosphate Dehydrogenase Deficiency | |||
* Male | |||
* Mental Disorders | |||
* Mice | |||
* Oxidation-Reduction | |||
* Purkinje Cells | |||
|keywords=* 8-Oxo-2′-deoxyguanine (8-oxodG) | |||
* Aging | |||
* Behavioural disorders | |||
* Comet | |||
* DNA damage | |||
* Electrophysiology | |||
* Gamma-H2AX (γH2AX) | |||
* Glucose-6-phosphate dehydrogenase (G6PD) | |||
* Lifespan | |||
* Neurodegeneration | |||
* Reactive oxygen species (ROS) | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812046 | |||
}} | |||
==GAA== | |||
{{medline-entry | |||
|title=Mitochondrial damage and senescence phenotype of cells derived from a novel frataxin G127V point mutation mouse model of Friedreich's ataxia. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32586831 | |||
|keywords=* Frataxin | |||
* Friedreich's ataxia | |||
* Mitochondria | |||
* Oxidative stress | |||
* Point mutation | |||
* Senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7406325 | |||
}} | |||
{{medline-entry | |||
|title=Age-Related Changes in Serum Guanidinoacetic Acid in Women. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31647299 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Aged | |||
* Aging | |||
* Biomarkers | |||
* Energy Metabolism | |||
* Exercise | |||
* Female | |||
* Glycine | |||
* Humans | |||
* Independent Living | |||
* Middle Aged | |||
* Young Adult | |||
|full-text-url=https://sci-hub.do/10.33549/physiolres.934189 | |||
}} | |||
==GABARAP== | |||
{{medline-entry | |||
|title=Age-dependent loss of adipose Rubicon promotes metabolic disorders via excess autophagy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32811819 | |||
|mesh-terms=* Adipocytes | |||
* Adipogenesis | |||
* Adipose Tissue | |||
* Adiposity | |||
* Aging | |||
* Animals | |||
* Apoptosis Regulatory Proteins | |||
* Autophagy | |||
* Fatty Liver | |||
* Gene Knockout Techniques | |||
* Glucose | |||
* HEK293 Cells | |||
* Humans | |||
* Intracellular Signaling Peptides and Proteins | |||
* Lipid Metabolism | |||
* Metabolic Diseases | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* Microtubule-Associated Proteins | |||
* Nuclear Receptor Coactivator 1 | |||
* Nuclear Receptor Coactivator 2 | |||
* PPAR gamma | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7434891 | |||
}} | |||
==GAL== | |||
{{medline-entry | |||
|title=Overexpression of Pitx1 attenuates the senescence of chondrocytes from osteoarthritis degeneration cartilage-A self-controlled model for studying the etiology and treatment of osteoarthritis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31783149 | |||
|keywords=* Osteoarthritis | |||
* Pitx1 | |||
* Senescence | |||
* Sirt1 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bone.2019.115177 | |||
}} | |||
{{medline-entry | |||
|title=β-Caryophyllene Reduces DNA Oxidation and the Overexpression of Glial Fibrillary Acidic Protein in the Prefrontal Cortex and Hippocampus of d-Galactose-Induced Aged BALB/c Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31663807 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Antioxidants | |||
* DNA Damage | |||
* Disease Models, Animal | |||
* Galactose | |||
* Glial Fibrillary Acidic Protein | |||
* Hippocampus | |||
* Male | |||
* Mice | |||
* Mice, Inbred BALB C | |||
* Neuroprotection | |||
* Oxidative Stress | |||
* Polycyclic Sesquiterpenes | |||
* Prefrontal Cortex | |||
|keywords=* CB2 receptor agonist | |||
* biological aging | |||
* cognitive flexibility | |||
* phytocannabinoid | |||
* β-caryophyllene | |||
|full-text-url=https://sci-hub.do/10.1089/jmf.2019.0111 | |||
}} | |||
==GAP43== | |||
{{medline-entry | |||
|title=HDAC inhibition leads to age-dependent opposite regenerative effect upon PTEN deletion in rubrospinal axons after SCI. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32171589 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Axons | |||
* GAP-43 Protein | |||
* Gene Deletion | |||
* Gene Expression | |||
* Histone Deacetylase Inhibitors | |||
* Histone Deacetylases | |||
* Hydroxamic Acids | |||
* Mice, Transgenic | |||
* Motor Activity | |||
* Nerve Regeneration | |||
* PTEN Phosphohydrolase | |||
* Recovery of Function | |||
* Spinal Cord | |||
* Spinal Cord Injuries | |||
|keywords=* Aging | |||
* Epigenetics | |||
* Histone deacetylase | |||
* Pten | |||
* Regeneration | |||
* Spinal cord injury | |||
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2020.02.006 | |||
}} | |||
==GATA4== | |||
{{medline-entry | |||
|title=Epigenetics and Vascular Senescence-Potential New Therapeutic Targets? | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33101015 | |||
|keywords=* calcification | |||
* cell senescence | |||
* epigenetics | |||
* inflammation | |||
* oxidation stress | |||
* vascular aging | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7556287 | |||
}} | |||
{{medline-entry | |||
|title=Prolonged treatment with Y-27632 promotes the senescence of primary human dermal fibroblasts by increasing the expression of IGFBP-5 and transforming them into a CAF-like phenotype. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32843583 | |||
|keywords=* IGFBP-5 | |||
* Rho kinase inhibitor | |||
* Y-27632 | |||
* dermal fibroblast | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7485707 | |||
}} | |||
==GBA== | |||
{{medline-entry | |||
|title=Reduced sphingolipid hydrolase activities, substrate accumulation and ganglioside decline in Parkinson's disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31703585 | |||
|mesh-terms=* Aged | |||
* Aging | |||
* Female | |||
* Glucosylceramidase | |||
* Humans | |||
* Hydrolases | |||
* Lysosomes | |||
* Male | |||
* Mutation | |||
* Parkinson Disease | |||
* Risk Factors | |||
* Substantia Nigra | |||
* alpha-Synuclein | |||
|keywords=* Ageing | |||
* Ganglioside | |||
* Glucocerebrosidase | |||
* Glycosphingolipid | |||
* Lysosome | |||
* Neurodegeneration | |||
* Parkinson’s disease | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842240 | |||
}} | |||
==GC== | |||
{{medline-entry | |||
|title=Body Size and Cuticular Hydrocarbons as Larval Age Indicators in the Forensic Blow Fly, Chrysomya albiceps (Diptera: Calliphoridae). | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33274739 | |||
|keywords=* | |||
Chrysomya albiceps | |||
* body size | |||
* cuticular hydrocarbon | |||
* forensic | |||
* larval longevity | |||
|full-text-url=https://sci-hub.do/10.1093/jme/tjaa256 | |||
}} | |||
{{medline-entry | |||
|title=Composition of peony petal fatty acids and flavonoids and their effect on Caenorhabditis elegans lifespan. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33092723 | |||
|keywords=* Caenorhabditis elegans | |||
* Fatty acid | |||
* Flavonoid identification and composition | |||
* Lifespan extension | |||
* Tree peony petal | |||
|full-text-url=https://sci-hub.do/10.1016/j.plaphy.2020.06.029 | |||
}} | |||
{{medline-entry | |||
|title=Photo aging and fragmentation of polypropylene food packaging materials in artificial seawater. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33039831 | |||
|keywords=* Aging | |||
* Antioxidant | |||
* Food packaging materials | |||
* Microplastics | |||
* Polypropylene | |||
* seawater | |||
|full-text-url=https://sci-hub.do/10.1016/j.watres.2020.116456 | |||
}} | |||
{{medline-entry | |||
|title=Secretory galectin-3 induced by glucocorticoid stress triggers stemness exhaustion of hepatic progenitor cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32989051 | |||
|keywords=* AMP-activated kinase (AMPK) | |||
* Cell senescence | |||
* cell cycle | |||
* cellular senescence | |||
* galectin | |||
* galectin-3 | |||
* glycoprotein | |||
* liver injury | |||
* proliferation | |||
* protein interaction | |||
* protein-protein interaction | |||
* quiescence | |||
* stem cells | |||
* stemness exhaustion | |||
|full-text-url=https://sci-hub.do/10.1074/jbc.RA120.012974 | |||
}} | |||
{{medline-entry | |||
|title=Optimization of Ethanol Detection by Automatic Headspace Method for Cellulose Insulation Aging of Oil-immersed Transformers. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32679756 | |||
|keywords=* aging | |||
* cellulose insulation | |||
* gas chromatography | |||
* headspace sampling | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407484 | |||
}} | |||
{{medline-entry | |||
|title=Sensory, olfactometric and chemical characterization of the aroma potential of Garnacha and Tempranillo winemaking grapes. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32569964 | |||
|mesh-terms=* Fruit | |||
* Gas Chromatography-Mass Spectrometry | |||
* Hexanols | |||
* Norisoprenoids | |||
* Odorants | |||
* Olfactometry | |||
* Principal Component Analysis | |||
* Sulfhydryl Compounds | |||
* Vitis | |||
* Volatile Organic Compounds | |||
|keywords=* Aging | |||
* Aroma precursors | |||
* Glycosides | |||
* Lipid-derived aroma | |||
* Norisoprenoids | |||
* Sensory properties | |||
* Terpenols | |||
* Volatile phenols | |||
|full-text-url=https://sci-hub.do/10.1016/j.foodchem.2020.127207 | |||
}} | |||
{{medline-entry | |||
|title=Accelerated Cognitive Ageing in epilepsy: exploring the effective connectivity between resting-state networks and its relation to cognitive decline. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32529058 | |||
|keywords=* Accelerated cognitive ageing | |||
* Ageing | |||
* Aging | |||
* Biomarkers | |||
* Clinical research | |||
* Cognition | |||
* Cognitive decline | |||
* Cognitive neuroscience | |||
* Effective connectivity | |||
* Epilepsy | |||
* Fmri | |||
* Granger causality | |||
* Image processing | |||
* Medical imaging | |||
* Mental health | |||
* Nervous system | |||
* Neuroscience | |||
* Psychiatry | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7283153 | |||
}} | |||
{{medline-entry | |||
|title=Characterization of Jinhua ham aroma profiles in specific to aging time by gas chromatography-ion mobility spectrometry ([[GC]]-IMS). | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32417671 | |||
|keywords=* Aging | |||
* Electronic-nose | |||
* Gas chromatography-ion mobility spectrometry | |||
* Jinhua ham | |||
* Volatiles | |||
|full-text-url=https://sci-hub.do/10.1016/j.meatsci.2020.108178 | |||
}} | |||
{{medline-entry | |||
|title=Quantitative Profiling of Lipid Species in Caenorhabditis elegans with Gas Chromatography-Mass Spectrometry. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32410029 | |||
|keywords=* Aging | |||
* C. elegans | |||
* Fat | |||
* Fatty acids | |||
* Gas chromatography–mass spectrometry | |||
* Lipids | |||
* Phospholipids | |||
* Solid-phase chromatography | |||
* Triglycerides | |||
|full-text-url=https://sci-hub.do/10.1007/978-1-0716-0592-9_10 | |||
}} | |||
{{medline-entry | |||
|title=Physicochemical characterization of a polysaccharide from Agrocybe aegirita and its anti-ageing activity. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32172871 | |||
|mesh-terms=* Aging | |||
* Agrocybe | |||
* Antioxidants | |||
* Carbohydrate Sequence | |||
* Cell Line | |||
* Chemical Phenomena | |||
* G1 Phase Cell Cycle Checkpoints | |||
* Humans | |||
* Membrane Potential, Mitochondrial | |||
* Mitochondria | |||
* Polysaccharides | |||
|keywords=* Agrocybe aegirita polysaccharide | |||
* Anti-ageing | |||
* Cell cycle | |||
* Mitochondrial membrane potential | |||
* Structure | |||
|full-text-url=https://sci-hub.do/10.1016/j.carbpol.2020.116056 | |||
}} | |||
{{medline-entry | |||
|title=Structural characteristics, antioxidant properties and antiaging activities of galactan produced by Mentha haplocalyx Briq. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32070549 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Antioxidants | |||
* Biphenyl Compounds | |||
* Carbohydrate Conformation | |||
* Galactans | |||
* Male | |||
* Mentha | |||
* Mice | |||
* Mice, Inbred Strains | |||
* Particle Size | |||
* Picrates | |||
* Surface Properties | |||
|keywords=* Anti-aging activity | |||
* Antioxidant activity | |||
* Mentha haplocalyx Briq | |||
* Polysaccharides | |||
|full-text-url=https://sci-hub.do/10.1016/j.carbpol.2020.115936 | |||
}} | |||
{{medline-entry | |||
|title=Contribution of Volatile Odorous Terpenoid Compounds to Aged Cognac Spirits Aroma in a Context of Multicomponent Odor Mixtures. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32052967 | |||
|keywords=* Cognac | |||
* aging aroma | |||
* lees | |||
* monoterpenes | |||
* perceptual synergic effects | |||
|full-text-url=https://sci-hub.do/10.1021/acs.jafc.9b06656 | |||
}} | |||
{{medline-entry | |||
|title=Plasma Formate Is Greater in Fetal and Neonatal Rats Compared with Their Mothers. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31912134 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Animals, Newborn | |||
* Female | |||
* Fetus | |||
* Formates | |||
* Liver | |||
* Maternal-Fetal Exchange | |||
* Mothers | |||
* Placenta | |||
* Pregnancy | |||
* Rats | |||
* Rats, Sprague-Dawley | |||
|keywords=* fetus | |||
* glycine | |||
* methionine | |||
* mitochondria | |||
* one-carbon metabolism | |||
* pregnancy | |||
* serine | |||
* tetrahydrofolate | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7198295 | |||
}} | |||
{{medline-entry | |||
|title=Development of a new strategy for studying the aroma potential of winemaking grapes through the accelerated hydrolysis of phenolic and aromatic fractions (PAFs). | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31882095 | |||
|keywords=* Aging | |||
* Glycosidic precursors | |||
* Grape aroma | |||
* Grape quality | |||
* Hydrolysis | |||
* Polyphenols | |||
* Wine | |||
|full-text-url=https://sci-hub.do/10.1016/j.foodres.2019.108728 | |||
}} | |||
{{medline-entry | |||
|title=Compromised steady-state germinal center activity with age in nonhuman primates. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31840398 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Antigens, CD | |||
* B-Lymphocytes | |||
* CD4-Positive T-Lymphocytes | |||
* CD8-Positive T-Lymphocytes | |||
* Forkhead Transcription Factors | |||
* Germinal Center | |||
* Granulocytes | |||
* Immunity, Humoral | |||
* Inflammation | |||
* Lymph Nodes | |||
* Macaca mulatta | |||
* Monocytes | |||
|keywords=* B cells | |||
* Tfh cells | |||
* aging | |||
* follicles | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996951 | |||
}} | |||
{{medline-entry | |||
|title=Endogenous Glucocorticoid Signaling in the Regulation of Bone and Marrow Adiposity: Lessons from Metabolism and Cross Talk in Other Tissues. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31749087 | |||
|mesh-terms=* Adipose Tissue | |||
* Adiposity | |||
* Animals | |||
* Bone Marrow | |||
* Energy Metabolism | |||
* Glucocorticoids | |||
* Homeostasis | |||
* Humans | |||
* Liver | |||
* Muscle, Skeletal | |||
* Receptor Cross-Talk | |||
* Receptors, Glucocorticoid | |||
* Signal Transduction | |||
* Stress, Physiological | |||
|keywords=* Adipocyte | |||
* Aging | |||
* Bone marrow | |||
* Corticosterone | |||
* Cortisol | |||
* Cortisone | |||
* Glucocorticoid | |||
* Osteoblast | |||
|full-text-url=https://sci-hub.do/10.1007/s11914-019-00554-6 | |||
}} | |||
{{medline-entry | |||
|title=4,5-Diphenyl-2-methyl picolinate induces cellular senescence by accumulating DNA damage and activating associated signaling pathways in gastric cancer. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31639393 | |||
|mesh-terms=* Animals | |||
* Antineoplastic Agents | |||
* Apoptosis | |||
* Cell Cycle | |||
* Cell Proliferation | |||
* Cellular Senescence | |||
* DNA Damage | |||
* Humans | |||
* Mice | |||
* Mice, Inbred BALB C | |||
* Mice, Nude | |||
* Picolinic Acids | |||
* Signal Transduction | |||
* Stomach Neoplasms | |||
* Tumor Cells, Cultured | |||
* Xenograft Model Antitumor Assays | |||
|keywords=* Cellular senescence | |||
* DNA damage | |||
* Gastric cancer | |||
* N-heterocyclic compound | |||
|full-text-url=https://sci-hub.do/10.1016/j.lfs.2019.116973 | |||
}} | |||
{{medline-entry | |||
|title=Relationship Between the Dose Administered, Target Tissue Dose, and Toxicity Level After Acute Oral Exposure to Bifenthrin and Tefluthrin in Young Adult Rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31573616 | |||
|mesh-terms=* Administration, Oral | |||
* Aging | |||
* Animals | |||
* Body Temperature | |||
* Cerebellum | |||
* Cyclopropanes | |||
* Dose-Response Relationship, Drug | |||
* Hydrocarbons, Fluorinated | |||
* Liver | |||
* Male | |||
* Pyrethrins | |||
* Rats | |||
* Rats, Wistar | |||
* Tissue Distribution | |||
* Toxicokinetics | |||
|keywords=* acute effects | |||
* bifenthrin | |||
* body temperature | |||
* disposition | |||
* rat | |||
* tefluthrin | |||
|full-text-url=https://sci-hub.do/10.1093/toxsci/kfz204 | |||
}} | |||
{{medline-entry | |||
|title=Sugar Beet Pectin Supplementation Did Not Alter Profiles of Fecal Microbiota and Exhaled Breath in Healthy Young Adults and Healthy Elderly. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31547291 | |||
|mesh-terms=* Aged | |||
* Beta vulgaris | |||
* Breath Tests | |||
* Dietary Supplements | |||
* Double-Blind Method | |||
* Exhalation | |||
* Fatty Acids, Volatile | |||
* Feces | |||
* Female | |||
* Gastrointestinal Microbiome | |||
* Healthy Volunteers | |||
* Humans | |||
* Male | |||
* Pectins | |||
* Volatile Organic Compounds | |||
* Young Adult | |||
|keywords=* aging | |||
* dietary fiber | |||
* elderly | |||
* exhaled air | |||
* microbiota | |||
* pectin | |||
* young adults | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770243 | |||
}} | |||
{{medline-entry | |||
|title=Identification and analysis of new α- and β-hydroxy ketones related to the formation of 3-methyl-2,4-nonanedione in musts and red wines. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31520920 | |||
|mesh-terms=* Alkanes | |||
* Diacetyl | |||
* Ethanol | |||
* Fruit and Vegetable Juices | |||
* Gas Chromatography-Mass Spectrometry | |||
* Humans | |||
* Hydrogen-Ion Concentration | |||
* Ketones | |||
* Limit of Detection | |||
* Solid Phase Microextraction | |||
* Stereoisomerism | |||
* Time Factors | |||
* Wine | |||
|keywords=* 3-methyl-2,4-nonanedione | |||
* Aroma precursor | |||
* Hydroxy ketones | |||
* Oxidation | |||
* Premature aging | |||
* Wine | |||
|full-text-url=https://sci-hub.do/10.1016/j.foodchem.2019.125486 | |||
}} | |||
{{medline-entry | |||
|title=Neonatal T Follicular Helper Cells Are Lodged in a Pre-T Follicular Helper Stage Favoring Innate Over Adaptive Germinal Center Responses. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31456798 | |||
|mesh-terms=* Adaptive Immunity | |||
* Adjuvants, Immunologic | |||
* Aging | |||
* Animals | |||
* Animals, Newborn | |||
* Germinal Center | |||
* Immunity, Innate | |||
* Interleukin-13 | |||
* Lymphopoiesis | |||
* Mice, Inbred C57BL | |||
* T-Lymphocytes, Helper-Inducer | |||
* Th2 Cells | |||
* Transcriptome | |||
|keywords=* T follicular helper cells | |||
* adjuvant | |||
* neonates | |||
* transcriptional profile analysis | |||
* vaccines | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700230 | |||
}} | |||
{{medline-entry | |||
|title=Identification of Dialkylpyrazines Off-Flavors in Oak Wood. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31423769 | |||
|mesh-terms=* Flavoring Agents | |||
* Gas Chromatography-Mass Spectrometry | |||
* Odorants | |||
* Olfactometry | |||
* Pyrazines | |||
* Quercus | |||
* Wood | |||
|keywords=* aroma | |||
* barrel aging | |||
* dialkylpyrazine | |||
* oak wood | |||
* off-flavor | |||
* wine | |||
|full-text-url=https://sci-hub.do/10.1021/acs.jafc.9b03185 | |||
}} | |||
{{medline-entry | |||
|title=Metabolomics Coupled with Transcriptomics Approach Deciphering Age Relevance in Sepsis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31440390 | |||
|keywords=* aging | |||
* biomarker | |||
* metabolomics | |||
* sepsis | |||
* transcriptomics | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6675524 | |||
}} | |||
==GCA== | |||
{{medline-entry | |||
|title=Familial aggregation of longevity in giant cell arteritis and polymyalgia rheumatica. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32683496 | |||
|keywords=* Giant cell arteritis | |||
* Longevity | |||
* Mortality | |||
* Polymyalgia rheumatica | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591435 | |||
}} | |||
{{medline-entry | |||
|title=Interaction between Alcohol Consumption and Apolipoprotein E (ApoE) Genotype with Cognition in Middle-Aged Men. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32662384 | |||
|keywords=* Aging | |||
* Alcohol drinking | |||
* Apolipoprotein E4 (ApoE) | |||
* Cognitive abilities | |||
* Male | |||
* Middle aged | |||
* Risk factors | |||
|full-text-url=https://sci-hub.do/10.1017/S1355617720000570 | |||
}} | |||
==GCK== | |||
{{medline-entry | |||
|title=The Impact of Biomarker Screening and Cascade Genetic Testing on the Cost-Effectiveness of MODY Genetic Testing. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31558549 | |||
|mesh-terms=* Biomarkers | |||
* Child | |||
* Cost-Benefit Analysis | |||
* Diabetes Mellitus, Type 2 | |||
* Female | |||
* Genetic Testing | |||
* Health Care Costs | |||
* Humans | |||
* Life Expectancy | |||
* Male | |||
* Mass Screening | |||
* Pedigree | |||
* Precision Medicine | |||
* Quality-Adjusted Life Years | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868460 | |||
}} | |||
==GCLC== | |||
{{medline-entry | |||
|title=Aerobic exercise training partially reverses the impairment of Nrf2 activation in older humans. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32866619 | |||
|keywords=* Aging | |||
* Exercise | |||
* GCLC | |||
* NQO1 | |||
* Nrf2 signaling | |||
* Redox homeostasis | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7704731 | |||
}} | |||
==GCLM== | |||
{{medline-entry | |||
|title=Silencing Bach1 alters aging-related changes in the expression of Nrf2-regulated genes in primary human bronchial epithelial cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31422075 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aging | |||
* Basic-Leucine Zipper Transcription Factors | |||
* Bronchi | |||
* Epithelial Cells | |||
* Gene Expression | |||
* Gene Silencing | |||
* Glutamate-Cysteine Ligase | |||
* Heme Oxygenase-1 | |||
* Humans | |||
* Isothiocyanates | |||
* Middle Aged | |||
* NAD(P)H Dehydrogenase (Quinone) | |||
* NF-E2-Related Factor 2 | |||
* RNA, Messenger | |||
* RNA, Small Interfering | |||
* Signal Transduction | |||
* Young Adult | |||
|keywords=* Aging | |||
* Bach1 | |||
* Glutamate cysteine ligase | |||
* Heme oxygenase | |||
* Nrf2 | |||
* Sulforaphane | |||
|full-text-url=https://sci-hub.do/10.1016/j.abb.2019.108074 | |||
}} | |||
==GDF11== | |||
{{medline-entry | |||
|title=Growth differentiation factor-11 supplementation improves survival and promotes recovery after ischemic stroke in aged mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32365331 | |||
|keywords=* GDF11 | |||
* White matter integrity | |||
* aging | |||
* gliosis | |||
* stroke | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244081 | |||
}} | |||
{{medline-entry | |||
|title=Anti-Aging Effects of [[GDF11]] on Skin. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32283613 | |||
|keywords=* disease | |||
* growth factors | |||
* regeneration | |||
* skin aging | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177281 | |||
}} | |||
{{medline-entry | |||
|title=Targeted Approach to Distinguish and Determine Absolute Levels of GDF8 and [[GDF11]] in Mouse Serum. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32104967 | |||
|keywords=* GDF11 | |||
* aging | |||
* immunoprecipitation | |||
* myostatin/GDF8 | |||
* serum | |||
* targeted-quantitative proteomics | |||
|full-text-url=https://sci-hub.do/10.1002/pmic.201900104 | |||
}} | |||
{{medline-entry | |||
|title=Growth differentiation factor 11 impairs titanium implant healing in the femur and leads to mandibular bone loss. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31983062 | |||
|keywords=* aging | |||
* alveolar bone loss | |||
* dental implants | |||
* osseointegration | |||
* transforming growth factors | |||
|full-text-url=https://sci-hub.do/10.1002/JPER.19-0247 | |||
}} | |||
{{medline-entry | |||
|title=Systemic [[GDF11]] stimulates the secretion of adiponectin and induces a calorie restriction-like phenotype in aged mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31637864 | |||
|keywords=* GDF11 | |||
* adiponectin | |||
* aging | |||
* calorie restriction | |||
* heterochronic parabiosis | |||
* rejuvenation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974718 | |||
}} | |||
{{medline-entry | |||
|title=Circulating factors in young blood as potential therapeutic agents for age-related neurodegenerative and neurovascular diseases. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31400495 | |||
|mesh-terms=* Age Factors | |||
* Aging | |||
* Animals | |||
* Blood | |||
* Bone Morphogenetic Proteins | |||
* Chemokine CCL11 | |||
* Enzyme Therapy | |||
* Enzymes | |||
* Growth Differentiation Factors | |||
* Mice | |||
* Neurodegenerative Diseases | |||
* Parabiosis | |||
* Vascular Diseases | |||
|keywords=* C-C motif chemokine 11 | |||
* Circulating factor | |||
* Growth differentiation factor 11 | |||
* Neurodegenerative diseases | |||
* Neurovascular diseases | |||
* Young blood | |||
|full-text-url=https://sci-hub.do/10.1016/j.brainresbull.2019.08.004 | |||
}} | |||
{{medline-entry | |||
|title=Effects of Exercise Training on Growth and Differentiation Factor 11 Expression in Aged Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31417428 | |||
|keywords=* aging | |||
* exercise | |||
* growth and differentiation factor 11 | |||
* sarcopenia | |||
* skeletal muscle | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6684741 | |||
}} | |||
==GDF15== | |||
{{medline-entry | |||
|title=Disease-specific plasma levels of mitokines FGF21, [[GDF15]], and Humanin in type II diabetes and Alzheimer's disease in comparison with healthy aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33131010 | |||
|keywords=* AD | |||
* Aging | |||
* FGF21 | |||
* GDF15 | |||
* Humanin | |||
* T2D | |||
|full-text-url=https://sci-hub.do/10.1007/s11357-020-00287-w | |||
}} | |||
{{medline-entry | |||
|title=Growth differentiation factor 15 protects against the aging-mediated systemic inflammatory response in humans and mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32691494 | |||
|keywords=* T cell | |||
* aging | |||
* inflammation | |||
* mitochondria | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431835 | |||
}} | |||
{{medline-entry | |||
|title=Analysis of Epigenetic Age Predictors in Pain-Related Conditions. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32582603 | |||
|keywords=* DNA methylation | |||
* aging biomarker | |||
* chronic pain | |||
* epigenetic aging | |||
* epigenetic clock | |||
* fibromyalgia | |||
* headache | |||
* pain sensitivity | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7296181 | |||
}} | |||
{{medline-entry | |||
|title=[[GDF15]] Plasma Level Is Inversely Associated With Level of Physical Activity and Correlates With Markers of Inflammation and Muscle Weakness. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32477368 | |||
|keywords=* GDF15 | |||
* healthy aging | |||
* inflammation | |||
* physical activity | |||
* sedentarity | |||
* skeletal muscle | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235447 | |||
}} | |||
{{medline-entry | |||
|title=[[GDF15]] is an epithelial-derived biomarker of idiopathic pulmonary fibrosis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31432710 | |||
|mesh-terms=* Aged | |||
* Alveolar Epithelial Cells | |||
* Animals | |||
* Bleomycin | |||
* Bronchoalveolar Lavage Fluid | |||
* Case-Control Studies | |||
* Disease Models, Animal | |||
* Female | |||
* Gene Expression Profiling | |||
* Growth Differentiation Factor 15 | |||
* Humans | |||
* Idiopathic Pulmonary Fibrosis | |||
* Lung | |||
* Male | |||
* Mice | |||
* Middle Aged | |||
* Respiratory Function Tests | |||
* Severity of Illness Index | |||
* Survival Analysis | |||
* Telomere | |||
* Transcriptome | |||
|keywords=* MIC-1 | |||
* NAG-1 | |||
* SASP | |||
* aging | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842909 | |||
}} | |||
{{medline-entry | |||
|title=Senescence-associated tissue microenvironment promotes colon cancer formation through the secretory factor [[GDF15]]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31389184 | |||
|mesh-terms=* Aging | |||
* Cells, Cultured | |||
* Cellular Senescence | |||
* Colonic Neoplasms | |||
* Fibroblasts | |||
* Growth Differentiation Factor 15 | |||
* HEK293 Cells | |||
* Humans | |||
* Phenotype | |||
* RNA, Messenger | |||
* Tumor Microenvironment | |||
|keywords=* GDF15 | |||
* colon organoids | |||
* colorectal cancer | |||
* microenvironment | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826139 | |||
}} | |||
==GDF5== | |||
{{medline-entry | |||
|title=An embryonic CaVβ1 isoform promotes muscle mass maintenance via [[GDF5]] signaling in adult mouse. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31694926 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Animals | |||
* Atrophy | |||
* Calcium Channels, L-Type | |||
* Denervation | |||
* Embryo, Mammalian | |||
* Exons | |||
* Female | |||
* Gene Expression Regulation, Developmental | |||
* Growth Differentiation Factor 5 | |||
* Humans | |||
* Male | |||
* Mice | |||
* Muscles | |||
* Neuromuscular Junction | |||
* Organ Size | |||
* Physical Conditioning, Animal | |||
* Protein Isoforms | |||
* RNA Splicing | |||
* Signal Transduction | |||
* Young Adult | |||
|full-text-url=https://sci-hub.do/10.1126/scitranslmed.aaw1131 | |||
}} | |||
==GDNF== | |||
{{medline-entry | |||
|title=GFR-α1 Expression in Substantia Nigra Increases Bilaterally Following Unilateral Striatal [[GDNF]] in Aged Rats and Attenuates Nigral Tyrosine Hydroxylase Loss Following 6-OHDA Nigrostriatal Lesion. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31538765 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Dopamine | |||
* Glial Cell Line-Derived Neurotrophic Factor | |||
* Glial Cell Line-Derived Neurotrophic Factor Receptors | |||
* Neurons | |||
* Oxidopamine | |||
* Phosphorylation | |||
* Rats | |||
* Substantia Nigra | |||
* Tyrosine 3-Monooxygenase | |||
|keywords=* 6-hydroxydopamine | |||
* Parkinson’s disease | |||
* Substantia nigra | |||
* aging | |||
* nigrostriatal | |||
* tyrosine hydroxylase | |||
|full-text-url=https://sci-hub.do/10.1021/acschemneuro.9b00291 | |||
}} | |||
==GEM== | |||
{{medline-entry | |||
|title=The Impact of Geriatric Emergency Management Nurses on the Care of Frail Older Patients in the Emergency Department: a Systematic Review. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32904804 | |||
|keywords=* emergency department | |||
* geriatric emergency management nurses | |||
* geriatrics | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458600 | |||
}} | |||
==GFAP== | |||
{{medline-entry | |||
|title=Immunohistological Detection of Active Satellite Cellsin Rat Dorsal Root Ganglia after Parenteral Administration of Lipopolysaccharide and during Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32990851 | |||
|keywords=* aging | |||
* dorsal root ganglion | |||
* satellite cells | |||
* systemic inflammation | |||
|full-text-url=https://sci-hub.do/10.1007/s10517-020-04950-2 | |||
}} | |||
{{medline-entry | |||
|title=Transgenic Mice Expressing Human α-Synuclein in Noradrenergic Neurons Develop Locus Ceruleus Pathology and Nonmotor Features of Parkinson's Disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32868457 | |||
|keywords=* Parkinson's disease | |||
* aging | |||
* locus ceruleus | |||
* nonmotor | |||
* norepinephrine | |||
* α-synuclein | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511194 | |||
}} | |||
{{medline-entry | |||
|title=ApoE Genotype-Dependent Response to Antioxidant and Exercise Interventions on Brain Function. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32630431 | |||
|keywords=* Alzheimer’s disease | |||
* ApoE | |||
* aging | |||
* antioxidants | |||
* cognition | |||
* exercise | |||
* motor | |||
* oxidative stress | |||
* vitamin C | |||
* vitamin E | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7346214 | |||
}} | |||
{{medline-entry | |||
|title=Age-Dependent Heterogeneity of Murine Olfactory Bulb Astrocytes. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32581775 | |||
|keywords=* Sholl analysis | |||
* aging | |||
* astrocyte | |||
* cell morphology | |||
* heterogeneity | |||
* olfactory bulb | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7296154 | |||
}} | |||
{{medline-entry | |||
|title=Neuroinflammation in Aged Brain: Impact of the Oral Administration of Ellagic Acid Microdispersion. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32455600 | |||
|keywords=* CD45 | |||
* EA microdispersion (EAm) | |||
* GFAP | |||
* aging | |||
* behavioral skills | |||
* ellagic acid (EA) | |||
* mice | |||
* noradrenaline | |||
* oral administration | |||
* principal component analysis (PCA) | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7279224 | |||
}} | |||
{{medline-entry | |||
|title=Long-term treatment with spermidine increases health span of middle-aged Sprague-Dawley male rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32285289 | |||
|keywords=* Autophagy | |||
* Behavior | |||
* Longevity | |||
* Middle-aged rats | |||
* Neuroinflammation | |||
* Spermidine | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7287009 | |||
}} | |||
{{medline-entry | |||
|title=Meta-analysis of human prefrontal cortex reveals activation of [[GFAP]] and decline of synaptic transmission in the aging brain. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32138778 | |||
|keywords=* Aging | |||
* Meta-analysis | |||
* Prefrontal cortex | |||
* Sex-specific | |||
* Transcriptome | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059712 | |||
}} | |||
{{medline-entry | |||
|title=Astroglial biotin deprivation under endoplasmic reticulum stress uncouples BCAA-mTORC1 role in lipid synthesis to prolong autophagy inhibition in the aging brain. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32030764 | |||
|keywords=* BCAA | |||
* ER stress | |||
* aging | |||
* autophagy | |||
* lipogenesis | |||
* mTORC1 | |||
|full-text-url=https://sci-hub.do/10.1111/jnc.14979 | |||
}} | |||
{{medline-entry | |||
|title=Long-lived mice with reduced growth hormone signaling have a constitutive upregulation of hepatic chaperone-mediated autophagy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32013718 | |||
|keywords=* Aging | |||
* chaperone-mediated autophagy | |||
* endocrine control of autophagy | |||
* endocrine signaling | |||
* growth hormone | |||
|full-text-url=https://sci-hub.do/10.1080/15548627.2020.1725378 | |||
}} | |||
{{medline-entry | |||
|title=Lipopolysaccharide exposure during late embryogenesis triggers and drives Alzheimer-like behavioral and neuropathological changes in CD-1 mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31997558 | |||
|keywords=* Alzheimer's disease | |||
* aging | |||
* lipopolysaccharide | |||
* memory | |||
* mice | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7066339 | |||
}} | |||
{{medline-entry | |||
|title=Increased levels of Aβ42 decrease the lifespan of ob/ob mice with dysregulation of microglia and astrocytes. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31907998 | |||
|mesh-terms=* Alzheimer Disease | |||
* Amyloid beta-Peptides | |||
* Animals | |||
* Astrocytes | |||
* Gene Knock-In Techniques | |||
* Longevity | |||
* Mice | |||
* Mice, Knockout | |||
* Mice, Obese | |||
* Microglia | |||
* Peptide Fragments | |||
|keywords=* Alzheimer's disease | |||
* astrocytes | |||
* diabetes | |||
* lifespan | |||
* microglia | |||
* obesity | |||
|full-text-url=https://sci-hub.do/10.1096/fj.201901028RR | |||
}} | |||
{{medline-entry | |||
|title=Selective brain neuronal and glial losses without changes in [[GFAP]] immunoreactivity: Young versus mature adult Wistar rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31404554 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Brain | |||
* Glial Fibrillary Acidic Protein | |||
* Male | |||
* Neuroglia | |||
* Neurons | |||
* Rats | |||
* Rats, Wistar | |||
|keywords=* Ageing | |||
* Astrocytes | |||
* GFAP | |||
* Glia | |||
* Neurons | |||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2019.111128 | |||
}} | |||
==GGCT== | |||
{{medline-entry | |||
|title=Blockade of γ-Glutamylcyclotransferase Enhances Docetaxel Growth Inhibition of Prostate Cancer Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31519583 | |||
|mesh-terms=* Antineoplastic Agents | |||
* Apoptosis | |||
* Cell Line, Tumor | |||
* Cell Proliferation | |||
* Cellular Senescence | |||
* Docetaxel | |||
* Enzyme Inhibitors | |||
* Gene Expression | |||
* Humans | |||
* Immunohistochemistry | |||
* Male | |||
* Prostatic Neoplasms | |||
* RNA, Small Interfering | |||
* gamma-Glutamylcyclotransferase | |||
|keywords=* docetaxel | |||
* pro-GA | |||
* prostate cancer cells | |||
* senescence | |||
* γ-glutamylcyclotransferase | |||
|full-text-url=https://sci-hub.do/10.21873/anticanres.13666 | |||
}} | |||
==GHR== | |||
{{medline-entry | |||
|title=Tissue-Specific [[GHR]] Knockout Mice: An Updated Review. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33162937 | |||
|keywords=* aging | |||
* growth hormone | |||
* longevity | |||
* metabolism | |||
* mice | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7581730 | |||
}} | |||
==GHRH== | |||
{{medline-entry | |||
|title=Physiological and metabolic features of mice with CRISPR/Cas9-mediated loss-of-function in growth hormone-releasing hormone. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32422607 | |||
|keywords=* CRISPR | |||
* GHRH | |||
* aging | |||
* lifespan | |||
* metabolism | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7288930 | |||
}} | |||
{{medline-entry | |||
|title=Transcriptomic and metabolomic profiling of long-lived growth hormone releasing hormone knock-out mice: evidence for altered mitochondrial function and amino acid metabolism. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32091406 | |||
|keywords=* aging | |||
* growth hormone | |||
* metabolite | |||
* mouse | |||
* transcriptomics | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7066919 | |||
}} | |||
==GIP== | |||
{{medline-entry | |||
|title=Absence of [[GIP]] secretion alleviates age-related obesity and insulin resistance. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31977316 | |||
|mesh-terms=* Adiponectin | |||
* Adipose Tissue | |||
* Age Factors | |||
* Animals | |||
* Diet | |||
* Diet, High-Fat | |||
* Enteroendocrine Cells | |||
* Gastric Inhibitory Polypeptide | |||
* Gene Expression | |||
* Glucose Tolerance Test | |||
* Insulin | |||
* Insulin Resistance | |||
* Leptin | |||
* Male | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* Mice, Transgenic | |||
* Obesity | |||
|keywords=* GIP | |||
* aging | |||
* incretin | |||
* obesity | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7040458 | |||
}} | |||
==GIT2== | |||
{{medline-entry | |||
|title=Multidimensional informatic deconvolution defines gender-specific roles of hypothalamic [[GIT2]] in aging trajectories. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31574270 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Cluster Analysis | |||
* Computational Biology | |||
* Female | |||
* GTPase-Activating Proteins | |||
* Hypothalamus | |||
* Longevity | |||
* Male | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* RNA | |||
* Sex Characteristics | |||
* Signal Transduction | |||
* Transcriptome | |||
|keywords=* Aging | |||
* Female | |||
* GIT2 | |||
* Hypothalamus | |||
* Longevity | |||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2019.111150 | |||
}} | |||
==GJC2== | |||
{{medline-entry | |||
|title=Zebrafish brain RNA sequencing reveals that cell adhesion molecules are critical in brain aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32629311 | |||
|keywords=* Brain aging | |||
* Cell adhesion molecules | |||
* RNA sequencing | |||
* Zebrafish | |||
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2020.04.017 | |||
}} | |||
==GK== | |||
{{medline-entry | |||
|title=Progression of diabetic kidney disease in T2DN rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31566426 | |||
|mesh-terms=* Aging | |||
* Albuminuria | |||
* Animals | |||
* Blood Glucose | |||
* Diabetes Mellitus, Type 2 | |||
* Diabetic Nephropathies | |||
* Disease Progression | |||
* Hypertrophy | |||
* Kidney Glomerulus | |||
* Male | |||
* Membrane Proteins | |||
* Organ Size | |||
* Polyuria | |||
* Rats | |||
* Rats, Wistar | |||
* Renin-Angiotensin System | |||
* Water-Electrolyte Imbalance | |||
|keywords=* diabetic glomerular disease | |||
* diabetic nephropathy | |||
* podocyte pathology | |||
* renin-angiotensin-aldosterone system | |||
* scanning ion microscopy | |||
* type 2 diabetic nephropathy | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960784 | |||
}} | |||
==GNAQ== | |||
{{medline-entry | |||
|title=[[GNAQ]] expression initiated in multipotent neural crest cells drives aggressive melanoma of the central nervous system. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31680437 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Central Nervous System Neoplasms | |||
* Disease Models, Animal | |||
* Disease Progression | |||
* Embryonic Development | |||
* Female | |||
* GTP-Binding Protein alpha Subunits, Gq-G11 | |||
* Male | |||
* Melanocytes | |||
* Melanoma | |||
* Meningeal Neoplasms | |||
* Mice, Transgenic | |||
* Multipotent Stem Cells | |||
* Mutation | |||
* Neoplasm Invasiveness | |||
* Neural Crest | |||
* Nevus | |||
* Skin Neoplasms | |||
* Uveal Neoplasms | |||
|keywords=* GNAQ | |||
* Plp1 | |||
* blue nevus | |||
* leptomeningeal melanocytoma | |||
* uveal melanoma | |||
|full-text-url=https://sci-hub.do/10.1111/pcmr.12843 | |||
}} | |||
==GNE== | |||
{{medline-entry | |||
|title=Aberrant mitochondrial morphology and function associated with impaired mitophagy and DNM1L-MAPK/ERK signaling are found in aged mutant Parkinsonian LRRK2 mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33300446 | |||
|keywords=* Aging | |||
* Dnm1l/DRP1 | |||
* SQSTM1/p62 | |||
* knockin mice | |||
* macroautophagy | |||
* mitochondria dysfunction | |||
* mitochondrial fission | |||
* mitophagy | |||
* parkinson disease | |||
* ubiquitination | |||
|full-text-url=https://sci-hub.do/10.1080/15548627.2020.1850008 | |||
}} | |||
==GPC1== | |||
{{medline-entry | |||
|title=Decreased expression of [[GPC1]] in human skin keratinocytes and epidermis during ageing. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31430521 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Cell Proliferation | |||
* Cells, Cultured | |||
* Epidermis | |||
* Female | |||
* Fibroblast Growth Factor 2 | |||
* Gene Expression Regulation | |||
* Glypicans | |||
* Humans | |||
* Keratinocytes | |||
* Middle Aged | |||
* RNA, Messenger | |||
* Signal Transduction | |||
* Skin | |||
* Young Adult | |||
|keywords=* Ageing | |||
* Epidermis | |||
* Glypican 1 | |||
* Human skin | |||
* Keratinocytes | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2019.110693 | |||
}} | |||
==GPI== | |||
{{medline-entry | |||
|title=Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32646997 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Blood Circulation | |||
* Brain | |||
* Cognition | |||
* Cognitive Dysfunction | |||
* Glycosylphosphatidylinositols | |||
* Liver | |||
* Mice | |||
* Neurogenesis | |||
* Phospholipase D | |||
* Physical Conditioning, Animal | |||
* Regeneration | |||
* Signal Transduction | |||
|full-text-url=https://sci-hub.do/10.1126/science.aaw2622 | |||
}} | |||
==GPR6== | |||
{{medline-entry | |||
|title=Accelerated Epigenetic Aging and Methylation Disruptions Occur in Human Immunodeficiency Virus Infection Prior to Antiretroviral Therapy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32959881 | |||
|keywords=* HIV | |||
* aging | |||
* epigenetics | |||
* methylation | |||
|full-text-url=https://sci-hub.do/10.1093/infdis/jiaa599 | |||
}} | |||
==GPT== | |||
{{medline-entry | |||
|title=Brain Structural-Behavioral Correlates Underlying Grooved Pegboard Test Performance Across Lifespan. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32631206 | |||
|keywords=* aging | |||
* gray matter | |||
* visuomotor function | |||
* white matter | |||
|full-text-url=https://sci-hub.do/10.1080/00222895.2020.1787320 | |||
}} | |||
==GPX1== | |||
{{medline-entry | |||
|title=Glutathione peroxidase-1 overexpression reduces oxidative stress, and improves pathology and proteome remodeling in the kidneys of old mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32400101 | |||
|keywords=* glutathione peroxidase-1 | |||
* kidney aging | |||
* mitochondria | |||
* proteomics | |||
* reactive oxygen species | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7294784 | |||
}} | |||
==GPX3== | |||
{{medline-entry | |||
|title=Long noncoding RNA glutathione peroxidase 3-antisense inhibits lens epithelial cell apoptosis by upregulating glutathione peroxidase 3 expression in age-related cataract. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31814699 | |||
|mesh-terms=* Aging | |||
* Anterior Capsule of the Lens | |||
* Apoptosis | |||
* Cataract | |||
* Cell Line | |||
* Cell Nucleus | |||
* Epithelial Cells | |||
* Glutathione Peroxidase | |||
* Humans | |||
* Hydrogen Peroxide | |||
* Lens, Crystalline | |||
* RNA, Long Noncoding | |||
* Up-Regulation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6857780 | |||
}} | |||
==GPX4== | |||
{{medline-entry | |||
|title=l-carnitine supplementation during in vitro culture regulates oxidative stress in embryos from bovine aged oocytes. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31837632 | |||
|mesh-terms=* Animals | |||
* Carnitine | |||
* Cattle | |||
* Culture Media | |||
* Embryo Culture Techniques | |||
* Female | |||
* Fertilization in Vitro | |||
* In Vitro Oocyte Maturation Techniques | |||
* Oocytes | |||
* Oxidative Stress | |||
|keywords=* Bovine | |||
* Embryo development | |||
* Oocyte aging | |||
* l-carnitine | |||
|full-text-url=https://sci-hub.do/10.1016/j.theriogenology.2019.11.036 | |||
}} | |||
{{medline-entry | |||
|title=Dietary Selenium Supplementation Ameliorates Female Reproductive Efficiency in Aging Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31835711 | |||
|keywords=* GPX4 | |||
* Gpx1 | |||
* Gpx3 | |||
* Selenof | |||
* apoptosis | |||
* embryo | |||
* follicle development | |||
* ovarian aging | |||
* selenium | |||
* selenoprotein | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6969897 | |||
}} | |||
==GREM1== | |||
{{medline-entry | |||
|title=[[GREM1]] inhibits osteogenic differentiation, senescence and BMP transcription of adipose-derived stem cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32151168 | |||
|keywords=* BMP | |||
* GREM1 | |||
* adipose-derived stem cells (ADSCs) | |||
* osteogenic differentiation | |||
* senescence | |||
|full-text-url=https://sci-hub.do/10.1080/03008207.2020.1736054 | |||
}} | |||
==GREM2== | |||
{{medline-entry | |||
|title=Increase of gremlin 2 with age in human adipose-derived stromal/stem cells and its inhibitory effect on adipogenesis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31709279 | |||
|keywords=* Adipogenic differentiation | |||
* Adipose-derived stromal/stem stem cells | |||
* Aging | |||
* DAPI, 4′,6-diamidino-2-phenylindole | |||
* FGF, fibroblast growth factor | |||
* GREM2 | |||
* GREM2 knockdown | |||
* HE, hematoxylin eosin | |||
* Individual differences | |||
* PBS, phosphate buffered Solution | |||
* PFA, paraformaldehyde | |||
* TGF-β, transforming growth factor beta | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6831850 | |||
}} | |||
==GRID1== | |||
{{medline-entry | |||
|title=Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109663 | |||
|keywords=* GWAS | |||
* HDL-C metabolism | |||
* Healthy aging | |||
* Longevity | |||
* Longitudinal HDL-C change | |||
|full-text-url=https://sci-hub.do/10.1016/j.atherosclerosis.2020.02.005 | |||
}} | |||
==GRIK2== | |||
{{medline-entry | |||
|title=Senescence of Normal Human Fibroblasts Relates to the Expression of Ionotropic Glutamate Receptor GluR6/Grik2. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33099472 | |||
|keywords=* GluR6 | |||
* Grik2 | |||
* Senescence | |||
* cancer | |||
* glutamate receptor | |||
* normal fibroblasts | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7675648 | |||
}} | |||
==GRK2== | |||
{{medline-entry | |||
|title=G protein-coupled receptor kinase 2 modifies the ability of Caenorhabditis elegans to survive oxidative stress. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33064264 | |||
|keywords=* Aging | |||
* Caenorhabditis elegans (C. elegans) | |||
* G protein coupled receptor kinase (GRK) | |||
* Oxidative stress | |||
* Resistance | |||
* Stress response | |||
|full-text-url=https://sci-hub.do/10.1007/s12192-020-01168-z | |||
}} | |||
{{medline-entry | |||
|title=G protein coupled receptor kinases modulate Caenorhabditis elegans reactions to heat stresses. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32768194 | |||
|keywords=* Aging | |||
* Biological control | |||
* Caenorhabditis elegans (C. elegans) | |||
* G protein coupled receptor (GPCR) | |||
* G protein coupled receptor kinase (GRK) | |||
* Heat stress | |||
* Resistance | |||
* Stress response | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2020.07.121 | |||
}} | |||
{{medline-entry | |||
|title=Loss of dynamic regulation of G protein-coupled receptor kinase 2 by nitric oxide leads to cardiovascular dysfunction with aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32216616 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Female | |||
* G Protein-Coupled Inwardly-Rectifying Potassium Channels | |||
* Heart | |||
* Heart Diseases | |||
* Homeostasis | |||
* Male | |||
* Mice | |||
* Mutation | |||
* Myocardium | |||
* Nitric Oxide | |||
|keywords=* S-nitrosylation | |||
* cardiac hypertrophy | |||
* heart disease | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7346533 | |||
}} | |||
==GRM3== | |||
{{medline-entry | |||
|title=Profiling gene expression in the human dentate gyrus granule cell layer reveals insights into schizophrenia and its genetic risk. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32203495 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Bipolar Disorder | |||
* Dentate Gyrus | |||
* Depressive Disorder, Major | |||
* Female | |||
* Gene Expression Profiling | |||
* Genetic Predisposition to Disease | |||
* Genome-Wide Association Study | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Neurons | |||
* Quantitative Trait Loci | |||
* Schizophrenia | |||
* Transcriptome | |||
* Young Adult | |||
|full-text-url=https://sci-hub.do/10.1038/s41593-020-0604-z | |||
}} | |||
==GRN== | |||
{{medline-entry | |||
|title=Stressful development: Integrating endoderm development, stress, and longevity. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33307045 | |||
|keywords=* Caenorhabditis elegans | |||
* Embryonic development | |||
* Epigenetics inheritance | |||
* Innate immunity | |||
* Longevity | |||
* Pleiotropy | |||
* Stress | |||
|full-text-url=https://sci-hub.do/10.1016/j.ydbio.2020.12.002 | |||
}} | |||
{{medline-entry | |||
|title=A Scoping Review of the Evidence About the Nurses Improving Care for Healthsystem Elders (NICHE) Program. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31681955 | |||
|keywords=* Aging | |||
* Geriatric nursing | |||
* Health care professionals | |||
* Intervention | |||
* Quality improvement | |||
|full-text-url=https://sci-hub.do/10.1093/geront/gnz150 | |||
}} | |||
==GSC== | |||
{{medline-entry | |||
|title=[i]mastermind[/i] regulates niche ageing independently of the [i]Notch[/i] pathway in the [i]Drosophila[/i] ovary. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31744422 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Cellular Senescence | |||
* Drosophila Proteins | |||
* Drosophila melanogaster | |||
* Female | |||
* Germ Cells | |||
* Nuclear Proteins | |||
* Ovary | |||
* Receptors, Notch | |||
* Signal Transduction | |||
* Stem Cell Niche | |||
* Transcriptome | |||
|keywords=* DE-cadherin | |||
* Drosophila oogenesis | |||
* Hedgehog | |||
* mastermind | |||
* niche ageing | |||
* reactive oxygen species | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6893403 | |||
}} | |||
==GSTM1== | |||
{{medline-entry | |||
|title=The effects of everyday-life exposure to polycyclic aromatic hydrocarbons on biological age indicators. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33272294 | |||
|keywords=* Biological aging | |||
* DNA adduct | |||
* Mitochondrial DNA copy number | |||
* Polycyclic aromatic hydrocarbon | |||
* Structural equation modelling | |||
* Telomere length | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713168 | |||
}} | |||
==GSTM2== | |||
{{medline-entry | |||
|title=Small Extracellular Vesicles Have GST Activity and Ameliorate Senescence-Related Tissue Damage. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32574561 | |||
|keywords=* 4-HNE | |||
* EV | |||
* GSH | |||
* GST | |||
* ROS | |||
* SASP | |||
* aging | |||
* extracellular vesicles | |||
* glutathione metabolism | |||
* glutathione-S-transferase | |||
* lipid peroxidation | |||
* rejuvenation | |||
* senescence | |||
* senescence-associated secretory phenotype | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7342013 | |||
}} | |||
==GUK1== | |||
{{medline-entry | |||
|title=Characterization of the impact of GMP/GDP synthesis inhibition on replicative lifespan extension in yeast. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32232569 | |||
|keywords=* Aging | |||
* GDP | |||
* GMP | |||
* Mycophenolic acid | |||
* Proteasome | |||
* Replicative lifespan | |||
* Yeast | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367712 | |||
}} | |||
==GZMK== | |||
{{medline-entry | |||
|title=Comprehensive Profiling of an Aging Immune System Reveals Clonal [[GZMK]] CD8 T Cells as Conserved Hallmark of Inflammaging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33271118 | |||
|keywords=* Aging | |||
* CD8 T cells | |||
* CITE-seq | |||
* granzyme K | |||
* immune system | |||
* inflammaging | |||
* single-cell ATAC-sequencing | |||
* single-cell BCR-sequencing | |||
* single-cell RNA-sequencing | |||
* single-cell TCR-sequencing | |||
|full-text-url=https://sci-hub.do/10.1016/j.immuni.2020.11.005 | |||
}} | |||
==H2AX== | |||
{{medline-entry | |||
|title=Evaluation of Gamma[[H2AX]] in Buccal Cells as a Molecular Biomarker of DNA Damage in Alzheimer's Disease in the AIBL Study of Ageing. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32781776 | |||
|keywords=* Alzheimer’s disease | |||
* DNA damage | |||
* mild cognitive impairment | |||
* senescence | |||
* γH2AX | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7459751 | |||
}} | |||
{{medline-entry | |||
|title=Cisplatin-induced peripheral neuropathy is associated to neuronal senescence-like response. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32597980 | |||
|keywords=* cisplatin | |||
* neuropathy | |||
* neurotoxicity | |||
* p21 | |||
* senescence | |||
|full-text-url=https://sci-hub.do/10.1093/neuonc/noaa151 | |||
}} | |||
{{medline-entry | |||
|title=Guanine Deaminase Stimulates Ultraviolet-induced Keratinocyte Senescence in Seborrhoeic Keratosis via Guanine Metabolites. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32215662 | |||
|keywords=* DNA damage | |||
* UV-induced keratinocyte senescence | |||
* guanine deaminase | |||
* reactive oxygen species | |||
* uric acid | |||
* seborrhoeic keratosis | |||
|full-text-url=https://sci-hub.do/10.2340/00015555-3473 | |||
}} | |||
{{medline-entry | |||
|title=Do BRCA1 and BRCA2 gene mutation carriers have a reduced ovarian reserve? Protocol for a prospective observational study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31772111 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Aging | |||
* BRCA1 Protein | |||
* BRCA2 Protein | |||
* Female | |||
* Germ-Line Mutation | |||
* Heterozygote | |||
* Humans | |||
* Immunohistochemistry | |||
* Middle Aged | |||
* Observational Studies as Topic | |||
* Ovarian Follicle | |||
* Ovarian Reserve | |||
* Prospective Studies | |||
* Research Design | |||
* Young Adult | |||
|keywords=* BRCA | |||
* DNA repair | |||
* fertility | |||
* follicle | |||
* germline mutation | |||
* oocyte | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6887091 | |||
}} | |||
{{medline-entry | |||
|title=Slower rates of accumulation of DNA damage in leukocytes correlate with longer lifespans across several species of birds and mammals. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31730540 | |||
|mesh-terms=* Animals | |||
* Birds | |||
* Bottle-Nosed Dolphin | |||
* Cross-Sectional Studies | |||
* DNA Damage | |||
* Goats | |||
* Leukocytes | |||
* Longevity | |||
* Reindeer | |||
* Turtles | |||
* Vertebrates | |||
|keywords=* DNA damage | |||
* lifespan | |||
* short telomeres | |||
* species | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874430 | |||
}} | |||
{{medline-entry | |||
|title=Phosphoproteomic analysis reveals plant DNA damage signalling pathways with a functional role for histone [[H2AX]] phosphorylation in plant growth under genotoxic stress. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31410901 | |||
|mesh-terms=* ATP-Binding Cassette Transporters | |||
* Aging | |||
* Arabidopsis | |||
* Arabidopsis Proteins | |||
* Cells, Cultured | |||
* DNA Damage | |||
* DNA Repair | |||
* Gene Expression Regulation, Plant | |||
* Gene Ontology | |||
* Germination | |||
* Histones | |||
* Mass Spectrometry | |||
* Phosphorylation | |||
* Proteome | |||
* Seeds | |||
* Serine | |||
* Signal Transduction | |||
* Stress, Physiological | |||
* X-Rays | |||
|keywords=* ATAXIA TELANGIECTASIA MUTATED (ATM) | |||
* DNA damage response | |||
* DNA repair | |||
* phosphorylation | |||
* seed | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6900162 | |||
}} | |||
==HBM== | |||
{{medline-entry | |||
|title=The effects of dietary fatty acids on bone, hematopoietic marrow and marrow adipose tissue in a murine model of senile osteoporosis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31553309 | |||
|mesh-terms=* Adipose Tissue | |||
* Adiposity | |||
* Animals | |||
* Bone Density | |||
* Bone Marrow | |||
* Dietary Fats | |||
* Dietary Supplements | |||
* Disease Models, Animal | |||
* Fatty Acids, Omega-3 | |||
* Female | |||
* Femur | |||
* Mice | |||
* Osteoporosis | |||
* X-Ray Microtomography | |||
|keywords=* SAMP8 mouse | |||
* aging | |||
* fish oil | |||
* marrow adipose tissue | |||
* osteoporosis | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6781972 | |||
}} | |||
==HBP1== | |||
{{medline-entry | |||
|title=Suppression of p38/[[HBP1]] pathway alleviates hyperosmotic stress-induced senescent progression of chondrocyte senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32549582 | |||
|mesh-terms=* Cellular Senescence | |||
* Chondrocytes | |||
* Disease Progression | |||
* High Mobility Group Proteins | |||
* Humans | |||
* Osteoarthritis | |||
* Repressor Proteins | |||
* Up-Regulation | |||
* p38 Mitogen-Activated Protein Kinases | |||
|keywords=* HBP1 | |||
* chondrocyte | |||
* osmolality stress | |||
* p38 | |||
* senescence | |||
|full-text-url=https://sci-hub.do/10.23812/20-63-A-6 | |||
}} | |||
==HCN1== | |||
{{medline-entry | |||
|title=Protein expression changes of [[HCN1]] and HCN2 in hippocampal subregions of gerbils during the normal aging process. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32128096 | |||
|keywords=* Aging | |||
* Dentate gyrus | |||
* Granule cells | |||
* HCN channel | |||
* Hippocampus proper | |||
* Pyramidal cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038419 | |||
}} | |||
==HDAC1== | |||
{{medline-entry | |||
|title=[[HDAC1]] modulates OGG1-initiated oxidative DNA damage repair in the aging brain and Alzheimer's disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32424276 | |||
|mesh-terms=* Acetylation | |||
* Aging | |||
* Alzheimer Disease | |||
* Animals | |||
* Astrocytes | |||
* Base Sequence | |||
* Benzophenones | |||
* Brain | |||
* Cognition | |||
* Cognition Disorders | |||
* DNA Damage | |||
* DNA Glycosylases | |||
* Down-Regulation | |||
* Gene Ontology | |||
* Guanine | |||
* Histone Deacetylase 1 | |||
* Memory | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* Neurons | |||
* Oxidative Stress | |||
* Promoter Regions, Genetic | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235043 | |||
}} | |||
==HDAC10== | |||
{{medline-entry | |||
|title=Middle-aged female rats lack changes in histone H3 acetylation in the anterior hypothalamus observed in young females on the day of a luteinizing hormone surge. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31434815 | |||
|mesh-terms=* Acetylation | |||
* Age Factors | |||
* Animals | |||
* Estradiol | |||
* Female | |||
* Histones | |||
* Hypothalamus, Anterior | |||
* Luteinizing Hormone | |||
* Rats | |||
* Rats, Sprague-Dawley | |||
|keywords=* Histone acetylation | |||
* LH | |||
* aging | |||
* histone deacetylases | |||
* hypothalamus | |||
|full-text-url=https://sci-hub.do/10.5582/bst.2019.01162 | |||
}} | |||
==HDAC2== | |||
{{medline-entry | |||
|title=EEF1A1 deacetylation enables transcriptional activation of remyelination. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32647127 | |||
|mesh-terms=* Acetylation | |||
* Aging | |||
* Animals | |||
* Cell Dedifferentiation | |||
* Cell Nucleus | |||
* Histone Deacetylase 1 | |||
* Histone Deacetylase 2 | |||
* Lysine Acetyltransferase 5 | |||
* Mice | |||
* Models, Biological | |||
* Oligodendroglia | |||
* Peptide Elongation Factor 1 | |||
* Peripheral Nervous System | |||
* Recovery of Function | |||
* Remyelination | |||
* SOXE Transcription Factors | |||
* STAT3 Transcription Factor | |||
* Schwann Cells | |||
* Theophylline | |||
* Trans-Activators | |||
* Transcriptional Activation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347577 | |||
}} | |||
==HDAC3== | |||
{{medline-entry | |||
|title=Histone deacetylase-3: Friend and foe of the brain. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32486848 | |||
|keywords=* Histone deacetylases | |||
* aging | |||
* histone deacetylase-3 | |||
* learning and memory | |||
* neurodegenerative diseases | |||
* neurodevelopment | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400723 | |||
}} | |||
{{medline-entry | |||
|title=Loss of [[HDAC3]] contributes to meiotic defects in aged oocytes. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31498540 | |||
|mesh-terms=* Animals | |||
* Cells, Cultured | |||
* Cellular Senescence | |||
* Female | |||
* Histone Deacetylases | |||
* Meiosis | |||
* Mice | |||
* Mice, Inbred ICR | |||
* Oocytes | |||
|keywords=* HDACs | |||
* aneuploidy | |||
* maternal aging | |||
* oocyte quality | |||
* reproduction | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826132 | |||
}} | |||
==HDAC4== | |||
{{medline-entry | |||
|title=The posttranslational modification of [[HDAC4]] in cell biology: Mechanisms and potential targets. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31588631 | |||
|keywords=* HDAC4 | |||
* cell senescence | |||
* cellular apoptosis and autophagy | |||
* glucose metabolism | |||
* inflammation and pathology | |||
* proliferation and differentiation | |||
|full-text-url=https://sci-hub.do/10.1002/jcb.29365 | |||
}} | |||
==HDAC6== | |||
{{medline-entry | |||
|title=Inhibition of [[HDAC6]] Attenuates Diabetes-Induced Retinal Redox Imbalance and Microangiopathy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32660051 | |||
|keywords=* HDAC6 | |||
* diabetic retinopathy | |||
* oxidative stress | |||
* retinal endothelial cell senescence | |||
* retinal endothelial cells | |||
* tubastatin A | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7402090 | |||
}} | |||
==HDC== | |||
{{medline-entry | |||
|title=Induced pluripotency and spontaneous reversal of cellular aging in supercentenarian donor cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32115145 | |||
|mesh-terms=* Adult | |||
* Aged, 80 and over | |||
* Cell Differentiation | |||
* Cell Line | |||
* Cellular Reprogramming | |||
* Cellular Senescence | |||
* Child | |||
* Clone Cells | |||
* Gene Expression Regulation | |||
* Humans | |||
* Induced Pluripotent Stem Cells | |||
* Mesenchymal Stem Cells | |||
* Telomere Homeostasis | |||
* Tissue Donors | |||
* Transcriptome | |||
|keywords=* Aging | |||
* Longevity | |||
* Reprogramming | |||
* Supercentenarian | |||
* Telomere | |||
* iPSC | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2020.02.092 | |||
}} | |||
==HES1== | |||
{{medline-entry | |||
|title=A Single-Cell Transcriptomic Atlas of Human Skin Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33238152 | |||
|keywords=* HES1 | |||
* KLF6 | |||
* aging | |||
* fibroblast | |||
* keratinocyte | |||
* quercetin | |||
* senescence | |||
* single-cell RNA sequencing | |||
* skin | |||
|full-text-url=https://sci-hub.do/10.1016/j.devcel.2020.11.002 | |||
}} | |||
==HFE== | |||
{{medline-entry | |||
|title=Polyphenol Characterization and Skin-Preserving Properties of Hydroalcoholic Flower Extract from [i]Himantoglossum robertianum[/i] (Orchidaceae). | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31739534 | |||
|keywords=* Himantoglossum robertianum | |||
* antioxidants | |||
* collagenase | |||
* elastase | |||
* flavonoids | |||
* keratinocytes | |||
* skin aging | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6918203 | |||
}} | |||
==HGD== | |||
{{medline-entry | |||
|title=High-glucose diets induce mitochondrial dysfunction in Caenorhabditis elegans. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31846489 | |||
|mesh-terms=* Animals | |||
* Caenorhabditis elegans | |||
* Diet | |||
* Gene Expression Regulation | |||
* Glucose | |||
* Longevity | |||
* Mitochondria | |||
* Mitophagy | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6917275 | |||
}} | |||
==HGF== | |||
{{medline-entry | |||
|title=Age-related changes in the immunomodulatory effects of human dental pulp derived mesenchymal stem cells on the CD4 T cell subsets. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33223447 | |||
|keywords=* Aging | |||
* CD4 T cell | |||
* Dental pulp | |||
* Immunomodulation | |||
* Mesenchymal stem cell | |||
|full-text-url=https://sci-hub.do/10.1016/j.cyto.2020.155367 | |||
}} | |||
{{medline-entry | |||
|title=Hepatocyte growth factor ([[HGF]]) and stem cell factor (SCF) maintained the stemness of human bone marrow mesenchymal stem cells (hBMSCs) during long-term expansion by preserving mitochondrial function via the PI3K/AKT, ERK1/2, and STAT3 signaling pathways. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32736659 | |||
|keywords=* Hepatocyte growth factor | |||
* Mitochondrial function | |||
* Osteogenic differentiation | |||
* Senescence | |||
* Stem cell factor | |||
* Stem cells from human exfoliated deciduous teeth | |||
* Stemness | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7393921 | |||
}} | |||
{{medline-entry | |||
|title=Phenytoin sodium-ameliorated gingival fibroblast aging is associated with autophagy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32281104 | |||
|keywords=* aging | |||
* autophagy | |||
* gingival fibroblast | |||
* phenytoin sodium | |||
|full-text-url=https://sci-hub.do/10.1111/jre.12750 | |||
}} | |||
{{medline-entry | |||
|title=Impaired integrin α /β -mediated hepatocyte growth factor release by stellate cells of the aged liver. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32157808 | |||
|keywords=* aging | |||
* hepatic stellate cells | |||
* integrins | |||
* laminins | |||
* mechanobiology | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189994 | |||
}} | |||
==HGS== | |||
{{medline-entry | |||
|title=Handgrip strength asymmetry is associated with future falls in older Americans. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33247424 | |||
|keywords=* Aging | |||
* Functional laterality | |||
* Geriatric assessment | |||
* Geriatrics | |||
* Muscle strength dynamometer | |||
|full-text-url=https://sci-hub.do/10.1007/s40520-020-01757-z | |||
}} | |||
{{medline-entry | |||
|title=Examining Additional Aspects of Muscle Function with a Digital Handgrip Dynamometer and Accelerometer in Older Adults: A Pilot Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33142897 | |||
|keywords=* aging | |||
* geriatric assessment | |||
* muscle strength | |||
* muscle weakness | |||
* physical functional performance | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7709634 | |||
}} | |||
{{medline-entry | |||
|title=The Relationship between Muscular Strength and Depression in Older Adults with Chronic Disease Comorbidity. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32962093 | |||
|keywords=* aging | |||
* depression | |||
* disease comorbidities | |||
* muscular strength | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7558624 | |||
}} | |||
{{medline-entry | |||
|title=Handgrip Strength in the Korean Population: Normative Data and Cutoff Values. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32743310 | |||
|keywords=* Aging | |||
* Hand strength | |||
* Muscle strength | |||
* Nutrition surveys | |||
* Sarcopenia | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7370763 | |||
}} | |||
{{medline-entry | |||
|title=Handgrip Strength Asymmetry and Weakness Are Associated with Lower Cognitive Function: A Panel Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32473060 | |||
|keywords=* aging | |||
* functional laterality | |||
* geriatric assessment | |||
* geriatrics | |||
* muscle strength dynamometer | |||
|full-text-url=https://sci-hub.do/10.1111/jgs.16556 | |||
}} | |||
{{medline-entry | |||
|title=Handgrip Strength Asymmetry and Weakness are Differentially Associated with Functional Limitations in Older Americans. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32384713 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Female | |||
* Geriatric Assessment | |||
* Hand Strength | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Muscle Strength | |||
* Muscle Strength Dynamometer | |||
* Muscle Weakness | |||
* Odds Ratio | |||
* United States | |||
|keywords=* aging | |||
* geriatrics | |||
* muscle strength | |||
* muscle strength dynamometer | |||
* nutrition surveys | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7246814 | |||
}} | |||
{{medline-entry | |||
|title=Absolute and Body Mass Index Normalized Handgrip Strength Percentiles by Gender, Ethnicity, and Hand Dominance in Americans. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31930203 | |||
|keywords=* aging | |||
* epidemiology | |||
* hand strength | |||
* human development | |||
* muscle weakness | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6954001 | |||
}} | |||
{{medline-entry | |||
|title=Hand grip strength variability during serial testing as an entropic biomarker of aging: a Poincaré plot analysis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31931730 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Biomarkers | |||
* Cross-Sectional Studies | |||
* Entropy | |||
* Female | |||
* Hand Strength | |||
* Heart Rate | |||
* Humans | |||
* Male | |||
|keywords=* Aging | |||
* Entropy | |||
* Hand grip strength | |||
* Nonlinear dynamics | |||
* Poincaré plot | |||
* Time series | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6958685 | |||
}} | |||
{{medline-entry | |||
|title=Physical Activity and Fitness in White- and Blue-Collar Retired Men. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31849269 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Body Mass Index | |||
* Exercise | |||
* Geriatric Assessment | |||
* Humans | |||
* Longitudinal Studies | |||
* Male | |||
* Men's Health | |||
* Occupations | |||
* Physical Fitness | |||
* Poland | |||
* Retirement | |||
* Social Class | |||
* Surveys and Questionnaires | |||
* Task Performance and Analysis | |||
|keywords=* Retirement | |||
* occupation | |||
* old men | |||
* physical activity | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6920597 | |||
}} | |||
{{medline-entry | |||
|title=Association between Hand Grip Strength and Self-Rated Health in Middle- and Old-Aged Korean Citizens. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31842533 | |||
|keywords=* Hand Grip Strength | |||
* Korean Longitudinal Study of Aging | |||
* Self-Rated Health | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6987025 | |||
}} | |||
{{medline-entry | |||
|title=Weakness May Have a Causal Association With Early Mortality in Older Americans: A Matched Cohort Analysis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31786197 | |||
|keywords=* Aging | |||
* Epidemiology | |||
* Geriatrics | |||
* hand strength | |||
* muscle strength | |||
* sarcopenia | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7186143 | |||
}} | |||
{{medline-entry | |||
|title=Associations Between Dietary Patterns and Handgrip Strength: The Korea National Health and Nutrition Examination Survey 2014-2016. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31743070 | |||
|keywords=* Dietary patterns | |||
* Korea National Health and Nutrition Examination Survey | |||
* aging | |||
* diet | |||
* handgrip strength | |||
|full-text-url=https://sci-hub.do/10.1080/07315724.2019.1691955 | |||
}} | |||
{{medline-entry | |||
|title=Effect of relative handgrip strength on cardiovascular disease among Korean adults aged 45 years and older: Results from the Korean Longitudinal Study of Aging (2006-2016). | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31574451 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Cardiovascular Diseases | |||
* Female | |||
* Hand Strength | |||
* Humans | |||
* Longitudinal Studies | |||
* Male | |||
* Middle Aged | |||
* Muscle Strength | |||
* Muscle, Skeletal | |||
* Republic of Korea | |||
* Risk Factors | |||
|keywords=* Cardiovascular disease | |||
* KLoSA | |||
* Relative handgrip strength | |||
|full-text-url=https://sci-hub.do/10.1016/j.archger.2019.103937 | |||
}} | |||
{{medline-entry | |||
|title=Weakness and cognitive impairment are independently and jointly associated with functional decline in aging Americans. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31520335 | |||
|mesh-terms=* Activities of Daily Living | |||
* Aged | |||
* Aging | |||
* Cognitive Dysfunction | |||
* Geriatric Assessment | |||
* Hand Strength | |||
* Humans | |||
* Middle Aged | |||
|keywords=* Dementia | |||
* Epidemiology | |||
* Geriatrics | |||
* Muscle strength | |||
* Nervous system | |||
|full-text-url=https://sci-hub.do/10.1007/s40520-019-01351-y | |||
}} | |||
{{medline-entry | |||
|title=Association of phase angle with sarcopenia and its components in physically active older women. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31463928 | |||
|mesh-terms=* Aged | |||
* Cross-Sectional Studies | |||
* Electric Impedance | |||
* Female | |||
* Hand Strength | |||
* Humans | |||
* Muscle Strength | |||
* Sarcopenia | |||
* Walking Speed | |||
|keywords=* Aging | |||
* Bioimpedance | |||
* Muscle function | |||
* Muscle mass | |||
|full-text-url=https://sci-hub.do/10.1007/s40520-019-01325-0 | |||
}} | |||
==HLA-DRB1== | |||
{{medline-entry | |||
|title=The pathophysiology of polymyalgia rheumatica, small pieces of a big puzzle. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32942037 | |||
|keywords=* Aging | |||
* B cell | |||
* HLA-DR | |||
* Interleukin-6 | |||
* Polymyalgia rheumatica | |||
* T cell | |||
|full-text-url=https://sci-hub.do/10.1016/j.autrev.2020.102670 | |||
}} | |||
==HMGA1== | |||
{{medline-entry | |||
|title=Characterization of [i][[HMGA1]]P6[/i] transgenic mouse embryonic fibroblasts. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32787507 | |||
|keywords=* CeRNA | |||
* HMGA1 | |||
* HMGA1P6 | |||
* pseudogenes | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513866 | |||
}} | |||
==HMGA2== | |||
{{medline-entry | |||
|title=4D Genome Rewiring during Oncogene-Induced and Replicative Senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32220303 | |||
|mesh-terms=* Cells, Cultured | |||
* Cellular Senescence | |||
* Chromatin Assembly and Disassembly | |||
* DNA (Cytosine-5-)-Methyltransferase 1 | |||
* DNA Methylation | |||
* Fibroblasts | |||
* Genome, Human | |||
* Heterochromatin | |||
* Humans | |||
* In Situ Hybridization, Fluorescence | |||
* Oncogenes | |||
|keywords=* 3D genome architecture | |||
* DNMT1 | |||
* Hi-C | |||
* chromatin compartments | |||
* gene regulation | |||
* oncogene-induced senescence | |||
* replicative senescence | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7208559 | |||
}} | |||
{{medline-entry | |||
|title=The protective effects of [[HMGA2]] in the senescence process of bone marrow-derived mesenchymal stromal cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32068957 | |||
|keywords=* bone marrow derived mesenchymal stromal cells (MSCs) | |||
* high-mobility group AT-hook 2 (HMGA2) | |||
* regulator of G protein signaling 2 (Rgs2) | |||
* senescence | |||
|full-text-url=https://sci-hub.do/10.1002/term.3023 | |||
}} | |||
==HMGB1== | |||
{{medline-entry | |||
|title=Senescent human melanocytes drive skin ageing via paracrine telomere dysfunction. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31633821 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Atrophy | |||
* Cells, Cultured | |||
* Cellular Senescence | |||
* Cyclin-Dependent Kinase Inhibitor p16 | |||
* Epidermis | |||
* Female | |||
* Humans | |||
* Male | |||
* Melanocytes | |||
* Middle Aged | |||
* Paracrine Communication | |||
* Reactive Oxygen Species | |||
* Receptors, CXCR4 | |||
* Skin | |||
* Telomere | |||
* Young Adult | |||
|keywords=* | |||
SASP | |||
* melanocytes | |||
* senescence | |||
* skin ageing | |||
* telomeres | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6885734 | |||
}} | |||
==HMGCR== | |||
{{medline-entry | |||
|title=Cholesterol Homeostasis: An In Silico Investigation into How Aging Disrupts Its Key Hepatic Regulatory Mechanisms. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33007859 | |||
|keywords=* aging | |||
* cholesterol biosynthesis | |||
* mathematical model | |||
* reactive oxygen species | |||
* systems biology | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599957 | |||
}} | |||
{{medline-entry | |||
|title=Artesunate inhibits the mevalonate pathway and promotes glioma cell senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31746143 | |||
|keywords=* artesunate | |||
* distant seeding | |||
* glioma | |||
* mevalonate pathway | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933330 | |||
}} | |||
==HOXD8== | |||
{{medline-entry | |||
|title=Single-Cell Transcriptome Analysis Reveals Six Subpopulations Reflecting Distinct Cellular Fates in Senescent Mouse Embryonic Fibroblasts. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32849838 | |||
|keywords=* Hoxd8 | |||
* cellular senescence | |||
* mouse embryonic fibroblasts | |||
* senescence-associated secretory phenotype | |||
* single-cell RNA sequencing | |||
* transcriptomic heterogeneity | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431633 | |||
}} | |||
==HP== | |||
{{medline-entry | |||
|title=A narrative review of highly processed food addiction across the lifespan. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33127423 | |||
|keywords=* Adolescence | |||
* Adulthood | |||
* Childhood | |||
* Food addiction | |||
* Infancy | |||
* Lifespan | |||
* Prenatal | |||
|full-text-url=https://sci-hub.do/10.1016/j.pnpbp.2020.110152 | |||
}} | |||
{{medline-entry | |||
|title=Beta Human Papillomavirus 8E6 Attenuates LATS Phosphorylation after Failed Cytokinesis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32238586 | |||
|mesh-terms=* Apoptosis | |||
* Cell Cycle Proteins | |||
* Cell Line, Tumor | |||
* Cell Proliferation | |||
* Cell Survival | |||
* Cytochalasin B | |||
* Cytokinesis | |||
* DNA Repair | |||
* E1A-Associated p300 Protein | |||
* Gene Expression Regulation | |||
* HCT116 Cells | |||
* Host-Pathogen Interactions | |||
* Humans | |||
* Keratinocytes | |||
* Oncogene Proteins, Viral | |||
* Osteoblasts | |||
* Papillomaviridae | |||
* Phenotype | |||
* Phosphorylation | |||
* Primary Cell Culture | |||
* Protein-Serine-Threonine Kinases | |||
* Signal Transduction | |||
* Transcription Factors | |||
* Tumor Suppressor Protein p53 | |||
|keywords=* Hippo signaling pathway | |||
* apoptosis | |||
* cancer | |||
* cytokinesis | |||
* human papillomavirus | |||
* senescence | |||
* skin cancer | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7307087 | |||
}} | |||
==HPSE== | |||
{{medline-entry | |||
|title=Distribution of heparan sulfate correlated with the expression of heparanase-1 and matrix metalloproteinase-9 in an ovariectomized rats skin. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32159248 | |||
|keywords=* aging | |||
* estrogen | |||
* extracellular matrix | |||
* heparan sulfate | |||
* heparanase-1 | |||
* matrix metalloproteinase-9 | |||
|full-text-url=https://sci-hub.do/10.1002/cbin.11339 | |||
}} | |||
==HR== | |||
{{medline-entry | |||
|title=Patients with hip fracture and total hip arthroplasty surgery differ in anthropometric, but not cardiovascular screening abnormalities. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33267795 | |||
|keywords=* Aging | |||
* Cardiovascular reactivity | |||
* Heart rate variability | |||
* Hip fracture | |||
* Total hip arthroplasty | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713041 | |||
}} | |||
{{medline-entry | |||
|title=Clinical Role of Lung Ultrasound for the Diagnosis and Prognosis of Coronavirus Disease Pneumonia in Elderly Patients: A Pivotal Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33271558 | |||
|keywords=* Aging | |||
* Coronavirus disease | |||
* Elderly | |||
* Lung ultrasound | |||
* Severe acute respiratory syndrome-coronavirus-2 | |||
|full-text-url=https://sci-hub.do/10.1159/000512209 | |||
}} | |||
{{medline-entry | |||
|title=The Relationship of Accelerometer-Assessed Standing Time With and Without Ambulation and Mortality: The WHI OPACH Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33225345 | |||
|keywords=* Accelerometer | |||
* Longevity | |||
* Physical activity | |||
|full-text-url=https://sci-hub.do/10.1093/gerona/glaa227 | |||
}} | |||
{{medline-entry | |||
|title=Age-related myofiber atrophy in old mice is reversed by ten weeks voluntary high-resistance wheel running. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33181317 | |||
|keywords=* Aging | |||
* Exercise | |||
* Mouse model | |||
* Muscle morphology | |||
* Skeletal muscle | |||
* Training | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2020.111150 | |||
}} | |||
{{medline-entry | |||
|title=Predicted Skeletal Muscle Mass and 4-Year Cardiovascular Disease Incidence in Middle-Aged and Elderly Participants of IKARIA Prospective Epidemiological Study: The Mediating Effect of Sex and Cardiometabolic Factors. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33121164 | |||
|keywords=* aging | |||
* body composition | |||
* gender | |||
* heart disease | |||
* lean mass | |||
* obesity | |||
* primary prevention | |||
* women | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693172 | |||
}} | |||
{{medline-entry | |||
|title=Obesity is associated with early hip fracture risk in postmenopausal women: a 25-year follow-up. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33095419 | |||
|keywords=* Aging | |||
* Body mass index | |||
* Bone mineral density | |||
* Follow-up study | |||
* General population | |||
* Hip fracture | |||
* Menopause | |||
* Obesity | |||
|full-text-url=https://sci-hub.do/10.1007/s00198-020-05665-w | |||
}} | |||
{{medline-entry | |||
|title=ATM inhibition synergizes with fenofibrate in high grade serous ovarian cancer cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33024871 | |||
|keywords=* Biochemistry | |||
* Bioinformatics | |||
* Cancer research | |||
* Cell biology | |||
* Cellular metabolism | |||
* Cellular senescence | |||
* Drug combinations | |||
* Homologous recombination | |||
* Metabolite | |||
* Molecular biology | |||
* PPARa | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527645 | |||
}} | |||
{{medline-entry | |||
|title=Effectiveness of adjuvant FOLFOX vs 5FU/LV in adults over age 65 with stage II and III colon cancer using a novel hybrid approach. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33015888 | |||
|keywords=* aging | |||
* cancer | |||
* chemotherapy | |||
* comparative effectiveness research | |||
* pharmacoepidemiology | |||
|full-text-url=https://sci-hub.do/10.1002/pds.5148 | |||
}} | |||
{{medline-entry | |||
|title=Age, Frailty, and Comorbidity as Prognostic Factors for Short-Term Outcomes in Patients With Coronavirus Disease 2019 in Geriatric Care. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32978065 | |||
|mesh-terms=* Age Factors | |||
* Aged | |||
* Aged, 80 and over | |||
* Betacoronavirus | |||
* COVID-19 | |||
* Comorbidity | |||
* Coronavirus Infections | |||
* Female | |||
* Frail Elderly | |||
* Geriatrics | |||
* Humans | |||
* Male | |||
* Models, Statistical | |||
* Outcome Assessment, Health Care | |||
* Pandemics | |||
* Pneumonia, Viral | |||
* Prognosis | |||
* SARS-CoV-2 | |||
* Survival Analysis | |||
* Sweden | |||
|keywords=* COVID-19 | |||
* aging | |||
* comorbidity | |||
* frailty | |||
* geriatrics | |||
* survival | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7427570 | |||
}} | |||
{{medline-entry | |||
|title=Clinical and demographic parameters predict the progression from mild cognitive impairment to dementia in elderly patients. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32918697 | |||
|keywords=* Aging | |||
* Cox regression | |||
* Dementia | |||
* Follow-up | |||
* Mild cognitive impairment | |||
|full-text-url=https://sci-hub.do/10.1007/s40520-020-01697-8 | |||
}} | |||
{{medline-entry | |||
|title=Plasma Dehydroepiandrosterone Sulfate and Cardiovascular Disease Risk in Older Men and Women. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32785663 | |||
|keywords=* DHEA-S | |||
* aging | |||
* heart failure | |||
* mortality | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7526732 | |||
}} | |||
{{medline-entry | |||
|title=High intensity interval training combined with L-citrulline supplementation: Effects on physical performance in healthy older adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32721549 | |||
|keywords=* Aging | |||
* Body composition | |||
* Exercise | |||
* Mobility | |||
* Nutrition | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2020.111036 | |||
}} | |||
{{medline-entry | |||
|title=Associations of blood pressure with risk of injurious falls in old age vary by functional status: A cohort study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32738383 | |||
|keywords=* Aging | |||
* Blood pressure | |||
* Falls | |||
* Injury | |||
* Swedish National study on Aging and Care in Kungsholmen (SNAC-K) | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2020.111038 | |||
}} | |||
{{medline-entry | |||
|title=Epigenetic age acceleration and clinical outcomes in gliomas. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32692766 | |||
|mesh-terms=* Adult | |||
* Aging | |||
* DNA Methylation | |||
* Epigenesis, Genetic | |||
* Female | |||
* Glioma | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Prognosis | |||
* Survival Analysis | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7373289 | |||
}} | |||
{{medline-entry | |||
|title=Do Stairs Inhibit Seniors Who Live on Upper Floors From Going Out? | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32666833 | |||
|keywords=* active aging | |||
* activity monitor | |||
* homebound | |||
* mobility | |||
* walk-up buildings | |||
|full-text-url=https://sci-hub.do/10.1177/1937586720936588 | |||
}} | |||
{{medline-entry | |||
|title=Age-specific acute changes in carotid-femoral pulse wave velocity with head-up tilt. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32634245 | |||
|keywords=* arterial function | |||
* arterial stiffness | |||
* blood pressure | |||
* early vascular aging | |||
* pressure dependence | |||
|full-text-url=https://sci-hub.do/10.1093/ajh/hpaa101 | |||
}} | |||
{{medline-entry | |||
|title=Pre-frailty status increases the risk of rehospitalization in patients after elective cardiac surgery without complication. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32531126 | |||
|mesh-terms=* Aged | |||
* Cardiac Surgical Procedures | |||
* Elective Surgical Procedures | |||
* Female | |||
* Frailty | |||
* Humans | |||
* Male | |||
* Patient Readmission | |||
* Postoperative Complications | |||
* Retrospective Studies | |||
* Risk | |||
|keywords=* adverse events | |||
* aging | |||
* cardiac surgery | |||
* frailty | |||
* rehospitalization | |||
|full-text-url=https://sci-hub.do/10.1111/jocs.14550 | |||
}} | |||
{{medline-entry | |||
|title=Comparative Performance of Creatinine-Based GFR Estimation Equations in Exceptional Longevity: The Rugao Longevity and Ageing Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32546991 | |||
|mesh-terms=* Aged, 80 and over | |||
* Creatinine | |||
* Female | |||
* Glomerular Filtration Rate | |||
* Humans | |||
* Kidney Function Tests | |||
* Longevity | |||
* Male | |||
* Mortality | |||
* Predictive Value of Tests | |||
* Renal Insufficiency | |||
* Reproducibility of Results | |||
* Risk Factors | |||
|keywords=* equation | |||
* exceptional longevity | |||
* glomerular filtration rate | |||
* kidney function | |||
* mortality | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7266309 | |||
}} | |||
{{medline-entry | |||
|title=Sex-and race-specific associations of protein intake with change in muscle mass and physical function in older adults: the Health, Aging, and Body Composition (Health ABC) Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32520344 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Biomass | |||
* Body Composition | |||
* Body Weight | |||
* Dietary Proteins | |||
* Female | |||
* Humans | |||
* Independent Living | |||
* Male | |||
* Muscle Development | |||
* Muscle Strength | |||
* Muscles | |||
* Prospective Studies | |||
* Sex Factors | |||
|keywords=* appendicular lean body mass | |||
* community-dwelling | |||
* gait speed | |||
* mobility limitation | |||
* old age | |||
* optimal intake | |||
* physical performance | |||
* spline functions | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7326591 | |||
}} | |||
{{medline-entry | |||
|title=Deterioration of bone microstructure by aging and menopause in Japanese healthy women: analysis by [[HR]]-pQCT. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32519249 | |||
|mesh-terms=* Absorptiometry, Photon | |||
* Adult | |||
* Aged | |||
* Aging | |||
* Asian Continental Ancestry Group | |||
* Bone Density | |||
* Bone and Bones | |||
* Cancellous Bone | |||
* Cortical Bone | |||
* Female | |||
* Finite Element Analysis | |||
* Humans | |||
* Japan | |||
* Linear Models | |||
* Menopause | |||
* Middle Aged | |||
* Porosity | |||
* Tomography, X-Ray Computed | |||
|keywords=* Bone microstructure | |||
* Estimated bone strength | |||
* High resolution peripheral quantitative CT (HR-pQCT) | |||
* Japanese women | |||
* Non-metric trabecular parameter | |||
|full-text-url=https://sci-hub.do/10.1007/s00774-020-01115-z | |||
}} | |||
{{medline-entry | |||
|title=Association between Low Protein Intake and Mortality in Patients with Type 2 Diabetes. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32492838 | |||
|keywords=* aging | |||
* diabetes | |||
* mortality | |||
* nutritional support | |||
* protein intake | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352318 | |||
}} | |||
{{medline-entry | |||
|title=CAUSES, mortality rates and risk factors of death in community-dwelling Europeans aged 50 years and over: Results from the Survey of Health, Ageing and Retirement in Europe 2013-2015. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32325305 | |||
|mesh-terms=* Activities of Daily Living | |||
* Aged | |||
* Aging | |||
* Cohort Studies | |||
* Europe | |||
* Humans | |||
* Independent Living | |||
* Male | |||
* Middle Aged | |||
* Mortality | |||
* Proportional Hazards Models | |||
* Prospective Studies | |||
* Retirement | |||
* Risk Factors | |||
* Surveys and Questionnaires | |||
|keywords=* Aging | |||
* Comorbidity | |||
* Depressive symptoms | |||
* Diseases | |||
* Mortality risk | |||
|full-text-url=https://sci-hub.do/10.1016/j.archger.2020.104035 | |||
}} | |||
{{medline-entry | |||
|title=Estimation of Wave Condition Number From Pressure Waveform Alone and Its Changes With Advancing Age in Healthy Women and Men. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32328003 | |||
|keywords=* arterial wave reflection | |||
* cardiovascular biomarker | |||
* optimum cardiovascular function | |||
* vascular aging | |||
* wave condition number | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7161432 | |||
}} | |||
{{medline-entry | |||
|title=Extended in vitro culture of primary human mesenchymal stem cells downregulates Brca1-related genes and impairs DNA double-strand break recognition. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32333827 | |||
|keywords=* | |||
BRCA1 | |||
* DNA repair | |||
* cellular aging | |||
* homologous recombination | |||
* mesenchymal stem cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327915 | |||
}} | |||
{{medline-entry | |||
|title=Effect of artificial dawn light on cardiovascular function, alertness, and balance in middle-aged and older adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32307533 | |||
|keywords=* aging | |||
* alertness | |||
* balance | |||
* blood pressure | |||
* heart rate | |||
* heart rate variability | |||
* light | |||
* sleep inertia | |||
|full-text-url=https://sci-hub.do/10.1093/sleep/zsaa082 | |||
}} | |||
{{medline-entry | |||
|title=Heart Rate Performance Curve Is Dependent on Age, Sex, and Performance. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32300582 | |||
|keywords=* aging | |||
* heart rate deflection | |||
* intensity prescription | |||
* maximal heart rate | |||
* sex differences | |||
* ß1-receptor sensitivity | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7144539 | |||
}} | |||
{{medline-entry | |||
|title=Physical activity trajectories, mortality, hospitalization, and disability in the Toledo Study of Healthy Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32163233 | |||
|keywords=* Adverse outcomes | |||
* Healthy aging | |||
* Mortality | |||
* Older adults | |||
* Physical activity | |||
* Trajectories | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7432572 | |||
}} | |||
{{medline-entry | |||
|title=U-Shaped Association of Plasma Testosterone, and no Association of Plasma Estradiol, with Incidence of Fractures in Men. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32155267 | |||
|keywords=* estradiol | |||
* fracture | |||
* male aging | |||
* osteoporosis | |||
* sex hormone-binding globulin | |||
* testosterone | |||
|full-text-url=https://sci-hub.do/10.1210/clinem/dgaa115 | |||
}} | |||
{{medline-entry | |||
|title=Pregnancy-Related Bone Mineral and Microarchitecture Changes in Women Aged 30 to 45 Years. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32119748 | |||
|keywords=* AGING | |||
* ANALYSIS/QUANTITATION OF BONE | |||
* BONE QCT/μCT | |||
* EPIDEMIOLOGY | |||
* GENERAL POPULATION STUDIES | |||
|full-text-url=https://sci-hub.do/10.1002/jbmr.3998 | |||
}} | |||
{{medline-entry | |||
|title=Analysis of the world record time for combined father and son marathon. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31917623 | |||
|keywords=* V̇o2max | |||
* aerobic exercise | |||
* aging | |||
* endurance | |||
* oxygen consumption | |||
* running | |||
|full-text-url=https://sci-hub.do/10.1152/japplphysiol.00819.2019 | |||
}} | |||
{{medline-entry | |||
|title=Age-related reductions in heart rate variability do not worsen during exposure to humid compared to dry heat: A secondary analysis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31934605 | |||
|keywords=* Aging | |||
* autonomic nervous system | |||
* heat stress | |||
* parasympathetic nervous system | |||
* relative humidity | |||
* sympathetic nervous system | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949029 | |||
}} | |||
{{medline-entry | |||
|title=Efficacy and Safety of Dapagliflozin in the Elderly: Analysis From the DECLARE-TIMI 58 Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31843945 | |||
|mesh-terms=* Adult | |||
* Age Factors | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Benzhydryl Compounds | |||
* Cardiovascular System | |||
* Diabetes Mellitus, Type 2 | |||
* Diabetic Ketoacidosis | |||
* Female | |||
* Glucosides | |||
* Humans | |||
* Hypoglycemia | |||
* Hypoglycemic Agents | |||
* Incidence | |||
* Kidney | |||
* Male | |||
* Middle Aged | |||
* Sodium-Glucose Transporter 2 Inhibitors | |||
* Survival Analysis | |||
* Treatment Outcome | |||
* Urinary Tract Infections | |||
|full-text-url=https://sci-hub.do/10.2337/dc19-1476 | |||
}} | |||
{{medline-entry | |||
|title=Validity of Prediction Equations of Maximal Heart Rate in Physically Active Female Adolescents and the Role of Maturation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31766291 | |||
|mesh-terms=* Adolescent | |||
* Aging | |||
* Body Mass Index | |||
* Exercise | |||
* Exercise Test | |||
* Female | |||
* Heart Rate | |||
* Humans | |||
|keywords=* cardiac rate | |||
* exercise prescription | |||
* exercise testing | |||
* prediction equations | |||
* training zones | |||
* volleyball | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915545 | |||
}} | |||
{{medline-entry | |||
|title=Base excision repair but not DNA double-strand break repair is impaired in aged human adipose-derived stem cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31782607 | |||
|mesh-terms=* Adipose Tissue | |||
* Adult | |||
* Aging | |||
* DNA Breaks, Double-Stranded | |||
* DNA End-Joining Repair | |||
* DNA Repair | |||
* Humans | |||
* Middle Aged | |||
* Recombinational DNA Repair | |||
* Stem Cells | |||
* Up-Regulation | |||
* X-ray Repair Cross Complementing Protein 1 | |||
* Young Adult | |||
|keywords=* XRCC1 | |||
* adipose-derived stem cells | |||
* base excision repair | |||
* genome integrity | |||
* human aging | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996963 | |||
}} | |||
{{medline-entry | |||
|title=Urban-Rural Differences in Hip Fracture Mortality: A Nationwide NOREPOS Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31768493 | |||
|keywords=* AGING | |||
* EPIDEMIOLOGY | |||
* GENERAL POPULATION STUDIES | |||
* OSTEOPOROSIS | |||
* STATISTICAL METHODS | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874178 | |||
}} | |||
{{medline-entry | |||
|title=Malnutrition as a Strong Predictor of the Onset of Sarcopenia. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31783482 | |||
|mesh-terms=* Aged | |||
* Aging | |||
* Cohort Studies | |||
* Female | |||
* Humans | |||
* Independent Living | |||
* Male | |||
* Malnutrition | |||
* Proportional Hazards Models | |||
* Prospective Studies | |||
* Risk Factors | |||
* Sarcopenia | |||
|keywords=* EWGSOP2 | |||
* GLIM | |||
* SarcoPhAge | |||
* malnutrition | |||
* sarcopenia | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950107 | |||
}} | |||
{{medline-entry | |||
|title=Acclimation to a thermoneutral environment abolishes age-associated alterations in heart rate and heart rate variability in conscious, unrestrained mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31776883 | |||
|keywords=* Aging | |||
* Cardiac autonomic modulation | |||
* Heart rate | |||
* Heart rate variability | |||
* Thermoneutrality | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031176 | |||
}} | |||
{{medline-entry | |||
|title=Long-term dementia risk prediction by the LIBRA score: A 30-year follow-up of the CAIDE study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31736136 | |||
|mesh-terms=* Aged | |||
* Apolipoproteins E | |||
* Cognitive Dysfunction | |||
* Dementia | |||
* Female | |||
* Follow-Up Studies | |||
* Genetic Predisposition to Disease | |||
* Humans | |||
* Life Style | |||
* Male | |||
* Protective Factors | |||
* Risk Assessment | |||
* Risk Factors | |||
|keywords=* cognitive aging | |||
* cohort study | |||
* dementia | |||
* epidemiology | |||
* lifestyle | |||
* prevention | |||
* risk factors | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7003764 | |||
}} | |||
{{medline-entry | |||
|title=Kidney function and its association to imminent, short- and long-term fracture risk-a longitudinal study in older women. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31754754 | |||
|keywords=* Aging | |||
* Bone mineral density | |||
* Chronic kidney disease | |||
* Estimated glomerular filtration rate | |||
* Fracture | |||
* Women | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6946753 | |||
}} | |||
{{medline-entry | |||
|title=Oxidatively Damaged DNA/RNA and 8-Isoprostane Levels Are Associated With the Development of Type 2 Diabetes at Older Age: Results From a Large Cohort Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31653645 | |||
|mesh-terms=* Age of Onset | |||
* Aged | |||
* Aging | |||
* Biomarkers | |||
* Cohort Studies | |||
* DNA | |||
* DNA Damage | |||
* Diabetes Mellitus, Type 2 | |||
* Dinoprost | |||
* Female | |||
* Follow-Up Studies | |||
* Germany | |||
* Humans | |||
* Incidence | |||
* Lipid Peroxidation | |||
* Male | |||
* Middle Aged | |||
* Oxidation-Reduction | |||
* Oxidative Stress | |||
* RNA | |||
|full-text-url=https://sci-hub.do/10.2337/dc19-1379 | |||
}} | |||
{{medline-entry | |||
|title=Associations of vigorous physical activity with all-cause, cardiovascular and cancer mortality among 64 913 adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31548909 | |||
|keywords=* cardio-protection | |||
* exercise | |||
* longevity | |||
* non-communicable diseases | |||
* physical activity | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733336 | |||
}} | |||
{{medline-entry | |||
|title=Reduced cerebrovascular and cardioventilatory responses to intermittent hypoxia in elderly. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31557538 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aging | |||
* Blood Pressure | |||
* Brain | |||
* Cerebrovascular Circulation | |||
* Female | |||
* Heart Rate | |||
* Humans | |||
* Hypoxia | |||
* Male | |||
* Pulmonary Ventilation | |||
* Ultrasonography, Doppler, Transcranial | |||
* Young Adult | |||
|keywords=* Aging | |||
* Arterial oxygen saturation | |||
* Cerebral blood flow | |||
* Cerebral tissue oxygenation | |||
* Heart rate | |||
* Hypoxemia | |||
* Ventilation | |||
|full-text-url=https://sci-hub.do/10.1016/j.resp.2019.103306 | |||
}} | |||
{{medline-entry | |||
|title=Vestibulo-sympathetic reflex in patients with bilateral vestibular loss. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31513442 | |||
|mesh-terms=* Aging | |||
* Bilateral Vestibulopathy | |||
* Female | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Reflex, Abnormal | |||
* Sympathetic Nervous System | |||
|keywords=* bilateral vestibular loss | |||
* compensation | |||
* multisensory integration | |||
* otolithic system | |||
* vestibulo-sympathetic reflex | |||
|full-text-url=https://sci-hub.do/10.1152/japplphysiol.00466.2019 | |||
}} | |||
{{medline-entry | |||
|title=Heart rate and blood pressure in male Ts65Dn mice: a model to investigate cardiovascular responses in Down syndrome. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31496136 | |||
|mesh-terms=* Animals | |||
* Autonomic Nervous System | |||
* Blood Pressure | |||
* Circadian Rhythm | |||
* Down Syndrome | |||
* Heart Rate | |||
* Male | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Vascular Stiffness | |||
|keywords=* Aging | |||
* arterial stiffness | |||
* autonomic nervous system | |||
* circadian | |||
* pulse wave velocity | |||
* spectral analysis | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6732568 | |||
}} | |||
{{medline-entry | |||
|title=Body weight at 10 years of age and change in body composition between 8 and 10 years of age were related to survival in a longitudinal study of 39 Labrador retriever dogs. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31500653 | |||
|mesh-terms=* Adipose Tissue | |||
* Animals | |||
* Body Composition | |||
* Body Weight | |||
* Dogs | |||
* Longevity | |||
* Longitudinal Studies | |||
* Survival Analysis | |||
|keywords=* Cohort | |||
* Cox | |||
* DEXA | |||
* Dogs | |||
* Fat mass | |||
* Healthspan | |||
* Lean mass | |||
* Lean to fat ratio | |||
* Longevity | |||
* Sarcopenia | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6734441 | |||
}} | |||
{{medline-entry | |||
|title=Dietary diversity offsets the adverse mortality risk among older indigenous Taiwanese. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31464406 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Asian Continental Ancestry Group | |||
* Diet | |||
* Female | |||
* Health Surveys | |||
* Humans | |||
* Indigenous Peoples | |||
* Longevity | |||
* Male | |||
* Mortality | |||
* Nutrition Surveys | |||
* Nutritional Status | |||
* Risk Factors | |||
* Taiwan | |||
|full-text-url=https://sci-hub.do/10.6133/apjcn.201909_28(3).0019 | |||
}} | |||
{{medline-entry | |||
|title=Independent and joint effects of vascular and cardiometabolic risk factor pairs for risk of all-cause dementia: a prospective population-based study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31455442 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Apolipoprotein E4 | |||
* Cognitive Dysfunction | |||
* Dementia | |||
* Exercise | |||
* Female | |||
* Heart Failure | |||
* Heterozygote | |||
* Humans | |||
* Hypertension | |||
* Male | |||
* Pennsylvania | |||
* Proportional Hazards Models | |||
* Prospective Studies | |||
* Risk Factors | |||
* Stroke | |||
|keywords=* Alzheimer‘s disease (AD) | |||
* apolipoprotein E (APOE) | |||
* cerebral vascular disease (CVD) | |||
* dementia | |||
* epidemiology | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6948010 | |||
}} | |||
{{medline-entry | |||
|title=Work Ability and Job Survival: Four-Year Follow-Up. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31466415 | |||
|mesh-terms=* Adult | |||
* Brazil | |||
* Employment | |||
* Female | |||
* Follow-Up Studies | |||
* Hospitals | |||
* Humans | |||
* Male | |||
* Proportional Hazards Models | |||
* Work Capacity Evaluation | |||
|keywords=* aging | |||
* healthcare worker | |||
* life course | |||
* longitudinal studies | |||
* prolonged work career | |||
* work ability | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747402 | |||
}} | |||
{{medline-entry | |||
|title=Predictivity of bioimpedance phase angle for incident disability in older adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31436391 | |||
|keywords=* Aging | |||
* Body composition | |||
* Cellular health | |||
* Muscle mass | |||
* Nutrition | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7015240 | |||
}} | |||
==HRAS== | |||
{{medline-entry | |||
|title=How do combinations of unhealthy behaviors relate to attitudinal factors and subjective health among the adult population in the Netherlands? | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32245376 | |||
|mesh-terms=* Adult | |||
* Alcohol Drinking | |||
* Attitude to Health | |||
* Cluster Analysis | |||
* Diagnostic Self Evaluation | |||
* Diet, Healthy | |||
* Exercise | |||
* Female | |||
* Health Risk Behaviors | |||
* Humans | |||
* Life Expectancy | |||
* Life Style | |||
* Logistic Models | |||
* Male | |||
* Middle Aged | |||
* Netherlands | |||
* Prevalence | |||
* Sedentary Behavior | |||
* Smoking | |||
* Surveys and Questionnaires | |||
* Young Adult | |||
|keywords=* Clustering risk attitude | |||
* Health behaviours | |||
* Subjective health | |||
* Time orientation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7126128 | |||
}} | |||
{{medline-entry | |||
|title=Elucidating Proteoform Dynamics Underlying the Senescence Associated Secretory Phenotype. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940439 | |||
|keywords=* proteoform | |||
* quantitative proteomics | |||
* secretome | |||
* senescence | |||
* top-down proteomics | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7032038 | |||
}} | |||
==HS2ST1== | |||
{{medline-entry | |||
|title=Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31940721 | |||
|mesh-terms=* Animals | |||
* Avian Proteins | |||
* Birds | |||
* Endangered Species | |||
* Immunity | |||
* Longevity | |||
* Polymorphism, Genetic | |||
* Species Specificity | |||
* Transcriptome | |||
* Whole Genome Sequencing | |||
|keywords=* genome | |||
* longevity | |||
* red-crowned crane | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999708 | |||
}} | |||
==HSF1== | |||
{{medline-entry | |||
|title=A Mitochondrial Stress-Specific Form of [[HSF1]] Protects against Age-Related Proteostasis Collapse. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32735771 | |||
|keywords=* HSF1 | |||
* PP2A | |||
* aging | |||
* mitochondria | |||
* molecular chaperones | |||
* protein aggregation | |||
* proteostasis | |||
* stress responses | |||
|full-text-url=https://sci-hub.do/10.1016/j.devcel.2020.06.038 | |||
}} | |||
{{medline-entry | |||
|title=Heat shock factor 1-mediated transcription activation of Omi/HtrA2 induces myocardial mitochondrial apoptosis in the aging heart. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31627188 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Apoptosis | |||
* Heat Shock Transcription Factors | |||
* High-Temperature Requirement A Serine Peptidase 2 | |||
* Male | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Mitochondria, Heart | |||
* Myocytes, Cardiac | |||
* NIH 3T3 Cells | |||
* Transcriptional Activation | |||
* Up-Regulation | |||
|keywords=* Omi/HtrA2 | |||
* age-related pathology | |||
* cardiovascular | |||
* mitochondria | |||
* transcriptional regulation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834417 | |||
}} | |||
{{medline-entry | |||
|title=Multifactorial Attenuation of the Murine Heat Shock Response With Age. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31612204 | |||
|keywords=* Aging | |||
* HSF1 | |||
* Stress | |||
|full-text-url=https://sci-hub.do/10.1093/gerona/glz204 | |||
}} | |||
==HSPA1A== | |||
{{medline-entry | |||
|title=Vitamin D3 treatment regulates apoptosis, antioxidant defense system, and DNA integrity in the epididymal sperm of an aged rat model. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31566824 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Antioxidants | |||
* Apoptosis | |||
* Cholecalciferol | |||
* Epididymis | |||
* Male | |||
* Rats | |||
* Rats, Wistar | |||
* Spermatozoa | |||
|keywords=* aging | |||
* apoptosis | |||
* oxidative stress | |||
* sperm | |||
|full-text-url=https://sci-hub.do/10.1002/mrd.23280 | |||
}} | |||
==HSPA1L== | |||
{{medline-entry | |||
|title=Melatonin suppresses senescence-derived mitochondrial dysfunction in mesenchymal stem cells via the [[HSPA1L]]-mitophagy pathway. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31965731 | |||
|keywords=* HSPA1L | |||
* melatonin | |||
* mesenchymal stem cells | |||
* mitochondria | |||
* mitophagy | |||
* replicative senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059143 | |||
}} | |||
==HTT== | |||
{{medline-entry | |||
|title=Biological Aging and the Cellular Pathogenesis of Huntington's Disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32417788 | |||
|keywords=* Biological aging | |||
* DNA damage | |||
* Huntington’s disease | |||
* cellular aging | |||
* microsatellite instability | |||
* neurodegeneration | |||
* oxidative stress | |||
* proteostasis | |||
* telomere | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7369111 | |||
}} | |||
==ICE1== | |||
{{medline-entry | |||
|title=ATBS1-INTERACTING FACTOR 2 negatively regulates dark- and brassinosteroid-induced leaf senescence through interactions with INDUCER OF CBF EXPRESSION 1. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31783407 | |||
|keywords=* ATBS1-INTERACTING FACTOR 2 (AIF2) | |||
* Arabidopsis | |||
* C-REPEAT BINDING FACTOR (CBF) | |||
* INDUCER OF CBF EXPRESSION 1 (ICE1) | |||
* PHYTOCHROME-INTERACTING FACTORS (PIFs) | |||
* basic helix–loop–helix (bHLH) | |||
* brassinosteroid (BR) | |||
* leaf senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031079 | |||
}} | |||
==IDE== | |||
{{medline-entry | |||
|title=Dendrobium nobile Lindl. Alkaloids Ameliorate Cognitive Dysfunction in Senescence Accelerated SAMP8 Mice by Decreasing Amyloid-β Aggregation and Enhancing Autophagy Activity. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32538851 | |||
|keywords=* Aging | |||
* Dendrobium nobile Lindl. alkaloid (DNLA) | |||
* amyloid-β | |||
* autophagy | |||
* metformin | |||
* senescence accelerated mouse prone 8 (SAMP8) | |||
|full-text-url=https://sci-hub.do/10.3233/JAD-200308 | |||
}} | |||
==IDH2== | |||
{{medline-entry | |||
|title=Reactive oxygen species-mediated senescence is accelerated by inhibiting Cdk2 in Idh2-deficient conditions. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31503005 | |||
|mesh-terms=* Animals | |||
* Cellular Senescence | |||
* Cyclin-Dependent Kinase 2 | |||
* Cyclin-Dependent Kinase Inhibitor p21 | |||
* Embryo, Mammalian | |||
* Fibroblasts | |||
* Isocitrate Dehydrogenase | |||
* Mice | |||
* Mice, Knockout | |||
* NIH 3T3 Cells | |||
* Reactive Oxygen Species | |||
|keywords=* cell cycle | |||
* cyclin-dependent kinase 2 (Cdk2) | |||
* isocitrate dehydrogenase 2 (IDH2) | |||
* reactive oxygen species (ROS) | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6756887 | |||
}} | |||
==IDS== | |||
{{medline-entry | |||
|title=Effect of immediate dentine sealing on the aging and fracture strength of lithium disilicate inlays and overlays. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32957211 | |||
|keywords=* Aging | |||
* Ceramic | |||
* Fracture strength | |||
* Immediate dentin sealing | |||
* Inlay | |||
* Overlay | |||
|full-text-url=https://sci-hub.do/10.1016/j.jmbbm.2020.103906 | |||
}} | |||
==IFI27== | |||
{{medline-entry | |||
|title=Ultraviolet B irradiation-induced keratinocyte senescence and impaired development of 3D epidermal reconstruct. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33151171 | |||
|keywords=* epidermis | |||
* keratinocytes | |||
* reactive oxygen species | |||
* senescence | |||
* skin aging | |||
* ultraviolet radiation | |||
|full-text-url=https://sci-hub.do/10.2478/acph-2021-0011 | |||
}} | |||
==IGF1== | |||
{{medline-entry | |||
|title=Genetic differences and longevity-related phenotypes influence lifespan and lifespan variation in a sex-specific manner in mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33105070 | |||
|keywords=* IGF1 | |||
* antagonistic gene | |||
* female sexual maturation | |||
* lifespan variation | |||
* maximum lifespan | |||
* sex difference in lifespan | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7681063 | |||
}} | |||
{{medline-entry | |||
|title=17α-estradiol modulates [[IGF1]] and hepatic gene expression in a sex-specific manner. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32857104 | |||
|keywords=* 17α-estradiol | |||
* aging | |||
* growth hormone | |||
* insulin | |||
* insulin-like growth factor-1 | |||
* liver | |||
|full-text-url=https://sci-hub.do/10.1093/gerona/glaa215 | |||
}} | |||
{{medline-entry | |||
|title=Pan-mammalian analysis of molecular constraints underlying extended lifespan. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32043462 | |||
|keywords=* RERconverge | |||
* computational biology | |||
* evolution | |||
* genetics | |||
* genomics | |||
* longevity | |||
* mammals | |||
* phylogenomics | |||
* systems biology | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012612 | |||
}} | |||
{{medline-entry | |||
|title=17α-Estradiol promotes ovarian aging in growth hormone receptor knockout mice, but not wild-type littermates. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31698046 | |||
|keywords=* Follicles | |||
* Ovarian aging | |||
* Ovarian reserve | |||
* Reproductive lifespan | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6911620 | |||
}} | |||
==IGF1R== | |||
{{medline-entry | |||
|title=Comparison of mitochondrial transplantation by using a stamp-type multineedle injector and platelet-rich plasma therapy for hair aging in naturally aging mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32707439 | |||
|keywords=* Aging mice | |||
* Hair growth | |||
* Mitochondrial transplantation | |||
* Pep-1 | |||
* Platelet-rich plasma | |||
|full-text-url=https://sci-hub.do/10.1016/j.biopha.2020.110520 | |||
}} | |||
==IGFBP1== | |||
{{medline-entry | |||
|title=Role of [[IGFBP1]] in the senescence of vascular endothelial cells and severity of aging‑related coronary atherosclerosis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31545483 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Atherosclerosis | |||
* Cells, Cultured | |||
* Cellular Senescence | |||
* Coronary Artery Disease | |||
* Coronary Vessels | |||
* Down-Regulation | |||
* Endothelial Cells | |||
* Female | |||
* Humans | |||
* Insulin-Like Growth Factor Binding Protein 1 | |||
* Jagged-1 Protein | |||
* Male | |||
* Middle Aged | |||
* Signal Transduction | |||
* Up-Regulation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777673 | |||
}} | |||
==IGFBP2== | |||
{{medline-entry | |||
|title=Intracellular Insulin-like growth factor binding protein 2 ([[IGFBP2]]) contributes to the senescence of keratinocytes in psoriasis by stabilizing cytoplasmic p21. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32302288 | |||
|keywords=* insulin-like growth factor binding protein 2 | |||
* keratinocytes | |||
* p21CIP1/WAF1 | |||
* psoriasis | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7202509 | |||
}} | |||
==IGFBP3== | |||
{{medline-entry | |||
|title=Cellular and Molecular Biomarkers Indicate Premature Aging in Pseudoxanthoma Elasticum Patients. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32489700 | |||
|keywords=* CCL11 | |||
* GDF11 | |||
* IGF1 | |||
* IGFBP | |||
* aging | |||
* pseudoxanthoma elasticum | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7220280 | |||
}} | |||
{{medline-entry | |||
|title=Paracrine senescence of human endometrial mesenchymal stem cells: a role for the insulin-like growth factor binding protein 3. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31951594 | |||
|keywords=* IGFBP3 | |||
* endocytosis | |||
* endometrial stem cells | |||
* paracrine senescence | |||
* secretome | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7053595 | |||
}} | |||
==IGFBP4== | |||
{{medline-entry | |||
|title=Quantitative iTRAQ-based proteomic analysis of differentially expressed proteins in aging in human and monkey. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31601169 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Animals | |||
* Cognition | |||
* Female | |||
* Gene Expression Regulation | |||
* Gene Regulatory Networks | |||
* Haplorhini | |||
* Humans | |||
* Insulin-Like Growth Factor Binding Protein 4 | |||
* Male | |||
* Mice | |||
* Proteomics | |||
|keywords=* Cognitive dysfunction | |||
* IGFBP4 | |||
* Plasma | |||
* Quantitative proteomics | |||
* iTRAQ | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6788010 | |||
}} | |||
==IGFBP7== | |||
{{medline-entry | |||
|title=Reprogramming of human fibroblasts into osteoblasts by insulin-like growth factor-binding protein 7. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31904196 | |||
|keywords=* IGFBP7 | |||
* IL-6 | |||
* human fibroblast | |||
* osteoblast | |||
* reprogramming | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031646 | |||
}} | |||
==IHH== | |||
{{medline-entry | |||
|title=Indian Hedgehog regulates senescence in bone marrow-derived mesenchymal stem cell through modulation of ROS/mTOR/4EBP1, p70S6K1/2 pathway. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32235006 | |||
|keywords=* Indian hedgehog | |||
* aging | |||
* differentiation | |||
* mammalian target of rapamycin | |||
* mesenchymal stem cell | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7185126 | |||
}} | |||
==IL10== | |||
{{medline-entry | |||
|title=The beneficial effect of physical exercise on inflammatory makers in older individuals. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32504508 | |||
|keywords=* IL-6 expression | |||
* Inflammatory markers | |||
* aerobic exercise | |||
* aging | |||
* plasma IL-6 levels | |||
* resistance training | |||
|full-text-url=https://sci-hub.do/10.2174/1871530320666200606225357 | |||
}} | |||
{{medline-entry | |||
|title=Astrocyte senescence may drive alterations in GFAPα, CDKN2A p14 , and TAU3 transcript expression and contribute to cognitive decline. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31654269 | |||
|mesh-terms=* Aged | |||
* Alternative Splicing | |||
* Astrocytes | |||
* Cells, Cultured | |||
* Cellular Senescence | |||
* Cognitive Dysfunction | |||
* Cytokines | |||
* Gene Expression | |||
* Glial Fibrillary Acidic Protein | |||
* Humans | |||
* Matrix Metalloproteinases | |||
* Transcription, Genetic | |||
* Tumor Suppressor Protein p14ARF | |||
* tau Proteins | |||
|keywords=* Alternative splicing | |||
* Gene expression | |||
* Neurodegenerative disease | |||
* Senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6885035 | |||
}} | |||
{{medline-entry | |||
|title=Dietary Spray-Dried Porcine Plasma Prevents Cognitive Decline in Senescent Mice and Reduces Neuroinflammation and Oxidative Stress. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31562503 | |||
|mesh-terms=* Animals | |||
* Cognition Disorders | |||
* Encephalitis | |||
* Male | |||
* Mice | |||
* Oxidative Stress | |||
* Plasma | |||
* Swine | |||
|keywords=* aging | |||
* cognitive decline | |||
* dietary supplementation | |||
* neuroinflammation | |||
* spray-dried animal plasma | |||
|full-text-url=https://sci-hub.do/10.1093/jn/nxz239 | |||
}} | |||
==IL15== | |||
{{medline-entry | |||
|title=Moderate physical activity associated with a higher naïve/memory T-cell ratio in healthy old individuals: potential role of [[IL15]]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32221610 | |||
|keywords=* T cells | |||
* ageing | |||
* immune senescence | |||
* older people | |||
* physical activity | |||
|full-text-url=https://sci-hub.do/10.1093/ageing/afaa035 | |||
}} | |||
==IL1A== | |||
{{medline-entry | |||
|title=IL1B triggers inflammatory cytokine production in bovine oviduct epithelial cells and induces neutrophil accumulation via CCL2. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33099841 | |||
|keywords=* CCL2 | |||
* cellular senescence | |||
* inflammaging | |||
* senescence-associated secretory phenotype | |||
|full-text-url=https://sci-hub.do/10.1111/aji.13365 | |||
}} | |||
==IL2== | |||
{{medline-entry | |||
|title=Impact of Aging on the Phenotype of Invariant Natural Killer T Cells in Mouse Thymus. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33193368 | |||
|keywords=* IL2 | |||
* aging | |||
* invariant natural killer T cells | |||
* thymus | |||
* transcriptome | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662090 | |||
}} | |||
==IL6== | |||
{{medline-entry | |||
|title=Basic immunology may lead to translational therapeutic rationale: SARS-CoV-2 and rheumatic diseases. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32645207 | |||
|mesh-terms=* Adaptive Immunity | |||
* Aged | |||
* Antirheumatic Agents | |||
* COVID-19 | |||
* Comorbidity | |||
* Coronavirus Infections | |||
* Disease Outbreaks | |||
* Female | |||
* Humans | |||
* Hydroxychloroquine | |||
* Immunity, Innate | |||
* Immunologic Factors | |||
* Immunosuppressive Agents | |||
* Italy | |||
* Male | |||
* Middle Aged | |||
* Pandemics | |||
* Pneumonia, Viral | |||
* Rheumatic Diseases | |||
* Risk Assessment | |||
* Severe Acute Respiratory Syndrome | |||
|keywords=* COVID-19 | |||
* SARS-CoV-2 | |||
* geriatrics | |||
* pathophysiology | |||
* pediatrics | |||
* rheumatology | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7404583 | |||
}} | |||
{{medline-entry | |||
|title=ATM-deficient neural precursors develop senescence phenotype with disturbances in autophagy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32621937 | |||
|keywords=* ATM | |||
* Ataxia-telangiectasia | |||
* Autophagy | |||
* Mitophagy | |||
* Neural progenitors | |||
* Oxidative stress | |||
* Senescence | |||
* hiPSCs | |||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2020.111296 | |||
}} | |||
{{medline-entry | |||
|title=The microRNA-34a-Induced Senescence-Associated Secretory Phenotype (SASP) Favors Vascular Smooth Muscle Cells Calcification. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32585876 | |||
|keywords=* IL6 | |||
* SASP | |||
* VSMCs | |||
* inflammaging | |||
* senescence | |||
* vascular calcification | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352675 | |||
}} | |||
{{medline-entry | |||
|title=Impact of Influenza on Pneumococcal Vaccine Effectiveness during [i]Streptococcus pneumoniae[/i] Infection in Aged Murine Lung. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32545261 | |||
|keywords=* Streptococcus pneumoniae | |||
* aging | |||
* influenza | |||
* vaccine effectiveness | |||
* viral immune imprinting | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349919 | |||
}} | |||
{{medline-entry | |||
|title=Patterns of multi-domain cognitive aging in participants of the Long Life Family Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32514870 | |||
|keywords=* Aging | |||
* Biomarker | |||
* Cognition | |||
* Neuropsychology | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7525612 | |||
}} | |||
{{medline-entry | |||
|title=Cholest-4,6-Dien-3-One Promote Epithelial-To-Mesenchymal Transition (EMT) in Biliary Tree Stem/Progenitor Cell Cultures In Vitro. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31731674 | |||
|mesh-terms=* Biliary Tract | |||
* Cell Differentiation | |||
* Cell Proliferation | |||
* Cells, Cultured | |||
* Cellular Senescence | |||
* Cholestenones | |||
* Epithelial-Mesenchymal Transition | |||
* Histone Deacetylase 6 | |||
* Humans | |||
* Interleukin-6 | |||
* Signal Transduction | |||
* Stem Cells | |||
* Tissue Donors | |||
|keywords=* BMP pathway | |||
* SHH pathway | |||
* biliary tree stem/progenitor cells (BTSCs) | |||
* epithelial-to-mesenchymal transition (EMT) | |||
* primary sclerosing cholangitis (PSC) | |||
* senescence | |||
* telomerase | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6912632 | |||
}} | |||
{{medline-entry | |||
|title=Single xenotransplant of rat brown adipose tissue prolonged the ovarian lifespan of aging mice by improving follicle survival. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31389140 | |||
|mesh-terms=* Adipose Tissue, Brown | |||
* Animals | |||
* Cellular Senescence | |||
* Female | |||
* Longevity | |||
* Male | |||
* Mice | |||
* Ovarian Follicle | |||
* Ovary | |||
* Rats | |||
* Rats, Sprague-Dawley | |||
* Transplantation, Heterologous | |||
|keywords=* aging | |||
* brown adipose tissue (BAT) | |||
* lifespan | |||
* mice | |||
* ovary | |||
* rat | |||
* xenotransplant | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826128 | |||
}} | |||
==ILDR1== | |||
{{medline-entry | |||
|title=Genome-wide association meta-analysis identifies five novel loci for age-related hearing impairment. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31645637 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Auditory Pathways | |||
* Female | |||
* Gene Expression Regulation | |||
* Genetic Loci | |||
* Genetic Predisposition to Disease | |||
* Genome-Wide Association Study | |||
* Hearing Loss | |||
* Humans | |||
* Male | |||
* Mice | |||
* Middle Aged | |||
* Molecular Sequence Annotation | |||
* Phenotype | |||
* Reproducibility of Results | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6811684 | |||
}} | |||
==IMPACT== | |||
{{medline-entry | |||
|title=Load-dependent modulation of alpha oscillations during working memory encoding and retention in young and older adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33141460 | |||
|keywords=* EEG | |||
* alpha oscillations | |||
* cognitive aging | |||
* working memory | |||
|full-text-url=https://sci-hub.do/10.1111/psyp.13719 | |||
}} | |||
{{medline-entry | |||
|title=Using Video Telehealth to Deliver Patient-Centered Collaborative Care: The G-[[IMPACT]] Pilot. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32228299 | |||
|keywords=* Telehealth | |||
* aging | |||
* care coordination | |||
* home care | |||
* interdisciplinary | |||
* medicine | |||
* older adult | |||
* video | |||
|full-text-url=https://sci-hub.do/10.1080/07317115.2020.1738000 | |||
}} | |||
{{medline-entry | |||
|title=AGING, HEART RATE VARIABILITY AND METABOLIC [[IMPACT]] OF OBESITY. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31969754 | |||
|mesh-terms=* Aging | |||
* Autonomic Nervous System | |||
* Autonomic Nervous System Diseases | |||
* Female | |||
* Heart Rate | |||
* Humans | |||
* Male | |||
* Metabolic Diseases | |||
* Metabolism | |||
* Middle Aged | |||
* Obesity | |||
|keywords=* Aging | |||
* Autonomic nervous system | |||
* Heart rate | |||
* Obesity, metabolically benign | |||
* Parasympathetic nervous system | |||
* Sympathetic nervous system | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971797 | |||
}} | |||
==INS== | |||
{{medline-entry | |||
|title=Melatonin protects [[INS]]-1 pancreatic β-cells from apoptosis and senescence induced by glucotoxicity and glucolipotoxicity. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32673151 | |||
|keywords=* Melatonin | |||
* Senescence | |||
* glucolipotoxicity | |||
* glucotoxicity | |||
* pancreatic β-cell | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527021 | |||
}} | |||
{{medline-entry | |||
|title=Nicotine triggers islet β cell senescence to facilitate the progression of type 2 diabetes. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32473187 | |||
|mesh-terms=* Animals | |||
* Blotting, Western | |||
* Calcium | |||
* Cellular Senescence | |||
* Diabetes Mellitus, Type 2 | |||
* Disease Progression | |||
* Dose-Response Relationship, Drug | |||
* Enzyme-Linked Immunosorbent Assay | |||
* Glucose | |||
* Insulin-Secreting Cells | |||
* Male | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Nicotine | |||
* Reactive Oxygen Species | |||
* Real-Time Polymerase Chain Reaction | |||
* beta-Galactosidase | |||
|keywords=* ROS | |||
* islet β cells | |||
* nicotine | |||
* senescence | |||
* type 2 diabetes | |||
|full-text-url=https://sci-hub.do/10.1016/j.tox.2020.152502 | |||
}} | |||
==INSL3== | |||
{{medline-entry | |||
|title=Effect of Thyroxine Replacement on Leydig Cell and Sertoli Cell Function in Men with Hypothyroidism. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33083267 | |||
|keywords=* Androgen deficiency in aging male | |||
* arizona sexual experience scale | |||
* hypothyroidism | |||
* inhibin B | |||
* insulin-like factor 3 | |||
* semen analysis | |||
* sperm motility | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7539029 | |||
}} | |||
==IP6K1== | |||
{{medline-entry | |||
|title=The Role of the IGF-1 Signaling Cascade in Muscle Protein Synthesis and Anabolic Resistance in Aging Skeletal Muscle. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31552262 | |||
|keywords=* Akt | |||
* IP6K1 | |||
* aging | |||
* anabolic resistance | |||
* mTOR | |||
* protein | |||
* resistance exercise | |||
* sarcopenia | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6746962 | |||
}} | |||
==IQGAP1== | |||
{{medline-entry | |||
|title=[[IQGAP1]]-dysfunction leads to induction of senescence in human vascular smooth muscle cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32592713 | |||
|keywords=* Cellular bridges (CBs) | |||
* IQGAP1 | |||
* Intercellular communication | |||
* Senescence | |||
* Tunneling nanotubes (TNTs) | |||
* Vascular smooth muscle cells (VSMCs) | |||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2020.111295 | |||
}} | |||
{{medline-entry | |||
|title=Hyaluronan-binding protein 1 (HABP1) overexpression triggers induction of senescence in fibroblasts cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32068317 | |||
|keywords=* F-HABP07 | |||
* HABP1 | |||
* IQGAP1 | |||
* senescence | |||
|full-text-url=https://sci-hub.do/10.1002/cbin.11326 | |||
}} | |||
==IRF8== | |||
{{medline-entry | |||
|title=[[IRF8]] induces senescence of lung cancer cells to exert its tumor suppressive function. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31594449 | |||
|mesh-terms=* A549 Cells | |||
* Animals | |||
* Carcinogenesis | |||
* Carcinoma, Non-Small-Cell Lung | |||
* Cell Movement | |||
* Cell Proliferation | |||
* Cellular Senescence | |||
* Gene Expression Regulation, Neoplastic | |||
* Heterografts | |||
* Humans | |||
* Interferon Regulatory Factors | |||
* Mice | |||
* Prognosis | |||
* Signal Transduction | |||
* Tumor Suppressor Proteins | |||
|keywords=* IRF8 | |||
* NSCLC | |||
* cell cycle arrest | |||
* cell senescence | |||
* tumor suppresser gene | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927690 | |||
}} | |||
==IRS1== | |||
{{medline-entry | |||
|title=MicroRNA-34a causes ceramide accumulation and effects insulin signaling pathway by targeting ceramide kinase (CERK) in aging skeletal muscle. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32056304 | |||
|keywords=* CERK | |||
* aging muscle | |||
* insulin signaling pathway | |||
* miR-34a | |||
|full-text-url=https://sci-hub.do/10.1002/jcb.29312 | |||
}} | |||
{{medline-entry | |||
|title=Longevity in response to lowered insulin signaling requires glycine N-methyltransferase-dependent spermidine production. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31721422 | |||
|keywords=* IGF | |||
* aging | |||
* autophagy | |||
* insulin | |||
* lifespan | |||
* metabolism | |||
* polyamine | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974722 | |||
}} | |||
{{medline-entry | |||
|title=Serine Phosphorylation of [[IRS1]] Correlates with Aβ-Unrelated Memory Deficits and Elevation in Aβ Level Prior to the Onset of Memory Decline in AD. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31426549 | |||
|mesh-terms=* Aging | |||
* Alzheimer Disease | |||
* Amyloid beta-Peptides | |||
* Amyloid beta-Protein Precursor | |||
* Animals | |||
* Brain | |||
* Diabetes Mellitus, Type 2 | |||
* Humans | |||
* Insulin | |||
* Insulin Receptor Substrate Proteins | |||
* Male | |||
* Memory | |||
* Memory Disorders | |||
* Mice, Inbred C57BL | |||
* Mice, Transgenic | |||
* Phosphorylation | |||
* Serine | |||
* Signal Transduction | |||
|keywords=* AMPK | |||
* Alzheimer’s disease | |||
* Aβ | |||
* IRS1 | |||
* aging | |||
* diabetes | |||
* energy depletion | |||
* hippocampus | |||
* memory decline | |||
* serine phosphorylation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723493 | |||
}} | |||
==IRS2== | |||
{{medline-entry | |||
|title=Effects of Heshouwuyin on gene expression of the insulin/IGF signalling pathway in rat testis and spermatogenic cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33264567 | |||
|keywords=* IGF1 | |||
* IGFBP3 | |||
* INSR | |||
* IRS1 | |||
* IRS2 | |||
* Male reproduction | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7717869 | |||
}} | |||
==ITGA3== | |||
{{medline-entry | |||
|title=A transcriptomic analysis of serial-cultured, tonsil-derived mesenchymal stem cells reveals decreased integrin α3 protein as a potential biomarker of senescent cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32807231 | |||
|keywords=* AKT | |||
* Culture-aged | |||
* ECM-receptor protein | |||
* Integrin α3 | |||
* Senescence | |||
* Serial passaging | |||
* Tonsil-derived mesenchymal stem cells | |||
* Transcriptome | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7430027 | |||
}} | |||
==ITGA5== | |||
{{medline-entry | |||
|title=Kaempferol alleviates the reduction of developmental competence during aging of porcine oocytes. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31486245 | |||
|mesh-terms=* Animals | |||
* Blastocyst | |||
* Cellular Senescence | |||
* Embryo Culture Techniques | |||
* Embryo, Mammalian | |||
* Embryonic Development | |||
* Female | |||
* Integrins | |||
* Kaempferols | |||
* Mitochondria | |||
* Nanog Homeobox Protein | |||
* Octamer Transcription Factor-3 | |||
* Oocytes | |||
* Oxidative Stress | |||
* RNA, Messenger | |||
* Reactive Oxygen Species | |||
* Swine | |||
|keywords=* embryonic development | |||
* kaempferol | |||
* oocyte aging | |||
* porcine | |||
|full-text-url=https://sci-hub.do/10.1111/asj.13280 | |||
}} | |||
==ITGAM== | |||
{{medline-entry | |||
|title=Comparative Analysis of Gene Expression Patterns for Oral Epithelium-Related Functions with Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31732940 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Disease Models, Animal | |||
* Epithelial Cells | |||
* Gingiva | |||
* Macaca mulatta | |||
* Oligonucleotide Array Sequence Analysis | |||
* Transcriptome | |||
|full-text-url=https://sci-hub.do/10.1007/978-3-030-28524-1_11 | |||
}} | |||
==IVD== | |||
{{medline-entry | |||
|title=MicroRNAs in Intervertebral Disc Degeneration, Apoptosis, Inflammation, and Mechanobiology. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32443722 | |||
|keywords=* ECM | |||
* MMP | |||
* annulus fibrosus | |||
* cartilaginous endplate | |||
* degenerative disc disease | |||
* miRNA | |||
* nucleus pulposus | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7279351 | |||
}} | |||
{{medline-entry | |||
|title=A step-by-step protocol for isolation of murine nucleus pulposus cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31891122 | |||
|keywords=* aging | |||
* gene expression | |||
* intervertebral disc degeneration | |||
* nucleus pulposus | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6920701 | |||
}} | |||
{{medline-entry | |||
|title=Caspase-3 knockout inhibits intervertebral disc degeneration related to injury but accelerates degeneration related to aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31852919 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Annulus Fibrosus | |||
* Apoptosis | |||
* Biomarkers | |||
* Carcinogenesis | |||
* Caspase 3 | |||
* Cell Count | |||
* Extracellular Matrix | |||
* Intervertebral Disc | |||
* Intervertebral Disc Degeneration | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* Nucleus Pulposus | |||
* Up-Regulation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6920379 | |||
}} | |||
{{medline-entry | |||
|title=Finite element and deformation analyses predict pattern of bone failure in loaded zebrafish spines. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31690186 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Back Pain | |||
* Disease Models, Animal | |||
* Finite Element Analysis | |||
* Humans | |||
* Intervertebral Disc | |||
* Movement | |||
* Weight-Bearing | |||
* Zebrafish | |||
|keywords=* deformation | |||
* finite element | |||
* geometric morphometrics | |||
* mechanics | |||
* spine | |||
* zebrafish | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6893493 | |||
}} | |||
{{medline-entry | |||
|title=Improvement in determining the risk of damage to the human lumbar functional spinal unit considering age, height, weight and sex using a combination of FEM and RSM. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31473842 | |||
|mesh-terms=* Adult | |||
* Age Factors | |||
* Aging | |||
* Analysis of Variance | |||
* Biomechanical Phenomena | |||
* Body Height | |||
* Body Mass Index | |||
* Body Weight | |||
* Cortical Bone | |||
* Female | |||
* Finite Element Analysis | |||
* Humans | |||
* Imaging, Three-Dimensional | |||
* Intervertebral Disc | |||
* Lumbar Vertebrae | |||
* Male | |||
* Models, Biological | |||
* Range of Motion, Articular | |||
* Risk Factors | |||
* Sex Characteristics | |||
|keywords=* Age | |||
* Biomechanics | |||
* Body mass index (BMI) | |||
* Finite element method (FEM) | |||
* Functional spinal unit (FSU) | |||
* Height | |||
* Response surface method (RSM) | |||
* Sex | |||
* Weight | |||
|full-text-url=https://sci-hub.do/10.1007/s10237-019-01215-4 | |||
}} | |||
{{medline-entry | |||
|title=In vivo contrast-enhanced microCT for the monitoring of mouse thoracic, lumbar, and coccygeal intervertebral discs. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31463468 | |||
|keywords=* Contrast‐enhanced microCT | |||
* aging | |||
* intervertebral disc | |||
* mouse model | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686789 | |||
}} | |||
==JAK1== | |||
{{medline-entry | |||
|title=Irradiation-induced senescence of bone marrow mesenchymal stem cells aggravates osteogenic differentiation dysfunction via paracrine signaling. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32233952 | |||
|mesh-terms=* Bone Resorption | |||
* Cell Cycle Checkpoints | |||
* Cell Differentiation | |||
* Cell Proliferation | |||
* Cellular Senescence | |||
* DNA Damage | |||
* Gene Expression Regulation, Developmental | |||
* Histones | |||
* Humans | |||
* Janus Kinase 1 | |||
* Mesenchymal Stem Cells | |||
* Mitochondria | |||
* Osteogenesis | |||
* Paracrine Communication | |||
* Radiation | |||
* Reactive Oxygen Species | |||
* STAT3 Transcription Factor | |||
* Signal Transduction | |||
|keywords=* SASP | |||
* bone marrow mesenchymal stem cells | |||
* cellular senescence | |||
* irradiation | |||
* osteogenic differentiation | |||
|full-text-url=https://sci-hub.do/10.1152/ajpcell.00520.2019 | |||
}} | |||
{{medline-entry | |||
|title=The Upregulation of Toll-Like Receptor 3 via Autocrine IFN-β Signaling Drives the Senescence of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Through [[JAK1]]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31396213 | |||
|mesh-terms=* Autocrine Communication | |||
* Cellular Senescence | |||
* Fetal Blood | |||
* Humans | |||
* Interleukin-6 | |||
* Janus Kinase 1 | |||
* Mesenchymal Stem Cells | |||
* Toll-Like Receptor 3 | |||
* Up-Regulation | |||
|keywords=* Janus kinase 1 (JAK1) | |||
* Toll-like receptor 3 (TLR3) | |||
* interferon-β (IFN-β) | |||
* mesenchymal stromal cell (MSC) | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6665952 | |||
}} | |||
==JAK2== | |||
{{medline-entry | |||
|title=Senescence in Monocytes Facilitates Dengue Virus Infection by Increasing Infectivity. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32850477 | |||
|keywords=* DC-SIGN | |||
* IL-10 | |||
* dengue virus | |||
* monocytes | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7399640 | |||
}} | |||
{{medline-entry | |||
|title=Quercetin Directly Targets [[JAK2]] and PKCδ and Prevents UV-Induced Photoaging in Human Skin. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31652815 | |||
|mesh-terms=* Antioxidants | |||
* Cell Line | |||
* Cells, Cultured | |||
* Cyclooxygenase 2 | |||
* Humans | |||
* Janus Kinase 2 | |||
* MAP Kinase Signaling System | |||
* Matrix Metalloproteinase 1 | |||
* NF-kappa B | |||
* Protein Kinase C-delta | |||
* Quercetin | |||
* STAT3 Transcription Factor | |||
* Skin | |||
* Skin Aging | |||
* Transcription Factor AP-1 | |||
* Ultraviolet Rays | |||
|keywords=* JAK2 | |||
* PKC-delta | |||
* quercetin | |||
* skin aging | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6862686 | |||
}} | |||
{{medline-entry | |||
|title=[Red blood cell lifespan detected by endogenous carbon monoxide breath test in patients with polycythemia vera]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31594177 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Breath Tests | |||
* Carbon Monoxide | |||
* Case-Control Studies | |||
* Erythrocyte Count | |||
* Erythrocytes | |||
* Female | |||
* Humans | |||
* Janus Kinase 2 | |||
* Longevity | |||
* Male | |||
* Middle Aged | |||
* Polycythemia Vera | |||
|keywords=* Carbon monoxide breath test | |||
* Polycythemia vera | |||
* Red blood cell lifespan | |||
|full-text-url=https://sci-hub.do/10.3760/cma.j.issn.0578-1426.2019.10.010 | |||
}} | |||
{{medline-entry | |||
|title=Roles of [[JAK2]] in Aging, Inflammation, Hematopoiesis and Malignant Transformation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31398915 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Hematopoiesis | |||
* Humans | |||
* Inflammation | |||
* Janus Kinase 2 | |||
* Mice | |||
* Myeloproliferative Disorders | |||
* Neoplasms | |||
|keywords=* JAK2 | |||
* Janus-kinase | |||
* aging | |||
* clonal hematopoiesis (CHIP), myeloproliferative neoplasia (MPN) | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721738 | |||
}} | |||
==JUN== | |||
{{medline-entry | |||
|title=Age-Onset Phosphorylation of a Minor Actin Variant Promotes Intestinal Barrier Dysfunction. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31794717 | |||
|mesh-terms=* Actin Cytoskeleton | |||
* Actins | |||
* Aging | |||
* Animals | |||
* Binding Sites | |||
* Caenorhabditis elegans | |||
* Caenorhabditis elegans Proteins | |||
* Intercellular Junctions | |||
* Intestinal Mucosa | |||
* JNK Mitogen-Activated Protein Kinases | |||
* Phosphorylation | |||
* Protein Phosphatase 1 | |||
* Transcription Factors | |||
* Troponin | |||
|keywords=* HSF-1 | |||
* actin | |||
* aging | |||
* barrier | |||
* intestine | |||
* junctions | |||
* kinase | |||
* pathogenesis | |||
* phosphorylation | |||
* stress | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6897307 | |||
}} | |||
==JUNB== | |||
{{medline-entry | |||
|title=Promotion of cellular senescence by THG-1/TSC22D4 knockout through activation of [[JUNB]]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31806366 | |||
|mesh-terms=* Cell Line, Tumor | |||
* Cell Proliferation | |||
* Cellular Senescence | |||
* Cyclin-Dependent Kinase Inhibitor p21 | |||
* Gene Expression Regulation, Neoplastic | |||
* Gene Knockout Techniques | |||
* HEK293 Cells | |||
* Humans | |||
* Transcription Factors | |||
* Transcription, Genetic | |||
* Up-Regulation | |||
|keywords=* Cellular senescence | |||
* JUNB | |||
* P21(CDKN1A) | |||
* THG-1(TSC22D4) | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2019.11.145 | |||
}} | |||
==KAT6B== | |||
{{medline-entry | |||
|title=Aging-associated decrease in the histone acetyltransferase [[KAT6B]] is linked to altered hematopoietic stem cell differentiation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32014431 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Cell Differentiation | |||
* Epigenesis, Genetic | |||
* Erythroid Cells | |||
* Gene Expression Profiling | |||
* Gene Expression Regulation, Enzymologic | |||
* Gene Knockout Techniques | |||
* Histone Acetyltransferases | |||
* Male | |||
* Mice | |||
* Mice, Transgenic | |||
* Myeloid Progenitor Cells | |||
* Transcriptome | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179256 | |||
}} | |||
==KCNK2== | |||
{{medline-entry | |||
|title=Brain age prediction using deep learning uncovers associated sequence variants. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31776335 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Brain | |||
* Databases, Factual | |||
* Deep Learning | |||
* Genome-Wide Association Study | |||
* Humans | |||
* Iceland | |||
* Magnetic Resonance Imaging | |||
* Middle Aged | |||
* Neural Networks, Computer | |||
* Neuropsychological Tests | |||
* Polymorphism, Single Nucleotide | |||
* United Kingdom | |||
* Young Adult | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6881321 | |||
}} | |||
==KCNQ4== | |||
{{medline-entry | |||
|title=Guanylyl Cyclase A/cGMP Signaling Slows Hidden, Age- and Acoustic Trauma-Induced Hearing Loss. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32327991 | |||
|keywords=* KCNQ4 | |||
* PARP-1 | |||
* aging | |||
* cGMP | |||
* guanylyl cyclase A | |||
* hidden hearing loss | |||
* inner ear | |||
* otoprotection | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7160671 | |||
}} | |||
==KCTD12== | |||
{{medline-entry | |||
|title=The association between poverty and gene expression within peripheral blood mononuclear cells in a diverse Baltimore City cohort. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32970748 | |||
|mesh-terms=* Adult | |||
* Demography | |||
* Female | |||
* Gene Expression Profiling | |||
* Humans | |||
* Longevity | |||
* Male | |||
* Metabolic Networks and Pathways | |||
* Middle Aged | |||
* Monocytes | |||
* Poverty | |||
* Transcriptome | |||
* Urban Population | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514036 | |||
}} | |||
==KDM2A== | |||
{{medline-entry | |||
|title=SIRT6 mono-ADP ribosylates [[KDM2A]] to locally increase H3K36me2 at DNA damage sites to inhibit transcription and promote repair. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32584788 | |||
|keywords=* DNA repair | |||
* SIRT6 | |||
* genome stability | |||
* longevity | |||
* transcription | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343504 | |||
}} | |||
==KDM2B== | |||
{{medline-entry | |||
|title=Identification of Structural Elements of the Lysine Specific Demethylase 2B CxxC Domain Associated with Replicative Senescence Bypass in Primary Mouse Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32270414 | |||
|keywords=* Lysine demethylase | |||
* Non-methylated CpG | |||
* Oncogene | |||
* Polycomb repressive complex | |||
* Replicative senescence | |||
* Zn-finger | |||
|full-text-url=https://sci-hub.do/10.1007/s10930-020-09895-z | |||
}} | |||
==KDM3A== | |||
{{medline-entry | |||
|title=[[KDM3A]] and KDM4C Regulate Mesenchymal Stromal Cell Senescence and Bone Aging via Condensin-mediated Heterochromatin Reorganization. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31704649 | |||
|keywords=* Cell Biology | |||
* DNA damage | |||
* Molecular Mechanism of Gene Regulation | |||
* Stem Cells Research | |||
* bone aging | |||
* condensin | |||
* epigenetic regulation | |||
* histone demethylase | |||
* mesenchymal stromal cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888768 | |||
}} | |||
==KEAP1== | |||
{{medline-entry | |||
|title=NRF2 pathway activation by [[KEAP1]] inhibition attenuates the manifestation of aging phenotypes in salivary glands. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32590331 | |||
|keywords=* Aging | |||
* KEAP1 | |||
* Mouse | |||
* NRF2 | |||
* Salivary glands | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7322188 | |||
}} | |||
{{medline-entry | |||
|title=Adaptation of the master antioxidant response connects metabolism, lifespan and feather development pathways in birds. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32424161 | |||
|mesh-terms=* Adaptation, Physiological | |||
* Animals | |||
* Antioxidants | |||
* Basal Metabolism | |||
* Biological Evolution | |||
* Birds | |||
* Cell Nucleus | |||
* Feathers | |||
* Fibroblasts | |||
* Genomics | |||
* Glutathione Transferase | |||
* HEK293 Cells | |||
* Humans | |||
* Kelch-Like ECH-Associated Protein 1 | |||
* Longevity | |||
* NF-E2-Related Factor 2 | |||
* Oxidative Stress | |||
* Phylogeny | |||
* Proteasome Endopeptidase Complex | |||
* Protein Binding | |||
* Protein Transport | |||
* Ubiquitination | |||
* Up-Regulation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7234996 | |||
}} | |||
==KIN== | |||
{{medline-entry | |||
|title=The noncanonical small heat shock protein HSP-17 from [i]Caenorhabditis elegans[/i] is a selective protein aggregase. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32001616 | |||
|mesh-terms=* Animals | |||
* Caenorhabditis elegans | |||
* Caenorhabditis elegans Proteins | |||
* Casein Kinase I | |||
* Heat-Shock Proteins, Small | |||
* Longevity | |||
* Malate Dehydrogenase | |||
* Peptides | |||
* Protein Aggregates | |||
* Protein Folding | |||
* RNA Interference | |||
* RNA, Small Interfering | |||
* Recombinant Proteins | |||
|keywords=* Caenorhabditis elegans (C. elegans) | |||
* chaperone | |||
* protein aggregates | |||
* protein aggregation | |||
* protein folding | |||
* proteostasis | |||
* selective protein aggregase | |||
* small heat shock protein (sHsp) | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062175 | |||
}} | |||
==KIT== | |||
{{medline-entry | |||
|title=Prediction of ovarian aging using ovarian expression of BMP15, GDF9, and C-[[KIT]]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32223330 | |||
|keywords=* BMP15 | |||
* C-KIT | |||
* GDF9 | |||
* Ovarian aging | |||
* biomarkers | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221484 | |||
}} | |||
==KLF2== | |||
{{medline-entry | |||
|title=[[KLF2]] induces the senescence of pancreatic cancer cells by cooperating with FOXO4 to upregulate p21. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31866399 | |||
|mesh-terms=* Animals | |||
* Carcinogenesis | |||
* Cell Cycle Proteins | |||
* Cell Line | |||
* Cells, Cultured | |||
* Cellular Senescence | |||
* Cyclin-Dependent Kinase Inhibitor p21 | |||
* Forkhead Transcription Factors | |||
* Kruppel-Like Transcription Factors | |||
* Male | |||
* Mice | |||
* Mice, Nude | |||
* Pancreatic Neoplasms | |||
* Protein Binding | |||
* Up-Regulation | |||
|keywords=* FOXO4 | |||
* KLF2 | |||
* Pancreatic cancer | |||
* Senescence | |||
|full-text-url=https://sci-hub.do/10.1016/j.yexcr.2019.111784 | |||
}} | |||
==KLF4== | |||
{{medline-entry | |||
|title=Extracellular Vesicles from Healthy Cells Improves Cell Function and Stemness in Premature Senescent Stem Cells by miR-302b and HIF-1α Activation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32630449 | |||
|keywords=* aging | |||
* extracellular vesicles | |||
* oxygen | |||
* physiological oxygen concentration | |||
* physioxia | |||
* redox | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7357081 | |||
}} | |||
{{medline-entry | |||
|title=Soluble klotho regulates the function of salivary glands by activating [[KLF4]] pathways. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31581134 | |||
|mesh-terms=* Animals | |||
* Cells, Cultured | |||
* Down-Regulation | |||
* Gene Expression Regulation | |||
* Glucuronidase | |||
* HEK293 Cells | |||
* Humans | |||
* Kruppel-Like Transcription Factors | |||
* Membrane Proteins | |||
* Mice | |||
* Mice, Knockout | |||
* Nuclear Proteins | |||
* RNA Interference | |||
* RNA, Small Interfering | |||
* Salivary Glands | |||
|keywords=* KLF4 | |||
* aging | |||
* salivary gland | |||
* soluble klotho | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814581 | |||
}} | |||
==KLF6== | |||
{{medline-entry | |||
|title=Krüppel-Like Factor 6 Is Required for Oxidative and Oncogene-Induced Cellular Senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31824948 | |||
|keywords=* DNA damage | |||
* KLF6 | |||
* cell proliferation | |||
* cellular senescence | |||
* ras oncogene | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882731 | |||
}} | |||
==KRAS== | |||
{{medline-entry | |||
|title=Chemical Pathology of Homocysteine VIII. Effects of Tocotrienol, Geranylgeraniol, and Squalene on Thioretinaco Ozonide, Mitochondrial Permeability, and Oxidative Phosphorylation in Arteriosclerosis, Cancer, Neurodegeneration and Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33067202 | |||
|keywords=* adenosine triphosphate | |||
* aging | |||
* antioxidant | |||
* apoptosis | |||
* atherogenesis | |||
* cancer | |||
* carcinogenesis | |||
* cholesterol | |||
* free radical | |||
* geraniol | |||
* geranylgeraniol | |||
* homocysteine | |||
* menoquinone | |||
* mitochondrial dysfunction | |||
* mitochondrial membrane potential | |||
* mitochondrial permeability transition pore | |||
* mitophagy | |||
* neuro-degeneration | |||
* oxidative phosphorylation | |||
* oxidative stress | |||
* squalene | |||
* statin | |||
* stellate cells | |||
* testosterone | |||
* thioretinaco ozonide | |||
* thioretinamide | |||
* tocopherol | |||
* tocotrienol | |||
* ubiquinone | |||
}} | |||
{{medline-entry | |||
|title=Senescence-Induced Vascular Remodeling Creates Therapeutic Vulnerabilities in Pancreas Cancer. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32234521 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* CD8-Positive T-Lymphocytes | |||
* Carcinoma, Pancreatic Ductal | |||
* Cell Line, Tumor | |||
* Cell Proliferation | |||
* Cyclin-Dependent Kinase 4 | |||
* Cyclin-Dependent Kinase 6 | |||
* Gene Expression Regulation, Neoplastic | |||
* Genes, ras | |||
* Humans | |||
* Immunotherapy | |||
* MAP Kinase Signaling System | |||
* Mice | |||
* Pancreatic Neoplasms | |||
* Retinoblastoma Protein | |||
* Signal Transduction | |||
* Tumor Microenvironment | |||
* Vascular Remodeling | |||
|keywords=* T cells | |||
* chemotherapy resistance | |||
* endothelial cell activation | |||
* immunotherapy | |||
* pancreatic cancer | |||
* senescence | |||
* senescence-associated secretory phenotype | |||
* targeted therapy | |||
* tumor microenvironment | |||
* vascular biology | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278897 | |||
}} | |||
==L1CAM== | |||
{{medline-entry | |||
|title=Glioma malignancy is linked to interdependent and inverse AMOG and L1 adhesion molecule expression. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31510944 | |||
|mesh-terms=* Adenosine Triphosphatases | |||
* Apoptosis | |||
* Biomarkers | |||
* Brain Neoplasms | |||
* Cation Transport Proteins | |||
* Cell Adhesion | |||
* Cell Adhesion Molecules, Neuronal | |||
* Cell Line, Tumor | |||
* Cellular Senescence | |||
* Gene Expression Profiling | |||
* Gene Expression Regulation, Neoplastic | |||
* Glioblastoma | |||
* Humans | |||
* Immunohistochemistry | |||
* Neural Cell Adhesion Molecule L1 | |||
* RNA, Small Interfering | |||
* Signal Transduction | |||
|keywords=* AMOG | |||
* Apoptosis | |||
* Glioma | |||
* Human | |||
* L1CAM | |||
* Senescence | |||
* Therapy | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739972 | |||
}} | |||
==LAG3== | |||
{{medline-entry | |||
|title=T Cell Transcriptional Profiling and Immunophenotyping Uncover [[LAG3]] as a Potential Significant Target of Immune Modulation in Multiple Myeloma. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31445183 | |||
|keywords=* Autologous stem cell transplant | |||
* Exhaustion | |||
* LAG3 | |||
* Multiple myeloma | |||
* Senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952061 | |||
}} | |||
==LAMP1== | |||
{{medline-entry | |||
|title=Differential accumulation of storage bodies with aging defines discrete subsets of microglia in the healthy brain. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32579115 | |||
|keywords=* CLN3 | |||
* TREM2 | |||
* aging | |||
* autofluorescence | |||
* immunology | |||
* inflammation | |||
* lysosomal storage disorder | |||
* microglia | |||
* mouse | |||
* neuroscience | |||
* rhesus macaque | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367682 | |||
}} | |||
==LBP== | |||
{{medline-entry | |||
|title=Lipopolysaccharide binding protein is associated with CVD risk in older adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32895891 | |||
|keywords=* Aging | |||
* Cardiovascular disease risk | |||
* Intestinal permeability | |||
* Lipopolysaccharide binding protein | |||
|full-text-url=https://sci-hub.do/10.1007/s40520-020-01684-z | |||
}} | |||
{{medline-entry | |||
|title=Aging-related liver degeneration is associated with increased bacterial endotoxin and lipopolysaccharide binding protein levels. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32090603 | |||
|mesh-terms=* Acute-Phase Proteins | |||
* Aging | |||
* Animals | |||
* Apoptosis | |||
* Biomarkers | |||
* Carrier Proteins | |||
* Endotoxins | |||
* Female | |||
* Gene Expression Regulation | |||
* Glucose | |||
* Inflammation | |||
* Insulin Receptor Substrate Proteins | |||
* Liver | |||
* Liver Cirrhosis | |||
* Malate Dehydrogenase | |||
* Male | |||
* Membrane Glycoproteins | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* RNA, Messenger | |||
* Receptor, Insulin | |||
* Toll-Like Receptor 4 | |||
|keywords=* Tlr-4 signaling | |||
* aging | |||
* bacterial endotoxin | |||
* lipopolysaccharide binding protein | |||
* liver degeneration | |||
|full-text-url=https://sci-hub.do/10.1152/ajpgi.00345.2018 | |||
}} | |||
{{medline-entry | |||
|title=Biomarkers of leaky gut are related to inflammation and reduced physical function in older adults with cardiometabolic disease and mobility limitations. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31654268 | |||
|mesh-terms=* Aged | |||
* Aging | |||
* Biomarkers | |||
* Exercise Therapy | |||
* Female | |||
* Follow-Up Studies | |||
* Humans | |||
* Inflammation | |||
* Male | |||
* Metabolic Syndrome | |||
* Middle Aged | |||
* Mobility Limitation | |||
* Motor Activity | |||
* Obesity | |||
* Retrospective Studies | |||
* Weight Loss | |||
|keywords=* Ageing | |||
* Lipopolysaccharide-binding protein | |||
* Microbial translocation | |||
* Physical function | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925090 | |||
}} | |||
{{medline-entry | |||
|title=Needle-shaped amyloid deposition in rat mammary gland: evidence of a novel amyloid fibril protein. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31615282 | |||
|mesh-terms=* Aging | |||
* Amyloidogenic Proteins | |||
* Amyloidosis | |||
* Animals | |||
* Antigens, Surface | |||
* Female | |||
* Mammary Glands, Animal | |||
* Milk Proteins | |||
* Plaque, Amyloid | |||
* Rats | |||
* Rats, Sprague-Dawley | |||
|keywords=* Amyloidosis | |||
* lipopolysaccharide binding protein | |||
* mammary gland | |||
* pathology | |||
* rat | |||
|full-text-url=https://sci-hub.do/10.1080/13506129.2019.1675623 | |||
}} | |||
{{medline-entry | |||
|title=Effects of Lycium barbarum Polysaccharides on Health and Aging of [i]C. elegans[/i] Depend on [i]daf-12/daf-16[/i]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31583041 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Caenorhabditis elegans | |||
* Caenorhabditis elegans Proteins | |||
* Drugs, Chinese Herbal | |||
* Receptors, Cytoplasmic and Nuclear | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6754959 | |||
}} | |||
==LBR== | |||
{{medline-entry | |||
|title=Lamin B receptor: role on chromatin structure, cellular senescence and possibly aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32726434 | |||
|keywords=* Aging | |||
* cancer | |||
* cellular senescence | |||
* chromatine structure | |||
* nuclear envelop | |||
|full-text-url=https://sci-hub.do/10.1042/BCJ20200165 | |||
}} | |||
{{medline-entry | |||
|title=The impact of age beyond ploidy: outcome data from 8175 euploid single embryo transfers. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32173784 | |||
|keywords=* Aneuploidy | |||
* Pregestational genetic testing | |||
* Reproductive aging | |||
* Single embryo transfer | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7125286 | |||
}} | |||
{{medline-entry | |||
|title=The role of lamin B receptor in the regulation of senescence-associated secretory phenotype (SASP). | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32126237 | |||
|keywords=* Gene expression | |||
* LBR | |||
* SAHF | |||
* SASP | |||
* Senescence | |||
|full-text-url=https://sci-hub.do/10.1016/j.yexcr.2020.111927 | |||
}} | |||
{{medline-entry | |||
|title=Lamin B receptor plays a key role in cellular senescence induced by inhibition of the proteasome. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31825172 | |||
|keywords=* LBR | |||
* autophagy | |||
* proteasome | |||
* protein accumulation | |||
* senescence | |||
* unbalanced growth | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996348 | |||
}} | |||
==LEP== | |||
{{medline-entry | |||
|title=Age- and Sex-Specific Changes in Lower-Limb Muscle Power Throughout the Lifespan. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31943003 | |||
|keywords=* Aging | |||
* Body mass index | |||
* Dynapenia | |||
* Leg extension power | |||
* Sarcopenia | |||
* Skeletal muscle | |||
|full-text-url=https://sci-hub.do/10.1093/gerona/glaa013 | |||
}} | |||
{{medline-entry | |||
|title=The Copenhagen Sarcopenia Study: lean mass, strength, power, and physical function in a Danish cohort aged 20-93 years. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31419087 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Body Composition | |||
* Cohort Studies | |||
* Cross-Sectional Studies | |||
* Denmark | |||
* Female | |||
* Hand Strength | |||
* Humans | |||
* Leg | |||
* Longevity | |||
* Middle Aged | |||
* Prospective Studies | |||
* Sarcopenia | |||
* Young Adult | |||
|keywords=* Body composition | |||
* DXA | |||
* Handgrip strength | |||
* Lean mass | |||
* Leg power | |||
* Sarcopenia | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6903448 | |||
}} | |||
==LGR6== | |||
{{medline-entry | |||
|title=Effect of defensins-containing eye cream on periocular rhytids and skin quality. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32614135 | |||
|keywords=* aging | |||
* defensins | |||
* periocular | |||
* rhytids | |||
* skin | |||
|full-text-url=https://sci-hub.do/10.1111/jocd.13424 | |||
}} | |||
==LHCGR== | |||
{{medline-entry | |||
|title=Comparative Study of the Steroidogenic Effects of Human Chorionic Gonadotropin and Thieno[2,3-D]pyrimidine-Based Allosteric Agonist of Luteinizing Hormone Receptor in Young Adult, Aging and Diabetic Male Rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33050653 | |||
|keywords=* aging rats | |||
* diabetes mellitus | |||
* human chorionic gonadotropin | |||
* low-molecular-weight agonist | |||
* luteinizing hormone receptor | |||
* spermatogenesis | |||
* steroidogenesis | |||
* testes | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7590010 | |||
}} | |||
==LMNA== | |||
{{medline-entry | |||
|title=Metformin alters peripheral blood mononuclear cells (PBMC) senescence biomarkers gene expression in type 2 diabetic patients. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33187870 | |||
|keywords=* Inflammation and cellular senescence | |||
* Insulin resistance | |||
* LMNA/C transcript variants | |||
* Mononuclear cells | |||
* Type 2 diabetes mellitus | |||
|full-text-url=https://sci-hub.do/10.1016/j.jdiacomp.2020.107758 | |||
}} | |||
{{medline-entry | |||
|title=Protein structural and mechanistic basis of progeroid laminopathies. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32799420 | |||
|keywords=* 3D structure | |||
* aging disorders | |||
* contact sites | |||
* lamin | |||
* nuclear structure | |||
|full-text-url=https://sci-hub.do/10.1111/febs.15526 | |||
}} | |||
{{medline-entry | |||
|title=Progerin Expression Induces Inflammation, Oxidative Stress and Senescence in Human Coronary Endothelial Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32408587 | |||
|keywords=* Hutchinson–Gilford progeria syndrome | |||
* LMNA | |||
* aging | |||
* atherosclerosis | |||
* endothelial dysfunction | |||
* inflammation | |||
* lamin A | |||
* prenylation | |||
* progerin | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290406 | |||
}} | |||
{{medline-entry | |||
|title=The JAK1/2 inhibitor ruxolitinib delays premature aging phenotypes. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32196928 | |||
|keywords=* JAK/STAT pathway | |||
* cellular senescence | |||
* progeria | |||
* ruxolitinib | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189991 | |||
}} | |||
{{medline-entry | |||
|title=Pharmacotherapy to gene editing: potential therapeutic approaches for Hutchinson-Gilford progeria syndrome. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32048129 | |||
|keywords=* Aging | |||
* Extracellular vesicles | |||
* Hutchinson–Gilford progeria syndrome | |||
* Progerin | |||
* Stem cells | |||
* Therapeutics | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7205988 | |||
}} | |||
{{medline-entry | |||
|title=Long term breeding of the Lmna G609G progeric mouse: Characterization of homozygous and heterozygous models. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31794853 | |||
|keywords=* Aging | |||
* Animal model breeding | |||
* Bone strength | |||
* Hutchinson-Gilford Progeria Syndrome (HGPS) | |||
* Kyphosis | |||
* Quality of life | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2019.110784 | |||
}} | |||
==LMNB1== | |||
{{medline-entry | |||
|title=SIRT1 - a new mammalian substrate of nuclear autophagy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33292048 | |||
|keywords=* Aging | |||
* SIRT1 | |||
* nuclear autophagy | |||
* senescence | |||
* sirtuin | |||
|full-text-url=https://sci-hub.do/10.1080/15548627.2020.1860541 | |||
}} | |||
{{medline-entry | |||
|title=Cellular senescence as a response to multiwalled carbon nanotube (MWCNT) exposure in human mesothelial cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33279583 | |||
|keywords=* alpha tubulin | |||
* cellular senescence | |||
* mesothelial cells | |||
* microarray analysis | |||
* multiwalled carbon nanotubes | |||
* γH2A.X | |||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2020.111412 | |||
}} | |||
{{medline-entry | |||
|title=Inflammatory Drivers of Cardiovascular Disease: Molecular Characterization of Senescent Coronary Vascular Smooth Muscle Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32523550 | |||
|keywords=* aging | |||
* cardiovascular | |||
* inflammation | |||
* senescence | |||
* smooth muscle cell | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7261939 | |||
}} | |||
==LOX== | |||
{{medline-entry | |||
|title=12-[[LOX]] catalyzes the oxidation of 2-arachidonoyl-lysolipids in platelets generating eicosanoid-lysolipids that are attenuated by iPLA γ knockout. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32161117 | |||
|keywords=* 2-arachidonoyl-lysophospholipids | |||
* aging | |||
* calcium | |||
* eicosanoid | |||
* iPLA2γ | |||
* lysophospholipid | |||
* myocardium | |||
* platelet | |||
* platelet-type 12-lipoxygenase (12-LOX) | |||
* polyunsaturated fatty acids (PUFAs) | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7170522 | |||
}} | |||
==LOXL1== | |||
{{medline-entry | |||
|title=A blackberry-dill extract combination synergistically increases skin elasticity. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32583541 | |||
|keywords=* blackberry-dill | |||
* elasticity | |||
* skin aging | |||
* skin physiology/structure | |||
* skin repair | |||
|full-text-url=https://sci-hub.do/10.1111/ics.12644 | |||
}} | |||
==LOXL2== | |||
{{medline-entry | |||
|title=Lysyl Oxidase-Like 2 Protects against Progressive and Aging Related Knee Joint Osteoarthritis in Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31569601 | |||
|mesh-terms=* Adenoviridae | |||
* Aging | |||
* Amino Acid Oxidoreductases | |||
* Animals | |||
* Arthritis, Experimental | |||
* Cartilage, Articular | |||
* Disease Models, Animal | |||
* Disease Progression | |||
* Gene Expression | |||
* Gene Transfer Techniques | |||
* Genetic Vectors | |||
* Interleukin-1beta | |||
* Mice | |||
* Mice, Transgenic | |||
* NF-kappa B | |||
* Osteoarthritis, Knee | |||
* Transduction, Genetic | |||
|keywords=* Lysyl oxidase like-2 | |||
* adenovirus delivery | |||
* anabolic response | |||
* articular cartilage | |||
* knee joint | |||
* osteoarthritis | |||
* regeneration | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6801581 | |||
}} | |||
==LPA== | |||
{{medline-entry | |||
|title=Ginseng gintonin, aging societies, and geriatric brain diseases. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32817818 | |||
|keywords=* Brain aging | |||
* Gintonin | |||
* Neurodegenerative diseases | |||
* Panax ginseng | |||
* Rejuvenation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7426447 | |||
}} | |||
{{medline-entry | |||
|title=Late-life related subtypes of depression - a data-driven approach on cognitive domains and physical frailty. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32442243 | |||
|keywords=* cognitive aging | |||
* depression | |||
* frailty | |||
|full-text-url=https://sci-hub.do/10.1093/gerona/glaa110 | |||
}} | |||
{{medline-entry | |||
|title=Does sedentary time increase in older adults in the days following participation in intense exercise? | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32130714 | |||
|mesh-terms=* Accelerometry | |||
* Aged | |||
* Exercise | |||
* Exercise Test | |||
* Humans | |||
* Sedentary Behavior | |||
* Sleep | |||
|keywords=* Aging | |||
* Compensation | |||
* High intensity | |||
* Movement behaviours | |||
|full-text-url=https://sci-hub.do/10.1007/s40520-020-01502-6 | |||
}} | |||
{{medline-entry | |||
|title=Association of Long-term Exposure to Elevated Lipoprotein(a) Levels With Parental Life Span, Chronic Disease-Free Survival, and Mortality Risk: A Mendelian Randomization Analysis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32108890 | |||
|mesh-terms=* Aged | |||
* Case-Control Studies | |||
* Cross-Sectional Studies | |||
* Female | |||
* Humans | |||
* Lipoprotein(a) | |||
* Longevity | |||
* Male | |||
* Mendelian Randomization Analysis | |||
* Middle Aged | |||
* Parents | |||
* Phenotype | |||
* Prospective Studies | |||
* Risk Factors | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7049087 | |||
}} | |||
{{medline-entry | |||
|title=Elevated Autotaxin and [[LPA]] Levels During Chronic Viral Hepatitis and Hepatocellular Carcinoma Associate with Systemic Immune Activation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31769428 | |||
|keywords=* Aging | |||
* Autotaxin | |||
* Hepatitis | |||
* Hepatocellular Carcinoma | |||
* Immune Activation | |||
* Immunity | |||
* Inflammation | |||
* Liver | |||
* Lysophosphatidic Acid | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966516 | |||
}} | |||
{{medline-entry | |||
|title=Lysophosphatidic acid receptor [[LPA]] prevents oxidative stress and cellular senescence in Hutchinson-Gilford progeria syndrome. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31714004 | |||
|keywords=* 1-Oleoyl-2-O-methyl-rac-glycerophosphothionate | |||
* Hutchinson-Gilford progeria syndrome | |||
* LPA3 | |||
* cell senescence | |||
* lysophosphatidic acid | |||
* reactive oxygen species | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974717 | |||
}} | |||
{{medline-entry | |||
|title=Associations of Sedentary and Physically-Active Behaviors With Cognitive-Function Decline in Community-Dwelling Older Adults: Compositional Data Analysis From the NEIGE Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31656243 | |||
|keywords=* accelerometry | |||
* aging | |||
* exercise | |||
* neurocognitive disorders | |||
* sedentary lifestyle | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557173 | |||
}} | |||
{{medline-entry | |||
|title=Validation and comparison of two automated methods for quantifying brain white matter hyperintensities of presumed vascular origin. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31612759 | |||
|keywords=* White matter hyperintensity | |||
* brain aging | |||
* cerebral small vessel disease | |||
* lesion segmentation | |||
* methodology | |||
* validation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7607266 | |||
}} | |||
{{medline-entry | |||
|title=The Sedentary Time and Physical Activity Levels on Physical Fitness in the Elderly: A Comparative Cross Sectional Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31581429 | |||
|mesh-terms=* Accelerometry | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Body Mass Index | |||
* Cross-Sectional Studies | |||
* Exercise | |||
* Female | |||
* Humans | |||
* Male | |||
* Physical Fitness | |||
* Sedentary Behavior | |||
|keywords=* accelerometry | |||
* ageing | |||
* health | |||
* physical fitness | |||
* sedentary behaviour | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6801920 | |||
}} | |||
{{medline-entry | |||
|title=Light-Intensity Physical Activity in a Large Prospective Cohort of Older US Adults: A 21-Year Follow-Up of Mortality. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31600755 | |||
|mesh-terms=* Aged | |||
* Cardiovascular Diseases | |||
* Cohort Studies | |||
* Exercise | |||
* Female | |||
* Follow-Up Studies | |||
* Humans | |||
* Leisure Activities | |||
* Male | |||
* Middle Aged | |||
* Mortality | |||
* Neoplasms | |||
* Proportional Hazards Models | |||
* Prospective Studies | |||
* Respiratory Tract Diseases | |||
* Risk Factors | |||
* Surveys and Questionnaires | |||
* United States | |||
|keywords=* Aging | |||
* Cancer prevention study | |||
* Leisure time physical activity | |||
* Light-intensity physical activity | |||
|full-text-url=https://sci-hub.do/10.1159/000502860 | |||
}} | |||
==LPL== | |||
{{medline-entry | |||
|title=Survival analyses in Holstein cows considering direct disease diagnoses and specific SNP marker effects. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32684467 | |||
|keywords=* SNP effect | |||
* Weibull hazards model | |||
* genetic parameter | |||
* health disorder | |||
* longevity | |||
|full-text-url=https://sci-hub.do/10.3168/jds.2020-18174 | |||
}} | |||
{{medline-entry | |||
|title=Influence of common health disorders on the length of productive life and stayability in German Holstein cows. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31677834 | |||
|mesh-terms=* Animals | |||
* Breeding | |||
* Cattle | |||
* Cattle Diseases | |||
* Dairying | |||
* Farmers | |||
* Female | |||
* Lactation | |||
* Longevity | |||
* Phenotype | |||
|keywords=* genetic parameter | |||
* health disorder | |||
* longevity | |||
* subjective culling reason | |||
|full-text-url=https://sci-hub.do/10.3168/jds.2019-16985 | |||
}} | |||
==LPO== | |||
{{medline-entry | |||
|title=[Features of the changes in lipid peroxidation and activity of Na+/K+-ATPase in the brain of the aged rats in the conditions of two-vessel cerebral ischemia/reperfusion.] | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32160433 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Brain Ischemia | |||
* Disease Models, Animal | |||
* Lipid Peroxidation | |||
* Rats | |||
* Reperfusion Injury | |||
* Sodium-Potassium-Exchanging ATPase | |||
|keywords=* Na+/K+-ATPase | |||
* aging | |||
* brain | |||
* lipid peroxidation | |||
* oxidative stress | |||
* stroke | |||
}} | |||
==LRP1== | |||
{{medline-entry | |||
|title=Drug Targeting of Plasminogen Activator Inhibitor-1 Inhibits Metabolic Dysfunction and Atherosclerosis in a Murine Model of Metabolic Syndrome. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32268785 | |||
|mesh-terms=* Animals | |||
* Atherosclerosis | |||
* Cellular Senescence | |||
* Diet, Western | |||
* Disease Models, Animal | |||
* Indoleacetic Acids | |||
* Macrophages | |||
* Metabolic Syndrome | |||
* Mice | |||
* Mice, Knockout | |||
* Obesity | |||
* Plaque, Atherosclerotic | |||
* Plasminogen Activator Inhibitor 1 | |||
* Receptors, LDL | |||
|keywords=* atherosclerosis | |||
* cellular senescence | |||
* fibrinolysis | |||
* metabolic syndrome | |||
* muscle, smooth | |||
* obesity | |||
* plasminogen activator inhibitor-1 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7255962 | |||
}} | |||
==LRP4== | |||
{{medline-entry | |||
|title=Multiple MuSK signaling pathways and the aging neuromuscular junction. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32353380 | |||
|keywords=* Aging | |||
* BMP signaling | |||
* MuSK | |||
* Neuromuscular junction | |||
* Synaptic maintenance | |||
|full-text-url=https://sci-hub.do/10.1016/j.neulet.2020.135014 | |||
}} | |||
==LRP6== | |||
{{medline-entry | |||
|title=Low-density lipoprotein receptor-related protein 6-mediated signaling pathways and associated cardiovascular diseases: diagnostic and therapeutic opportunities. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32076828 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Cardiovascular Diseases | |||
* Humans | |||
* Low Density Lipoprotein Receptor-Related Protein-6 | |||
* Muscle, Smooth, Vascular | |||
* Myocytes, Smooth Muscle | |||
* Obesity | |||
* Signal Transduction | |||
* Structure-Activity Relationship | |||
* Vascular Calcification | |||
* Wnt Signaling Pathway | |||
|full-text-url=https://sci-hub.do/10.1007/s00439-020-02124-8 | |||
}} | |||
==LRRK2== | |||
{{medline-entry | |||
|title=Accelerated telomere shortening independent of [[LRRK2]] variants in Chinese patients with Parkinson's disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33122450 | |||
|keywords=* LRRK2 variants | |||
* Parkinson’s disease | |||
* aging | |||
* telomere length | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7655166 | |||
}} | |||
{{medline-entry | |||
|title=The effect of [[LRRK2]] loss-of-function variants in humans. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32461697 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Biological Specimen Banks | |||
* Cell Line | |||
* Embryonic Stem Cells | |||
* Female | |||
* Gain of Function Mutation | |||
* Heterozygote | |||
* Humans | |||
* Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 | |||
* Longevity | |||
* Loss of Function Mutation | |||
* Lymphocytes | |||
* Male | |||
* Middle Aged | |||
* Myocytes, Cardiac | |||
* Parkinson Disease | |||
* Phenotype | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303015 | |||
}} | |||
{{medline-entry | |||
|title=Parkinson's disease-related Leucine-rich repeat kinase 2 modulates nuclear morphology and genomic stability in striatal projection neurons during aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32075681 | |||
|keywords=* And aging | |||
* Dendritic hypotrophy | |||
* Excitability | |||
* G2019S | |||
* GABAA | |||
* LRRK2 | |||
* Nuclear DNA damage | |||
* Nuclear hypertrophy | |||
* Nuclear invagination | |||
* Parkinson’s disease | |||
* R1441C | |||
* Striatal spiny projection neuron | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031993 | |||
}} | |||
{{medline-entry | |||
|title=Autophagy and [[LRRK2]] in the Aging Brain. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31920513 | |||
|keywords=* LAMP2A | |||
* LC3 | |||
* LRRK2 | |||
* Parkinson’s disease | |||
* aging | |||
* autophagy | |||
* lysosomes | |||
* α-synuclein | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928047 | |||
}} | |||
==LSS== | |||
{{medline-entry | |||
|title=Surgical results in older patients with lumbar spinal stenosis according to gait speed in relation to the diagnosis for sarcopenia. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32329390 | |||
|keywords=* aging | |||
* elderly person | |||
* gait speed | |||
* lumbar spinal stenosis | |||
* lumbar spine | |||
* muscle strength | |||
* sarcopenia | |||
* skeletal muscle mass | |||
* surgical result | |||
|full-text-url=https://sci-hub.do/10.1177/2309499020918422 | |||
}} | |||
{{medline-entry | |||
|title=Streamlining an existing hip fracture patient pathway in an acute tertiary adult Irish hospital to improve patient experience and outcomes. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31867664 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Delivery of Health Care, Integrated | |||
* Geriatrics | |||
* Hip Fractures | |||
* Hospitals, Teaching | |||
* Humans | |||
* Ireland | |||
* Length of Stay | |||
* Nerve Block | |||
* Orthopedics | |||
* Pain Management | |||
* Total Quality Management | |||
* Treatment Outcome | |||
|keywords=* Lean Six Sigma | |||
* healthcare outcomes | |||
* hip fracture care | |||
* integrated care pathways | |||
* interdisciplinary working | |||
* process improvement | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6926383 | |||
}} | |||
==LTA== | |||
{{medline-entry | |||
|title=Lipoteichoic acid from the cell wall of a heat killed Lactobacillus paracasei D3-5 ameliorates aging-related leaky gut, inflammation and improves physical and cognitive functions: from C. elegans to mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31814084 | |||
|keywords=* Aging | |||
* Cell wall | |||
* Cognition | |||
* Goblet cell | |||
* Inflammation | |||
* Leaky gut | |||
* Lipoteichoic acid | |||
* Metabolism | |||
* Mucin | |||
* Physical function | |||
* Probiotics | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031475 | |||
}} | |||
{{medline-entry | |||
|title=The change of pain classes over time: a latent transition analysis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31680381 | |||
|mesh-terms=* Aged | |||
* Aging | |||
* Humans | |||
* Life Style | |||
* Longitudinal Studies | |||
* Middle Aged | |||
* Pain | |||
* Quality of Life | |||
|full-text-url=https://sci-hub.do/10.1002/ejp.1502 | |||
}} | |||
==LY6D== | |||
{{medline-entry | |||
|title=[[LY6D]]-induced macropinocytosis as a survival mechanism of senescent cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33168631 | |||
|keywords=* LY6D | |||
* Ras protein | |||
* cellular senescence | |||
* endocytosis | |||
* lipid raft | |||
* macropinocytosis | |||
* vacuole | |||
|full-text-url=https://sci-hub.do/10.1074/jbc.RA120.013500 | |||
}} | |||
==MAG== | |||
{{medline-entry | |||
|title=Exploration of life satisfaction of Korean people with sensory impairments across the lifespan. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32327387 | |||
|keywords=* Across the lifespan | |||
* Leisure domain | |||
* Life satisfaction | |||
* Sensory impairment | |||
* Social domain | |||
|full-text-url=https://sci-hub.do/10.1016/j.dhjo.2020.100931 | |||
}} | |||
==MALT1== | |||
{{medline-entry | |||
|title=MALT-1 mediates IL-17 neural signaling to regulate C. elegans behavior, immunity and longevity. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32350248 | |||
|mesh-terms=* Animals | |||
* Behavior, Animal | |||
* Caenorhabditis elegans | |||
* Caenorhabditis elegans Proteins | |||
* Gene Expression Regulation | |||
* Green Fluorescent Proteins | |||
* Immunity | |||
* Interleukin-17 | |||
* Interneurons | |||
* Longevity | |||
* Models, Biological | |||
* Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein | |||
* Neurons | |||
* Oxygen | |||
* Signal Transduction | |||
* Subcellular Fractions | |||
* Transgenes | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190641 | |||
}} | |||
{{medline-entry | |||
|title=[[MALT1]]-Deficient Mice Develop Atopic-Like Dermatitis Upon Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31632405 | |||
|mesh-terms=* Age Factors | |||
* Animals | |||
* CTLA-4 Antigen | |||
* Cytokines | |||
* Dermatitis, Atopic | |||
* Disease Models, Animal | |||
* Disease Susceptibility | |||
* Gene Expression | |||
* Genetic Predisposition to Disease | |||
* Immunoglobulin E | |||
* Lymphocyte Activation | |||
* Mice | |||
* Mice, Knockout | |||
* Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein | |||
* Skin | |||
* T-Lymphocyte Subsets | |||
|keywords=* MALT1 | |||
* Th2 | |||
* Tregs | |||
* aging | |||
* atopic dermatitis | |||
* lymphocytes | |||
* skin inflammation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779721 | |||
}} | |||
==MAP2== | |||
{{medline-entry | |||
|title=Protective effects of ischemic preconditioning against neuronal apoptosis and dendritic injury in the hippocampus are age-dependent. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32314365 | |||
|keywords=* aging | |||
* diffusion tensor imaging | |||
* immunohistochemistry | |||
* ischemic preconditioning | |||
|full-text-url=https://sci-hub.do/10.1111/jnc.15029 | |||
}} | |||
==MAP4K3== | |||
{{medline-entry | |||
|title=[[MAP4K3]]/GLK in autoimmune disease, cancer and aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31640697 | |||
|mesh-terms=* Aging | |||
* Autoimmune Diseases | |||
* Humans | |||
* Neoplasms | |||
* Protein-Serine-Threonine Kinases | |||
|keywords=* Aging | |||
* Autoimmune disease | |||
* Autophagy | |||
* Cancer metastasis | |||
* HPK1 | |||
* IL-17A | |||
* IQGAP1 | |||
* MAP4K3 (GLK) | |||
* PKCθ | |||
* Verteporfin | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806545 | |||
}} | |||
==MAPK1== | |||
{{medline-entry | |||
|title=Purified Vitexin Compound 1 Inhibits UVA-Induced Cellular Senescence in Human Dermal Fibroblasts by Binding Mitogen-Activated Protein Kinase 1. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32850814 | |||
|keywords=* MAPK1 | |||
* VB1 | |||
* purified vitexin compound 1 | |||
* senescence | |||
* skin photoaging | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7413062 | |||
}} | |||
==MAPKAPK2== | |||
{{medline-entry | |||
|title=Quantitative In Vivo Proteomics of Metformin Response in Liver Reveals AMPK-Dependent and -Independent Signaling Networks. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31801093 | |||
|mesh-terms=* AMP-Activated Protein Kinases | |||
* Animals | |||
* Calcium | |||
* Cell Line | |||
* Endocytosis | |||
* HEK293 Cells | |||
* Homeostasis | |||
* Humans | |||
* Intracellular Signaling Peptides and Proteins | |||
* Liver | |||
* Metformin | |||
* Mice | |||
* Phosphorylation | |||
* Protein Kinase C | |||
* Protein-Serine-Threonine Kinases | |||
* Proteomics | |||
* Signal Transduction | |||
|keywords=* AMPK3 | |||
* LKB1 | |||
* PKD1 | |||
* STIM1 | |||
* aging | |||
* calcium | |||
* diabetes | |||
* kinases | |||
* liver | |||
* metformin | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6980792 | |||
}} | |||
==MAPT== | |||
{{medline-entry | |||
|title=Association of relative brain age with tobacco smoking, alcohol consumption, and genetic variants. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32001736 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Alcohol Drinking | |||
* Biological Specimen Banks | |||
* Brain | |||
* Cognition | |||
* Female | |||
* Humans | |||
* Magnetic Resonance Imaging | |||
* Male | |||
* Middle Aged | |||
* Neuroimaging | |||
* Polymorphism, Single Nucleotide | |||
* Smoking | |||
* United Kingdom | |||
* tau Proteins | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6992742 | |||
}} | |||
{{medline-entry | |||
|title=A blood-based nutritional risk index explains cognitive enhancement and decline in the multidomain Alzheimer prevention trial. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31921969 | |||
|keywords=* Aging | |||
* Biomarkers of diet quality | |||
* Cognitive decline | |||
* DHA | |||
* EPA | |||
* Elderly | |||
* Homocysteine | |||
* Metabolomics | |||
* Nutrient biomarkers | |||
* Omega-3 fatty acids | |||
* Vitamin D | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6944714 | |||
}} | |||
{{medline-entry | |||
|title=Longitudinal associations of physical activity levels with morphological and functional changes related with aging: The [[MAPT]] study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31669813 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Alzheimer Disease | |||
* Body Composition | |||
* Brain | |||
* Cognition | |||
* Exercise | |||
* Female | |||
* Humans | |||
* Longitudinal Studies | |||
* Male | |||
|keywords=* Aging | |||
* Biomarkers | |||
* Phenotype | |||
* Physical activity | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2019.110758 | |||
}} | |||
{{medline-entry | |||
|title=Ageing and amyloidosis underlie the molecular and pathological alterations of tau in a mouse model of familial Alzheimer's disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31673052 | |||
|mesh-terms=* Aging | |||
* Alzheimer Disease | |||
* Amyloid beta-Peptides | |||
* Amyloidosis | |||
* Animals | |||
* Disease Models, Animal | |||
* Mice | |||
* Mice, Transgenic | |||
* tau Proteins | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6823454 | |||
}} | |||
{{medline-entry | |||
|title=Revisiting the intersection of amyloid, pathologically modified tau and iron in Alzheimer's disease from a ferroptosis perspective. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31604111 | |||
|keywords=* Alzheimer’s disease | |||
* Ferroptosis | |||
* Iron | |||
* Reactive oxygen species | |||
* Senescence | |||
* Tau | |||
|full-text-url=https://sci-hub.do/10.1016/j.pneurobio.2019.101716 | |||
}} | |||
==MATN3== | |||
{{medline-entry | |||
|title=Mice Lacking the Matrilin Family of Extracellular Matrix Proteins Develop Mild Skeletal Abnormalities and Are Susceptible to Age-Associated Osteoarthritis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31963938 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Cell Proliferation | |||
* Cells, Cultured | |||
* Chondrocytes | |||
* Disease Models, Animal | |||
* Female | |||
* Gene Knockout Techniques | |||
* Humans | |||
* Male | |||
* Matrilin Proteins | |||
* Mice | |||
* Mice, Knockout | |||
* Microscopy, Atomic Force | |||
* Muscle, Skeletal | |||
* Osteoarthritis | |||
|keywords=* articular cartilage | |||
* bone development | |||
* cartilage | |||
* matrilin | |||
* osteoarthritis | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013758 | |||
}} | |||
==MB== | |||
{{medline-entry | |||
|title=Probing menstrual bloodstain aging with fluorescence spectroscopy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33279406 | |||
|keywords=* Aging | |||
* Analytical methods | |||
* Blood | |||
* Fluorescence spectroscopy | |||
* Forensics | |||
|full-text-url=https://sci-hub.do/10.1016/j.saa.2020.119172 | |||
}} | |||
{{medline-entry | |||
|title=Effect of physical exercise and medication on enhancing cognitive function in older adults with vascular risk. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32989840 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Cognition | |||
* Cross-Sectional Studies | |||
* Exercise | |||
* Exercise Therapy | |||
* Female | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Risk Factors | |||
* Vascular Diseases | |||
|keywords=* active aging | |||
* cognitive preservation | |||
* exercise habit | |||
* lifestyle advice | |||
* vascular care | |||
|full-text-url=https://sci-hub.do/10.1111/ggi.14048 | |||
}} | |||
{{medline-entry | |||
|title=A novel indenone derivative selectively induces senescence in MDA-[[MB]]-231 (breast adenocarcinoma) cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32956706 | |||
|mesh-terms=* Antineoplastic Agents | |||
* Breast Neoplasms | |||
* Catalysis | |||
* Cell Line, Tumor | |||
* Cell Survival | |||
* Cellular Senescence | |||
* Cyclin-Dependent Kinase Inhibitor p21 | |||
* Down-Regulation | |||
* Female | |||
* G1 Phase Cell Cycle Checkpoints | |||
* Humans | |||
* Palladium | |||
* Sulfonamides | |||
* Survivin | |||
* Tumor Suppressor Protein p53 | |||
* Up-Regulation | |||
|keywords=* Cell cycle arrest | |||
* Novel indenone derivative | |||
* Senescence | |||
* Triple-negative breast cancer | |||
|full-text-url=https://sci-hub.do/10.1016/j.cbi.2020.109250 | |||
}} | |||
{{medline-entry | |||
|title=Improved Autophagic Flux in Escapers from Doxorubicin-Induced Senescence/Polyploidy of Breast Cancer Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32846959 | |||
|keywords=* DNA damage | |||
* Rubicon | |||
* SQSTM1/p62 | |||
* TFEB | |||
* autophagic index | |||
* autophagy | |||
* cancer | |||
* polyploidy | |||
* senescence | |||
* senescence escape | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7504443 | |||
}} | |||
{{medline-entry | |||
|title=Lifespan regulation in α/β posterior neurons of the fly mushroom bodies by Rab27. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32627932 | |||
|keywords=* Drosophila | |||
* Rab27 | |||
* S6K | |||
* TOR | |||
* lifespan extension | |||
* mushroom body | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431830 | |||
}} | |||
{{medline-entry | |||
|title=Tailored Functionalized Magnetic Nanoparticles to Target Breast Cancer Cells Including Cancer Stem-Like Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32485849 | |||
|keywords=* apoptosis | |||
* cancer stem-like cells | |||
* doxorubicin | |||
* magnetic iron oxide nanoparticles | |||
* mitotic catastrophe | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352336 | |||
}} | |||
{{medline-entry | |||
|title="Mitotic Slippage" and Extranuclear DNA in Cancer Chemoresistance: A Focus on Telomeres. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32316332 | |||
|keywords=* ALT | |||
* SQSTM1/p62 | |||
* amoeboid conversion | |||
* budding of mitotic progeny | |||
* cellular senescence | |||
* extranuclear DNA | |||
* genotoxic treatment | |||
* inverted meiosis | |||
* mtTP53 cancer | |||
* polyploidization | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7215480 | |||
}} | |||
{{medline-entry | |||
|title=Diversity of the Senescence Phenotype of Cancer Cells Treated with Chemotherapeutic Agents. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31771226 | |||
|mesh-terms=* Antineoplastic Agents | |||
* Cell Proliferation | |||
* Cellular Senescence | |||
* Cyclin-Dependent Kinase Inhibitor p21 | |||
* Doxorubicin | |||
* Fluorouracil | |||
* Humans | |||
* Irinotecan | |||
* Methotrexate | |||
* Neoplasms | |||
* Oxaliplatin | |||
* Paclitaxel | |||
* Phenotype | |||
* Tumor Cells, Cultured | |||
|keywords=* DNA damage | |||
* SASP | |||
* cancer | |||
* chemotherapy | |||
* senescence | |||
* senescence markers | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952928 | |||
}} | |||
{{medline-entry | |||
|title=Downregulation of the inflammatory network in senescent fibroblasts and aging tissues of the long-lived and cancer-resistant subterranean wild rodent, Spalax. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31605433 | |||
|keywords=* | |||
Spalax | |||
* DNA damage | |||
* DNA repair | |||
* cellular senescence | |||
* interleukin-1 alpha (IL1α) | |||
* nuclear factor κB (NF-κB) | |||
* senescence-associated secretory phenotype (SASP) | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974727 | |||
}} | |||
{{medline-entry | |||
|title=Quantification of the health-status of the Dutch Labrador retriever population. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31494529 | |||
|mesh-terms=* Animals | |||
* Dog Diseases | |||
* Dogs | |||
* Female | |||
* Health Status | |||
* Insurance | |||
* Laboratories | |||
* Longevity | |||
* Male | |||
* Netherlands | |||
* Proportional Hazards Models | |||
* Risk Factors | |||
|keywords=* Canine health | |||
* Data analysis | |||
* Health parameters | |||
* Labrador retriever | |||
* Lifespan | |||
* Oncology | |||
|full-text-url=https://sci-hub.do/10.1016/j.prevetmed.2019.104764 | |||
}} | |||
{{medline-entry | |||
|title=Conjugated Physiological Resveratrol Metabolites Induce Senescence in Breast Cancer Cells: Role of p53/p21 and p16/Rb Pathways, and ABC Transporters. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31441212 | |||
|mesh-terms=* ATP-Binding Cassette Transporters | |||
* Breast Neoplasms | |||
* Cell Cycle Checkpoints | |||
* Cellular Senescence | |||
* Cyclin-Dependent Kinase Inhibitor p16 | |||
* Cyclin-Dependent Kinase Inhibitor p21 | |||
* Female | |||
* Glucuronides | |||
* Humans | |||
* MCF-7 Cells | |||
* Resveratrol | |||
* Retinoblastoma Protein | |||
* Signal Transduction | |||
* Stilbenes | |||
* Tumor Suppressor Protein p53 | |||
|keywords=* ABC transporters | |||
* breast cancer | |||
* deconjugation | |||
* resveratrol metabolites | |||
* senescence | |||
|full-text-url=https://sci-hub.do/10.1002/mnfr.201900629 | |||
}} | |||
==MBP== | |||
{{medline-entry | |||
|title=Demyelination associated with chronic arsenic exposure in Wistar rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32171569 | |||
|mesh-terms=* Aging | |||
* Amyloid beta-Protein Precursor | |||
* Animals | |||
* Arsenic Poisoning | |||
* Arsenites | |||
* Axons | |||
* Corpus Callosum | |||
* Demyelinating Diseases | |||
* Diffusion Tensor Imaging | |||
* Drinking Water | |||
* Immunohistochemistry | |||
* Male | |||
* Mitochondria | |||
* Myelin Basic Protein | |||
* Neurofilament Proteins | |||
* Prefrontal Cortex | |||
* Rats | |||
* Rats, Wistar | |||
* Sodium Compounds | |||
* White Matter | |||
|keywords=* Amyloid | |||
* Anisotropy | |||
* Arsenic | |||
* Axonal damage | |||
* DTI | |||
* Demyelination | |||
* Development | |||
* MRI | |||
* Microstructure | |||
* Mitochondria | |||
|full-text-url=https://sci-hub.do/10.1016/j.taap.2020.114955 | |||
}} | |||
{{medline-entry | |||
|title=Natural killer cells as participants in pathogenesis of rat experimental autoimmune encephalomyelitis (EAE): lessons from research on rats with distinct age and strain. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32140045 | |||
|keywords=* EAE | |||
* NK cells | |||
* aging | |||
* dendritic cells | |||
* strain differences | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7050050 | |||
}} | |||
==MCC== | |||
{{medline-entry | |||
|title=Multiple chronic conditions and risk of cognitive impairment and dementia among older Americans: findings from the Aging, Demographics, and Memory Study (ADAMS). | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32633198 | |||
|keywords=* Aging | |||
* and memory study | |||
* cognitive impairment with no dementia | |||
* dementia | |||
* demographics | |||
* multimorbidity | |||
* multiple chronic conditions | |||
|full-text-url=https://sci-hub.do/10.1080/13825585.2020.1790492 | |||
}} | |||
{{medline-entry | |||
|title=Behaviour consistency is a sensitive tool for distinguishing the effects of aging on physical activity. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32348871 | |||
|keywords=* Aging | |||
* Behaviour consistency | |||
* Heart rate | |||
* Physical activity | |||
* Treadmill running | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbr.2020.112619 | |||
}} | |||
{{medline-entry | |||
|title=Burden on Caregivers of Adults with Multiple Chronic Conditions: Intersectionality of Age, Gender, Education level, Employment Status, and Impact on Social Life. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31475644 | |||
|keywords=* aging | |||
* analyse d’intersectionnalité | |||
* caregiver burden | |||
* fardeau de l’aidant | |||
* gender | |||
* interférence sociale | |||
* intersectionality analysis | |||
* maladies chroniques multiples | |||
* multiple chronic conditions | |||
* sexe | |||
* social interference | |||
* vieillissement | |||
|full-text-url=https://sci-hub.do/10.1017/S071498081900045X | |||
}} | |||
==MCM9== | |||
{{medline-entry | |||
|title=MCM8- and [[MCM9]] Deficiencies Cause Lifelong Increased Hematopoietic DNA Damage Driving p53-Dependent Myeloid Tumors. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31509747 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Apoptosis | |||
* Bone Marrow | |||
* Cell Differentiation | |||
* Cell Proliferation | |||
* DNA Damage | |||
* Gene Expression Regulation, Leukemic | |||
* Hematologic Neoplasms | |||
* Mice | |||
* Mice, Knockout | |||
* Minichromosome Maintenance Proteins | |||
* Retinoblastoma Protein | |||
* Signal Transduction | |||
* Splenomegaly | |||
* Tumor Suppressor Protein p53 | |||
|keywords=* DNA damage | |||
* DNA repair | |||
* MCM8 | |||
* MCM9 | |||
* cancer | |||
* hematopoiesis | |||
* homologous recombination | |||
* myelodysplastic syndrome | |||
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2019.07.095 | |||
}} | |||
==MCU== | |||
{{medline-entry | |||
|title=A rare case of Epstein-Barr virus-positive mucocutaneous ulcer that developed into an intestinal obstruction: a case report. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31931725 | |||
|mesh-terms=* Aged, 80 and over | |||
* Colon, Transverse | |||
* Epstein-Barr Virus Infections | |||
* Herpesvirus 4, Human | |||
* Humans | |||
* Intestinal Mucosa | |||
* Intestinal Obstruction | |||
* Male | |||
* Ulcer | |||
|keywords=* Aging | |||
* Epstein–Barr virus-positive mucocutaneous ulcer (EBV-MCU) | |||
* Immunosuppression | |||
* Intestinal obstruction | |||
* Surgical resection | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6958744 | |||
}} | |||
{{medline-entry | |||
|title=Inhibition of Mitochondrial Calcium Overload by SIRT3 Prevents Obesity- or Age-Related Whitening of Brown Adipose Tissue. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31712319 | |||
|mesh-terms=* Adipocytes, Brown | |||
* Adipose Tissue, Brown | |||
* Aging | |||
* Animals | |||
* Calcium | |||
* Capsaicin | |||
* Gene Expression Regulation | |||
* Mice | |||
* Mice, Knockout | |||
* Mitochondria | |||
* Obesity | |||
* Sirtuin 3 | |||
|full-text-url=https://sci-hub.do/10.2337/db19-0526 | |||
}} | |||
==MDH1== | |||
{{medline-entry | |||
|title=Oxidative Damage to the TCA Cycle Enzyme [[MDH1]] Dysregulates Bioenergetic Enzymatic Activity in the Aged Murine Brain. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32175745 | |||
|keywords=* DPM | |||
* MRM | |||
* TCA cycle | |||
* aging | |||
* brain | |||
|full-text-url=https://sci-hub.do/10.1021/acs.jproteome.9b00861 | |||
}} | |||
==MDM2== | |||
{{medline-entry | |||
|title=SENEBLOC, a long non-coding RNA suppresses senescence via p53-dependent and independent mechanisms. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32030426 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Carcinogenesis | |||
* Cyclin-Dependent Kinase Inhibitor p21 | |||
* Gene Expression Regulation, Neoplastic | |||
* HCT116 Cells | |||
* Heterografts | |||
* Histone Deacetylases | |||
* Humans | |||
* Mice | |||
* Neoplasms | |||
* Protein Binding | |||
* RNA, Long Noncoding | |||
* Signal Transduction | |||
* Tumor Suppressor Protein p53 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7102969 | |||
}} | |||
{{medline-entry | |||
|title=Disruption of Robo2-Baiap2 integrated signaling drives cystic disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31534052 | |||
|mesh-terms=* Animals | |||
* Cell Differentiation | |||
* Cell Proliferation | |||
* Cellular Senescence | |||
* Cilia | |||
* Disease Models, Animal | |||
* Epithelial Cells | |||
* Humans | |||
* Kidney | |||
* Kidney Diseases, Cystic | |||
* Mice | |||
* Mice, Knockout | |||
* Nerve Tissue Proteins | |||
* Protein Binding | |||
* Protein Domains | |||
* Receptors, Immunologic | |||
* Signal Transduction | |||
* Tumor Suppressor Protein p53 | |||
|keywords=* Cellular senescence | |||
* Development | |||
* Genetic diseases | |||
* Nephrology | |||
* Signal transduction | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6795383 | |||
}} | |||
{{medline-entry | |||
|title=Senescence-induced immunophenotype, gene expression and electrophysiology changes in human amniocytes. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31478614 | |||
|mesh-terms=* Amniocentesis | |||
* Amnion | |||
* Biomarkers | |||
* Cell Proliferation | |||
* Cells, Cultured | |||
* Cellular Senescence | |||
* Electrophysiological Phenomena | |||
* Female | |||
* Gene Expression Regulation | |||
* Humans | |||
* Immunophenotyping | |||
* Phenotype | |||
|keywords=* amniocyte | |||
* automated patch-clamp | |||
* flow cytometry | |||
* mesenchymal stem cell | |||
* qRT-PCR | |||
* replicative senescence | |||
* senescence-associated secretory phenotype | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6815807 | |||
}} | |||
==MED25== | |||
{{medline-entry | |||
|title=The [i]HAC1[/i] histone acetyltransferase promotes leaf senescence and regulates the expression of [i]ERF022[/i]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31468026 | |||
|keywords=* ERF022 | |||
* H3K9ac | |||
* HAC1 | |||
* Mediator complex | |||
* histone acetylation | |||
* leaf senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710649 | |||
}} | |||
==MEFV== | |||
{{medline-entry | |||
|title=The grandfather's fever. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31401792 | |||
|mesh-terms=* Age of Onset | |||
* Aged, 80 and over | |||
* Familial Mediterranean Fever | |||
* Female | |||
* Humans | |||
* Male | |||
* Pedigree | |||
* Pyrin | |||
|keywords=* Autoinflammatory diseases | |||
* FMF | |||
* Genetics | |||
* Geriatrics | |||
* Periodic fever | |||
|full-text-url=https://sci-hub.do/10.1007/s10067-019-04741-9 | |||
}} | |||
==MEOX2== | |||
{{medline-entry | |||
|title=Reduced expression of microRNA-130a promotes endothelial cell senescence and age-dependent impairment of neovascularization. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32457253 | |||
|keywords=* aging | |||
* angiogenesis | |||
* microRNA | |||
* neovascularization | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7346016 | |||
}} | |||
==MET== | |||
{{medline-entry | |||
|title=Self-rated health in relation to fruit and vegetable consumption and physical activity among older cancer survivors. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32979089 | |||
|keywords=* Cancer survivorship | |||
* Epidemiology | |||
* Fruit and vegetable | |||
* Gerontology | |||
* Physical activity | |||
|full-text-url=https://sci-hub.do/10.1007/s00520-020-05782-6 | |||
}} | |||
{{medline-entry | |||
|title=Leisure-time physical activity volume, intensity, and duration from mid- to late-life in U.S. subpopulations by race and sex. The Atherosclerosis Risk In Communities (ARIC) Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32170049 | |||
|keywords=* exercise | |||
* healthy aging | |||
* physical activity | |||
* retirement | |||
* successful aging | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7093185 | |||
}} | |||
{{medline-entry | |||
|title=Repressive H3K9me2 protects lifespan against the transgenerational burden of COMPASS activity in [i]C. elegans[/i]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31815663 | |||
|mesh-terms=* Animals | |||
* Caenorhabditis elegans | |||
* Caenorhabditis elegans Proteins | |||
* Heterochromatin | |||
* Histone-Lysine N-Methyltransferase | |||
* Histones | |||
* Inheritance Patterns | |||
* Jumonji Domain-Containing Histone Demethylases | |||
* Longevity | |||
* Lysine | |||
* Methylation | |||
* Mutation | |||
|keywords=* C. elegans | |||
* COMPASS | |||
* aging | |||
* chromatin | |||
* chromosomes | |||
* epigenetics | |||
* gene expression | |||
* genetics | |||
* genomics | |||
* heterochromatin | |||
* transgenerational inheritance | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7299346 | |||
}} | |||
{{medline-entry | |||
|title=Influence of Anthropometrics on Step-Rate Thresholds for Moderate and Vigorous Physical Activity in Older Adults: Scientific Modeling Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31518246 | |||
|keywords=* aging | |||
* cadence | |||
* physical activity intensity | |||
* public health | |||
* walking | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715008 | |||
}} | |||
==MFI== | |||
{{medline-entry | |||
|title=The Influence of the Accelerated Aging Conditions on the Properties of Polyolefin Geogrids Used for Landfill Slope Reinforcement. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32825284 | |||
|keywords=* HDPE | |||
* accelerated aging tests | |||
* decrease mechanical properties | |||
* degradation | |||
* geosynthetics | |||
* landfill | |||
* polyolefin | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564637 | |||
}} | |||
{{medline-entry | |||
|title=Changes in Physical Meat Traits, Protein Solubility, and the Microstructure of Different Beef Muscles during Post-Mortem Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32575353 | |||
|keywords=* aging | |||
* beef muscle | |||
* microstructure | |||
* myofibril fragmentation | |||
* protein solubility | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7353465 | |||
}} | |||
{{medline-entry | |||
|title=Effect of a low-voltage electrical stimulation on yak meat tenderness during postmortem aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32583539 | |||
|mesh-terms=* Animals | |||
* Cattle | |||
* Cold Temperature | |||
* Electric Stimulation | |||
* Food Handling | |||
* Food Quality | |||
* Food Storage | |||
* Hydrogen-Ion Concentration | |||
* Male | |||
* Meat | |||
* Muscle, Skeletal | |||
* Polysaccharides | |||
* Postmortem Changes | |||
* Time Factors | |||
|keywords=* Yak | |||
* electrical stimulation | |||
* postmortem aging | |||
* tenderness | |||
|full-text-url=https://sci-hub.do/10.1111/asj.13410 | |||
}} | |||
{{medline-entry | |||
|title=Comparative effects of dry-aging and wet-aging on physicochemical properties and digestibility of Hanwoo beef. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31480178 | |||
|keywords=* Beef Loin | |||
* Digestibility | |||
* Dry Aging | |||
* Shear Force | |||
* Wet Aging | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054618 | |||
}} | |||
==MFN2== | |||
{{medline-entry | |||
|title=Thioredoxin protects mitochondrial structure, function and biogenesis in myocardial ischemia-reperfusion via redox-dependent activation of AKT-CREB- PGC1α pathway in aged mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33049718 | |||
|keywords=* aging | |||
* heart | |||
* ischemia-reperfusion | |||
* mitochondria | |||
* thioredoxin | |||
|full-text-url=https://sci-hub.do/10.18632/aging.104071 | |||
}} | |||
{{medline-entry | |||
|title=[[MFN2]] contributes to metabolic disorders and inflammation in the aging of rat chondrocytes and osteoarthritis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32416221 | |||
|keywords=* Aging | |||
* Inflammation | |||
* MFN2 | |||
* Metabolic disorders | |||
* Osteoarthritis | |||
|full-text-url=https://sci-hub.do/10.1016/j.joca.2019.11.011 | |||
}} | |||
==MFSD2A== | |||
{{medline-entry | |||
|title=Decreased Blood Level of MFSD2a as a Potential Biomarker of Alzheimer's Disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31861865 | |||
|mesh-terms=* Aged | |||
* Alzheimer Disease | |||
* Biomarkers | |||
* Brain | |||
* Fatty Acids | |||
* Female | |||
* Humans | |||
* Male | |||
* Symporters | |||
|keywords=* Alzheimer’s disease | |||
* MFSD2a carrier | |||
* aging | |||
* neurologic disorders | |||
* omega-3 PUFA | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981746 | |||
}} | |||
==MGMT== | |||
{{medline-entry | |||
|title=Cytotoxic and Senolytic Effects of Methadone in Combination with Temozolomide in Glioblastoma Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32977591 | |||
|keywords=* apoptosis | |||
* cancer therapy | |||
* drug resistance | |||
* glioblastoma | |||
* methadone | |||
* senescence | |||
* temozolomide | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582495 | |||
}} | |||
==MIA== | |||
{{medline-entry | |||
|title=Age, cohort, and period effects on metamemory beliefs. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31804113 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Cohort Studies | |||
* Cross-Sectional Studies | |||
* Female | |||
* Humans | |||
* Longitudinal Studies | |||
* Male | |||
* Metacognition | |||
* Middle Aged | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6901096 | |||
}} | |||
{{medline-entry | |||
|title=Memory Age-based Stereotype Threat: Role of Locus of Control and Anxiety. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31752597 | |||
|mesh-terms=* Aged | |||
* Aging | |||
* Anxiety | |||
* Female | |||
* Humans | |||
* Internal-External Control | |||
* Male | |||
* Memory, Episodic | |||
* Metacognition | |||
* Middle Aged | |||
* Stereotyping | |||
|full-text-url=https://sci-hub.do/10.1080/0361073X.2019.1693009 | |||
}} | |||
==MIB1== | |||
{{medline-entry | |||
|title=Immunohistochemical detection of senescence markers in human sarcomas. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31899047 | |||
|keywords=* SenTraGor | |||
* Senescence | |||
* p16 | |||
* p21 | |||
* sarcoma | |||
|full-text-url=https://sci-hub.do/10.1016/j.prp.2019.152800 | |||
}} | |||
==MIP== | |||
{{medline-entry | |||
|title=Inspiratory muscle training improves cerebrovascular and postural control responses during orthostatic stress in older women. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32705393 | |||
|keywords=* Aging | |||
* Cardiac output | |||
* Center-of-pressure | |||
* Middle cerebral artery blood flow velocity | |||
* Respiratory muscles | |||
|full-text-url=https://sci-hub.do/10.1007/s00421-020-04441-2 | |||
}} | |||
{{medline-entry | |||
|title=A novel multi-marker discovery approach identifies new serum biomarkers for Parkinson's disease in older people: an EXosomes in PArkiNson Disease (EXPAND) ancillary study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32458283 | |||
|keywords=* Aging | |||
* Amino acids | |||
* Cytokines | |||
* Metabolomics | |||
* Neurodegeneration | |||
* Personalized medicine | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7525911 | |||
}} | |||
{{medline-entry | |||
|title=Sexual dimorphism of physical activity on cognitive aging: Role of immune functioning. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32387511 | |||
|keywords=* Brain aging | |||
* Chemokines | |||
* Cognitive aging | |||
* Exercise | |||
* Gender | |||
* Inflammation | |||
* Lifestyle | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416443 | |||
}} | |||
{{medline-entry | |||
|title=Comparison of balance changes after inspiratory muscle or Otago exercise training. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31978126 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Breathing Exercises | |||
* Exercise | |||
* Exercise Therapy | |||
* Female | |||
* Humans | |||
* Male | |||
* Maximal Respiratory Pressures | |||
* Muscle Strength | |||
* Physical Endurance | |||
* Postural Balance | |||
* Respiratory Muscles | |||
* Respiratory Therapy | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6980667 | |||
}} | |||
==MITF== | |||
{{medline-entry | |||
|title=Thymocid , a Standardized Black Cumin ([i]Nigella sativa[/i]) Seed Extract, Modulates Collagen Cross-Linking, Collagenase and Elastase Activities, and Melanogenesis in Murine B16F10 Melanoma Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32707654 | |||
|keywords=* Nigella sativa | |||
* Thymocid® | |||
* black cumin | |||
* collagen | |||
* collagenase | |||
* cosmeceutical | |||
* elastase | |||
* glycation | |||
* melanogenesis | |||
* skin aging | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400895 | |||
}} | |||
{{medline-entry | |||
|title=HuRdling Senescence: HuR Breaks BRAF-Induced Senescence in Melanocytes and Supports Melanoma Growth. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32455577 | |||
|keywords=* HuR | |||
* MITF | |||
* Microphthalmia-associated transcription factor | |||
* malignant melanoma | |||
* oncogene induced senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7281285 | |||
}} | |||
==MLH1== | |||
{{medline-entry | |||
|title=The somatic mutation landscape of the human body. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31874648 | |||
|mesh-terms=* Age Factors | |||
* Aging | |||
* Humans | |||
* Mutation | |||
* Neoplasms | |||
* Selection, Genetic | |||
* Sex Factors | |||
|keywords=* Aging | |||
* Cancer | |||
* Genomic instability | |||
* Human | |||
* Somatic evolution | |||
* Somatic mutation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6930685 | |||
}} | |||
==MLKL== | |||
{{medline-entry | |||
|title=Remifentanil preconditioning protects against hypoxia-induced senescence and necroptosis in human cardiac myocytes [i]in vitro[/i]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32584786 | |||
|keywords=* cardiomyocytes | |||
* hypoxia | |||
* necroptosis | |||
* remifentanil | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7425462 | |||
}} | |||
==MLN== | |||
{{medline-entry | |||
|title=Age-Dependent Decrease in the Induction of Regulatory T Cells Is Associated With Decreased Expression of RALDH2 in Mesenteric Lymph Node Dendritic Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32849526 | |||
|keywords=* RALDH2 | |||
* aging | |||
* dendritic cells | |||
* epigenetic regulation | |||
* regulatory T cells | |||
* retinoic acid | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7432217 | |||
}} | |||
==MMD== | |||
{{medline-entry | |||
|title=Association between a Deficit Accumulation Frailty Index and Mobility Outcomes in Older Adults: Secondary Analysis of the Lifestyle Interventions and Independence for Elders (LIFE) Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33266358 | |||
|keywords=* LIFE Study | |||
* deficit accumulation | |||
* disability | |||
* frailty | |||
* healthy aging | |||
* mobility | |||
* older adults | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700674 | |||
}} | |||
{{medline-entry | |||
|title=Impact of Anticholinergic Medication Burden on Mobility and Falls in the Lifestyle Interventions for Elders (LIFE) Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32947839 | |||
|keywords=* anticholinergic burden | |||
* falls | |||
* mobility | |||
* physical activity | |||
* successful aging | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564216 | |||
}} | |||
{{medline-entry | |||
|title=Impact and Lessons From the Lifestyle Interventions and Independence for Elders (LIFE) Clinical Trials of Physical Activity to Prevent Mobility Disability. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32105353 | |||
|keywords=* aging | |||
* mobility disability | |||
* multicenter trialphysical activity | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7187344 | |||
}} | |||
==MME== | |||
{{medline-entry | |||
|title=Geriatric Opioid Harm Reduction: Interprofessional Student Learning Outcomes. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32284953 | |||
|keywords=* aging | |||
* older adults | |||
* opioid harm reduction | |||
* overdose risk | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139179 | |||
}} | |||
{{medline-entry | |||
|title=Effectiveness of local anesthetic injection in geriatric patients following operative management of proximal and diaphyseal femur fracture. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31564373 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Analgesics, Opioid | |||
* Anesthetics, Local | |||
* Delirium | |||
* Female | |||
* Femoral Fractures | |||
* Fracture Fixation, Internal | |||
* Geriatrics | |||
* Humans | |||
* Injections, Intra-Articular | |||
* Intraoperative Care | |||
* Male | |||
* Pain Management | |||
* Pain, Postoperative | |||
* Retrospective Studies | |||
|keywords=* Geriatrics | |||
* Hip fracture | |||
* Local anesthetic | |||
* Narcotics | |||
|full-text-url=https://sci-hub.do/10.1016/j.injury.2019.09.013 | |||
}} | |||
==MMP1== | |||
{{medline-entry | |||
|title=Reacquisition of a spindle cell shape does not lead to the restoration of a youthful state in senescent human skin fibroblasts. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32533368 | |||
|keywords=* Cell shape | |||
* Fibroblast | |||
* Lithography | |||
* SASP | |||
* Senescence | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-020-09886-8 | |||
}} | |||
{{medline-entry | |||
|title=A novel multifunctional skin care formulation with a unique blend of antipollution, brightening and antiaging active complexes. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31584241 | |||
|keywords=* anti-wrinkle | |||
* pigmentation | |||
* pollution | |||
* skin aging | |||
* skin barrier | |||
|full-text-url=https://sci-hub.do/10.1111/jocd.13176 | |||
}} | |||
==MMP13== | |||
{{medline-entry | |||
|title=Aging aggravates intervertebral disc degeneration by regulating transcription factors toward chondrogenesis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31909538 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Antigens, Differentiation | |||
* Chondrocytes | |||
* Chondrogenesis | |||
* Core Binding Factor Alpha 1 Subunit | |||
* Fetal Proteins | |||
* Gene Expression Regulation | |||
* Intervertebral Disc Degeneration | |||
* Mice | |||
* Mice, Transgenic | |||
* Sp7 Transcription Factor | |||
* T-Box Domain Proteins | |||
|keywords=* Wnt/β-catenin/LRPs | |||
* biomechanics | |||
* genetic animal models | |||
* osterix | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7018543 | |||
}} | |||
==MOS== | |||
{{medline-entry | |||
|title=Effect of mannan oligosaccharides on the microbiota and productivity parameters of Litopenaeus vannamei shrimp under intensive cultivation in Ecuador. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32066764 | |||
|mesh-terms=* Actinobacteria | |||
* Aeromonas | |||
* Animal Feed | |||
* Animals | |||
* Aquaculture | |||
* Bacterial Adhesion | |||
* Ecuador | |||
* Flavobacteriaceae | |||
* Lactococcus | |||
* Longevity | |||
* Mannans | |||
* Microbiota | |||
* Oligosaccharides | |||
* Penaeidae | |||
* Proteobacteria | |||
* Seafood | |||
* Shewanella | |||
* Verrucomicrobia | |||
* Vibrio | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7026423 | |||
}} | |||
{{medline-entry | |||
|title=Predictors of health-related quality of life among older adults living with HIV in Thailand: results from the baseline and follow-up surveys. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31870166 | |||
|keywords=* Chiang Mai | |||
* HIV and aging | |||
* Older adults living with HIV | |||
* Thailand | |||
* health-related quality of life | |||
* quality of life | |||
|full-text-url=https://sci-hub.do/10.1080/09540121.2019.1707472 | |||
}} | |||
{{medline-entry | |||
|title=Comparison of health-related quality of life between the Han and Yi ethnicity elderly in the Yi autonomous areas of Yunnan Province. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31766992 | |||
|mesh-terms=* Activities of Daily Living | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* China | |||
* Cross-Sectional Studies | |||
* Ethnic Groups | |||
* Female | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Quality of Life | |||
|keywords=* ADL | |||
* Elderly | |||
* Health-related quality of life | |||
* IADL | |||
* Yi ethnic minority | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6878633 | |||
}} | |||
{{medline-entry | |||
|title=Mannan oligosaccharide increases the growth performance, immunity and resistance capability against Vibro Parahemolyticus in juvenile abalone Haliotis discus hannai Ino. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31561025 | |||
|mesh-terms=* Animal Feed | |||
* Animals | |||
* Antioxidants | |||
* Diet | |||
* Dietary Supplements | |||
* Dose-Response Relationship, Drug | |||
* Gastropoda | |||
* Immunity, Innate | |||
* Longevity | |||
* Mannans | |||
* Oligosaccharides | |||
* Vibrio parahaemolyticus | |||
|keywords=* Abalone | |||
* Antioxidation | |||
* Bacterial challenge | |||
* Disease resistance | |||
* Growth | |||
* Immunity | |||
* Mannan oligosaccharide | |||
|full-text-url=https://sci-hub.do/10.1016/j.fsi.2019.09.058 | |||
}} | |||
==MPHOSPH6== | |||
{{medline-entry | |||
|title=Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109421 | |||
|mesh-terms=* Genome-Wide Association Study | |||
* Humans | |||
* Leukocytes | |||
* Nucleotides | |||
* Telomere | |||
|keywords=* Mendelian randomisation | |||
* age-related disease | |||
* biological aging | |||
* telomere length | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058826 | |||
}} | |||
==MPI== | |||
{{medline-entry | |||
|title=Age-related decline of lymphatic drainage from the eye: A noninvasive in vivo photoacoustic tomography study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32251650 | |||
|keywords=* Age-related | |||
* Aging | |||
* Aqueous humor | |||
* Drainage | |||
* Eye | |||
* Glaucoma | |||
* Imaging | |||
* In vivo | |||
* Lymph node | |||
* Lymphatic | |||
* Mice | |||
* Photoacoustic tomography | |||
* Uveoscleral | |||
|full-text-url=https://sci-hub.do/10.1016/j.exer.2020.108029 | |||
}} | |||
{{medline-entry | |||
|title=Interest of the multidimensional prognostic index ([[MPI]]) as an assessment tool in hospitalized patients in geriatrics. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31570330 | |||
|mesh-terms=* Aged, 80 and over | |||
* Female | |||
* Geriatric Assessment | |||
* Hospital Mortality | |||
* Hospitalization | |||
* Humans | |||
* Length of Stay | |||
* Male | |||
* Patient Readmission | |||
* Prognosis | |||
|keywords=* elderly | |||
* geriatrics | |||
* hospitalization | |||
* multidimensional prognostic index | |||
|full-text-url=https://sci-hub.do/10.1684/pnv.2019.0823 | |||
}} | |||
==MRE11== | |||
{{medline-entry | |||
|title=Chromosomal alterations among age-related haematopoietic clones in Japan. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32581364 | |||
|mesh-terms=* Aged, 80 and over | |||
* Aging | |||
* Alleles | |||
* Cell Lineage | |||
* Chromosome Aberrations | |||
* Chromosomes, Human | |||
* Clone Cells | |||
* Cohort Studies | |||
* Female | |||
* Genetic Loci | |||
* Genome, Human | |||
* Hematopoiesis | |||
* Hematopoietic Stem Cells | |||
* Humans | |||
* Japan | |||
* Leukemia, Lymphocytic, Chronic, B-Cell | |||
* Leukemia, T-Cell | |||
* Male | |||
* Mosaicism | |||
* Mutation | |||
* United Kingdom | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7489641 | |||
}} | |||
==MSC== | |||
{{medline-entry | |||
|title=Rejuvenation of Senescent Endothelial Progenitor Cells by Extracellular Vesicles Derived From Mesenchymal Stromal Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33294742 | |||
|keywords=* BM, bone marrow | |||
* CVD, cardiovascular disease | |||
* EC, endothelial cell | |||
* EPC, endothelial progenitor cell | |||
* EV, extracellular vesicle | |||
* FBS, fetal bovine serum | |||
* MEM, minimum essential medium | |||
* MI, myocardial infarction | |||
* MSC, mesenchymal stromal cell | |||
* NTA, nanotracking analysis | |||
* PBS, phosphate-buffered saline | |||
* TEV, tailored extracellular vesicle | |||
* VEGF, vascular endothelial growth factor | |||
* acellular | |||
* angiogenesis | |||
* extracellular vesicles | |||
* lin− BMC, lineage negative bone marrow cell | |||
* miR, microRNA | |||
* qPCR, quantitative transcription polymerase chain reaction | |||
* regeneration | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7691285 | |||
}} | |||
{{medline-entry | |||
|title=Extracellular vesicles derived from bone marrow mesenchymal stem cells enhance myelin maintenance after cortical injury in aged rhesus monkeys. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33264634 | |||
|keywords=* Aging | |||
* Cortical injury | |||
* Extracellular vesicles | |||
* Monkeys | |||
* Myelin | |||
* Non-human primates | |||
* Oligodendrocytes | |||
* Stroke | |||
* White matter | |||
|full-text-url=https://sci-hub.do/10.1016/j.expneurol.2020.113540 | |||
}} | |||
{{medline-entry | |||
|title=TPP1 Enhances the Therapeutic Effects of Transplanted Aged Mesenchymal Stem Cells in Infarcted Hearts via the MRE11/AKT Pathway. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33195247 | |||
|keywords=* DNA repair | |||
* aging | |||
* myocardial infarction | |||
* stem cells therapy | |||
* telomere | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7658181 | |||
}} | |||
{{medline-entry | |||
|title=Aging-Affected [[MSC]] Functions and Severity of Periodontal Tissue Destruction in a Ligature-Induced Mouse Periodontitis Model. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33143068 | |||
|keywords=* aging | |||
* bone resorption | |||
* immunomodulation | |||
* mesenchymal stem cell | |||
* periodontitis | |||
* tissue destruction | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663404 | |||
}} | |||
{{medline-entry | |||
|title=Human placenta-derived mesenchymal stem cells stimulate ovarian function via miR-145 and bone morphogenetic protein signaling in aged rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33153492 | |||
|keywords=* Aging | |||
* Follicular development | |||
* Hormone biosynthesis | |||
* Primordial follicle activation | |||
* Stem cell therapy | |||
* miR-145 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7643421 | |||
}} | |||
{{medline-entry | |||
|title=Mesenchymal Stromal Cells as Critical Contributors to Tissue Regeneration. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33102483 | |||
|keywords=* adult stem cells | |||
* aging | |||
* mesenchymal stromal cells (MSC) | |||
* regenerative medicine | |||
* stem cell niche | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7546871 | |||
}} | |||
{{medline-entry | |||
|title=The biology of human hair greying. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32965076 | |||
|keywords=* ageing | |||
* endocrine | |||
* graying | |||
* melanin | |||
* senescence | |||
|full-text-url=https://sci-hub.do/10.1111/brv.12648 | |||
}} | |||
{{medline-entry | |||
|title=[i]Tsc1[/i] Regulates the Proliferation Capacity of Bone-Marrow Derived Mesenchymal Stem Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32927859 | |||
|keywords=* TSC1 | |||
* mammalian target of rapamycin (mTOR) | |||
* mesenchymal stem cell | |||
* senescence | |||
* stem cell proliferation | |||
* tuberous sclerosis | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7565438 | |||
}} | |||
{{medline-entry | |||
|title=The role of mitochondrial dysfunction in mesenchymal stem cell senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32803322 | |||
|keywords=* Mesenchymal stem cells | |||
* Mitochondrial dysfunction | |||
* Mitophagy | |||
* Reactive oxygen species | |||
* Senescence | |||
|full-text-url=https://sci-hub.do/10.1007/s00441-020-03272-z | |||
}} | |||
{{medline-entry | |||
|title=Metabolic syndrome increases senescence-associated micro-RNAs in extracellular vesicles derived from swine and human mesenchymal stem/stromal cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32787856 | |||
|keywords=* EV | |||
* MSC | |||
* Metabolic syndrome | |||
* RNA-sequencing | |||
* Senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7425605 | |||
}} | |||
{{medline-entry | |||
|title=Functional heterogeneity of mesenchymal stem cells from natural niches to culture conditions: implications for further clinical uses. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32699947 | |||
|keywords=* Aging diseases | |||
* Conditioned medium | |||
* Diabetes | |||
* Exosomes | |||
* Extracellular vesicles | |||
* Lupus | |||
* Regenerative medicine | |||
* Secretome | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375036 | |||
}} | |||
{{medline-entry | |||
|title=Functional crosstalk between mTORC1/p70S6K pathway and heterochromatin organization in stress-induced senescence of [[MSC]]s. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32660632 | |||
|keywords=* Aging | |||
* Heterochromatin | |||
* MSC senescence | |||
* mTORC1/p70S6K | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7359252 | |||
}} | |||
{{medline-entry | |||
|title=Increased cellular senescence in the murine and human stenotic kidney: Effect of mesenchymal stem cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32657444 | |||
|keywords=* cellular senescence | |||
* exosomes | |||
* kidney | |||
* mesenchymal stem cells | |||
* renal artery obstruction | |||
|full-text-url=https://sci-hub.do/10.1002/jcp.29940 | |||
}} | |||
{{medline-entry | |||
|title=Intrinsic Type 1 Interferon (IFN1) Profile of Uncultured Human Bone Marrow CD45 CD271 Multipotential Stromal Cells (BM-[[MSC]]s): The Impact of Donor Age, Culture Expansion and IFNα and IFNβ Stimulation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32679782 | |||
|keywords=* aging | |||
* bone marrow | |||
* mesenchymal stromal cells | |||
* senescence | |||
* type 1 interferon | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7399891 | |||
}} | |||
{{medline-entry | |||
|title=Facial rejuvenation using stem cell conditioned media combined with skin needling: A split-face comparative study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32623814 | |||
|keywords=* amniotic fluid stem cells products | |||
* dermaroller | |||
* facial aging | |||
* skin needling | |||
|full-text-url=https://sci-hub.do/10.1111/jocd.13594 | |||
}} | |||
{{medline-entry | |||
|title=Mesenchymal Stem Cell Senescence and Rejuvenation: Current Status and Challenges. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32582691 | |||
|keywords=* autophagy | |||
* mesenchymal stem cells | |||
* mitochondrial | |||
* rejuvenation | |||
* senescence | |||
* telomere | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7283395 | |||
}} | |||
{{medline-entry | |||
|title=The changing epigenetic landscape of Mesenchymal Stem/Stromal Cells during aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32445894 | |||
|keywords=* Aging | |||
* DNA methylation | |||
* Epigenetics | |||
* Histome modifications | |||
* MSC | |||
* Mesenchymal Stem/Stromal Cells | |||
* Skeleton | |||
* miRNA | |||
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115440 | |||
}} | |||
{{medline-entry | |||
|title=Dual Role of Autophagy in Regulation of Mesenchymal Stem Cell Senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32391362 | |||
|keywords=* SASP | |||
* general autophagy | |||
* mesenchymal stem cell | |||
* selective autophagy | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7193103 | |||
}} | |||
{{medline-entry | |||
|title=Molecular Aspects of Adipose-Derived Stromal Cell Senescence in a Long-Term Culture: A Potential Role of Inflammatory Pathways. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32314614 | |||
|keywords=* adipose-derived stromal/stem cell | |||
* aging | |||
* gene expression | |||
* long-term culture | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7586277 | |||
}} | |||
{{medline-entry | |||
|title=Human Obesity Induces Dysfunction and Early Senescence in Adipose Tissue-Derived Mesenchymal Stromal/Stem Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32274385 | |||
|keywords=* adipose tissue | |||
* cellular dysfunction | |||
* cellular senescence | |||
* mesenchymal stem cells | |||
* obesity | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7113401 | |||
}} | |||
{{medline-entry | |||
|title=miR-155-5p inhibition rejuvenates aged mesenchymal stem cells and enhances cardioprotection following infarction. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32196916 | |||
|keywords=* mesenchymal stem cells | |||
* miR-155-5p | |||
* myocardial infarction | |||
* rejuvenation | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189985 | |||
}} | |||
{{medline-entry | |||
|title=Mesenchymal Stem Cell Derived Extracellular Vesicles in Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32154253 | |||
|keywords=* aging | |||
* clinical translation | |||
* extracellular vesicles | |||
* mesenchymal stem cells | |||
* regenerative medicine | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7047768 | |||
}} | |||
{{medline-entry | |||
|title=Molecular Mechanisms Contributing to Mesenchymal Stromal Cell Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32098040 | |||
|keywords=* MSC senescence | |||
* in vitro aging | |||
* in vivo aging | |||
* mesenchymal stem/stromal cells (MSC) | |||
* rejuvenating strategies | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072652 | |||
}} | |||
{{medline-entry | |||
|title=Inhibition of DNA Methyltransferase by RG108 Promotes Pluripotency-Related Character of Porcine Bone Marrow Mesenchymal Stem Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32125888 | |||
|keywords=* RG108 | |||
* apoptosis | |||
* pluripotency | |||
* porcine bone marrow mesenchymal stem cells | |||
* senescence | |||
|full-text-url=https://sci-hub.do/10.1089/cell.2019.0060 | |||
}} | |||
{{medline-entry | |||
|title=Extracellular Vesicles of Stem Cells to Prevent BRONJ. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32119600 | |||
|keywords=* bisphosphonate-associated osteonecrosis of the jaw | |||
* cellular senescence | |||
* exosomes | |||
* mesenchymal stem cells | |||
* wound healing | |||
* zoledronic acid | |||
|full-text-url=https://sci-hub.do/10.1177/0022034520906793 | |||
}} | |||
{{medline-entry | |||
|title=Ginsenoside Rg1 as an Effective Regulator of Mesenchymal Stem Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32038244 | |||
|keywords=* apoptosis | |||
* differentiation | |||
* ginsenoside Rg1 | |||
* mesenchymal stem cells | |||
* preclinical study | |||
* proliferation | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6989539 | |||
}} | |||
{{medline-entry | |||
|title=The Importance of Stem Cell Senescence in Regenerative Medicine. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32026416 | |||
|keywords=* Aging | |||
* Mesenchymal stem cell | |||
* Regenerative medicine | |||
|full-text-url=https://sci-hub.do/10.1007/5584_2020_489 | |||
}} | |||
{{medline-entry | |||
|title=Control of mesenchymal stem cell biology by histone modifications. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32025282 | |||
|keywords=* Cell biology | |||
* Cell differentiation | |||
* Cellular senescence | |||
* Epigenetics | |||
* Histone modifications | |||
* Mesenchymal stem cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996187 | |||
}} | |||
{{medline-entry | |||
|title=Impact of mesenchymal stem cell senescence on inflammaging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31964472 | |||
|mesh-terms=* Aging | |||
* Cellular Senescence | |||
* Cytokines | |||
* Hematopoiesis | |||
* Humans | |||
* Immunomodulation | |||
* Immunosenescence | |||
* Inflammation | |||
* Macrophages | |||
* Mesenchymal Stem Cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7061209 | |||
}} | |||
{{medline-entry | |||
|title=Late Rescue Therapy with Cord-Derived Mesenchymal Stromal Cells for Established Lung Injury in Experimental Bronchopulmonary Dysplasia. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31918630 | |||
|keywords=* COPD | |||
* aging | |||
* lung | |||
* newborn | |||
* regenerative medicine | |||
* stem cells | |||
|full-text-url=https://sci-hub.do/10.1089/scd.2019.0116 | |||
}} | |||
{{medline-entry | |||
|title=Low-Level Radiofrequency Exposure Does Not Induce Changes in [[MSC]] Biology: An in vitro Study for the Prevention of NIR-Related Damage. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31908499 | |||
|keywords=* 169 MHz | |||
* CFU | |||
* senescence | |||
* stem cell | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927227 | |||
}} | |||
{{medline-entry | |||
|title=Macrophage migration inhibitory factor rejuvenates aged human mesenchymal stem cells and improves myocardial repair. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31881006 | |||
|mesh-terms=* Adolescent | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Animals | |||
* Animals, Newborn | |||
* Cellular Senescence | |||
* Humans | |||
* Macrophage Migration-Inhibitory Factors | |||
* Mesenchymal Stem Cell Transplantation | |||
* Mesenchymal Stem Cells | |||
* Myocardial Infarction | |||
* Myocardium | |||
* Myocytes, Cardiac | |||
* Rats | |||
* Rats, Sprague-Dawley | |||
* Young Adult | |||
|keywords=* macrophage migration inhibitory factor | |||
* mesenchymal stem cells | |||
* myocardial infarction | |||
* rejuvenation | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949107 | |||
}} | |||
{{medline-entry | |||
|title=Influence of olive oil and its components on mesenchymal stem cell biology. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31875868 | |||
|keywords=* Aging | |||
* Cellular differentiation | |||
* Cellular niche | |||
* Mediterranean diet | |||
* Mesenchymal stem cells | |||
* Olive oil | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904865 | |||
}} | |||
{{medline-entry | |||
|title=Epigenetic Regulation of Mesenchymal Stem Cell Homeostasis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31866188 | |||
|keywords=* aging | |||
* epigenetics | |||
* fate decision | |||
* mesenchymal stem cells | |||
* pathogenesis | |||
* regeneration | |||
|full-text-url=https://sci-hub.do/10.1016/j.tcb.2019.11.006 | |||
}} | |||
{{medline-entry | |||
|title=Mesenchymal Stem Cells: Allogeneic [[MSC]] May Be Immunosuppressive but Autologous [[MSC]] Are Dysfunctional in Lupus Patients. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31799252 | |||
|keywords=* dysfunction | |||
* immunoregulatory | |||
* mesenchymal stem cells | |||
* senescence | |||
* systemic lupus erythematosus | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874144 | |||
}} | |||
{{medline-entry | |||
|title=Effects of high glucose conditions on the expansion and differentiation capabilities of mesenchymal stromal cells derived from rat endosteal niche. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31752674 | |||
|mesh-terms=* Adipogenesis | |||
* Animals | |||
* Biomarkers | |||
* Bone Regeneration | |||
* Bone and Bones | |||
* Cell Differentiation | |||
* Cell Proliferation | |||
* Cells, Cultured | |||
* Cellular Senescence | |||
* Diabetes Mellitus, Type 2 | |||
* Glucose | |||
* Hyperglycemia | |||
* Male | |||
* Mesenchymal Stem Cells | |||
* Osteogenesis | |||
* Rats, Wistar | |||
|keywords=* Bone repair | |||
* Cellular senescence | |||
* Differentiation | |||
* Hyperglycaemia | |||
* Mesenchymal stromal cells; Endosteum | |||
* Type II diabetes | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873668 | |||
}} | |||
{{medline-entry | |||
|title=Autophagy inhibits the mesenchymal stem cell aging induced by D-galactose through ROS/JNK/p38 signalling. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31675454 | |||
|keywords=* ROS/JNK/p38 signalling | |||
* autophagy | |||
* mesenchymal stem cells | |||
* senescence | |||
|full-text-url=https://sci-hub.do/10.1111/1440-1681.13207 | |||
}} | |||
{{medline-entry | |||
|title=Enhancing survival, engraftment, and osteogenic potential of mesenchymal stem cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31692976 | |||
|keywords=* Anoikis | |||
* Bioactive scaffolds | |||
* Bone regeneration | |||
* Engraftment | |||
* Homing | |||
* Hypoxia | |||
* Mesenchymal stem cells | |||
* Osteogenesis | |||
* Preconditioning | |||
* Senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6828596 | |||
}} | |||
{{medline-entry | |||
|title=Mesenchymal stem cell senescence alleviates their intrinsic and seno-suppressive paracrine properties contributing to osteoarthritis development. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31644429 | |||
|mesh-terms=* Animals | |||
* Cell Proliferation | |||
* Cells, Cultured | |||
* Cellular Senescence | |||
* Chondrocytes | |||
* Coculture Techniques | |||
* Collagenases | |||
* Etoposide | |||
* Gene Expression Regulation | |||
* Humans | |||
* Inflammation | |||
* Luciferases | |||
* Male | |||
* Mesenchymal Stem Cells | |||
* Mice | |||
* Mice, Inbred Strains | |||
* Mice, Transgenic | |||
* Osteoarthritis | |||
* Paracrine Communication | |||
|keywords=* mesenchymal stem cell | |||
* osteoarthritis | |||
* senescence | |||
* tissue homeostasis | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834426 | |||
}} | |||
{{medline-entry | |||
|title=Embryonic stem cell-derived extracellular vesicles enhance the therapeutic effect of mesenchymal stem cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31660081 | |||
|mesh-terms=* Animals | |||
* Cell- and Tissue-Based Therapy | |||
* Cellular Senescence | |||
* Disease Models, Animal | |||
* Embryonic Stem Cells | |||
* Extracellular Vesicles | |||
* Humans | |||
* Insulin-Like Growth Factor I | |||
* Mesenchymal Stem Cell Transplantation | |||
* Mesenchymal Stem Cells | |||
* Mice | |||
* Mice, Inbred BALB C | |||
* Phosphatidylinositol 3-Kinases | |||
* Wounds and Injuries | |||
|keywords=* Cellular senescence | |||
* Embryonic stem cells | |||
* Extracellular vesicles | |||
* IGF1/PI3K/AKT pathway | |||
* Mesenchymal stem cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6815953 | |||
}} | |||
{{medline-entry | |||
|title=Survival of aging CD264 and CD264 populations of human bone marrow mesenchymal stem cells is independent of colony-forming efficiency. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31612990 | |||
|keywords=* aging | |||
* decoy TRAIL receptor 2 (CD264) | |||
* mesenchymal stem cells | |||
* survival | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6906265 | |||
}} | |||
{{medline-entry | |||
|title=Differential effects of extracellular vesicles from aging and young mesenchymal stem cells in acute lung injury. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31575829 | |||
|mesh-terms=* Acute Lung Injury | |||
* Age Factors | |||
* Animals | |||
* Disease Models, Animal | |||
* Extracellular Vesicles | |||
* Mesenchymal Stem Cell Transplantation | |||
* Mesenchymal Stem Cells | |||
* Mice | |||
* Treatment Outcome | |||
|keywords=* ARDS | |||
* acute lung injury | |||
* aging | |||
* extracellular vesicles | |||
* mesenchymal stem cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6781978 | |||
}} | |||
{{medline-entry | |||
|title=Connexin43 is Dispensable for Early Stage Human Mesenchymal Stem Cell Adipogenic Differentiation But is Protective against Cell Senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31514306 | |||
|mesh-terms=* Adipogenesis | |||
* Cell Differentiation | |||
* Cellular Senescence | |||
* Connexin 43 | |||
* Gene Expression Regulation | |||
* Humans | |||
* Mesenchymal Stem Cells | |||
* Time Factors | |||
|keywords=* CRISPR-Cas9 | |||
* adipogenesis | |||
* connexin43 | |||
* gap junctional intercellular communication | |||
* mesenchymal stem cells | |||
* oculodentodigital dysplasia | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770901 | |||
}} | |||
{{medline-entry | |||
|title=Maintained Properties of Aged Dental Pulp Stem Cells for Superior Periodontal Tissue Regeneration. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31440385 | |||
|keywords=* inflammation | |||
* mesenchymal stem cells | |||
* periodontitis | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6675537 | |||
}} | |||
==MTHFR== | |||
{{medline-entry | |||
|title=One-carbon metabolism supplementation improves outcome after stroke in aged male [[MTHFR]]-deficient mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31525435 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Brain | |||
* Choline | |||
* Dietary Supplements | |||
* Male | |||
* Methylenetetrahydrofolate Reductase (NADPH2) | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Recovery of Function | |||
* Stroke | |||
* Tetrahydrofolates | |||
* Vitamin B 12 | |||
|keywords=* Cerebral ischemia | |||
* Homocysteine | |||
* Methylenetetrahydrofolate reductase | |||
* Neurodegeneration | |||
* Sensorimotor cortex | |||
* Supplementation | |||
|full-text-url=https://sci-hub.do/10.1016/j.nbd.2019.104613 | |||
}} | |||
==MTOR== | |||
{{medline-entry | |||
|title=The roles of [[MTOR]] and miRNAs in endothelial cell senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32246301 | |||
|keywords=* Endothelium | |||
* MTOR | |||
* MicroRNAs | |||
* Senescence | |||
* Vascular aging | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-020-09876-w | |||
}} | |||
{{medline-entry | |||
|title=Autophagy drives fibroblast senescence through [[MTOR]]C2 regulation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31931659 | |||
|keywords=* Autophagy | |||
* MTORC2 | |||
* myofibroblast | |||
* rapamycin | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595590 | |||
}} | |||
{{medline-entry | |||
|title=The GID ubiquitin ligase complex is a regulator of AMPK activity and organismal lifespan. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31795790 | |||
|keywords=* AMPK | |||
* GID | |||
* autophagy | |||
* longevity | |||
* primary cilium | |||
* ubiquitination | |||
|full-text-url=https://sci-hub.do/10.1080/15548627.2019.1695399 | |||
}} | |||
==MTR== | |||
{{medline-entry | |||
|title=Amide proton transfer-weighted magnetic resonance imaging of human brain aging at 3 Tesla. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32269932 | |||
|keywords=* Aging | |||
* amide proton transfer imaging | |||
* biomarkers | |||
* chemical exchange saturation transfer (CEST) | |||
* molecular imaging | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136735 | |||
}} | |||
==MUC7== | |||
{{medline-entry | |||
|title=Reduced Salivary Mucin Binding and Glycosylation in Older Adults Influences Taste in an In Vitro Cell Model. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31554163 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Aged | |||
* Aging | |||
* Cell Line | |||
* Epithelial Cells | |||
* Female | |||
* Glycosylation | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Mucins | |||
* N-Acetylneuraminic Acid | |||
* Plasmids | |||
* Protein Binding | |||
* Rheology | |||
* Saliva | |||
* Taste | |||
* Young Adult | |||
|keywords=* ageing | |||
* mucin | |||
* rheology | |||
* saliva | |||
* taste | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835954 | |||
}} | |||
==MYB== | |||
{{medline-entry | |||
|title=Transcriptome profiling of postharvest shoots identifies PheNAP2- and PheNAP3-promoted shoot senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31595958 | |||
|mesh-terms=* Arabidopsis | |||
* Arabidopsis Proteins | |||
* Gene Expression Profiling | |||
* Gene Expression Regulation, Plant | |||
* Plant Leaves | |||
* Transcriptome | |||
|keywords=* | |||
Phyllostachys edulis | |||
* NAC | |||
* postharvest | |||
* regulatory factors | |||
* shoot senescence | |||
|full-text-url=https://sci-hub.do/10.1093/treephys/tpz100 | |||
}} | |||
==MYC== | |||
{{medline-entry | |||
|title=Enhanced proliferative capacity of human preadipocytes achieved by an optimized cultivating method that induces transient activity of hTERT. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32703451 | |||
|keywords=* Adipogenesis | |||
* Adipose-derived stromal cells | |||
* Senescence | |||
* hTERT | |||
* mTesR1 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2020.06.019 | |||
}} | |||
==MYCN== | |||
{{medline-entry | |||
|title=Silencing of AURKA augments the antitumor efficacy of the AURKA inhibitor MLN8237 on neuroblastoma cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31920463 | |||
|keywords=* Aurora kinase A | |||
* Cellular senescence | |||
* MLN8237 | |||
* Neuroblastoma | |||
* Small interfering RNA | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947931 | |||
}} | |||
==MYSM1== | |||
{{medline-entry | |||
|title=[[MYSM1]] Suppresses Cellular Senescence and the Aging Process to Prolong Lifespan. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33240758 | |||
|keywords=* DNA repair | |||
* Myb‐like, SWIRM, and MPN domains‐containing protein 1 (MYSM1) | |||
* aging | |||
* senescence | |||
* senescence‐associated secretory phenotype (SASP) | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7675055 | |||
}} | |||
==MYT1== | |||
{{medline-entry | |||
|title=ESC-sEVs Rejuvenate Aging Hippocampal NSCs by Transferring SMADs to Regulate the [[MYT1]]-Egln3-Sirt1 Axis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33038325 | |||
|keywords=* ESC-sEVs | |||
* MYT1 | |||
* aging | |||
* hippocampal NSCs | |||
* senescence | |||
|full-text-url=https://sci-hub.do/10.1016/j.ymthe.2020.09.037 | |||
}} | |||
==NACA== | |||
{{medline-entry | |||
|title=Age and Sex Are Strongly Correlated to the Rate and Type of Mountain Injuries Requiring Search and Rescue Missions. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31699646 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Emergency Medical Services | |||
* Female | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Mountaineering | |||
* Rescue Work | |||
* Sex Factors | |||
* Young Adult | |||
|keywords=* MRT | |||
* NACA ICAR | |||
* SAR | |||
* injury | |||
* mechanism | |||
|full-text-url=https://sci-hub.do/10.1016/j.wem.2019.06.016 | |||
}} | |||
==NAMPT== | |||
{{medline-entry | |||
|title=Over-expression of Nicotinamide phosphoribosyltransferase in mouse cells confers protective effect against oxidative and ER stress-induced premature senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32533606 | |||
|keywords=* ER stress | |||
* NAD+ | |||
* NAMPT | |||
* oxidative stress | |||
* premature senescence | |||
|full-text-url=https://sci-hub.do/10.1111/gtc.12794 | |||
}} | |||
{{medline-entry | |||
|title=Resistance training increases muscle NAD and NADH concentrations as well as [[NAMPT]] protein levels and global sirtuin activity in middle-aged, overweight, untrained individuals. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32369778 | |||
|keywords=* NAD + | |||
* NADH | |||
* aging | |||
* muscle | |||
* resistance training | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7288928 | |||
}} | |||
{{medline-entry | |||
|title=Differential Expression of Human N-Alpha-Acetyltransferase 40 (hNAA40), Nicotinamide Phosphoribosyltransferase ([[NAMPT]]) and Sirtuin-1 (SIRT-1) Pathway in Obesity and T2DM: Modulation by Metformin and Macronutrient Intake. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31920356 | |||
|keywords=* NAMPT | |||
* T2DM | |||
* hNAA40 | |||
* nicotinamide phosphoribosyltransferase | |||
* obesity | |||
* senescence | |||
* sirtuin-1 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938199 | |||
}} | |||
==NDRG2== | |||
{{medline-entry | |||
|title=[[NDRG2]] Expression Correlates with Neurofibrillary Tangles and Microglial Pathology in the Ageing Brain. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31947996 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Alzheimer Disease | |||
* Antigens, CD | |||
* Antigens, Differentiation, Myelomonocytic | |||
* Astrocytes | |||
* Brain | |||
* DNA Damage | |||
* Excitatory Amino Acid Transporter 2 | |||
* Gene Expression Regulation | |||
* Glial Fibrillary Acidic Protein | |||
* Glutamate-Ammonia Ligase | |||
* Humans | |||
* Microglia | |||
* Neurofibrillary Tangles | |||
* Tumor Suppressor Proteins | |||
* tau Proteins | |||
|keywords=* N-myc downstream regulated gene 2 (NDRG2) | |||
* ageing brain | |||
* astrocyte | |||
* neurofibrillary tangles | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982267 | |||
}} | |||
==NDUFS8== | |||
{{medline-entry | |||
|title=Mitochondrial Complex I Mutations Predispose Drosophila to Isoflurane Neurotoxicity. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32773682 | |||
|mesh-terms=* Aging | |||
* Anesthetics, Inhalation | |||
* Animals | |||
* Animals, Genetically Modified | |||
* Drosophila | |||
* Electron Transport Complex I | |||
* Isoflurane | |||
* Male | |||
* Mitochondria | |||
* Mutation | |||
* Sevoflurane | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7494633 | |||
}} | |||
==NEDD8== | |||
{{medline-entry | |||
|title=Targeting Protein Neddylation for Cancer Therapy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31898235 | |||
|mesh-terms=* Animals | |||
* Apoptosis | |||
* Autophagy | |||
* Cyclopentanes | |||
* Humans | |||
* NEDD8 Protein | |||
* Neoplasms | |||
* Pyrimidines | |||
* Ubiquitin-Protein Ligases | |||
* Ubiquitination | |||
|keywords=* Apoptosis | |||
* Autophagy | |||
* Cancer target | |||
* Inflammatory responses | |||
* Neddylation | |||
* Senescence | |||
|full-text-url=https://sci-hub.do/10.1007/978-981-15-1025-0_18 | |||
}} | |||
{{medline-entry | |||
|title=Effective targeting of the ubiquitin-like modifier [[NEDD8]] for lung adenocarcinoma treatment. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31907687 | |||
|keywords=* NEDD8 | |||
* apoptosis | |||
* cullin-RING ligases | |||
* neddylation | |||
* senescence | |||
|full-text-url=https://sci-hub.do/10.1007/s10565-019-09503-6 | |||
}} | |||
{{medline-entry | |||
|title=Pevonedistat targeted therapy inhibits canine melanoma cell growth through induction of DNA re-replication and senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31665821 | |||
|keywords=* DNA re-replication | |||
* MLN4924 | |||
* NAE-inhibitor | |||
* canine | |||
* melanoma | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7473101 | |||
}} | |||
==NEO1== | |||
{{medline-entry | |||
|title=Neogenin-1 distinguishes between myeloid-biased and balanced [i]Hoxb5[/i] mouse long-term hematopoietic stem cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31754028 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Female | |||
* Hematopoietic Stem Cell Transplantation | |||
* Hematopoietic Stem Cells | |||
* Homeodomain Proteins | |||
* Membrane Proteins | |||
* Mice | |||
* Mice, Transgenic | |||
|keywords=* Neogenin-1 | |||
* aging | |||
* hematopoietic stem cell | |||
* myeloid bias | |||
* transplantation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6911217 | |||
}} | |||
==NES== | |||
{{medline-entry | |||
|title=Mini-review: Aging of the neuroendocrine system: Insights from nonhuman primate models. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31891735 | |||
|keywords=* Aging | |||
* Neuroendocrine system | |||
* Nonhuman primate | |||
|full-text-url=https://sci-hub.do/10.1016/j.pnpbp.2019.109854 | |||
}} | |||
==NFKB1== | |||
{{medline-entry | |||
|title=[[NFKB1]] gene single-nucleotide polymorphisms: implications for graft-versus-host disease in allogeneic hematopoietic stem cell transplantation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32002656 | |||
|mesh-terms=* Adult | |||
* Allografts | |||
* Disease-Free Survival | |||
* Female | |||
* Graft vs Host Disease | |||
* Hematopoietic Stem Cell Transplantation | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* NF-kappa B p50 Subunit | |||
* Pilot Projects | |||
* Polymorphism, Single Nucleotide | |||
* Survival Rate | |||
|keywords=* Allogeneic hematopoietic stem cell transplantation | |||
* Cellular senescence | |||
* Graft-versus-host disease | |||
* NFKB1 gene | |||
* Senescence-associated secretory phenotype | |||
* Single-nucleotide polymorphism | |||
|full-text-url=https://sci-hub.do/10.1007/s00277-020-03935-5 | |||
}} | |||
==NGF== | |||
{{medline-entry | |||
|title=Dietary fish hydrolysate supplementation containing n-3 LC-PUFAs and peptides prevents short-term memory and stress response deficits in aged mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32976934 | |||
|keywords=* Aging | |||
* Anxiety-like behaviour | |||
* Cognitive decline | |||
* Hydrolysate | |||
* Low molecular weight peptides | |||
* Marine by-products | |||
* Memory | |||
* Navigation strategies | |||
* Neuroinflammation | |||
* Stress response | |||
* n-3 Long chain polyunsaturated fatty acids (n-3 LC-PUFAs) | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbi.2020.09.022 | |||
}} | |||
{{medline-entry | |||
|title=Imbalance of nerve growth factor metabolism in aging women with overactive bladder syndrome. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32870355 | |||
|keywords=* Aging female | |||
* MMP-7 | |||
* MMP-9 | |||
* Nerve growth factor | |||
* Overactive bladder | |||
* proNGF | |||
|full-text-url=https://sci-hub.do/10.1007/s00345-020-03422-6 | |||
}} | |||
{{medline-entry | |||
|title=Parity Attenuates Intraepithelial Corneal Sensory Nerve Loss in Female Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32708332 | |||
|keywords=* aging | |||
* corneal epithelial cell proliferation | |||
* corneal sensitivity | |||
* corneal sensory nerves | |||
* mouse | |||
* parity | |||
* pregnancy | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7404034 | |||
}} | |||
{{medline-entry | |||
|title=Cholinergic System and [[NGF]] Receptors: Insights from the Brain of the Short-Lived Fish [i]Nothobranchius furzeri[/i]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32575701 | |||
|keywords=* NTRK1/NTRKA | |||
* aging | |||
* cholinergic system | |||
* fish | |||
* p75/NGFR | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7348706 | |||
}} | |||
{{medline-entry | |||
|title=Retrograde axonal transport of BDNF and pro[[NGF]] diminishes with age in basal forebrain cholinergic neurons. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31574357 | |||
|mesh-terms=* Aging | |||
* Alzheimer Disease | |||
* Axonal Transport | |||
* Brain-Derived Neurotrophic Factor | |||
* Cholinergic Neurons | |||
* Humans | |||
* Nerve Growth Factor | |||
* Prosencephalon | |||
|keywords=* Alzheimer's disease | |||
* Axonal transport | |||
* Basal forebrain | |||
* Neurodegeneration | |||
* Neurotrophins | |||
* Trk receptors | |||
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2019.07.018 | |||
}} | |||
{{medline-entry | |||
|title=C-SH2 point mutation converts p85β regulatory subunit of phosphoinositide 3-kinase to an anti-aging gene. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31481652 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Blood Glucose | |||
* Class I Phosphatidylinositol 3-Kinases | |||
* Class Ia Phosphatidylinositol 3-Kinase | |||
* Female | |||
* Forkhead Transcription Factors | |||
* Insulin | |||
* Male | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Mice, Transgenic | |||
* Nerve Growth Factor | |||
* Oxidative Stress | |||
* PC12 Cells | |||
* Platelet-Derived Growth Factor | |||
* Point Mutation | |||
* Proto-Oncogene Proteins c-akt | |||
* Rats | |||
* src Homology Domains | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722097 | |||
}} | |||
==NHS== | |||
{{medline-entry | |||
|title=Telomerase Activation to Reverse Immunosenescence in Elderly Patients With Acute Coronary Syndrome: Protocol for a Randomized Pilot Trial. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32965237 | |||
|keywords=* acute coronary syndrome | |||
* coronary heart disease | |||
* immunosenescence | |||
* telomerase activator | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7542409 | |||
}} | |||
{{medline-entry | |||
|title=Factors associated with COVID-19-related death using OpenSAFELY. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32640463 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* African Continental Ancestry Group | |||
* Age Distribution | |||
* Age Factors | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Asian Continental Ancestry Group | |||
* Asthma | |||
* Betacoronavirus | |||
* COVID-19 | |||
* Cohort Studies | |||
* Coronavirus Infections | |||
* Diabetes Mellitus | |||
* Female | |||
* Humans | |||
* Hypertension | |||
* Male | |||
* Middle Aged | |||
* Pandemics | |||
* Pneumonia, Viral | |||
* Proportional Hazards Models | |||
* Risk Assessment | |||
* SARS-CoV-2 | |||
* Sex Characteristics | |||
* Smoking | |||
* State Medicine | |||
* Young Adult | |||
|full-text-url=https://sci-hub.do/10.1038/s41586-020-2521-4 | |||
}} | |||
{{medline-entry | |||
|title=Advanced ophthalmic nurse practitioners: the potential to improve outcomes for older people with cataracts. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32548985 | |||
|keywords=* advanced practice | |||
* gerontology | |||
* older people | |||
* patient outcomes | |||
* patients | |||
* practice development | |||
* professional | |||
* professional issues | |||
* quality of life | |||
|full-text-url=https://sci-hub.do/10.7748/nop.2020.e1229 | |||
}} | |||
{{medline-entry | |||
|title=Patient Satisfaction in the Spanish National Health Service: Partial Least Squares Structural Equation Modeling. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31817147 | |||
|mesh-terms=* Cross-Sectional Studies | |||
* Gross Domestic Product | |||
* Health Care Rationing | |||
* Health Expenditures | |||
* Humans | |||
* Latent Class Analysis | |||
* Least-Squares Analysis | |||
* Life Expectancy | |||
* Patient Safety | |||
* Patient Satisfaction | |||
* Spain | |||
* State Medicine | |||
|keywords=* National Health Service | |||
* health policy | |||
* partial least squares structural equation modeling (PLS-SEM) | |||
* patient satisfaction | |||
* quality of healthcare | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950388 | |||
}} | |||
{{medline-entry | |||
|title=Heart failure with preserved ejection fraction (HFpEF) pathophysiology study (IDENTIFY-HF): does increased arterial stiffness associate with HFpEF, in addition to ageing and vascular effects of comorbidities? Rationale and design. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31748285 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Biomarkers | |||
* Comorbidity | |||
* Diabetes Mellitus | |||
* Echocardiography | |||
* Exercise Tolerance | |||
* Female | |||
* Heart Failure | |||
* Heart Ventricles | |||
* Humans | |||
* Hypertension | |||
* Male | |||
* Observational Studies as Topic | |||
* Prospective Studies | |||
* Pulse Wave Analysis | |||
* Research Design | |||
* Stroke Volume | |||
* Vascular Stiffness | |||
|keywords=* arterial stiffness | |||
* comorbidities | |||
* heart failure with preserved ejection fraction | |||
* pathophysiology | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6886989 | |||
}} | |||
{{medline-entry | |||
|title=Challenges to concordance: theories that explain variations in patient responses. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31604052 | |||
|mesh-terms=* Aging | |||
* Benchmarking | |||
* Communication Barriers | |||
* Community Health Nursing | |||
* Humans | |||
* Nurse-Patient Relations | |||
* State Medicine | |||
* United Kingdom | |||
|keywords=* Concordance | |||
* Decision making | |||
* Person-centred care | |||
* Psychological theories | |||
* Self-management | |||
|full-text-url=https://sci-hub.do/10.12968/bjcn.2019.24.10.466 | |||
}} | |||
{{medline-entry | |||
|title=Optimism is associated with exceptional longevity in 2 epidemiologic cohorts of men and women. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31451635 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Female | |||
* Health Behavior | |||
* Humans | |||
* Logistic Models | |||
* Longevity | |||
* Longitudinal Studies | |||
* Male | |||
* Middle Aged | |||
* Odds Ratio | |||
|keywords=* aging | |||
* longevity | |||
* longitudinal study | |||
* optimism | |||
* psychological well-being | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6744861 | |||
}} | |||
==NKAP== | |||
{{medline-entry | |||
|title=[[NKAP]] Regulates Senescence and Cell Death Pathways in Hematopoietic Progenitors. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31632967 | |||
|keywords=* NKAP | |||
* apoptosis | |||
* cyclin dependent kinase inhibitor | |||
* hematopoiesis | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6783958 | |||
}} | |||
==NKX6-1== | |||
{{medline-entry | |||
|title=The dynamic methylome of islets in health and disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31500828 | |||
|mesh-terms=* Animals | |||
* Cell Differentiation | |||
* DNA Methylation | |||
* Diabetes Mellitus, Type 2 | |||
* Epigenome | |||
* Humans | |||
* Insulin-Secreting Cells | |||
|keywords=* Aging | |||
* Beta cells | |||
* DNA methylation | |||
* Endocrine pancreas | |||
* Epigenetics | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6768570 | |||
}} | |||
==NLRC4== | |||
{{medline-entry | |||
|title=Hyperglycemia-induced inflamm-aging accelerates gingival senescence via [[NLRC4]] phosphorylation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31676687 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Apoptosis Regulatory Proteins | |||
* Blotting, Western | |||
* Calcium-Binding Proteins | |||
* Cellular Senescence | |||
* Clustered Regularly Interspaced Short Palindromic Repeats | |||
* Gingiva | |||
* Glucose | |||
* Hyperglycemia | |||
* Immunohistochemistry | |||
* Inflammation | |||
* Interferon Regulatory Factors | |||
* Male | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* RAW 264.7 Cells | |||
* Signal Transduction | |||
|keywords=* NLRC4 | |||
* SASP | |||
* aging | |||
* cellular senescence | |||
* diabetes | |||
* gingiva | |||
* hyperglycemia | |||
* inflamm-aging | |||
* inflammasome | |||
* inflammation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6901307 | |||
}} | |||
==NLRP12== | |||
{{medline-entry | |||
|title=Persistent DNA damage-induced [[NLRP12]] improves hematopoietic stem cell function. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32434992 | |||
|keywords=* Aging | |||
* DNA repair | |||
* Hematology | |||
* Hematopoietic stem cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259522 | |||
}} | |||
==NLRP3== | |||
{{medline-entry | |||
|title=Innate and Adaptive Immunity in Aging and Longevity: The Foundation of Resilience. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33269094 | |||
|keywords=* adaptive immunity | |||
* aging | |||
* innate immunity | |||
* longevity | |||
* resilience | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673842 | |||
}} | |||
{{medline-entry | |||
|title=TET2-Loss-of-Function-Driven Clonal Hematopoiesis Exacerbates Experimental Insulin Resistance in Aging and Obesity. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33113366 | |||
|keywords=* CHIP | |||
* IL-1β | |||
* TET2 | |||
* adipose tissue | |||
* aging | |||
* clonal hematopoiesis | |||
* diabetes | |||
* insulin resistance | |||
* obesity | |||
* somatic mutations | |||
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2020.108326 | |||
}} | |||
{{medline-entry | |||
|title=Repeated propofol exposure-induced neuronal damage and cognitive impairment in aged rats by activation of NF-κB pathway and [[NLRP3]] inflammasome. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33115643 | |||
|keywords=* Aging | |||
* Apoptosis | |||
* NOD-like receptor protein 3 inflammasome | |||
* Neuroinflammation | |||
* Postoperative cognitive dysfunction | |||
* Propofol | |||
|full-text-url=https://sci-hub.do/10.1016/j.neulet.2020.135461 | |||
}} | |||
{{medline-entry | |||
|title=A Small Molecule Stabilizer of the MYC G4-Quadruplex Induces Endoplasmic Reticulum Stress, Senescence and Pyroptosis in Multiple Myeloma. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33066043 | |||
|keywords=* ASC and pannexin 1 | |||
* MYC G4-quadruplex stabilizer | |||
* NLRP3 | |||
* caspase 1 | |||
* endoplasmic reticulum stress | |||
* gasdermin D | |||
* inflammasome | |||
* pyroptosis | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7650714 | |||
}} | |||
{{medline-entry | |||
|title=Interleukin-1β Drives Cellular Senescence of Rat Astrocytes Induced by Oligomerized Amyloid β Peptide and Oxidative Stress. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33013631 | |||
|keywords=* Alzheimer's disease | |||
* amyloid β | |||
* astrocyte | |||
* interleukin-1β | |||
* neuroinflammation | |||
* senescence | |||
* tau | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7493674 | |||
}} | |||
{{medline-entry | |||
|title=Mechanisms of [[NLRP3]] priming in inflammaging and age related diseases. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32883606 | |||
|keywords=* Aging | |||
* Inflammaging | |||
* Inflammasome | |||
* NLRP3 | |||
* Priming | |||
* Senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571497 | |||
}} | |||
{{medline-entry | |||
|title=Lamivudine Inhibits [i]Alu[/i] RNA-induced Retinal Pigment Epithelium Degeneration via Anti-inflammatory and Anti-senescence Activities. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32855848 | |||
|keywords=* NLRP3 inflammasome | |||
* age-related macular degeneration | |||
* lamivudine | |||
* retinal pigment epithelium | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7422901 | |||
}} | |||
{{medline-entry | |||
|title=The [[NLRP3]] Inflammasome: Metabolic Regulation and Contribution to Inflammaging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32751530 | |||
|keywords=* NLRP3 inflammasome | |||
* aging | |||
* inflammation | |||
* metabolism | |||
* mitochondria | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7463618 | |||
}} | |||
{{medline-entry | |||
|title=Aging aggravated liver ischemia and reperfusion injury by promoting STING-mediated [[NLRP3]] activation in macrophages. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32666684 | |||
|keywords=* aging | |||
* and reperfusion injury | |||
* leucine-rich repeat containing protein 3 | |||
* liver ischemia | |||
* macrophage immune response | |||
* nucleotide-binding domain | |||
* stimulator of interferon genes | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431827 | |||
}} | |||
{{medline-entry | |||
|title=Targeting [[NLRP3]] Inflammasome Reduces Age-Related Experimental Alveolar Bone Loss. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32531176 | |||
|keywords=* aging | |||
* inflammasomes | |||
* inflammation | |||
* macrophages | |||
* osteoclasts | |||
* periodontitis | |||
|full-text-url=https://sci-hub.do/10.1177/0022034520933533 | |||
}} | |||
{{medline-entry | |||
|title=Korean Red Ginseng Suppresses the Expression of Oxidative Stress Response and [[NLRP3]] Inflammasome Genes in Aged C57BL/6 Mouse Ovaries. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32331214 | |||
|keywords=* Korean ginseng extract | |||
* NLRP3 inflammasome | |||
* aging | |||
* ovary | |||
* oxidative stress response | |||
* subfertility | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7231237 | |||
}} | |||
{{medline-entry | |||
|title=Cepharanthine promotes the effect of dexmedetomidine on the deposition of β-amyloid in the old age of the senile dementia rat model by regulating inflammasome expression. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32337948 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Benzylisoquinolines | |||
* Brain | |||
* Dexmedetomidine | |||
* Inflammasomes | |||
* Inflammation | |||
* Male | |||
* Mitochondria | |||
* Oxidative Stress | |||
* Rats, Sprague-Dawley | |||
* Reactive Oxygen Species | |||
|keywords=* dementia | |||
* dexmedetomidine | |||
* inflammasomes | |||
* β-amyloid | |||
* cepharanthine | |||
|full-text-url=https://sci-hub.do/10.5114/fn.2019.89855 | |||
}} | |||
{{medline-entry | |||
|title=Ginsenoside Rg1 ameliorates glomerular fibrosis during kidney aging by inhibiting NOX4 and [[NLRP3]] inflammasome activation in SAMP8 mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32114413 | |||
|keywords=* Ginsenoside Rg1 | |||
* Kidney aging | |||
* NADPH oxidase 4 (NOX4) | |||
* NLRP3 inflammasome | |||
* Renal fibrosis | |||
|full-text-url=https://sci-hub.do/10.1016/j.intimp.2020.106339 | |||
}} | |||
{{medline-entry | |||
|title=Blockade of the [[NLRP3]] inflammasome improves metabolic health and lifespan in obese mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31975052 | |||
|keywords=* Aging | |||
* Autophagy | |||
* High-fat diet | |||
* Longevity | |||
* NLRP3 inflammasome | |||
* Obesity | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206474 | |||
}} | |||
{{medline-entry | |||
|title=Autophagy and [[NLRP3]] inflammasome crosstalk in neuroinflammation in aged bovine brains. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31903559 | |||
|keywords=* NLRP3 inflammasome | |||
* aging | |||
* autophagy | |||
* bovine | |||
* immunosenescence | |||
* neuroinflammation | |||
|full-text-url=https://sci-hub.do/10.1002/jcp.29426 | |||
}} | |||
{{medline-entry | |||
|title=[[NLRP3]] Inflammasome Inhibition by MCC950 in Aged Mice Improves Health via Enhanced Autophagy and PPARα Activity. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31603987 | |||
|keywords=* Aging | |||
* Autophagy | |||
* MCC950 | |||
* NLRP3 inflammasome | |||
* PPARα | |||
|full-text-url=https://sci-hub.do/10.1093/gerona/glz239 | |||
}} | |||
{{medline-entry | |||
|title=[[NLRP3]] inflammasome suppression improves longevity and prevents cardiac aging in male mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31625260 | |||
|keywords=* NLRP3-inflammasome | |||
* autophagy | |||
* cardiac aging | |||
* longevity | |||
* morbidity | |||
* mortality | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974709 | |||
}} | |||
{{medline-entry | |||
|title=Reduced NRF2 expression suppresses endothelial progenitor cell function and induces senescence during aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31494646 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Cellular Senescence | |||
* Endothelial Progenitor Cells | |||
* Mice | |||
* NF-E2-Related Factor 2 | |||
* NF-kappa B | |||
* NLR Family, Pyrin Domain-Containing 3 Protein | |||
* Neovascularization, Physiologic | |||
* Oxidative Stress | |||
|keywords=* NLRP3 inflammasome | |||
* NRF2 | |||
* aging | |||
* endothelial progenitor cells | |||
* oxidative stress | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6756903 | |||
}} | |||
{{medline-entry | |||
|title=Effect of Aging on Taurine Transporter (TauT) Expression in the Mouse Brain Cortex. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31468381 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Brain | |||
* Membrane Glycoproteins | |||
* Membrane Transport Proteins | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Taurine | |||
|keywords=* Age-related diseases | |||
* Glycine Transporter (GLYT) | |||
* NLRP3 | |||
* Taurine Transporter (TauT) | |||
|full-text-url=https://sci-hub.do/10.1007/978-981-13-8023-5_1 | |||
}} | |||
==NMI== | |||
{{medline-entry | |||
|title=Age-Dependent Control of Shoulder Muscles During a Reach-and-Lift Task. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31825888 | |||
|keywords=* activity of daily living | |||
* aging | |||
* functional connectivity | |||
* motor variability | |||
* muscle fatigue | |||
|full-text-url=https://sci-hub.do/10.1123/japa.2019-0055 | |||
}} | |||
==NMS== | |||
{{medline-entry | |||
|title=Uncontrolled Diabetes as an Associated Factor with Dynapenia in Adults Aged 50 Years or Older: Sex Differences. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31665234 | |||
|keywords=* Aging | |||
* Dynapenia | |||
* Glycated hemoglobin | |||
* Hyperglycemia | |||
* Neuromuscular strength | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7243578 | |||
}} | |||
==NMUR1== | |||
{{medline-entry | |||
|title=[Medicinal Chemistry Focused on Mid-sized Peptides Derived from Biomolecules]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31685733 | |||
|mesh-terms=* Aging | |||
* Chemistry, Pharmaceutical | |||
* Drug Discovery | |||
* Humans | |||
* Life Style | |||
* Molecular Targeted Therapy | |||
* Muscle Weakness | |||
* Muscular Atrophy | |||
* Myostatin | |||
* Neuropeptides | |||
* Obesity | |||
* Peptides | |||
* Receptors, Neurotransmitter | |||
* Structure-Activity Relationship | |||
|keywords=* myostatin inhibitor | |||
* neuromedin U receptor-selective agonist | |||
* peptide | |||
|full-text-url=https://sci-hub.do/10.1248/yakushi.19-00149 | |||
}} | |||
==NNT== | |||
{{medline-entry | |||
|title=Yoga, Health-Related Quality of Life and Mental Well-Being: A Re-analysis of a Meta-analysis Using the Quality Effects Model. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31814012 | |||
|keywords=* Outcomes | |||
* Physical activity | |||
* Successful aging | |||
* Systematic review | |||
|full-text-url=https://sci-hub.do/10.1093/gerona/glz284 | |||
}} | |||
{{medline-entry | |||
|title=Statins After Myocardial Infarction in the Oldest: A Cohort Study in the Clinical Practice Research Datalink Database. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31647578 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Case-Control Studies | |||
* Databases, Factual | |||
* Female | |||
* Humans | |||
* Hydroxymethylglutaryl-CoA Reductase Inhibitors | |||
* Male | |||
* Myocardial Infarction | |||
* Proportional Hazards Models | |||
* Retrospective Studies | |||
* Risk Assessment | |||
* Secondary Prevention | |||
* Stroke | |||
|keywords=* geriatrics | |||
* myocardial infarction | |||
* secondary prevention | |||
* statin | |||
* time varying | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7028025 | |||
}} | |||
==NOP10== | |||
{{medline-entry | |||
|title=Pseudouridylation defect due to [i]DKC1[/i] and [i][[NOP10]][/i] mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32554502 | |||
|mesh-terms=* Animals | |||
* Cataract | |||
* Cell Cycle Proteins | |||
* Child | |||
* Enterocolitis | |||
* Female | |||
* Genetic Predisposition to Disease | |||
* Hearing Loss, Sensorineural | |||
* Humans | |||
* Longevity | |||
* Male | |||
* Models, Molecular | |||
* Molecular Dynamics Simulation | |||
* Mutation | |||
* Nephrotic Syndrome | |||
* Nuclear Proteins | |||
* Pedigree | |||
* Protein Conformation | |||
* RNA, Ribosomal | |||
* Ribonucleoproteins, Small Nucleolar | |||
* Zebrafish | |||
|keywords=* H/ACA snoRNP | |||
* pediatrics | |||
* pseudouridylation | |||
* rRNA | |||
* telomere | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334496 | |||
}} | |||
==NOS1== | |||
{{medline-entry | |||
|title=Prepubertal overexposure to manganese induce precocious puberty through GABA receptor/nitric oxide pathway in immature female rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31711775 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Chlorides | |||
* Endocrine Disruptors | |||
* Female | |||
* Gonadotropin-Releasing Hormone | |||
* Manganese Compounds | |||
* Neurons | |||
* Nitric Oxide | |||
* Ovary | |||
* Preoptic Area | |||
* Rats | |||
* Rats, Sprague-Dawley | |||
* Receptors, GABA-A | |||
* Sexual Maturation | |||
* Signal Transduction | |||
* Uterus | |||
* Weaning | |||
|keywords=* GABA(A)R | |||
* GnRH | |||
* Manganese | |||
* Nitric oxide | |||
* Precocious puberty | |||
|full-text-url=https://sci-hub.do/10.1016/j.ecoenv.2019.109898 | |||
}} | |||
==NOS3== | |||
{{medline-entry | |||
|title=Application of Oxidative Stress to a Tissue-Engineered Vascular Aging Model Induces Endothelial Cell Senescence and Activation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32455928 | |||
|keywords=* endothelial cells | |||
* oxidative stress | |||
* senescence | |||
* tissue-engineered blood vessel | |||
* vascular smooth muscle cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290800 | |||
}} | |||
==NOTCH1== | |||
{{medline-entry | |||
|title=[How Does Aging Contribute to Cancer?] | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33130684 | |||
|mesh-terms=* Aged | |||
* Aging | |||
* Carcinogenesis | |||
* Esophageal Neoplasms | |||
* Humans | |||
* Mutation | |||
}} | |||
{{medline-entry | |||
|title=H19 is not hypomethylated or upregulated with age or sex in the aortic valves of mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31609547 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Aortic Valve | |||
* Aortic Valve Stenosis | |||
* Calcinosis | |||
* DNA Methylation | |||
* Female | |||
* Male | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* RNA, Long Noncoding | |||
* Sex Factors | |||
* Up-Regulation | |||
|keywords=* | |||
H19 | |||
* age | |||
* calcific aortic valve disease | |||
* epigenetics | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778597 | |||
}} | |||
==NOTCH4== | |||
{{medline-entry | |||
|title=Age-dependent autophagy induction after injury promotes axon regeneration by limiting NOTCH. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31920157 | |||
|keywords=* Aging | |||
* DLK | |||
* LC3 | |||
* Notch signaling | |||
* autophagy | |||
* axon injury | |||
* axon regeneration | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595581 | |||
}} | |||
==NOX4== | |||
{{medline-entry | |||
|title=Sestrin2 Attenuates Cellular Senescence by Inhibiting NADPH Oxidase 4 Expression. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33227845 | |||
|keywords=* NOX4 | |||
* Reactive oxygen species | |||
* Senescence | |||
* Sestrin2 | |||
|full-text-url=https://sci-hub.do/10.4235/agmr.20.0051 | |||
}} | |||
==NPM1== | |||
{{medline-entry | |||
|title=Flow cytometric identification and cell-line establishment of macrophages in naked mole-rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31784606 | |||
|mesh-terms=* Animals | |||
* Cell Line | |||
* Cell Proliferation | |||
* Cell Separation | |||
* Culture Media | |||
* Flow Cytometry | |||
* Longevity | |||
* Macrophage Colony-Stimulating Factor | |||
* Macrophages | |||
* Mole Rats | |||
* Recombinant Proteins | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6884578 | |||
}} | |||
==NPR1== | |||
{{medline-entry | |||
|title=The [[NPR1]]-WRKY46-WRKY6 signaling cascade mediates probenazole/salicylic acid-elicited leaf senescence in Arabidopsis thaliana. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33270345 | |||
|keywords=* Leaf senescence | |||
* NPR1 | |||
* Probenazole | |||
* Salicylic acid | |||
* WRKY46 | |||
* WRKY6 | |||
|full-text-url=https://sci-hub.do/10.1111/jipb.13044 | |||
}} | |||
{{medline-entry | |||
|title=Loss of proton/calcium exchange 1 results in the activation of plant defense and accelerated senescence in Arabidopsis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32540002 | |||
|keywords=* Early senescence | |||
* H(+)/Ca(2+)exchanger 1 | |||
* Plant defense | |||
* Salicylic acid | |||
* Scopoletin | |||
|full-text-url=https://sci-hub.do/10.1016/j.plantsci.2020.110472 | |||
}} | |||
==NPW== | |||
{{medline-entry | |||
|title=Novel information processing at work across time is associated with cognitive change in later life: A 14-year longitudinal study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32309980 | |||
|mesh-terms=* Aged | |||
* Aging | |||
* Cognition | |||
* Cognitive Aging | |||
* Cognitive Dysfunction | |||
* Employment | |||
* Female | |||
* Humans | |||
* Longitudinal Studies | |||
* Male | |||
* Middle Aged | |||
* Retirement | |||
* Time | |||
|full-text-url=https://sci-hub.do/10.1037/pag0000468 | |||
}} | |||
==NPY== | |||
{{medline-entry | |||
|title=Neuropeptide Y Enhances Progerin Clearance and Ameliorates the Senescent Phenotype of Human Hutchinson-Gilford Progeria Syndrome Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32012215 | |||
|keywords=* Autophagy | |||
* Caloric restriction mimetic | |||
* Cellular senescence | |||
* Human aging | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7243588 | |||
}} | |||
{{medline-entry | |||
|title=Effects of rikkunshito supplementation on resistance to oxidative stress and lifespan in mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31855319 | |||
|mesh-terms=* Animals | |||
* Caloric Restriction | |||
* Dietary Supplements | |||
* Drugs, Chinese Herbal | |||
* Female | |||
* Ghrelin | |||
* Longevity | |||
* Male | |||
* Mice | |||
* Mice, Knockout | |||
* Oxidative Stress | |||
|keywords=* calorie restriction | |||
* ghrelin | |||
* longevity | |||
* metabolism | |||
* oxidative stress | |||
|full-text-url=https://sci-hub.do/10.1111/ggi.13848 | |||
}} | |||
==NRAS== | |||
{{medline-entry | |||
|title=Senescent cholangiocytes release extracellular vesicles that alter target cell phenotype via the epidermal growth factor receptor. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32558183 | |||
|keywords=* biliary epithelial cell | |||
* cellular senescence | |||
* extracellular vesicles | |||
* primary sclerosing cholangitis | |||
* senescence-associated secretory phenotype | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7669612 | |||
}} | |||
{{medline-entry | |||
|title=STAT3 Relays a Differential Response to Melanoma-Associated [i][[NRAS]][/i] Mutations. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31906480 | |||
|keywords=* NRAS | |||
* STAT3 | |||
* melanoma | |||
* mutation | |||
* oncogene-induced senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7016650 | |||
}} | |||
{{medline-entry | |||
|title=Cooperation of Dnmt3a R878H with Nras G12D promotes leukemogenesis in knock-in mice: a pilot study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31703632 | |||
|mesh-terms=* Animals | |||
* Apoptosis | |||
* Carcinogenesis | |||
* Cell Differentiation | |||
* DNA (Cytosine-5-)-Methyltransferases | |||
* Disease Models, Animal | |||
* Disease Progression | |||
* Gene Expression Regulation, Neoplastic | |||
* Gene Knock-In Techniques | |||
* Leukemia, Myeloid, Acute | |||
* Longevity | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Mice, Transgenic | |||
* Monomeric GTP-Binding Proteins | |||
* Mutation | |||
* Phenotype | |||
* Pilot Projects | |||
* Proto-Oncogene Proteins c-myc | |||
* RNA-Seq | |||
* Transcription, Genetic | |||
|keywords=* Acute myeloid leukemia | |||
* DNMT3A mutation | |||
* Myc activation | |||
* Nras G12D | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842226 | |||
}} | |||
==NRL== | |||
{{medline-entry | |||
|title=Development of a cyclophosphamide stress test to predict resilience to aging in mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32613492 | |||
|keywords=* Aging mice | |||
* Cyclophosphamide | |||
* Neutrophil lymphocyte ratio | |||
* Resilience to aging | |||
* Stress test | |||
* WBC count | |||
|full-text-url=https://sci-hub.do/10.1007/s11357-020-00222-z | |||
}} | |||
==NRM== | |||
{{medline-entry | |||
|title=Association between Clonal Hematopoiesis and Late Nonrelapse Mortality after Autologous Hematopoietic Cell Transplantation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31445185 | |||
|mesh-terms=* Adult | |||
* Age Factors | |||
* Aged | |||
* Aging | |||
* Autografts | |||
* Female | |||
* Hematopoiesis | |||
* Hematopoietic Stem Cell Transplantation | |||
* Humans | |||
* Lymphoma, Non-Hodgkin | |||
* Male | |||
* Middle Aged | |||
* Multiple Myeloma | |||
* Retrospective Studies | |||
|keywords=* Autologous | |||
* Clonal hematopoiesis | |||
* Lymphoma | |||
* Multiple myeloma | |||
* Nonrelapse mortality | |||
* Survivors | |||
* Transplantation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7192097 | |||
}} | |||
==NSF== | |||
{{medline-entry | |||
|title=Effects of air pollution on children from a socioecological perspective. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31727016 | |||
|mesh-terms=* Air Pollution | |||
* Child Mortality | |||
* Child, Preschool | |||
* Environment | |||
* Humans | |||
* Income | |||
* Infant | |||
* Life Expectancy | |||
* Retrospective Studies | |||
* Socioeconomic Factors | |||
* Sociological Factors | |||
|keywords=* Deaths of children under age 5 | |||
* Electrification rates | |||
* Income | |||
* Inequality in life expectancy | |||
* Natural resource depletion | |||
* Non-solid fuel | |||
* Outdoor and indoor air pollution | |||
* Socioecological perspective | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6857293 | |||
}} | |||
==NT5E== | |||
{{medline-entry | |||
|title=The [[NT5E]] gene variant strongly affects the degradation rate of inosine 5'-monophosphate under postmortem conditions in Japanese Black beef. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31401370 | |||
|mesh-terms=* 5'-Nucleotidase | |||
* Animals | |||
* Cattle | |||
* Diaphragm | |||
* Food Handling | |||
* Inosine Monophosphate | |||
* Muscle, Skeletal | |||
* Polymorphism, Single Nucleotide | |||
* Postmortem Changes | |||
* Red Meat | |||
* Taste | |||
|keywords=* Inosine 5′-monophosphate | |||
* Japanese Black beef | |||
* Meat quality | |||
* NT5E | |||
* Postmortem aging | |||
|full-text-url=https://sci-hub.do/10.1016/j.meatsci.2019.107893 | |||
}} | |||
==NTHL1== | |||
{{medline-entry | |||
|title=Mitochondrial base excision repair positively correlates with longevity in the liver and heart of mammals. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31970600 | |||
|keywords=* AP endonuclease | |||
* Aging | |||
* DNA glycosylases | |||
* DNA repair | |||
* Mitochondria | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7205949 | |||
}} | |||
==NUCB2== | |||
{{medline-entry | |||
|title=Ontogenetic Pattern Changes of Nucleobindin-2/Nesfatin-1 in the Brain and Intestinal Bulb of the Short Lived African Turquoise Killifish. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31906085 | |||
|keywords=* Nesf-1 | |||
* Nothobranchius furzeri | |||
* aging | |||
* brain-gut axis | |||
* vertebrate | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019235 | |||
}} | |||
==OGA== | |||
{{medline-entry | |||
|title=NPGPx-Mediated Adaptation to Oxidative Stress Protects Motor Neurons from Degeneration in Aging by Directly Modulating O-GlcNAcase. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31747588 | |||
|mesh-terms=* Aging | |||
* Amyotrophic Lateral Sclerosis | |||
* Animals | |||
* Female | |||
* Humans | |||
* Mice | |||
* Mice, Mutant Strains | |||
* Motor Neurons | |||
* Muscle Denervation | |||
* Oxidative Stress | |||
* Paralysis | |||
* beta-N-Acetylhexosaminidases | |||
|keywords=* ALS | |||
* NPGPx | |||
* O-GlcNAcylation | |||
* OGA | |||
* aging | |||
* motor neuron | |||
* oxidative stress | |||
|full-text-url=https://sci-hub.do/10.1016/j.celrep.2019.10.053 | |||
}} | |||
==OGG1== | |||
{{medline-entry | |||
|title=Advanced Age Is Associated with Iron Dyshomeostasis and Mitochondrial DNA Damage in Human Skeletal Muscle. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31783583 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* DNA, Mitochondrial | |||
* Female | |||
* Homeostasis | |||
* Humans | |||
* Inflammation | |||
* Iron | |||
* Male | |||
* Mitochondria, Muscle | |||
* Quadriceps Muscle | |||
* Young Adult | |||
|keywords=* ZIP | |||
* ferritin | |||
* hepcidin | |||
* inflammation | |||
* iron overload | |||
* mitochondrial dysfunction | |||
* mtDNA | |||
* muscle aging | |||
* physical performance | |||
* transferrin | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953082 | |||
}} | |||
==OGT== | |||
{{medline-entry | |||
|title=ELT-2 promotes O-GlcNAc transferase [[OGT]]-1 expression to modulate Caenorhabditis elegans lifespan. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32628333 | |||
|keywords=* Caenorhabditis elegans | |||
* GATA factor ELT-2 | |||
* OGT-1 | |||
* lifespan | |||
|full-text-url=https://sci-hub.do/10.1002/jcb.29817 | |||
}} | |||
{{medline-entry | |||
|title=Neuronal O-GlcNAcylation Improves Cognitive Function in the Aged Mouse Brain. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31588002 | |||
|mesh-terms=* Acetylglucosamine | |||
* Acylation | |||
* Aging | |||
* Animals | |||
* Cognition | |||
* Male | |||
* Mice | |||
* Mice, Knockout | |||
* N-Acetylglucosaminyltransferases | |||
|keywords=* O-GlcNAcylation | |||
* OGT | |||
* aging | |||
* brain | |||
* cognition | |||
* hippocampus | |||
* rejuvenation | |||
* synaptic plasticity | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7199460 | |||
}} | |||
==OSM== | |||
{{medline-entry | |||
|title=Age Differences in Sexual Minority Stress and the Importance of Friendship in Later Life. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33143546 | |||
|keywords=* LGBT | |||
* Sexual minorities | |||
* cohort differences | |||
* discrimination | |||
* friendship aging | |||
* internalized homonegativity | |||
* minority stress | |||
* outness | |||
* social support | |||
|full-text-url=https://sci-hub.do/10.1080/07317115.2020.1836107 | |||
}} | |||
==OTC== | |||
{{medline-entry | |||
|title=Age and growth of stocked juvenile Shoal Bass in a tailwater: Environmental variation and accuracy of daily age estimates. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31644599 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Bass | |||
* Ecosystem | |||
* Environmental Monitoring | |||
* Population Dynamics | |||
* Reproduction | |||
* Rivers | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6808449 | |||
}} | |||
==P2RY12== | |||
{{medline-entry | |||
|title=Potential caveats of putative microglia-specific markers for assessment of age-related cerebrovascular neuroinflammation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33261619 | |||
|keywords=* Aging | |||
* Brain infiltrating myeloid cells | |||
* CD45 | |||
* Cerebral amyloid angiopathy | |||
* Microglia | |||
* Neuroinflammation | |||
* P2RY12 | |||
* Stroke | |||
* Tmem119 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7709276 | |||
}} | |||
{{medline-entry | |||
|title=Microglial changes in the early aging stage in a healthy retina and an experimental glaucoma model. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32958210 | |||
|keywords=* Aging | |||
* CD68 | |||
* Glaucoma | |||
* Iba-1 | |||
* Inflammation | |||
* MHCII | |||
* Microglia | |||
* Mouse | |||
* Ocular hypertension | |||
* P2RY12 | |||
* Retina | |||
|full-text-url=https://sci-hub.do/10.1016/bs.pbr.2020.05.024 | |||
}} | |||
{{medline-entry | |||
|title=Patterns of Expression of Purinergic Receptor [[P2RY12]], a Putative Marker for Non-Activated Microglia, in Aged and Alzheimer's Disease Brains. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31968618 | |||
|mesh-terms=* Aging | |||
* Alzheimer Disease | |||
* Biomarkers | |||
* Brain | |||
* Humans | |||
* Immunohistochemistry | |||
* Inflammation | |||
* Macrophages | |||
* Microglia | |||
* Phenotype | |||
* Plaque, Amyloid | |||
* Receptors, Purinergic P2Y2 | |||
|keywords=* Alzheimer’s disease | |||
* activation phenotypes | |||
* amyloid | |||
* immunohistochemistry | |||
* microglia | |||
* neuroinflammation | |||
* temporal cortex | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014248 | |||
}} | |||
==P4HA2== | |||
{{medline-entry | |||
|title=Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31560770 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Asian Continental Ancestry Group | |||
* Axial Length, Eye | |||
* Child | |||
* Child, Preschool | |||
* China | |||
* Cross-Sectional Studies | |||
* DNA Mutational Analysis | |||
* Female | |||
* Genetic Association Studies | |||
* Genotype | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Myopia, Degenerative | |||
* Phenotype | |||
* Retinal Diseases | |||
* Vision, Low | |||
* Young Adult | |||
|full-text-url=https://sci-hub.do/10.1167/iovs.19-27921 | |||
}} | |||
==P4HA3== | |||
{{medline-entry | |||
|title=Age-associated genes in human mammary gland drive human breast cancer progression. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32539762 | |||
|mesh-terms=* Adult | |||
* Age Factors | |||
* Aged | |||
* Aged, 80 and over | |||
* Animals | |||
* Biomarkers, Tumor | |||
* Breast | |||
* Breast Neoplasms | |||
* Disease Progression | |||
* Dyneins | |||
* Female | |||
* Gene Expression Regulation, Neoplastic | |||
* Heterografts | |||
* Humans | |||
* Mice | |||
* Mice, Inbred NOD | |||
* Mice, SCID | |||
* Middle Aged | |||
* Procollagen-Proline Dioxygenase | |||
* Prognosis | |||
* Survival Rate | |||
* Tumor Cells, Cultured | |||
|keywords=* ALX4 | |||
* Aging | |||
* Breast cancer | |||
* DYNLT3 | |||
* Gene expression | |||
* P4HA3 | |||
* Relapse-free survival | |||
* Transcriptomics | |||
* Tumor progression | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7294649 | |||
}} | |||
==PAH== | |||
{{medline-entry | |||
|title=Changes in light absorption by brown carbon in soot particles due to heterogeneous ozone aging in a smog chamber. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32771846 | |||
|mesh-terms=* Aerosols | |||
* Biomass | |||
* Carbon | |||
* Ozone | |||
* Smog | |||
* Soot | |||
|keywords=* Absorption Ångström exponent | |||
* Brown carbon | |||
* Light absorption | |||
* Ozone aging | |||
* Soot particles | |||
|full-text-url=https://sci-hub.do/10.1016/j.envpol.2020.115273 | |||
}} | |||
{{medline-entry | |||
|title=Factors associated with pulmonary arterial hypertension ([[PAH]]) in systemic sclerosis (SSc). | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32659476 | |||
|mesh-terms=* Aging | |||
* Humans | |||
* Natriuretic Peptide, Brain | |||
* Pulmonary Arterial Hypertension | |||
* Risk Factors | |||
* Scleroderma, Systemic | |||
|full-text-url=https://sci-hub.do/10.1016/j.autrev.2020.102602 | |||
}} | |||
{{medline-entry | |||
|title=Potentially Avoidable Hospitalization among Long-Term Care Insurance Beneficiaries with Dementia. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32316707 | |||
|keywords=* Aging | |||
* Dementia | |||
* Long-Term Care | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7509129 | |||
}} | |||
==PAM== | |||
{{medline-entry | |||
|title=Relationship between patient activation measurement and self-rated health in patients with chronic diseases. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33148185 | |||
|keywords=* Aging population | |||
* Chronic diseases | |||
* Patient activation measurement | |||
* Primary health care | |||
* Self-rated health | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7643260 | |||
}} | |||
{{medline-entry | |||
|title=Reversal of Age-Related Neuronal Atrophy by α5-GABAA Receptor Positive Allosteric Modulation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33068001 | |||
|keywords=* GABA | |||
* aging | |||
* cognition | |||
* neurotrophic effect | |||
* positive allosteric modulator | |||
|full-text-url=https://sci-hub.do/10.1093/cercor/bhaa310 | |||
}} | |||
{{medline-entry | |||
|title=The ratio of prematurely aging to non-prematurely aging mice cohabiting, conditions their behavior, immunity and lifespan. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32330742 | |||
|mesh-terms=* Aging | |||
* Aging, Premature | |||
* Animals | |||
* Behavior, Animal | |||
* Female | |||
* Housing, Animal | |||
* Longevity | |||
* Lymphocytes | |||
* Macrophages | |||
* Mice | |||
* Oxidative Stress | |||
* Social Environment | |||
|keywords=* Behavior | |||
* Immunity | |||
* Mean lifespan | |||
* Prematurely aging mice | |||
* Social environmental strategy | |||
|full-text-url=https://sci-hub.do/10.1016/j.jneuroim.2020.577240 | |||
}} | |||
==PAX8== | |||
{{medline-entry | |||
|title=Inadequate control of thyroid hormones sensitizes to hepatocarcinogenesis and unhealthy aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31518338 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Fatty Liver | |||
* Insulin Resistance | |||
* Liver | |||
* Liver Neoplasms | |||
* Male | |||
* Mice | |||
* Mice, Knockout | |||
* PAX8 Transcription Factor | |||
* Thyroid Hormones | |||
|keywords=* glucose metabolism | |||
* healthspan | |||
* hyperthyroidism | |||
* hypothyroidism | |||
* lifespan | |||
* thyroid hormones | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6781991 | |||
}} | |||
==PBX1== | |||
{{medline-entry | |||
|title=Internalization of the TAT-[[PBX1]] fusion protein significantly enhances the proliferation of human hair follicle-derived mesenchymal stem cells and delays their senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32436118 | |||
|keywords=* AKT | |||
* Hair follicle mesenchymal stem cells | |||
* PBX1 | |||
* Protein purification | |||
* Senescence | |||
* TAT | |||
|full-text-url=https://sci-hub.do/10.1007/s10529-020-02909-x | |||
}} | |||
==PC== | |||
{{medline-entry | |||
|title=Blended home-based exercise and dietary protein in community-dwelling older adults: a cluster randomized controlled trial. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33103379 | |||
|keywords=* Aging | |||
* Behaviour change | |||
* Physical functioning | |||
* Protein | |||
* Sarcopenia | |||
* e-Health | |||
|full-text-url=https://sci-hub.do/10.1002/jcsm.12634 | |||
}} | |||
{{medline-entry | |||
|title=Right ventricular diastolic function in aging: a head-to-head comparison between phase-contrast MRI and Doppler echocardiography. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32980983 | |||
|keywords=* Aging | |||
* Diastolic function | |||
* Phase-contrast MRI | |||
* Right ventricle | |||
|full-text-url=https://sci-hub.do/10.1007/s10554-020-02040-y | |||
}} | |||
{{medline-entry | |||
|title=Pulse Width and Implantable Pulse Generator Longevity in Pallidal Deep Brain Stimulation for Dystonia: A Population-Based Comparative Effectiveness Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32668433 | |||
|keywords=* Deep brain stimulation | |||
* Dystonia | |||
* Globus pallidus internus | |||
* Pulse generator longevity | |||
* Pulse width | |||
|full-text-url=https://sci-hub.do/10.1159/000508794 | |||
}} | |||
{{medline-entry | |||
|title=Gemcitabine plus nab-paclitaxel with initial dose reduction for older patients with advanced pancreatic cancer. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32576518 | |||
|keywords=* Adverse events | |||
* Chemotherapy | |||
* Gemcitabine | |||
* Geriatrics | |||
* Nab-paclitaxel | |||
* Pancreatic cancer | |||
|full-text-url=https://sci-hub.do/10.1016/j.jgo.2020.06.017 | |||
}} | |||
{{medline-entry | |||
|title=Protective effects of 17-β-oestradiol and phytoestrogen on age-induced oxidative stress and inhibition of surfactant synthesis in rat type II pneumocytes. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32314935 | |||
|keywords=* 17-β-Oestradiol | |||
* aging | |||
* oxidative stress | |||
* phytoestrogen | |||
* surfactant | |||
* type ii pneumocytes | |||
|full-text-url=https://sci-hub.do/10.1080/09637486.2020.1757044 | |||
}} | |||
{{medline-entry | |||
|title=Pacing During 200-m Competitive Masters Swimming. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32271289 | |||
|mesh-terms=* Adult | |||
* Age Factors | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Athletes | |||
* Athletic Performance | |||
* Competitive Behavior | |||
* Female | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Sex Factors | |||
* Swimming | |||
|full-text-url=https://sci-hub.do/10.1519/JSC.0000000000003621 | |||
}} | |||
{{medline-entry | |||
|title=Prostate cancer in Pennsylvania: The role of older age at diagnosis, aggressiveness, and environmental risk factors on treatment and mortality using data from the Pennsylvania Cancer Registry. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32212232 | |||
|keywords=* aging | |||
* behavioral risk factors | |||
* geriatric oncology | |||
* healthy aging | |||
* prostate cancer survivorship | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221418 | |||
}} | |||
{{medline-entry | |||
|title=Extracranial versus intracranial hydro-hemodynamics during aging: a [[PC]]-MRI pilot cross-sectional study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31931818 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Brain | |||
* Cerebral Ventricles | |||
* Cerebrospinal Fluid | |||
* Cerebrovascular Circulation | |||
* Cross-Sectional Studies | |||
* Female | |||
* Hemodynamics | |||
* Humans | |||
* Magnetic Resonance Imaging | |||
* Male | |||
* Middle Aged | |||
|keywords=* Aging | |||
* Arterial cerebral blood flow | |||
* CSF flow | |||
* PC-MRI | |||
* Pulsatility | |||
* Venous cerebral blood flow | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6958565 | |||
}} | |||
{{medline-entry | |||
|title=Age-specific health-related quality of life in disease-free long-term prostate cancer survivors versus male population controls-results from a population-based study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31736000 | |||
|mesh-terms=* Adult | |||
* Age Factors | |||
* Aged | |||
* Aging | |||
* Cancer Survivors | |||
* Case-Control Studies | |||
* Disease-Free Survival | |||
* Germany | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Prostatic Neoplasms | |||
* Quality of Life | |||
* Surveys and Questionnaires | |||
* Young Adult | |||
|keywords=* Health-related quality of life | |||
* Long-term survivor | |||
* Population-based | |||
* Prostate cancer | |||
|full-text-url=https://sci-hub.do/10.1007/s00520-019-05120-5 | |||
}} | |||
{{medline-entry | |||
|title=Cross-Linked Polyphenol-Based Drug Nano-Self-Assemblies Engineered to Blockade Prostate Cancer Senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31553876 | |||
|mesh-terms=* Animals | |||
* Antineoplastic Agents | |||
* Apoptosis | |||
* Cell Line, Tumor | |||
* Cellular Senescence | |||
* Docetaxel | |||
* Forkhead Box Protein O1 | |||
* Humans | |||
* Male | |||
* Mice | |||
* Mice, Nude | |||
* Nanostructures | |||
* Polyphenols | |||
* Prostatic Neoplasms | |||
* Receptor, Transforming Growth Factor-beta Type I | |||
* Signal Transduction | |||
* Tannins | |||
* Transplantation, Heterologous | |||
|keywords=* DSAs | |||
* apoptosis | |||
* docetaxel | |||
* nanoassemblies | |||
* prostate cancer | |||
* senescence | |||
|full-text-url=https://sci-hub.do/10.1021/acsami.9b14738 | |||
}} | |||
{{medline-entry | |||
|title=An Immersive Virtual Reality Platform for Assessing Spatial Navigation Memory in Predementia Screening: Feasibility and Usability Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31482851 | |||
|keywords=* cognition | |||
* dementia | |||
* healthy aging | |||
* memory | |||
* virtual reality | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6751096 | |||
}} | |||
==PCNA== | |||
{{medline-entry | |||
|title=Impairment of Pol β-related DNA Base-excision Repair Leads to Ovarian Aging in Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33223510 | |||
|keywords=* BER | |||
* Pol β | |||
* menopause | |||
* oocytes | |||
* ovarian aging | |||
|full-text-url=https://sci-hub.do/10.18632/aging.104123 | |||
}} | |||
{{medline-entry | |||
|title=[Heat shock protein 90 (HSP90) in age-dependent changes in the number of fibroblasts in human skin.] | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32362082 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Aging | |||
* Child | |||
* Child, Preschool | |||
* Dermis | |||
* Female | |||
* Fibroblasts | |||
* HSP90 Heat-Shock Proteins | |||
* Humans | |||
* Infant | |||
* Infant, Newborn | |||
* Middle Aged | |||
* Pregnancy | |||
* Young Adult | |||
|keywords=* HSP90 | |||
* PCNA | |||
* aging | |||
* fibroblasts | |||
* skin | |||
}} | |||
{{medline-entry | |||
|title=A Higher Frequency Administration of the Nontoxic Cycloartane-Type Triterpene Argentatin A Improved Its Anti-Tumor Activity. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32295227 | |||
|keywords=* Argentatin A | |||
* PCNA | |||
* antiproliferative | |||
* antitumor | |||
* apoptosis | |||
* cell senescence | |||
* colon cancer | |||
* xenografts | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221627 | |||
}} | |||
{{medline-entry | |||
|title=[Mechanosensitive protein of Hippo regulatory pathway - transcription coactivator with PZD-binding motif (TAZ) in human skin during aging.] | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32145162 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Child | |||
* Child, Preschool | |||
* Dermis | |||
* Female | |||
* Fibroblasts | |||
* Humans | |||
* Infant | |||
* Infant, Newborn | |||
* Middle Aged | |||
* Pregnancy | |||
* Protein-Serine-Threonine Kinases | |||
* Skin Aging | |||
* Trans-Activators | |||
* Young Adult | |||
|keywords=* CD31 | |||
* PCNA | |||
* TAZ | |||
* aging | |||
* blood vessels | |||
* fibroblasts | |||
* skin | |||
}} | |||
{{medline-entry | |||
|title=[Mechanosensitive Yes-associated protein in human skin during aging.] | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31800177 | |||
|mesh-terms=* Adaptor Proteins, Signal Transducing | |||
* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Dermis | |||
* Endothelial Cells | |||
* Female | |||
* Fibroblasts | |||
* Humans | |||
* Middle Aged | |||
* Pregnancy | |||
* Skin Aging | |||
* Transcription Factors | |||
|keywords=* CD31 | |||
* PCNA | |||
* YAP | |||
* aging | |||
* blood vessels | |||
* fibroblasts | |||
* skin | |||
}} | |||
{{medline-entry | |||
|title=[Role of mechanosensitive protein Piezo1 in human age-dependent changes in the number of fibroblasts and blood vessels in human skin.] | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31512421 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Blood Vessels | |||
* Child | |||
* Child, Preschool | |||
* Dermis | |||
* Female | |||
* Fibroblasts | |||
* Humans | |||
* Infant | |||
* Ion Channels | |||
* Male | |||
* Middle Aged | |||
* Platelet Endothelial Cell Adhesion Molecule-1 | |||
* Pregnancy | |||
* Proliferating Cell Nuclear Antigen | |||
* Skin Aging | |||
|keywords=* CD31 | |||
* PCNA | |||
* Piezo1 | |||
* aging | |||
* blood vessels | |||
* fibroblasts | |||
* skin | |||
}} | |||
==PCSK9== | |||
{{medline-entry | |||
|title=Lipoprotein removal mechanisms and aging: implications for the cardiovascular health of the elderly. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32011347 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Apolipoproteins B | |||
* Atherosclerosis | |||
* Cardiovascular Diseases | |||
* Cardiovascular System | |||
* Cholesterol | |||
* Humans | |||
* Lipid Metabolism | |||
* Lipoproteins | |||
* Lipoproteins, LDL | |||
* Risk Factors | |||
|full-text-url=https://sci-hub.do/10.1097/MED.0000000000000529 | |||
}} | |||
{{medline-entry | |||
|title=The role of proprotein convertase subtilisin-kexin type 9 ([[PCSK9]]) in the vascular aging process - is there a link? | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31708986 | |||
|keywords=* PCSK9 | |||
* atherosclerosis | |||
* cholesterol | |||
* inflammation | |||
* vascular aging | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6836637 | |||
}} | |||
==PDCD4== | |||
{{medline-entry | |||
|title=Petal abscission in roses is associated with the activation of a truncated version of the animal [[PDCD4]] homologue, RbPCD1. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31521226 | |||
|mesh-terms=* Amino Acid Sequence | |||
* Arabidopsis | |||
* Gene Expression Regulation, Plant | |||
* Plant Proteins | |||
* Plants, Genetically Modified | |||
* Programmed Cell Death 1 Receptor | |||
* Rosa | |||
* Sequence Alignment | |||
* Transcription Factors | |||
|keywords=* Ethylene | |||
* Heat shock | |||
* Inflorescence | |||
* MA3 domain | |||
* PDCD4 | |||
* Repression | |||
* Senescence | |||
|full-text-url=https://sci-hub.do/10.1016/j.plantsci.2019.110242 | |||
}} | |||
==PDE2A== | |||
{{medline-entry | |||
|title=TAK-915, a phosphodiesterase 2A inhibitor, ameliorates the cognitive impairment associated with aging in rodent models. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31521738 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Brain | |||
* Cognition | |||
* Cognition Disorders | |||
* Cognitive Dysfunction | |||
* Cyclic AMP | |||
* Cyclic GMP | |||
* Cyclic Nucleotide Phosphodiesterases, Type 2 | |||
* Male | |||
* Memory Disorders | |||
* Memory, Episodic | |||
* Phosphodiesterase Inhibitors | |||
* Pyrazines | |||
* Pyridines | |||
* Rats | |||
* Rats, Inbred F344 | |||
* Rats, Long-Evans | |||
* Rats, Sprague-Dawley | |||
|keywords=* Aging | |||
* Cognition | |||
* PDE2A | |||
* TAK-915 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbr.2019.112192 | |||
}} | |||
==PDE4D== | |||
{{medline-entry | |||
|title=Phosphodiesterase [[PDE4D]] Is Decreased in Frontal Cortex of Aged Rats and Positively Correlated With Working Memory Performance and Inversely Correlated With PKA Phosphorylation of Tau. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33192469 | |||
|keywords=* Alzheimer’s disease | |||
* PDE4D | |||
* aging | |||
* tau | |||
* working memory | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7655962 | |||
}} | |||
==PDE5A== | |||
{{medline-entry | |||
|title=Repurposing erectile dysfunction drugs tadalafil and vardenafil to increase bone mass. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32513693 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Bone Density | |||
* Bone and Bones | |||
* Brain | |||
* Cell Differentiation | |||
* Cyclic Nucleotide Phosphodiesterases, Type 5 | |||
* Drug Repositioning | |||
* Erectile Dysfunction | |||
* Humans | |||
* Male | |||
* Mice | |||
* Middle Aged | |||
* Models, Animal | |||
* Models, Molecular | |||
* Neurons | |||
* Osteoblasts | |||
* Osteoclasts | |||
* Osteogenesis | |||
* Osteoporosis | |||
* Osteoporotic Fractures | |||
* Phosphodiesterase 5 Inhibitors | |||
* Primary Cell Culture | |||
* Tadalafil | |||
* Vardenafil Dihydrochloride | |||
|keywords=* PDE5 inhibitor | |||
* computational modeling | |||
* cyclic GMP | |||
* osteoporosis | |||
* resorption | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7321982 | |||
}} | |||
==PDK1== | |||
{{medline-entry | |||
|title=Inhibition of 3-phosphoinositide-dependent protein kinase 1 ([[PDK1]]) can revert cellular senescence in human dermal fibroblasts. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33229519 | |||
|keywords=* PDK1 | |||
* cellular senescence | |||
* network modeling | |||
* skin aging | |||
* systems biology | |||
|full-text-url=https://sci-hub.do/10.1073/pnas.1920338117 | |||
}} | |||
{{medline-entry | |||
|title=The Impact of the PI3K/Akt Signaling Pathway in Anxiety and Working Memory in Young and Middle-Aged [[PDK1]] K465E Knock-In Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32457586 | |||
|keywords=* PI3K/Akt | |||
* RDoC | |||
* aging | |||
* animal model | |||
* anxiety | |||
* cognition | |||
* fine tuning | |||
* signaling pathway | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7225327 | |||
}} | |||
==PER1== | |||
{{medline-entry | |||
|title=Quercetin, caffeic acid and resveratrol regulate circadian clock genes and aging-related genes in young and old human lung fibroblast cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31773385 | |||
|mesh-terms=* ARNTL Transcription Factors | |||
* Age Factors | |||
* Aging | |||
* CLOCK Proteins | |||
* Caffeic Acids | |||
* Cell Line | |||
* Circadian Clocks | |||
* Circadian Rhythm | |||
* Fibroblasts | |||
* Humans | |||
* NF-E2-Related Factor 2 | |||
* Polyphenols | |||
* Quercetin | |||
* Receptors, Glucocorticoid | |||
* Resveratrol | |||
* Sirtuin 1 | |||
|keywords=* Caffeic acid | |||
* Circadian clock genes | |||
* NR1D1 | |||
* NRF2 | |||
* Quercetin | |||
* Resveratrol | |||
|full-text-url=https://sci-hub.do/10.1007/s11033-019-05194-8 | |||
}} | |||
==PER2== | |||
{{medline-entry | |||
|title=NAD Controls Circadian Reprogramming through [[PER2]] Nuclear Translocation to Counter Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32369735 | |||
|mesh-terms=* ARNTL Transcription Factors | |||
* Age Factors | |||
* Aging | |||
* Animals | |||
* CLOCK Proteins | |||
* Circadian Clocks | |||
* Circadian Rhythm | |||
* Cytokines | |||
* Female | |||
* HEK293 Cells | |||
* Humans | |||
* Male | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* NAD | |||
* Period Circadian Proteins | |||
* Sirtuin 1 | |||
* Sirtuins | |||
|keywords=* NAD(+) | |||
* SIRT1 | |||
* aging | |||
* circadian | |||
* clock | |||
* heat shock factor 1 | |||
* liver | |||
* nicotinamide mononucleotide | |||
* nicotinamide riboside | |||
* transcriptomics | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7275919 | |||
}} | |||
==PEX19== | |||
{{medline-entry | |||
|title=A genome-wide screen identifies genes that suppress the accumulation of spontaneous mutations in young and aged yeast cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31854076 | |||
|mesh-terms=* Amino Acid Transport Systems, Basic | |||
* Cellular Senescence | |||
* DNA Replication | |||
* Flap Endonucleases | |||
* Gene Ontology | |||
* Genetic Techniques | |||
* Genomic Instability | |||
* Membrane Proteins | |||
* Mutagenesis | |||
* Mutation | |||
* Mutation Accumulation | |||
* Mutation Rate | |||
* Nuclear Pore Complex Proteins | |||
* Saccharomyces cerevisiae | |||
* Saccharomyces cerevisiae Proteins | |||
* Single-Strand Specific DNA and RNA Endonucleases | |||
|keywords=* genome stability | |||
* high-throughput screen | |||
* mutagenesis | |||
* mutation rate | |||
* replicative aging | |||
* yeast | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996960 | |||
}} | |||
==PEX5== | |||
{{medline-entry | |||
|title=Aging lowers [[PEX5]] levels in cortical neurons in male and female mouse brains. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32777345 | |||
|keywords=* Aging brain | |||
* PEX5 | |||
* Peroxisomal protein | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7484460 | |||
}} | |||
==PFAS== | |||
{{medline-entry | |||
|title=Associations between serum concentrations of perfluoroalkyl substances and DNA methylation in women exposed through drinking water: A pilot study in Ronneby, Sweden. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33007577 | |||
|keywords=* EPIC chip | |||
* Environmental pollutant | |||
* Epigenetic aging | |||
* Epigenetics | |||
* PFAS | |||
* Perfluoroalkyl substance | |||
|full-text-url=https://sci-hub.do/10.1016/j.envint.2020.106148 | |||
}} | |||
{{medline-entry | |||
|title=Perfluorinated alkyl substances impede growth, reproduction, lipid metabolism and lifespan in Daphnia magna. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32521362 | |||
|mesh-terms=* Alkanesulfonic Acids | |||
* Animals | |||
* Caprylates | |||
* Daphnia | |||
* Fatty Acids | |||
* Fluorocarbons | |||
* Humans | |||
* Lipid Metabolism | |||
* Longevity | |||
* Reproduction | |||
|keywords=* Fatty acid | |||
* Fecundity | |||
* Gene expression | |||
* PFAS toxicity | |||
* Perfluorooctane sulfonate (PFOS) | |||
* Perfluorooctanoic acid (PFOA) | |||
|full-text-url=https://sci-hub.do/10.1016/j.scitotenv.2020.139682 | |||
}} | |||
{{medline-entry | |||
|title=The effect of weathering on per- and polyfluoroalkyl substances ([[PFAS]]s) from durable water repellent (DWR) clothing. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32062207 | |||
|mesh-terms=* Acrylates | |||
* Alcohols | |||
* Clothing | |||
* Environmental Monitoring | |||
* Fluorocarbon Polymers | |||
* Fluorocarbons | |||
* Humidity | |||
* Models, Chemical | |||
* Textiles | |||
* Water | |||
* Water Pollutants, Chemical | |||
* Weather | |||
|keywords=* Aging | |||
* Durable water repellency | |||
* Outdoor clothing | |||
* Per- and polyfluoroalkyl substances | |||
* Textile | |||
* Weathering | |||
|full-text-url=https://sci-hub.do/10.1016/j.chemosphere.2020.126100 | |||
}} | |||
==PGC== | |||
{{medline-entry | |||
|title=The Aging Stress Response and Its Implication for AMD Pathogenesis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33266495 | |||
|keywords=* AMD | |||
* DNA damage response | |||
* PGC-1α | |||
* SIRT1 | |||
* age-related macular degeneration | |||
* aging | |||
* autophagy | |||
* insulin/IGF-1 | |||
* mitochondrial quality control | |||
* the aging stress response | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700335 | |||
}} | |||
{{medline-entry | |||
|title=Constitutive [[PGC]]-1α Overexpression in Skeletal Muscle Does Not Contribute to Exercise-Induced Neurogenesis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33200398 | |||
|keywords=* Aging | |||
* Hippocampal neurogenesis | |||
* Immunohistochemistry | |||
* PGC-1α | |||
* Transgenic mice | |||
* Voluntary running | |||
|full-text-url=https://sci-hub.do/10.1007/s12035-020-02189-6 | |||
}} | |||
{{medline-entry | |||
|title=Dysregulated Autophagy Mediates Sarcopenic Obesity and Its Complications via AMPK and [[PGC]]1α Signaling Pathways: Potential Involvement of Gut Dysbiosis as a Pathological Link. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32961822 | |||
|keywords=* AMPK signaling pathway | |||
* PGC-1α signaling pathway | |||
* aging | |||
* autophagy | |||
* gut axis | |||
* inflammation | |||
* insulin resistance | |||
* sarcopenic obesity | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555990 | |||
}} | |||
{{medline-entry | |||
|title=Resemblance and differences in dietary restriction nephroprotective mechanisms in young and old rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32970613 | |||
|keywords=* aging | |||
* caloric restriction | |||
* ischemia/reperfusion | |||
* kidney injury | |||
* mitochondria | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7585108 | |||
}} | |||
{{medline-entry | |||
|title=Acute and chronic effects of resistance training on skeletal muscle markers of mitochondrial remodeling in older adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32748504 | |||
|keywords=* aging | |||
* mitochondrial dynamics | |||
* mitochondrial function | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7399374 | |||
}} | |||
{{medline-entry | |||
|title=[[PGC]]-1α-mediated regulation of mitochondrial function and physiological implications. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32516539 | |||
|keywords=* aging | |||
* exercise metabolism | |||
* insulin resistance | |||
* mitochondrial metabolism | |||
* muscle metabolism | |||
* muscle physiology | |||
* métabolisme mitochondrial | |||
* métabolisme musculaire | |||
* métabolisme à l’effort | |||
* physiologie musculaire | |||
* résistance à l’insuline | |||
* vieillissement | |||
|full-text-url=https://sci-hub.do/10.1139/apnm-2020-0005 | |||
}} | |||
{{medline-entry | |||
|title=Targeting Mitochondrial Network Architecture in Down Syndrome and Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32365535 | |||
|keywords=* Down syndrome | |||
* PGC-1α/PPARGC1A | |||
* aging | |||
* mTOR | |||
* mitochondrial dynamics | |||
* mitochondrial function | |||
* mitochondrial network | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7247689 | |||
}} | |||
{{medline-entry | |||
|title=Colchicine treatment impairs skeletal muscle mitochondrial function and insulin sensitivity in an age-specific manner. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32372536 | |||
|keywords=* ADP sensitivity | |||
* ROS | |||
* aging | |||
* autophagy | |||
|full-text-url=https://sci-hub.do/10.1096/fj.201903113RR | |||
}} | |||
{{medline-entry | |||
|title=A novel dipeptide from potato protein hydrolysate augments the effects of exercise training against high-fat diet-induced damages in senescence-accelerated mouse-prone 8 by boosting pAMPK / SIRT1/ [[PGC]]-1α/ pFOXO3 pathway. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32335547 | |||
|keywords=* alcalase | |||
* bioactive peptides | |||
* cardio-protection | |||
* hepato-protection | |||
* longevity | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7202530 | |||
}} | |||
{{medline-entry | |||
|title=Mitochondrial nucleoid remodeling and biogenesis are regulated by the p53-p21 -PKCζ pathway in p16 -silenced cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32330121 | |||
|keywords=* mitochondria | |||
* nucleoid remodeling | |||
* p16INK4a silence | |||
* p53-p21-PKCζ activation | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7202532 | |||
}} | |||
{{medline-entry | |||
|title=[Metabolic Alteration in Aging Process: Metabolic Remodeling in White Adipose Tissue by Caloric Restriction]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32115557 | |||
|mesh-terms=* Adipose Tissue, White | |||
* Aging | |||
* Animals | |||
* Caloric Restriction | |||
* Gene Expression | |||
* Humans | |||
* Longevity | |||
* Mice | |||
* Organelle Biogenesis | |||
* Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha | |||
* Sirtuin 3 | |||
* Sterol Regulatory Element Binding Protein 1 | |||
* Up-Regulation | |||
|keywords=* caloric restriction (CR) | |||
* fatty acid biosynthesis | |||
* mitochondria | |||
* white adipose tissue (WAT) | |||
|full-text-url=https://sci-hub.do/10.1248/yakushi.19-00193-2 | |||
}} | |||
{{medline-entry | |||
|title=Kynurenine aminotransferase isoforms display fiber-type specific expression in young and old human skeletal muscle. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32068089 | |||
|keywords=* Aging | |||
* Kynurenine aminotransferases | |||
* Mitochondria | |||
* Muscle fiber-type | |||
* Skeletal muscle | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2020.110880 | |||
}} | |||
{{medline-entry | |||
|title=Ubiquinol-10 delays postovulatory oocyte aging by improving mitochondrial renewal in pigs. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31958774 | |||
|keywords=* mitochondria | |||
* oxidative stress | |||
* pig | |||
* postovulatory aging | |||
* ubiquinol-10 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7053629 | |||
}} | |||
{{medline-entry | |||
|title=Mitochondrial oxidative capacity and NAD biosynthesis are reduced in human sarcopenia across ethnicities. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31862890 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Biopsy | |||
* Case-Control Studies | |||
* Energy Metabolism | |||
* Humans | |||
* Jamaica | |||
* Male | |||
* Middle Aged | |||
* Mitochondria | |||
* Muscle, Skeletal | |||
* NAD | |||
* Oxidation-Reduction | |||
* Oxidative Phosphorylation | |||
* Oxidative Stress | |||
* Proteostasis | |||
* Sarcopenia | |||
* Singapore | |||
* United Kingdom | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925228 | |||
}} | |||
{{medline-entry | |||
|title=MicroRNA-34a (miR-34a) Mediates Retinal Endothelial Cell Premature Senescence through Mitochondrial Dysfunction and Loss of Antioxidant Activities. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31443378 | |||
|keywords=* diabetic retinopathy | |||
* miR-34a | |||
* mitochondrial dysfunction | |||
* vascular senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769710 | |||
}} | |||
{{medline-entry | |||
|title=Constitutive [[PGC]]-1α overexpression in skeletal muscle does not protect from age-dependent decline in neurogenesis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31444397 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Blood Proteins | |||
* Cytokines | |||
* Female | |||
* Hippocampus | |||
* Male | |||
* Mice, Inbred C57BL | |||
* Mice, Transgenic | |||
* Muscle, Skeletal | |||
* Neurogenesis | |||
* Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha | |||
* Reproducibility of Results | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6707251 | |||
}} | |||
==PGK2== | |||
{{medline-entry | |||
|title=Arsenic influences spermatogenesis by disorganizing the elongation of spermatids in adult male mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31472347 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Arsenic | |||
* Cell Cycle Proteins | |||
* DEAD-box RNA Helicases | |||
* Gene Expression Profiling | |||
* Male | |||
* Mice | |||
* RNA, Messenger | |||
* Spermatids | |||
* Spermatogenesis | |||
* Spermatozoa | |||
|keywords=* Arsenic | |||
* Elongation of spermatids | |||
* Male reproduction | |||
* Spermatogenesis | |||
|full-text-url=https://sci-hub.do/10.1016/j.chemosphere.2019.124650 | |||
}} | |||
==PGLS== | |||
{{medline-entry | |||
|title=547 transcriptomes from 44 brain areas reveal features of the aging brain in non-human primates. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31779658 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Brain | |||
* Carboxylic Ester Hydrolases | |||
* Macaca mulatta | |||
* Male | |||
* Mice | |||
* Transcriptome | |||
|keywords=* Brain aging | |||
* Multiple brain regions | |||
* PGLS | |||
* Rhesus macaques | |||
* Transcriptome | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883628 | |||
}} | |||
==PIEZO1== | |||
{{medline-entry | |||
|title=Niche stiffness underlies the ageing of central nervous system progenitor cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31413369 | |||
|mesh-terms=* Adult Stem Cells | |||
* Aging | |||
* Animals | |||
* Animals, Newborn | |||
* Cell Count | |||
* Central Nervous System | |||
* Extracellular Matrix | |||
* Female | |||
* Humans | |||
* Membrane Proteins | |||
* Multipotent Stem Cells | |||
* Oligodendroglia | |||
* Rats | |||
* Stem Cell Niche | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7025879 | |||
}} | |||
==PINK1== | |||
{{medline-entry | |||
|title=Spermidine inhibits neurodegeneration and delays aging via the [[PINK1]]-PDR1-dependent mitophagy pathway in [i]C. elegans[/i]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32902411 | |||
|keywords=* aging | |||
* caenorhabditis elegans | |||
* mitophagy | |||
* neurodegenerative diseases | |||
* spermidine | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521492 | |||
}} | |||
{{medline-entry | |||
|title=Female mice are resilient to age-related decline of substantia nigra dopamine neuron firing parameters. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32846275 | |||
|keywords=* Aging | |||
* Dopamine | |||
* Electrophysiology | |||
* Firing | |||
* Mouse | |||
* Substantia nigra | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7606778 | |||
}} | |||
{{medline-entry | |||
|title=Attenuation of epigenetic regulator SMARCA4 and ERK-ETS signaling suppresses aging-related dopaminergic degeneration. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32749068 | |||
|keywords=* | |||
Drosophila | |||
* MAPK-ERK-ETS signaling | |||
* Parkinson's disease | |||
* SMARCA4/Brahma | |||
* aging | |||
* neurodegeneration | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511865 | |||
}} | |||
{{medline-entry | |||
|title=SIRT1 alleviates high-magnitude compression-induced senescence in nucleus pulposus cells via [[PINK1]]-dependent mitophagy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32687063 | |||
|keywords=* SIRT1 | |||
* compression | |||
* mitophagy | |||
* nucleus pulposus | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7485741 | |||
}} | |||
{{medline-entry | |||
|title=Synergistic action of propolis with levodopa in the management of Parkinsonism in Drosophila melanogaster. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32386191 | |||
|keywords=* Drosophila melanogaster | |||
* Levodopa induced dyskinesia | |||
* PINK1B9 | |||
* Parkinsonism | |||
* Parkinson’s disease | |||
* aging | |||
* antioxidant activity | |||
* catalase | |||
* climbing index | |||
* lifespan | |||
* oxidative stress | |||
* propolis | |||
|full-text-url=https://sci-hub.do/10.1515/jcim-2019-0136 | |||
}} | |||
{{medline-entry | |||
|title=Compression-induced senescence of nucleus pulposus cells by promoting mitophagy activation via the [[PINK1]]/PARKIN pathway. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32281308 | |||
|keywords=* PARKIN pathway | |||
* PINK1 | |||
* compression | |||
* intervertebral disc | |||
* mitophagy | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214186 | |||
}} | |||
{{medline-entry | |||
|title=Doxorubicin-induced normal breast epithelial cellular aging and its related breast cancer growth through mitochondrial autophagy and oxidative stress mitigated by ginsenoside Rh2. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32100342 | |||
|mesh-terms=* Autophagy | |||
* Breast Neoplasms | |||
* Cell Culture Techniques | |||
* Cell Line, Tumor | |||
* Doxorubicin | |||
* Drugs, Chinese Herbal | |||
* Female | |||
* Ginsenosides | |||
* Humans | |||
* Mitochondria | |||
* Oxidative Stress | |||
|keywords=* ROS | |||
* cancer growth | |||
* cellular senescence | |||
* chemotherapy | |||
* ginsenoside Rh2 | |||
* mitophagy | |||
|full-text-url=https://sci-hub.do/10.1002/ptr.6636 | |||
}} | |||
{{medline-entry | |||
|title=Mitochondrial DNA heteroplasmy rises in substantial nigra of aged [[PINK1]] KO mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31727366 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Brain | |||
* DNA Copy Number Variations | |||
* DNA, Mitochondrial | |||
* Gene Frequency | |||
* Mice, Knockout | |||
* Mutation Rate | |||
* Protein Kinases | |||
* Substantia Nigra | |||
|keywords=* PINK1 | |||
* Parkin | |||
* Parkinson’s disease | |||
* mtDNA heteroplasmy | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2019.10.112 | |||
}} | |||
==PIP== | |||
{{medline-entry | |||
|title=Potentially inappropriate prescriptions according to explicit and implicit criteria in patients with multimorbidity and polypharmacy. MULTIPAP: A cross-sectional study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32785232 | |||
|mesh-terms=* Aged | |||
* Cross-Sectional Studies | |||
* Female | |||
* Geriatrics | |||
* Humans | |||
* Inappropriate Prescribing | |||
* Independent Living | |||
* Male | |||
* Multimorbidity | |||
* Polypharmacy | |||
* Potentially Inappropriate Medication List | |||
* Prevalence | |||
* Primary Health Care | |||
* Risk | |||
* Spain | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7423095 | |||
}} | |||
{{medline-entry | |||
|title=Quality of prescribing predicts hospitalisation in octogenarians: life and living in advanced age: a cohort study in New Zealand (LiLACS NZ). | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31856733 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Cohort Studies | |||
* Drug Prescriptions | |||
* Female | |||
* Follow-Up Studies | |||
* Forecasting | |||
* Hospitalization | |||
* Humans | |||
* Inappropriate Prescribing | |||
* Longitudinal Studies | |||
* Male | |||
* New Zealand | |||
* Patient Discharge | |||
* Potentially Inappropriate Medication List | |||
|keywords=* Appropriate prescribing | |||
* Ethnicity | |||
* Longitudinal study | |||
* Older people | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6921419 | |||
}} | |||
==PLIN2== | |||
{{medline-entry | |||
|title=Cardiac overexpression of perilipin 2 induces atrial steatosis, connexin 43 remodeling, and atrial fibrillation in aged mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31661297 | |||
|mesh-terms=* Animals | |||
* Atrial Fibrillation | |||
* Connexin 43 | |||
* Gene Knock-In Techniques | |||
* Heart Atria | |||
* Isolated Heart Preparation | |||
* Lipid Droplets | |||
* Mice | |||
* Mice, Transgenic | |||
* Microscopy, Electron | |||
* Myocytes, Cardiac | |||
* Perilipin-2 | |||
* Sterol Esterase | |||
* Triglycerides | |||
* Voltage-Sensitive Dye Imaging | |||
|keywords=* aging | |||
* cardiac steatosis | |||
* gap junction | |||
* lipid droplets | |||
* lipotoxic arrhythmia | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6957375 | |||
}} | |||
==PLK4== | |||
{{medline-entry | |||
|title=A novel lncRNA [[PLK4]] up-regulated by talazoparib represses hepatocellular carcinoma progression by promoting YAP-mediated cell senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32243714 | |||
|keywords=* Yes-associated protein | |||
* cellular senescence | |||
* hepatocellular carcinoma | |||
* polo-like kinase 4 associated lncRNA | |||
* talazoparib | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7205816 | |||
}} | |||
{{medline-entry | |||
|title=Differential expression of AURKA/[[PLK4]] in quiescence and senescence of osteosarcoma U2OS cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32200684 | |||
|keywords=* AURKA | |||
* Osteosarcoma | |||
* PLK4 | |||
* quiescence | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217361 | |||
}} | |||
==PLN== | |||
{{medline-entry | |||
|title=An analysis of the costs of treating aged patients in a large clinical hospital in Poland under the pressure of recent demographic trends. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32399116 | |||
|keywords=* Polish health care system | |||
* ageing society | |||
* gerontology | |||
* healthcare | |||
* hospital costs | |||
* length and cost of hospitalization | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7212232 | |||
}} | |||
==PML== | |||
{{medline-entry | |||
|title=Progressive multifocal leukoencephalopathy in dimethyl fumarate-treated multiple sclerosis patients. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32808554 | |||
|keywords=* Multiple sclerosis | |||
* PML | |||
* fumarate | |||
* immunosenescence | |||
* lymphopenia | |||
|full-text-url=https://sci-hub.do/10.1177/1352458520949158 | |||
}} | |||
{{medline-entry | |||
|title=[[PML]]2-mediated thread-like nuclear bodies mark late senescence in Hutchinson-Gilford progeria syndrome. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32351002 | |||
|keywords=* HGPS | |||
* PML2 | |||
* senescence | |||
* thread-like PML NBs | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7294779 | |||
}} | |||
==PNN== | |||
{{medline-entry | |||
|title=Hyaluronan degradation and release of a hyaluronan-aggrecan complex from perineuronal nets in the aged mouse brain. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33253804 | |||
|keywords=* Brain aging | |||
* Chondroitin sulfate proteoglycan | |||
* Extracellular matrix | |||
* Hyaluronan | |||
* Perineuronal net | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbagen.2020.129804 | |||
}} | |||
==PNP== | |||
{{medline-entry | |||
|title=Temporal Discrimination Thresholds and Proprioceptive Performance: Impact of Age and Nerve Conduction. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31803012 | |||
|keywords=* TDMT | |||
* aging | |||
* kinesthesia | |||
* pointing task | |||
* position estimation | |||
* somatosensory temporal discrimination | |||
* temporal discrimination threshold | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6877661 | |||
}} | |||
==POLL== | |||
{{medline-entry | |||
|title=Temporal trends in loss of life expectancy after a cancer diagnosis among the Australian population. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32062407 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Australia | |||
* Cancer Survivors | |||
* Cohort Studies | |||
* Female | |||
* Humans | |||
* Life Expectancy | |||
* Male | |||
* Middle Aged | |||
* Neoplasms | |||
|keywords=* Australia | |||
* Cancer | |||
* Life expectancy | |||
* Survival | |||
* Temporal | |||
|full-text-url=https://sci-hub.do/10.1016/j.canep.2020.101686 | |||
}} | |||
==POLR3A== | |||
{{medline-entry | |||
|title=Nucleolar disruption, activation of P53 and premature senescence in [[POLR3A]]-mutated Wiedemann-Rautenstrauch syndrome fibroblasts. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32976914 | |||
|keywords=* Cell senescence | |||
* DNA damage | |||
* Nucleolus | |||
* Nucleus | |||
* RNA polymerase III subunit A (POLR3A) | |||
* Wiedemann-Rautenstrauch syndrome | |||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2020.111360 | |||
}} | |||
==POMC== | |||
{{medline-entry | |||
|title=Gpr17 deficiency in [[POMC]] neurons ameliorates the metabolic derangements caused by long-term high-fat diet feeding. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31611548 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Body Weight | |||
* Brain | |||
* Diet, High-Fat | |||
* Energy Metabolism | |||
* Female | |||
* Homeostasis | |||
* Insulin Resistance | |||
* Liver | |||
* Male | |||
* Mice | |||
* Mice, Knockout | |||
* Motor Activity | |||
* Nerve Tissue Proteins | |||
* Neurons | |||
* Pro-Opiomelanocortin | |||
* Receptors, G-Protein-Coupled | |||
* Sex Factors | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6791877 | |||
}} | |||
==POR== | |||
{{medline-entry | |||
|title=The Ventricular System Enlarges Abnormally in the Seventies, Earlier in Men, and First in the Frontal Horn: A Study Based on More Than 3,000 Scans. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31749695 | |||
|keywords=* Evans’ index | |||
* aging | |||
* brain | |||
* enlargement | |||
* hydrocephalus | |||
* normal pressure | |||
* ventricular system | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6848156 | |||
}} | |||
==POT1== | |||
{{medline-entry | |||
|title=MiR-185 targets [[POT1]] to induce telomere dysfunction and cellular senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32687062 | |||
|keywords=* aging | |||
* cellular senescence | |||
* miR-185 | |||
* protection of telomere 1 | |||
* telomere dysfunction | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7425516 | |||
}} | |||
{{medline-entry | |||
|title=Seryl tRNA synthetase cooperates with [[POT1]] to regulate telomere length and cellular senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31815007 | |||
|keywords=* Cancer genomics | |||
* Senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882858 | |||
}} | |||
==POU5F1== | |||
{{medline-entry | |||
|title=Cell quality evaluation with gene expression analysis of spheroids (3D) and adherent (2D) adipose stem cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33148459 | |||
|keywords=* ALDH family | |||
* Adipose stem cells | |||
* Aging | |||
* Shelterin complex | |||
* Spheroid | |||
* Telomere length | |||
|full-text-url=https://sci-hub.do/10.1016/j.gene.2020.145269 | |||
}} | |||
==PPID== | |||
{{medline-entry | |||
|title=Relationships of inflamm-aging with circulating nutrient levels, body composition, age, and pituitary pars intermedia dysfunction in a senior horse population. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32058159 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Body Composition | |||
* Cytokines | |||
* Female | |||
* Folic Acid | |||
* Horse Diseases | |||
* Horses | |||
* Inflammation | |||
* Male | |||
* Nutrients | |||
* Pituitary Diseases | |||
* Pituitary Gland, Intermediate | |||
|keywords=* Horse | |||
* Inflamm-aging | |||
* Muscle | |||
* Nutrition | |||
* Pituitary pars intermedia dysfunction | |||
* Senior | |||
|full-text-url=https://sci-hub.do/10.1016/j.vetimm.2020.110013 | |||
}} | |||
==PRDM8== | |||
{{medline-entry | |||
|title=[[PRDM8]] reveals aberrant DNA methylation in aging syndromes and is relevant for hematopoietic and neuronal differentiation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32819411 | |||
|keywords=* Aging | |||
* Aplastic anemia | |||
* DNA methylation | |||
* Dyskeratosis congenita | |||
* Epigenetic clock | |||
* Hematopoietic differentiation | |||
* Neuronal differentiation | |||
* PRDM8 | |||
* Telomere | |||
* iPSC | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439574 | |||
}} | |||
==PRDX1== | |||
{{medline-entry | |||
|title=Active vitamin D supplementation alleviates initiation and progression of nonalcoholic fatty liver disease by repressing the p53 pathway. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31756344 | |||
|mesh-terms=* Animals | |||
* Apoptosis | |||
* Cellular Senescence | |||
* Diet, High-Fat | |||
* Dietary Supplements | |||
* Fas Ligand Protein | |||
* Hepatocytes | |||
* Metabolic Networks and Pathways | |||
* Mice, Knockout | |||
* Non-alcoholic Fatty Liver Disease | |||
* Oxidative Stress | |||
* Proteins | |||
* Steroid Hydroxylases | |||
* Tumor Suppressor Protein p53 | |||
* Vitamin D | |||
* fas Receptor | |||
|keywords=* Active vitamin D | |||
* Apoptosis | |||
* Nonalcoholic fatty liver disease | |||
* Oxidative stress | |||
* Senescence | |||
* p53 pathway | |||
|full-text-url=https://sci-hub.do/10.1016/j.lfs.2019.117086 | |||
}} | |||
==PRDX3== | |||
{{medline-entry | |||
|title=Proteomic analyses reveal that ginsenoside Rg3([i]S[/i]) partially reverses cellular senescence in human dermal fibroblasts by inducing peroxiredoxin. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32148389 | |||
|keywords=* Ginsenoside Rg3(S) | |||
* Human dermal fibroblast | |||
* Label-free quantitative proteomics | |||
* Restoration | |||
* Senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7033328 | |||
}} | |||
==PRDX6== | |||
{{medline-entry | |||
|title=Dentate Gyrus Peroxiredoxin 6 Levels Discriminate Aged Unimpaired From Impaired Rats in a Spatial Memory Task. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31417400 | |||
|keywords=* PRDX6 | |||
* aging | |||
* dentate gyrus | |||
* hippocampus | |||
* hole-board | |||
* peroxiredoxin | |||
* proteomics | |||
* spatial memory | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6684764 | |||
}} | |||
==PRKDC== | |||
{{medline-entry | |||
|title=DNA-PKcs modulates progenitor cell proliferation and fibroblast senescence in idiopathic pulmonary fibrosis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31464599 | |||
|mesh-terms=* Animals | |||
* Cell Line | |||
* Cell Proliferation | |||
* Cellular Senescence | |||
* Chromones | |||
* DNA Damage | |||
* DNA Repair | |||
* DNA-Activated Protein Kinase | |||
* DNA-Binding Proteins | |||
* Female | |||
* Fibroblasts | |||
* Humans | |||
* Idiopathic Pulmonary Fibrosis | |||
* Lung | |||
* Mesenchymal Stem Cells | |||
* Mice | |||
* Mice, SCID | |||
* Morpholines | |||
|keywords=* DNA-PKcs | |||
* IPF | |||
* Mesenchymal progenitor cells | |||
* Senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6716822 | |||
}} | |||
==PRL== | |||
{{medline-entry | |||
|title=Mechanism of [[PRL]]2 phosphatase-mediated PTEN degradation and tumorigenesis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32788364 | |||
|mesh-terms=* Animals | |||
* Carcinogenesis | |||
* Female | |||
* HEK293 Cells | |||
* Humans | |||
* Immediate-Early Proteins | |||
* Longevity | |||
* Male | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* Nedd4 Ubiquitin Protein Ligases | |||
* PTEN Phosphohydrolase | |||
* Protein Tyrosine Phosphatases | |||
* Proto-Oncogene Proteins c-akt | |||
* Ubiquitination | |||
|keywords=* NEDD4 | |||
* PRL2 | |||
* PTEN | |||
* protein tyrosine phosphatases | |||
* ubiquitination | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456095 | |||
}} | |||
{{medline-entry | |||
|title=Prolactin mitigates deficiencies of retinal function associated with aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31698287 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Apoptosis | |||
* Electroretinography | |||
* Mice, Inbred C57BL | |||
* Nerve Growth Factors | |||
* Neuroglia | |||
* Prolactin | |||
* Retina | |||
* Retinal Degeneration | |||
|keywords=* Aging | |||
* Apoptosis | |||
* Glia activation | |||
* Hormone | |||
* Mesotopic and photopic electroretinogram | |||
* Retina | |||
|full-text-url=https://sci-hub.do/10.1016/j.neurobiolaging.2019.10.002 | |||
}} | |||
{{medline-entry | |||
|title=A Spontaneous Aggressive ERα+ Mammary Tumor Model Is Driven by Kras Activation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31390566 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Carcinogenesis | |||
* Datasets as Topic | |||
* Estrogen Receptor alpha | |||
* Female | |||
* Gene Expression Profiling | |||
* Humans | |||
* Mammary Neoplasms, Experimental | |||
* Mice | |||
* Prolactin | |||
* Proto-Oncogene Proteins p21(ras) | |||
* Rats | |||
* Signal Transduction | |||
* Transgenes | |||
|keywords=* ER+ breast cancer | |||
* Ras mutations | |||
* breast cancer | |||
* genomic analyses | |||
* mouse models | |||
* prolactin | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713291 | |||
}} | |||
==PRNP== | |||
{{medline-entry | |||
|title=Spontaneous generation of prions and transmissible PrP amyloid in a humanised transgenic mouse model of A117V GSS. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32516343 | |||
|mesh-terms=* Adult | |||
* Aging | |||
* Amyloid | |||
* Animals | |||
* Brain | |||
* Codon | |||
* Heterozygote | |||
* Homozygote | |||
* Humans | |||
* Mice, Transgenic | |||
* Middle Aged | |||
* Prions | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7282622 | |||
}} | |||
==PROC== | |||
{{medline-entry | |||
|title=Does midlife aging impact women's sleep duration, continuity, and timing?: A longitudinal analysis from the Study of Women's Health Across the Nation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31633180 | |||
|keywords=* actigraphy | |||
* aging | |||
* sleep duration | |||
* sleep in women | |||
* sleep quality | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7157190 | |||
}} | |||
==PSD== | |||
{{medline-entry | |||
|title=Quantitative Immunoblotting Analyses Reveal that the Abundance of Actin, Tubulin, Synaptophysin and EEA1 Proteins is Altered in the Brains of Aged Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32652177 | |||
|keywords=* aging | |||
* brain | |||
* cortex | |||
* glutamate receptor | |||
* synapse | |||
* vesicle | |||
|full-text-url=https://sci-hub.do/10.1016/j.neuroscience.2020.06.044 | |||
}} | |||
{{medline-entry | |||
|title=Exercise Attenuates Brain Aging by Rescuing Down-Regulated Wnt/β-Catenin Signaling in Aged Rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32390823 | |||
|keywords=* DKK-1 | |||
* Wnt | |||
* brain aging | |||
* exercise | |||
* β-catenin | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7192222 | |||
}} | |||
{{medline-entry | |||
|title=Concurrent nicotine exposure to prenatal alcohol consumption alters the hippocampal and cortical neurotoxicity. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31938742 | |||
|keywords=* Aging | |||
* Mitochondrial function | |||
* Neuroscience | |||
* Oxidative stress | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953639 | |||
}} | |||
==PSEN2== | |||
{{medline-entry | |||
|title=Accelerated brain aging towards transcriptional inversion in a zebrafish model of the K115fs mutation of human [[PSEN2]]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31978074 | |||
|mesh-terms=* Aging | |||
* Alternative Splicing | |||
* Alzheimer Disease | |||
* Animals | |||
* Animals, Genetically Modified | |||
* Brain | |||
* Datasets as Topic | |||
* Disease Models, Animal | |||
* Down-Regulation | |||
* Female | |||
* Frameshift Mutation | |||
* Gene Editing | |||
* Gene Regulatory Networks | |||
* Heterozygote | |||
* Humans | |||
* Microglia | |||
* Presenilin-1 | |||
* Presenilin-2 | |||
* Protein Isoforms | |||
* Proteomics | |||
* RNA-Seq | |||
* Up-Regulation | |||
* Zebrafish | |||
* Zebrafish Proteins | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6980398 | |||
}} | |||
{{medline-entry | |||
|title=Loss of presenilin 2 age-dependently alters susceptibility to acute seizures and kindling acquisition. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31862541 | |||
|keywords=* Aging | |||
* Alzheimer's | |||
* Carbamazepine | |||
* Corneal kindling | |||
* Diazepam | |||
* Epilepsy | |||
* Lamotrigine | |||
* Levetiracetam | |||
* Presenilin | |||
* Seizures | |||
* Valproic acid | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7462087 | |||
}} | |||
==PSMD11== | |||
{{medline-entry | |||
|title=The effect and mechanism of 19S proteasome [[PSMD11]]/Rpn6 subunit in D-Galactose induced mimetic aging models. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32450067 | |||
|keywords=* Age-related hearing loss | |||
* Aging | |||
* D-galactose | |||
* PSMD11 | |||
* Proteasome | |||
|full-text-url=https://sci-hub.do/10.1016/j.yexcr.2020.112093 | |||
}} | |||
==PSMD14== | |||
{{medline-entry | |||
|title=Upregulation of deubiquitinase [[PSMD14]] in lung adenocarcinoma (LUAD) and its prognostic significance. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32226511 | |||
|keywords=* PMSD14 | |||
* apoptosis | |||
* deubiquitinating enzyme | |||
* lung adenocarcinoma | |||
* prognosis | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7086243 | |||
}} | |||
==PTEN== | |||
{{medline-entry | |||
|title=Senescence Reprogramming by TIMP1 Deficiency Promotes Prostate Cancer Metastasis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33186519 | |||
|keywords=* FGF1 | |||
* GDF-15 | |||
* MMPs | |||
* PTEN | |||
* TIMP1 | |||
* docetaxel | |||
* prostate cancer metastasis | |||
* senescence | |||
* senescence-associated secretory phenotype (SASP) | |||
* senolytic therapy | |||
|full-text-url=https://sci-hub.do/10.1016/j.ccell.2020.10.012 | |||
}} | |||
{{medline-entry | |||
|title=Alterations in Mitochondrial Dynamic-related Genes in the Peripheral Blood of Alzheimer's Disease Patients. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33023448 | |||
|keywords=* Alzheimer's disease | |||
* DRP1 | |||
* FIS1 | |||
* aging | |||
* mitochondrial dynamics | |||
* mitophagy | |||
|full-text-url=https://sci-hub.do/10.2174/1567205017666201006162538 | |||
}} | |||
{{medline-entry | |||
|title=Human ESC-sEVs alleviate age-related bone loss by rejuvenating senescent bone marrow-derived mesenchymal stem cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32944188 | |||
|keywords=* Extracellular vesicle | |||
* bone loss | |||
* bone marrow MSCs | |||
* cellular senescence | |||
* embryonic stem cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480439 | |||
}} | |||
{{medline-entry | |||
|title=The precursor of PI(3,4,5)P alleviates aging by activating daf-18(Pten) and independent of daf-16. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32901024 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Animals, Genetically Modified | |||
* Caenorhabditis elegans | |||
* Caenorhabditis elegans Proteins | |||
* Cell Line, Tumor | |||
* Female | |||
* Forkhead Transcription Factors | |||
* Inositol | |||
* Locomotion | |||
* Longevity | |||
* Metabolic Networks and Pathways | |||
* Metabolomics | |||
* Mice | |||
* Mitophagy | |||
* Models, Animal | |||
* PTEN Phosphohydrolase | |||
* Phosphatidylinositol Phosphates | |||
* Protein Kinases | |||
* Protein-Serine-Threonine Kinases | |||
* RNA Interference | |||
* RNA-Seq | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7479145 | |||
}} | |||
{{medline-entry | |||
|title=Quercetin alleviates kidney fibrosis by reducing renal tubular epithelial cell senescence through the SIRT1/PINK1/mitophagy axis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32702447 | |||
|mesh-terms=* Animals | |||
* Antioxidants | |||
* Cell Line | |||
* Cellular Senescence | |||
* Epithelium | |||
* Fibrosis | |||
* Flow Cytometry | |||
* Kidney | |||
* Kidney Tubules, Proximal | |||
* Mitophagy | |||
* Protein Kinases | |||
* Quercetin | |||
* Rats | |||
* Sirtuin 1 | |||
|keywords=* Fibrosis | |||
* Mitochondria | |||
* Mitophagy | |||
* Quercetin | |||
* Senescence | |||
|full-text-url=https://sci-hub.do/10.1016/j.lfs.2020.118116 | |||
}} | |||
{{medline-entry | |||
|title=Downregulation of [[PTEN]] mediates bleomycin-induced premature senescence in lung cancer cells by suppressing autophagy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32436415 | |||
|keywords=* PI3K/Akt/mTOR pathway | |||
* PTEN | |||
* autophagy | |||
* bleomycin | |||
* cancer cell | |||
* premature senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7287201 | |||
}} | |||
{{medline-entry | |||
|title=miR-155 inhibits mitophagy through suppression of BAG5, a partner protein of PINK1. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31948758 | |||
|mesh-terms=* Adaptor Proteins, Signal Transducing | |||
* Aging | |||
* Animals | |||
* Cell Line | |||
* Cells, Cultured | |||
* Down-Regulation | |||
* Humans | |||
* Male | |||
* Mesenchymal Stem Cells | |||
* Mice, Inbred C57BL | |||
* MicroRNAs | |||
* Mitophagy | |||
* Protein Interaction Maps | |||
* Protein Kinases | |||
* Up-Regulation | |||
|keywords=* Aging | |||
* Bone marrow MSCs | |||
* Mitophagy | |||
* miR-155 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2020.01.022 | |||
}} | |||
{{medline-entry | |||
|title=Environmental Exposures and Asthma Development: Autophagy, Mitophagy, and Cellular Senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31849968 | |||
|mesh-terms=* Airway Remodeling | |||
* Asthma | |||
* Autophagy | |||
* Cellular Senescence | |||
* Disease Susceptibility | |||
* Environmental Exposure | |||
* Humans | |||
* Mitophagy | |||
* Oxidative Stress | |||
* Respiratory Mucosa | |||
|keywords=* asthma | |||
* autophagy | |||
* mitophagy | |||
* oxidative stress | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896909 | |||
}} | |||
{{medline-entry | |||
|title=[[PTEN]] loss regulates alveolar epithelial cell senescence in pulmonary fibrosis depending on Akt activation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31527305 | |||
|mesh-terms=* Aging | |||
* Cellular Senescence | |||
* Epithelial Cells | |||
* Humans | |||
* Idiopathic Pulmonary Fibrosis | |||
* PTEN Phosphohydrolase | |||
* Proto-Oncogene Proteins c-akt | |||
* Pulmonary Alveoli | |||
* Respiratory Mucosa | |||
|keywords=* aging | |||
* cellular senescence | |||
* phosphatase and tension homolog deleted on chromosome ten | |||
* protein kinase B | |||
* pulmonary fibrosis | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6781970 | |||
}} | |||
==PTH== | |||
{{medline-entry | |||
|title=Vitamin D Receptor Polymorphisms in Sex-Frailty Paradox. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32899460 | |||
|keywords=* aging | |||
* frailty | |||
* vitamin D | |||
* vitamin D receptor | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7551757 | |||
}} | |||
{{medline-entry | |||
|title=Parathyroid hormone ameliorates temporomandibular joint osteoarthritic-like changes related to age. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32154622 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Calcium-Regulating Hormones and Agents | |||
* Cells, Cultured | |||
* Disease Models, Animal | |||
* Male | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Osteoarthritis | |||
* Osteogenesis | |||
* Parathyroid Hormone | |||
* Temporomandibular Joint | |||
|keywords=* cellular senescence | |||
* cyclin-dependent kinase inhibitor P16INK4A | |||
* marrow mesenchymal stem cells | |||
* osteoarthritis | |||
* temporomandibular joint disorders | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7162802 | |||
}} | |||
==PTP4A3== | |||
{{medline-entry | |||
|title=Transcriptional and Functional Changes of the Human Microvasculature during Physiological Aging and Alzheimer Disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32402127 | |||
|keywords=* 3D microvascular network | |||
* blood-brain barrier | |||
* endothelium | |||
* human serum | |||
* vascular aging | |||
|full-text-url=https://sci-hub.do/10.1002/adbi.202000044 | |||
}} | |||
==PTPN11== | |||
{{medline-entry | |||
|title=Fine mapping genetic variants associated with age at puberty and sow fertility using SowPro90 genotyping array. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32888012 | |||
|keywords=* | |||
SowPro90 | |||
* Bayes interval mapping | |||
* custom genotyping array | |||
* gilts | |||
* puberty | |||
* reproductive longevity | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568434 | |||
}} | |||
==PTTG1== | |||
{{medline-entry | |||
|title=[Down-regulated [[PTTG1]] expression promotes the senescence of human prostate cancer LNCaP-AI]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32216239 | |||
|mesh-terms=* Cell Line, Tumor | |||
* Cell Proliferation | |||
* Humans | |||
* Male | |||
* Prostatic Neoplasms, Castration-Resistant | |||
* RNA, Small Interfering | |||
* Securin | |||
* beta-Galactosidase | |||
|keywords=* LNCaP-AI cell | |||
* castration-resistant prostate cancer | |||
* cellular senescence | |||
* pituitary tumor-transforming gene-1 | |||
* prostate cancer | |||
}} | |||
==PTX3== | |||
{{medline-entry | |||
|title=Aerobic Training Down-Regulates Pentraxin 3 and Pentraxin 3/Toll-Like Receptor 4 Ratio, Irrespective of Oxidative Stress Response, in Elderly Subjects. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32012711 | |||
|keywords=* aging | |||
* endurance training | |||
* exercise | |||
* inflammation | |||
* oxidative stress | |||
* pentraxin 3 | |||
* toll-like receptor 4 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070734 | |||
}} | |||
{{medline-entry | |||
|title=Sex Differences in the Association Between Pentraxin 3 and Cognitive Decline: The Cardiovascular Health Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31808814 | |||
|keywords=* Biomarkers | |||
* Cognitive aging | |||
* Inflammation | |||
* Sex differences | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7357589 | |||
}} | |||
==PUM1== | |||
{{medline-entry | |||
|title=Identification of reference genes for RT-qPCR data normalisation in aging studies. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31562345 | |||
|mesh-terms=* Aging | |||
* Algorithms | |||
* Gene Expression Profiling | |||
* Genes, Essential | |||
* Humans | |||
* Real-Time Polymerase Chain Reaction | |||
* Software | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764958 | |||
}} | |||
==RACK1== | |||
{{medline-entry | |||
|title=Invariable stoichiometry of ribosomal proteins in mouse brain tissues with aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31636180 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Brain | |||
* Female | |||
* Gene Expression Regulation, Developmental | |||
* Male | |||
* Mice | |||
* Proteomics | |||
* Ribosomal Proteins | |||
|keywords=* aging | |||
* mass spectrometry | |||
* neuronal tissues | |||
* ribosome | |||
* translation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842600 | |||
}} | |||
==RAF1== | |||
{{medline-entry | |||
|title=Circular [i]ANRIL[/i] isoforms switch from repressors to activators of [i]p15/CDKN2B[/i] expression during [[RAF1]] oncogene-induced senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32862732 | |||
|keywords=* INK4 locus | |||
* Non-coding RNAs | |||
* Polycomb proteins | |||
* circular RNAs | |||
* gene expression regulation | |||
* oncogene-induced senescence | |||
|full-text-url=https://sci-hub.do/10.1080/15476286.2020.1812910 | |||
}} | |||
==RAG1== | |||
{{medline-entry | |||
|title=T cell senescence accelerates Angiotensin II-induced target organ damage. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32049355 | |||
|keywords=* T cell | |||
* angiotensin II | |||
* cardiorenal dysfunction | |||
* senescence | |||
|full-text-url=https://sci-hub.do/10.1093/cvr/cvaa032 | |||
}} | |||
==RAG2== | |||
{{medline-entry | |||
|title=Phosphate Transporter Profiles in Murine and Human Thymi Identify Thymocytes at Distinct Stages of Differentiation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32793218 | |||
|keywords=* aging | |||
* glucose transporters | |||
* human | |||
* metabolism | |||
* mice | |||
* phosphate transporters | |||
* thymus | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7387685 | |||
}} | |||
==RAN== | |||
{{medline-entry | |||
|title=Rapid automatized naming ([[RAN]]): effects of aging on a predictor of reading skill. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32799742 | |||
|keywords=* Aging | |||
* RAN | |||
* individual differences | |||
* naming | |||
* reading | |||
|full-text-url=https://sci-hub.do/10.1080/13825585.2020.1806987 | |||
}} | |||
==RELB== | |||
{{medline-entry | |||
|title=New control of the senescence barrier in breast cancer. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32158912 | |||
|keywords=* CEBPB | |||
* Cellular senescence | |||
* PAK4 | |||
* RELB | |||
* p21-activated kinase | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7051141 | |||
}} | |||
==REST== | |||
{{medline-entry | |||
|title=[Brain and Neuronal Aging: Aged Brain Controls via Gene Expression Fidelity and Master Regulatory Factors]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32115559 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Animals | |||
* Brain | |||
* Gene Expression | |||
* Gene Expression Regulation, Developmental | |||
* Humans | |||
* Neurodegenerative Diseases | |||
* Protein Biosynthesis | |||
* Repressor Proteins | |||
* Ribosomes | |||
|keywords=* aging | |||
* brain | |||
* gene expression | |||
* neurodegeneration | |||
* ribosome | |||
* translational fidelity | |||
|full-text-url=https://sci-hub.do/10.1248/yakushi.19-00193-4 | |||
}} | |||
{{medline-entry | |||
|title=Effect of 9 - PAHSA on cognitive dysfunction in diabetic mice and its possible mechanism. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32014256 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Behavior, Animal | |||
* Blood Glucose | |||
* Body Weight | |||
* Brain | |||
* Brain-Derived Neurotrophic Factor | |||
* Cognitive Dysfunction | |||
* Diabetes Mellitus, Experimental | |||
* Exploratory Behavior | |||
* Male | |||
* Memory Disorders | |||
* Mice | |||
* Palmitic Acid | |||
* Repressor Proteins | |||
* Social Behavior | |||
* Spatial Memory | |||
* Stearic Acids | |||
|keywords=* 9-PAHSA | |||
* BDNF | |||
* Diabetes mellitus | |||
* REST | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2020.01.071 | |||
}} | |||
{{medline-entry | |||
|title=Increased [[REST]] to Optimize Life Span? | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31762373 | |||
|mesh-terms=* Animals | |||
* Caenorhabditis elegans | |||
* Caenorhabditis elegans Proteins | |||
* Homeostasis | |||
* Longevity | |||
* Repressor Proteins | |||
* Signal Transduction | |||
|keywords=* life span | |||
* neuronal activity | |||
* neurotoxicity | |||
|full-text-url=https://sci-hub.do/10.1089/rej.2019.2287 | |||
}} | |||
==RET== | |||
{{medline-entry | |||
|title=Effects of resistance exercise training on redox homeostasis in older adults. A systematic review and meta-analysis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32615210 | |||
|keywords=* Aging | |||
* Antioxidants | |||
* Exercise | |||
* Oxidative stress | |||
* Resistance exercise training | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2020.111012 | |||
}} | |||
{{medline-entry | |||
|title=Effects of an 8-week resistance training intervention on plantar flexor muscle quality and functional capacity in older women: A randomised controlled trial. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32562747 | |||
|keywords=* Aging | |||
* Muscle echo intensity | |||
* Muscle quality | |||
* Physical function | |||
* Resistance training | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2020.111003 | |||
}} | |||
{{medline-entry | |||
|title=Resistance exercise training promotes fiber type-specific myonuclear adaptations in older adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32134710 | |||
|keywords=* aging | |||
* hypertrophy | |||
* myonuclear domain | |||
* skeletal muscle | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191507 | |||
}} | |||
{{medline-entry | |||
|title=Low skeletal muscle capillarization limits muscle adaptation to resistance exercise training in older adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31518665 | |||
|mesh-terms=* Adaptation, Physiological | |||
* Aged | |||
* Capillaries | |||
* Citrate (si)-Synthase | |||
* Exercise | |||
* Female | |||
* Humans | |||
* Hypertrophy | |||
* Male | |||
* Muscle Fibers, Skeletal | |||
* Muscle Proteins | |||
* Muscle, Skeletal | |||
* Resistance Training | |||
* Sarcopenia | |||
* Ubiquitin-Protein Ligases | |||
|keywords=* Aging | |||
* Capillary | |||
* Fiber cross-sectional area | |||
* Muscle hypertrophy | |||
* Muscle protein synthesis | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904952 | |||
}} | |||
==REV1== | |||
{{medline-entry | |||
|title=[[REV1]] inhibitor JH-RE-06 enhances tumor cell response to chemotherapy by triggering senescence hallmarks. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33168727 | |||
|keywords=* Rev1 | |||
* cell death | |||
* chemotherapy | |||
* senescence | |||
* translesion synthesis | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7682577 | |||
}} | |||
==RHEB== | |||
{{medline-entry | |||
|title=The Rheb-TORC1 signaling axis functions as a developmental checkpoint. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32041790 | |||
|mesh-terms=* Animals | |||
* Animals, Genetically Modified | |||
* Autophagy | |||
* CRISPR-Cas Systems | |||
* Caenorhabditis elegans | |||
* Caenorhabditis elegans Proteins | |||
* Life Cycle Stages | |||
* Longevity | |||
* Mechanistic Target of Rapamycin Complex 1 | |||
* Phosphotransferases (Alcohol Group Acceptor) | |||
* RNA Interference | |||
* RNA, Small Interfering | |||
* Ras Homolog Enriched in Brain Protein | |||
* Signal Transduction | |||
|keywords=* MTOR | |||
* MTORC1 | |||
* Ral | |||
* RalGAP | |||
* TSC | |||
* Tuberous sclerosis complex | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7063671 | |||
}} | |||
==RHO== | |||
{{medline-entry | |||
|title=Conditional reprogramming: next generation cell culture. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32963937 | |||
|keywords=* 3T3-J2 fibroblast | |||
* AACR, American Association for Cancer Research | |||
* ACC, adenoid cystic carcinoma | |||
* AR, androgen receptor | |||
* CFTR, cystic fibrosis transmembrane conductance regulators | |||
* CR, conditional reprogramming | |||
* CYPs, cytochrome P450 enzymes | |||
* Conditional reprogramming | |||
* DCIS, ductal carcinoma in situ | |||
* ECM, extracellular matrix | |||
* ESC, embryonic stem cell | |||
* HCMI, human cancer model initiatives | |||
* HGF, hepatocyte growth factor | |||
* HNE, human nasal epithelial | |||
* HPV, human papillomaviruses | |||
* ICD, intracellular domain | |||
* LECs, limbal epithelial cells | |||
* NCI, National Cancer Institute | |||
* NGFR, nerve growth factor receptor | |||
* NSCLC, non-small cell lung cancer | |||
* NSG, NOD/SCID/gamma | |||
* PDAC, pancreatic ductal adenocarcinoma | |||
* PDX, patient derived xenograft | |||
* PP2A, protein phosphatase 2A | |||
* RB, retinoblastoma-associated protein | |||
* ROCK | |||
* ROCK, Rho kinase | |||
* SV40, simian virus 40 large tumor antigen | |||
* Senescence | |||
* UVB, ultraviolet radiation b | |||
* Y-27632 | |||
* dECM, decellularized extracellular matrix | |||
* hASC, human adipose stem cells | |||
* hTERT, human telomerase reverse transcriptase | |||
* iPSCs, induction of pluripotent stem cells | |||
* ΔNP63α, N-terminal truncated form of P63α | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7488362 | |||
}} | |||
{{medline-entry | |||
|title=SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32246845 | |||
|mesh-terms=* Adult | |||
* Aging | |||
* Angiotensin-Converting Enzyme 2 | |||
* Bronchi | |||
* COVID-19 | |||
* Cells, Cultured | |||
* Chronic Disease | |||
* Coronavirus Infections | |||
* Epithelial Cells | |||
* Female | |||
* Gene Expression | |||
* Gene Expression Profiling | |||
* Germany | |||
* Goblet Cells | |||
* Humans | |||
* Lung | |||
* Male | |||
* Middle Aged | |||
* Pandemics | |||
* Peptidyl-Dipeptidase A | |||
* Pneumonia, Viral | |||
* Reference Standards | |||
* Sequence Analysis, RNA | |||
* Serine Endopeptidases | |||
* Sex Characteristics | |||
* Single-Cell Analysis | |||
* Smoking | |||
* Tissue Banks | |||
|keywords=* | |||
FURIN | |||
* COVID-19 | |||
* Human Cell Atlas | |||
* epithelial differentiation | |||
* respiratory tract | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7232010 | |||
}} | |||
==RICTOR== | |||
{{medline-entry | |||
|title=Endothelial senescence-associated secretory phenotype (SASP) is regulated by Makorin-1 ubiquitin E3 ligase. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31476350 | |||
|mesh-terms=* Cellular Senescence | |||
* Endothelial Cells | |||
* Human Umbilical Vein Endothelial Cells | |||
* Humans | |||
* MicroRNAs | |||
* Nerve Tissue Proteins | |||
* Phosphorylation | |||
* Protein Binding | |||
* Rapamycin-Insensitive Companion of mTOR Protein | |||
* Ribonucleoproteins | |||
* Telomeric Repeat Binding Protein 2 | |||
* Ubiquitin-Protein Ligases | |||
|keywords=* Inflammation | |||
* MKRN1 | |||
* Senescence | |||
* Senescence-associated secretory phenotype (SASP) | |||
* Telomeric repeat binding factor 2-interacting protein (TERF2IP) | |||
* p90RSK | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059097 | |||
}} | |||
==RIF1== | |||
{{medline-entry | |||
|title=53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31653568 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* BRCA1 Protein | |||
* DNA Breaks, Double-Stranded | |||
* DNA Damage | |||
* Genomic Instability | |||
* Homologous Recombination | |||
* Mice | |||
* Mutation | |||
* Poly(ADP-ribose) Polymerase Inhibitors | |||
* Rad51 Recombinase | |||
* Tumor Suppressor p53-Binding Protein 1 | |||
* Ubiquitin-Protein Ligases | |||
|keywords=* 53BP1 | |||
* BRCA1 | |||
* PARPi | |||
* aging | |||
* cancer | |||
* homologous recombination | |||
* resection | |||
* shieldin | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993210 | |||
}} | |||
==RIPK1== | |||
{{medline-entry | |||
|title=Casein kinase 1G2 suppresses necroptosis-promoted testis aging by inhibiting receptor-interacting kinase 3. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33206046 | |||
|keywords=* aging | |||
* cell biology | |||
* mouse | |||
* necroptosis | |||
* protein kinase | |||
* reproductivity | |||
* testis | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673785 | |||
}} | |||
{{medline-entry | |||
|title=Crucial role of the terminal complement complex in chondrocyte death and hypertrophy after cartilage trauma. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31981738 | |||
|keywords=* Aurintricarboxylic acid | |||
* Cartilage trauma | |||
* Hypertrophy | |||
* Regulated cell death | |||
* Senescence | |||
* Terminal complement complex | |||
|full-text-url=https://sci-hub.do/10.1016/j.joca.2020.01.004 | |||
}} | |||
==RIPK3== | |||
{{medline-entry | |||
|title=Metformin mediates cardioprotection against aging-induced ischemic necroptosis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31944526 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Autophagy | |||
* GTPase-Activating Proteins | |||
* Humans | |||
* Hypoglycemic Agents | |||
* Imidazoles | |||
* Indoles | |||
* Male | |||
* Metformin | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* Myocardium | |||
* Myocytes, Cardiac | |||
* Necroptosis | |||
* Protein Binding | |||
* RNA, Small Interfering | |||
* Receptor-Interacting Protein Serine-Threonine Kinases | |||
* Reperfusion Injury | |||
* Sequestosome-1 Protein | |||
|keywords=* aging | |||
* autophagy defect | |||
* cardioprotection | |||
* ischemia/reperfusion injury | |||
* metformin | |||
* myocardial necroptosis | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996959 | |||
}} | |||
==RNF10== | |||
{{medline-entry | |||
|title=Reduced RING finger protein 10 expression in macrophages is associated with aging-related inflammation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33249776 | |||
|keywords=* E3 ubiquitin ligase | |||
* RNF10 | |||
* immunosenescence | |||
* inflammation | |||
* macrophages | |||
|full-text-url=https://sci-hub.do/10.1002/2211-5463.13049 | |||
}} | |||
==RNF13== | |||
{{medline-entry | |||
|title=The effects of environmental stressors on candidate aging associated genes. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32344118 | |||
|keywords=* Aging | |||
* Candidate genes | |||
* Environmental factors | |||
* Epigenetic | |||
* Hypo/hyper methylated (methylation) | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2020.110952 | |||
}} | |||
==ROCK2== | |||
{{medline-entry | |||
|title=Physical exercise increases ROCK activity in the skeletal muscle of middle-aged rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32032622 | |||
|keywords=* Aging | |||
* Insulin resistance | |||
* Physical exercise | |||
* Rho-kinase (ROCK) | |||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2020.111213 | |||
}} | |||
==RPE== | |||
{{medline-entry | |||
|title=Transcriptomic Profiling of Human Pluripotent Stem Cell-derived Retinal Pigment Epithelium over Time. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33307245 | |||
|keywords=* Aging | |||
* Human embryonic stem cell | |||
* Human pluripotent stem cell | |||
* Retinal pigment epithelium | |||
* Single-cell RNA sequencing | |||
|full-text-url=https://sci-hub.do/10.1016/j.gpb.2020.08.002 | |||
}} | |||
{{medline-entry | |||
|title=Relationship between Oxygen Uptake, Heart Rate, and Perceived Effort in an Aquatic Incremental Test in Older Women. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33187067 | |||
|keywords=* aging | |||
* cardiorespiratory | |||
* maximum test | |||
* rate of perceived exertion | |||
* water aerobics | |||
* water-based exercises | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7697777 | |||
}} | |||
{{medline-entry | |||
|title=Photoreceptor Degeneration in Homozygous Male Per2 Mice During Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33135952 | |||
|keywords=* Per2luc | |||
* aging | |||
* circadian | |||
* mice | |||
* photoreceptors | |||
* retinal pigment epithelium | |||
|full-text-url=https://sci-hub.do/10.1177/0748730420965285 | |||
}} | |||
{{medline-entry | |||
|title=An In-Vitro Cell Model of Intracellular Protein Aggregation Provides Insights into [[RPE]] Stress Associated with Retinopathy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32932802 | |||
|keywords=* AMD | |||
* RPE | |||
* aging | |||
* autofluorescence | |||
* autophagy | |||
* diet | |||
* lysosomes | |||
* oxidized POS | |||
* proteolysis | |||
* retina | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555953 | |||
}} | |||
{{medline-entry | |||
|title=Short-Term Effect of Self-Selected Training Intensity on Ambulatory Blood Pressure in Hypertensive Older Women: A Randomized Controlled Trial. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32904579 | |||
|keywords=* aging | |||
* exercise | |||
* hypertension | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7457386 | |||
}} | |||
{{medline-entry | |||
|title=Correlation between brain volume and retinal photoreceptor outer segment volume in normal aging and neurodegenerative diseases. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32881874 | |||
|mesh-terms=* Aged | |||
* Aging | |||
* Brain | |||
* Female | |||
* Humans | |||
* Linear Models | |||
* Magnetic Resonance Imaging | |||
* Male | |||
* Middle Aged | |||
* Multivariate Analysis | |||
* Neurodegenerative Diseases | |||
* Organ Size | |||
* Retinal Photoreceptor Cell Outer Segment | |||
* Retinal Pigment Epithelium | |||
* Tomography, Optical Coherence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7470418 | |||
}} | |||
{{medline-entry | |||
|title=Oxidative stress in the retina and retinal pigment epithelium ([[RPE]]): Role of aging, and DJ-1. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32826201 | |||
|keywords=* Aging | |||
* DJ-1 | |||
* Oxidative stress | |||
* Retina | |||
* Retinal pigment epithelium | |||
* Sodium iodate | |||
|full-text-url=https://sci-hub.do/10.1016/j.redox.2020.101623 | |||
}} | |||
{{medline-entry | |||
|title=Direct-Coupled Electroretinogram (DC-ERG) for Recording the Light-Evoked Electrical Responses of the Mouse Retinal Pigment Epithelium. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32744516 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Electrophysiological Phenomena | |||
* Electroretinography | |||
* Light | |||
* Mice | |||
* Retinal Pigment Epithelium | |||
|full-text-url=https://sci-hub.do/10.3791/61491 | |||
}} | |||
{{medline-entry | |||
|title=High-density lipoproteins are a potential therapeutic target for age-related macular degeneration. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32737203 | |||
|keywords=* age-related macular degeneration | |||
* aging | |||
* apolipoprotein | |||
* complement | |||
* complement factor H | |||
* glycosaminoglycan | |||
* heparan sulfate | |||
* heparan sulfate proteoglycans | |||
* high-density lipoprotein (HDL) | |||
* lipoprotein | |||
* oligosaccharide | |||
* retinal degeneration | |||
* retinal pigmented epithelium | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521644 | |||
}} | |||
{{medline-entry | |||
|title=MTOR-initiated metabolic switch and degeneration in the retinal pigment epithelium. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32721041 | |||
|keywords=* AMD | |||
* Mtor | |||
* aging | |||
* lipid | |||
* metabolism | |||
|full-text-url=https://sci-hub.do/10.1096/fj.202000612R | |||
}} | |||
{{medline-entry | |||
|title=[i]Lactobacillus paracasei[/i] KW3110 Suppresses Inflammatory Stress-Induced Premature Cellular Senescence of Human Retinal Pigment Epithelium Cells and Reduces Ocular Disorders in Healthy Humans. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32708511 | |||
|keywords=* cellular senescence | |||
* eye fatigue | |||
* inflammation | |||
* lactic acid bacteria | |||
* probiotics | |||
* retina | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7403967 | |||
}} | |||
{{medline-entry | |||
|title=Retinal pigment epithelium transcriptome analysis in chronic smoking reveals a suppressed innate immune response and activation of differentiation pathways. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32634473 | |||
|keywords=* Age-related macular degeneration | |||
* Aging | |||
* Differentiation | |||
* Innate immunity | |||
* RNA sequencing | |||
* Smoking | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7434665 | |||
}} | |||
{{medline-entry | |||
|title=Differences in Intraretinal Pigment Migration Across Inherited Retinal Dystrophies. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32442431 | |||
|mesh-terms=* Adult | |||
* Aging | |||
* Cell Movement | |||
* Female | |||
* Follow-Up Studies | |||
* Humans | |||
* Male | |||
* Ophthalmoscopy | |||
* Retinal Dystrophies | |||
* Retinal Pigment Epithelium | |||
* Retrospective Studies | |||
* Slit Lamp Microscopy | |||
* Tomography, Optical Coherence | |||
|full-text-url=https://sci-hub.do/10.1016/j.ajo.2020.05.010 | |||
}} | |||
{{medline-entry | |||
|title=Exosomal MiRNA Transfer between Retinal Microglia and [[RPE]]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32429541 | |||
|keywords=* RPE | |||
* aging | |||
* exosome | |||
* inflammation | |||
* microglia | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7279010 | |||
}} | |||
{{medline-entry | |||
|title=Functionally validated imaging endpoints in the Alabama study on early age-related macular degeneration 2 (ALSTAR2): design and methods. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32429847 | |||
|keywords=* Age-related macular degeneration | |||
* Aging | |||
* Cones | |||
* Dark adaptation | |||
* Light sensitivity | |||
* Macula | |||
* Quantitative autofluorescence | |||
* Retina | |||
* Rods | |||
* Spectral domain optical coherence tomography | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7236516 | |||
}} | |||
{{medline-entry | |||
|title=Mechanisms of mitochondrial dysfunction and their impact on age-related macular degeneration. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32298788 | |||
|keywords=* Age-related macular degeneration | |||
* Aggregation | |||
* Aging | |||
* Autophagy | |||
* Clearance | |||
* Degeneration | |||
* Mitochondria | |||
* Mitophagy | |||
* Retina | |||
* Retinal pigment epithelium | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7650008 | |||
}} | |||
{{medline-entry | |||
|title=CSF1R blockade induces macrophage ablation and results in mouse choroidal vascular atrophy and [[RPE]] disorganization. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32234210 | |||
|keywords=* RPE disorganization | |||
* aging | |||
* choroid | |||
* choroidal macrophage | |||
* choroidal vasculature | |||
* immunology | |||
* inflammation | |||
* mouse | |||
* neuroscience | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156269 | |||
}} | |||
{{medline-entry | |||
|title=Extracellular microparticles exacerbate oxidative damage to retinal pigment epithelial cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32173468 | |||
|keywords=* Extracellular vesicles | |||
* Oxidative stress | |||
* Phagocytosis | |||
* RPE cell Dysfunction | |||
* RPE cell-Derived microparticles (RMPs) | |||
* Retinal pigment epithelial cell (RPE) | |||
* Senescence | |||
|full-text-url=https://sci-hub.do/10.1016/j.yexcr.2020.111957 | |||
}} | |||
{{medline-entry | |||
|title=Water-based continuous and interval training in older women: Cardiorespiratory and neuromuscular outcomes (WATER study). | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32145293 | |||
|keywords=* Aerobic capacity | |||
* Aerobic training | |||
* Aging | |||
* Aquatic exercise | |||
* Interval exercise | |||
* Muscle echo intensity | |||
* Muscle strength | |||
* Muscle thickness | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2020.110914 | |||
}} | |||
{{medline-entry | |||
|title=Retrieval Practice Improves Recollection-Based Memory Over a Seven-Day Period in Younger and Older Adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32038382 | |||
|keywords=* aging | |||
* recollection and familiarity | |||
* retrieval practice | |||
* temporal dynamics | |||
* testing effect | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6990689 | |||
}} | |||
{{medline-entry | |||
|title=A Comparison of Heart Rate Training Load and Perceptual Effort Between Masters and Young Cyclists | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32000141 | |||
|mesh-terms=* Adult | |||
* Aging | |||
* Bicycling | |||
* Heart Rate | |||
* High-Intensity Interval Training | |||
* Humans | |||
* Middle Aged | |||
* Perception | |||
* Physical Exertion | |||
|keywords=* age | |||
* endurance training | |||
* high-intensity interval training | |||
* older athlete | |||
|full-text-url=https://sci-hub.do/10.1123/ijspp.2019-0413 | |||
}} | |||
{{medline-entry | |||
|title=Retinal Pigment Epithelial Cells: The Unveiled Component in the Etiology of Prpf Splicing Factor-Associated Retinitis Pigmentosa. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31884616 | |||
|mesh-terms=* Animals | |||
* Circadian Rhythm | |||
* Epithelial Cells | |||
* Eye Proteins | |||
* Humans | |||
* Mice | |||
* Phagocytosis | |||
* Photoreceptor Cells, Vertebrate | |||
* RNA Splicing Factors | |||
* Retinal Pigment Epithelium | |||
* Retinitis Pigmentosa | |||
|keywords=* Aging | |||
* Cellular stress | |||
* Circadian rhythm | |||
* Metabolism | |||
* PRPF | |||
* Phagocytosis | |||
* Retinal pigment epithelium | |||
* Retinitis pigmentosa | |||
* Splicing factors | |||
|full-text-url=https://sci-hub.do/10.1007/978-3-030-27378-1_37 | |||
}} | |||
{{medline-entry | |||
|title=AMPK May Play an Important Role in the Retinal Metabolic Ecosystem. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31884657 | |||
|mesh-terms=* AMP-Activated Protein Kinases | |||
* Animals | |||
* DNA Damage | |||
* DNA, Mitochondrial | |||
* Disease Models, Animal | |||
* Gene Dosage | |||
* Metformin | |||
* Mice | |||
* Oxidative Stress | |||
* Retina | |||
* Retinal Degeneration | |||
* Retinitis Pigmentosa | |||
|keywords=* AMPK | |||
* Adenosine monophosphate-activated protein kinase | |||
* Aging | |||
* Glycolysis | |||
* Metabolism | |||
* Neuroprotection | |||
* Retina | |||
|full-text-url=https://sci-hub.do/10.1007/978-3-030-27378-1_78 | |||
}} | |||
{{medline-entry | |||
|title=Stem cell-derived retinal pigment epithelium from patients with age-related macular degeneration exhibit reduced metabolism and matrix interactions. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31840941 | |||
|keywords=* Bruch's membrane | |||
* age-related macular degeneration | |||
* aging | |||
* induced pluripotent stem cells | |||
* nonenzymatic nitration | |||
* retinal pigment epithelium | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031648 | |||
}} | |||
{{medline-entry | |||
|title=Elovanoids counteract oligomeric β-amyloid-induced gene expression and protect photoreceptors. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31712409 | |||
|mesh-terms=* Amyloid beta-Peptides | |||
* Animals | |||
* Apoptosis | |||
* Autophagy | |||
* Cells, Cultured | |||
* Docosahexaenoic Acids | |||
* Extracellular Matrix | |||
* Fatty Acids, Omega-3 | |||
* Gene Expression Regulation | |||
* Humans | |||
* Male | |||
* Mice, Inbred C57BL | |||
* Mice, Transgenic | |||
* Photoreceptor Cells | |||
* Retina | |||
* Retinal Pigment Epithelium | |||
* Young Adult | |||
|keywords=* SASP | |||
* age-related macular degeneration | |||
* p16 | |||
* retinal pigment epithelial cells | |||
* senescence gene program | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883841 | |||
}} | |||
{{medline-entry | |||
|title=Genetic LAMP2 deficiency accelerates the age-associated formation of basal laminar deposits in the retina. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31699817 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Basement Membrane | |||
* Bruch Membrane | |||
* Exocytosis | |||
* Humans | |||
* Lysosomal-Associated Membrane Protein 2 | |||
* Lysosomes | |||
* Macular Degeneration | |||
* Mice | |||
* Mice, Knockout | |||
* Phagocytosis | |||
* Retina | |||
* Retinal Pigment Epithelium | |||
|keywords=* LAMP2 | |||
* aging | |||
* lysosome | |||
* retinal degeneration | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6876195 | |||
}} | |||
{{medline-entry | |||
|title=Age, lipofuscin and melanin oxidation affect fundus near-infrared autofluorescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31648994 | |||
|mesh-terms=* Age Factors | |||
* Animals | |||
* Biomarkers | |||
* Choroid | |||
* Disease Models, Animal | |||
* Female | |||
* Fluorescein Angiography | |||
* Fundus Oculi | |||
* Humans | |||
* Lipofuscin | |||
* Macular Degeneration | |||
* Male | |||
* Melanins | |||
* Melanosomes | |||
* Mice | |||
* Mice, Knockout | |||
* Optical Imaging | |||
* Oxidation-Reduction | |||
* Oxidative Stress | |||
* Protein Transport | |||
* Retinal Pigment Epithelium | |||
* Tomography, Optical Coherence | |||
|keywords=* Aging | |||
* Lipofuscin | |||
* Melanin | |||
* Melanolipofuscin | |||
* Oxidative stress | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6838394 | |||
}} | |||
{{medline-entry | |||
|title=Relevance of working memory for reinforcement learning in older adults varies with timescale of learning. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31544587 | |||
|keywords=* Aging | |||
* computational modeling | |||
* individual differences | |||
* reinforcement learning | |||
* working memory | |||
|full-text-url=https://sci-hub.do/10.1080/13825585.2019.1664389 | |||
}} | |||
{{medline-entry | |||
|title=Expression and Function of Mas-Related G Protein-Coupled Receptor D and Its Ligand Alamandine in Retina. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31392515 | |||
|mesh-terms=* Aging | |||
* Angiotensin II | |||
* Animals | |||
* Cells, Cultured | |||
* Electroretinography | |||
* Humans | |||
* Ligands | |||
* Lipopolysaccharides | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* Oligopeptides | |||
* Rats | |||
* Reactive Oxygen Species | |||
* Receptors, G-Protein-Coupled | |||
* Retina | |||
|keywords=* Alamandine | |||
* Angiotensin-(1–7) | |||
* Mas-related G protein-coupled receptor D | |||
* Rennin-angiotensin system | |||
* Retina | |||
|full-text-url=https://sci-hub.do/10.1007/s12035-019-01716-4 | |||
}} | |||
==RPIA== | |||
{{medline-entry | |||
|title=Suppression of p16 Induces mTORC1-Mediated Nucleotide Metabolic Reprogramming. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31433975 | |||
|mesh-terms=* Aldose-Ketose Isomerases | |||
* Animals | |||
* Cell Line | |||
* Cellular Senescence | |||
* Cyclin-Dependent Kinase Inhibitor p16 | |||
* Gene Knockdown Techniques | |||
* Humans | |||
* Male | |||
* Mechanistic Target of Rapamycin Complex 1 | |||
* Mice, SCID | |||
* Nucleotides | |||
* Pentose Phosphate Pathway | |||
* Protein Biosynthesis | |||
|keywords=* BRAF | |||
* cancer metabolism | |||
* cell cycle | |||
* melanoma | |||
* nevi | |||
* pancreatic cancer | |||
* pentose phosphate pathway | |||
* ribonucleotide reductase M2 | |||
* ribose-5-phosphate isomerase A | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6716532 | |||
}} | |||
==RPS19BP1== | |||
{{medline-entry | |||
|title=Material basis, effect, and mechanism of ethanol extract of Pinellia ternata tubers on oxidative stress-induced cell senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32659678 | |||
|keywords=* Oxidative stress | |||
* Pinellia ternata | |||
* SIRT1 | |||
* Senescence | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2020.153275 | |||
}} | |||
==RTEL1== | |||
{{medline-entry | |||
|title=Telomere length and aging-related outcomes in humans: A Mendelian randomization study in 261,000 older participants. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31444995 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Cohort Studies | |||
* Female | |||
* Humans | |||
* Male | |||
* Mendelian Randomization Analysis | |||
* Middle Aged | |||
* Risk Factors | |||
* Telomere Homeostasis | |||
|keywords=* TERT | |||
* UK Biobank | |||
* anti-aging | |||
* cellular senescence | |||
* centenarians | |||
* frailty | |||
* longevity | |||
* sarcopenia | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826144 | |||
}} | |||
==RXFP3== | |||
{{medline-entry | |||
|title=The [[RXFP3]] receptor is functionally associated with cellular responses to oxidative stress and DNA damage. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31794429 | |||
|mesh-terms=* Camptothecin | |||
* Computational Biology | |||
* DNA Damage | |||
* Felodipine | |||
* GTPase-Activating Proteins | |||
* Gene Expression Regulation | |||
* Gene Regulatory Networks | |||
* HEK293 Cells | |||
* Humans | |||
* Oxidative Stress | |||
* RNA, Messenger | |||
* Receptors, G-Protein-Coupled | |||
* Topoisomerase I Inhibitors | |||
|keywords=* DNA damage | |||
* GPCR | |||
* aging | |||
* relaxin 3 | |||
* relaxin family peptide 3 receptor | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6932917 | |||
}} | |||
==S100A4== | |||
{{medline-entry | |||
|title=Protective role of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in cigarette smoke-induced mitochondrial dysfunction in mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31678243 | |||
|mesh-terms=* Alarmins | |||
* Animals | |||
* Cytokines | |||
* Exosomes | |||
* Lung | |||
* Mesenchymal Stem Cells | |||
* Mice | |||
* Mitochondria | |||
* Mitophagy | |||
* Oxidative Phosphorylation | |||
* Smoke | |||
* Tobacco | |||
|keywords=* COPD | |||
* Cellular Senescence | |||
* Exosomes | |||
* Mesenchymal stem cells | |||
* Mitochondria | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894395 | |||
}} | |||
==S100A9== | |||
{{medline-entry | |||
|title=Cigarette smoke induction of [[S100A9]] contributes to chronic obstructive pulmonary disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32964723 | |||
|keywords=* Cigarette smoke | |||
* S100A9 | |||
* aging | |||
* kinase | |||
* pulmonary function | |||
|full-text-url=https://sci-hub.do/10.1152/ajplung.00207.2020 | |||
}} | |||
{{medline-entry | |||
|title=Modulation of KDM1A with vafidemstat rescues memory deficit and behavioral alterations. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32469975 | |||
|mesh-terms=* Aging | |||
* Alzheimer Disease | |||
* Animals | |||
* Behavior, Animal | |||
* Brain | |||
* Disease Models, Animal | |||
* Enzyme Inhibitors | |||
* Epigenesis, Genetic | |||
* Female | |||
* Gene Expression | |||
* Hippocampus | |||
* Histone Demethylases | |||
* Humans | |||
* Male | |||
* Memory Disorders | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Mice, Mutant Strains | |||
* Monoamine Oxidase Inhibitors | |||
* Oxadiazoles | |||
* Rats | |||
* Rats, Sprague-Dawley | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259601 | |||
}} | |||
{{medline-entry | |||
|title=Cellular senescence induced by [[S100A9]] in mesenchymal stromal cells through NLRP3 inflammasome activation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31727865 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Calgranulin B | |||
* Case-Control Studies | |||
* Cell Line | |||
* Cells, Cultured | |||
* Cellular Reprogramming | |||
* Cellular Senescence | |||
* Female | |||
* Humans | |||
* Inflammasomes | |||
* Interleukin-1beta | |||
* Male | |||
* Mesenchymal Stem Cells | |||
* Middle Aged | |||
* Myelodysplastic Syndromes | |||
* NLR Family, Pyrin Domain-Containing 3 Protein | |||
* Reactive Oxygen Species | |||
* Signal Transduction | |||
* Stem Cell Niche | |||
* Toll-Like Receptor 4 | |||
* Up-Regulation | |||
* Young Adult | |||
|keywords=* NLRP3 | |||
* S100A9 | |||
* cellular senescence | |||
* mesenchymal stromal cells | |||
* myelodysplastic syndromes | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874461 | |||
}} | |||
{{medline-entry | |||
|title=[[S100A9]] extends lifespan in insulin deficiency. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31391467 | |||
|mesh-terms=* Animals | |||
* Calgranulin B | |||
* Diabetes Mellitus, Experimental | |||
* Diphtheria Toxin | |||
* Fatty Acids | |||
* Humans | |||
* Hyperglycemia | |||
* Insulin | |||
* Leptin | |||
* Liver | |||
* Longevity | |||
* Male | |||
* Mice | |||
* Mice, Knockout | |||
* Oxidation-Reduction | |||
* Signal Transduction | |||
* Streptozocin | |||
* Toll-Like Receptor 4 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686003 | |||
}} | |||
==S100B== | |||
{{medline-entry | |||
|title=Aging protects rat cortical slices against to oxygen-glucose deprivation induced damage. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32064981 | |||
|keywords=* Aging | |||
* LDH | |||
* S100B | |||
* edema | |||
* oxygen-glucose deprivation | |||
|full-text-url=https://sci-hub.do/10.1080/00207454.2020.1730830 | |||
}} | |||
==S1PR1== | |||
{{medline-entry | |||
|title=Aging Suppresses Sphingosine-1-Phosphate Chaperone ApoM in Circulation Resulting in Maladaptive Organ Repair. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32544390 | |||
|keywords=* aging | |||
* endothelial cell | |||
* fibrosis | |||
* kidney repair | |||
* lipoprotein | |||
* lung regeneration | |||
* sphingosine-1-phosphate receptor | |||
* vascular barrier | |||
* vascular niche | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7607448 | |||
}} | |||
==SAG== | |||
{{medline-entry | |||
|title=WRKY42 transcription factor positively regulates leaf senescence through modulating SA and ROS synthesis in Arabidopsis thaliana. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32634860 | |||
|keywords=* | |||
WRKY42 | |||
* Arabidopsis | |||
* leaf senescence | |||
* reactive oxygen species | |||
* salicylic acid | |||
|full-text-url=https://sci-hub.do/10.1111/tpj.14914 | |||
}} | |||
{{medline-entry | |||
|title=Neurogenesis in the inner ear: the zebrafish statoacoustic ganglion provides new neurons from a Neurod/Nestin-positive progenitor pool well into adulthood. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32165493 | |||
|mesh-terms=* Adult Stem Cells | |||
* Aging | |||
* Animals | |||
* Animals, Genetically Modified | |||
* Basic Helix-Loop-Helix Transcription Factors | |||
* Cell Differentiation | |||
* Ear, Inner | |||
* Embryo, Nonmammalian | |||
* Ganglia, Sensory | |||
* Gene Expression Regulation, Developmental | |||
* Hair Cells, Auditory | |||
* Larva | |||
* Nerve Tissue Proteins | |||
* Nestin | |||
* Neural Stem Cells | |||
* Neurogenesis | |||
* Sensory Receptor Cells | |||
* Stem Cell Niche | |||
* Zebrafish | |||
|keywords=* Inner ear | |||
* Neuronal stem cells | |||
* PNS | |||
* Zebrafish | |||
|full-text-url=https://sci-hub.do/10.1242/dev.176750 | |||
}} | |||
==SAT1== | |||
{{medline-entry | |||
|title=Triethylenetetramine (trientine): a caloric restriction mimetic with a new mode of action. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32544364 | |||
|keywords=* Acetylation | |||
* SAT1 | |||
* aging | |||
* autophagy | |||
* copper | |||
* metabolomics | |||
* obesity | |||
* spermidine | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469548 | |||
}} | |||
==SATB1== | |||
{{medline-entry | |||
|title=Loss of [[SATB1]] Induces p21-Dependent Cellular Senescence in Post-mitotic Dopaminergic Neurons. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31543366 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Cells, Cultured | |||
* Cellular Senescence | |||
* Cyclin-Dependent Kinase Inhibitor p21 | |||
* Dopaminergic Neurons | |||
* Epigenetic Repression | |||
* Gene Knockdown Techniques | |||
* Humans | |||
* Matrix Attachment Region Binding Proteins | |||
* Mice | |||
* Mice, Knockout | |||
* Mitosis | |||
* Parkinson Disease | |||
* Protein Binding | |||
|keywords=* Parkinson’s disease | |||
* SATB1 | |||
* cellular senescence | |||
* dopamine | |||
* neurodegeneration | |||
* neuroinflammation | |||
* p21 | |||
* senolytics | |||
* stem cells | |||
* transcriptomics | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7493192 | |||
}} | |||
==SCD== | |||
{{medline-entry | |||
|title=Cognitive training and brain stimulation in prodromal Alzheimer's disease (AD-Stim)-study protocol for a double-blind randomized controlled phase IIb (monocenter) trial. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33160420 | |||
|keywords=* Aging | |||
* Decision-making | |||
* Mild cognitive impairment | |||
* Subjective cognitive decline | |||
* Transcranial direct current stimulation | |||
* Transfer | |||
* Working memory | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648990 | |||
}} | |||
{{medline-entry | |||
|title=Blood Pressure in Different Dementia Disorders, Mild Cognitive Impairment, and Subjective Cognitive Decline. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33110409 | |||
|keywords=* Alzheimer’s disease | |||
* aging | |||
* blood pressure | |||
* mild cognitive impairment | |||
* subjective cognitive decline | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7488384 | |||
}} | |||
{{medline-entry | |||
|title=Known-Groups and Convergent Validity of the Telephone Rey Auditory Verbal Learning Test total Learning Scores for Distinguishing Between Older Adults With Amnestic Cognitive Impairment and Subjective Cognitive Decline. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33067996 | |||
|keywords=* aging | |||
* cognitive impairment | |||
* neuropsychological assessment | |||
|full-text-url=https://sci-hub.do/10.1093/arclin/acaa085 | |||
}} | |||
{{medline-entry | |||
|title=Subjective cognitive decline as a predictor of future cognitive decline: a systematic review. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32973979 | |||
|keywords=* Alzheimer disease. | |||
* aging | |||
* cognition | |||
* cognitive dysfunction | |||
* dementia | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7500809 | |||
}} | |||
{{medline-entry | |||
|title=Geriatric assessment for older adults with sickle cell disease: protocol for a prospective cohort pilot study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32974042 | |||
|keywords=* Aging | |||
* Functional assessment | |||
* Geriatric assessment | |||
* Geriatrics | |||
* Older adults | |||
* Sickle cell | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7495855 | |||
}} | |||
{{medline-entry | |||
|title=Prevalence and psychosocial correlates of subjectively perceived decline in five cognitive domains: Results from a population-based cohort study in Germany. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32510658 | |||
|keywords=* Germany | |||
* cognitive aging | |||
* cognitive complaints | |||
* cohort study | |||
* prevalence | |||
* subjective cognitive decline | |||
|full-text-url=https://sci-hub.do/10.1002/gps.5359 | |||
}} | |||
{{medline-entry | |||
|title=SC411 treatment can enhance survival in a mouse model of sickle cell disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32447175 | |||
|keywords=* Aging | |||
* Cerebral blood flow | |||
* Docosahexaenoic acid | |||
* Neuroinflammation | |||
* Sickle cell disease | |||
* Working memory | |||
|full-text-url=https://sci-hub.do/10.1016/j.plefa.2020.102110 | |||
}} | |||
{{medline-entry | |||
|title=DNA fragmentation of human spermatozoa: Simple assessment of single- and double-strand DNA breaks and their respective dynamic behavioral response. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32416007 | |||
|keywords=* DNA longevity | |||
* sperm DNA damage | |||
* sperm DNA dynamics | |||
* sperm DNA fragmentation | |||
* sperm chromatin dispersion test | |||
|full-text-url=https://sci-hub.do/10.1111/andr.12819 | |||
}} | |||
{{medline-entry | |||
|title=Psychometric Cognitive Decline Precedes the Advent of Subjective Cognitive Decline in the Evolution of Alzheimer's Disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32388509 | |||
|keywords=* Alzheimer’s disease | |||
* Brain aging | |||
* Cognitive decline | |||
* Cognitive testing | |||
* Longitudinal studies | |||
* Psychometric cognition | |||
|full-text-url=https://sci-hub.do/10.1159/000507286 | |||
}} | |||
{{medline-entry | |||
|title=Serum alkaline phosphatase is elevated and inversely correlated with cognitive functions in subjective cognitive decline: results from the ReGAl 2.0 project. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32363431 | |||
|keywords=* Aging | |||
* Biochemistry | |||
* Cognition | |||
* Dementia | |||
* Geriatric medicine | |||
|full-text-url=https://sci-hub.do/10.1007/s40520-020-01572-6 | |||
}} | |||
{{medline-entry | |||
|title=Changes in Activity Participation Among Older Adults With Subjective Cognitive Decline or Objective Cognitive Deficits. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32010049 | |||
|keywords=* activity participation | |||
* aging | |||
* daily functioning | |||
* metamemory | |||
* subjective cognitive decline | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974583 | |||
}} | |||
{{medline-entry | |||
|title=Age, gender and drug therapy influences on Tpeak-tend interval and on electrical risk score. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32023499 | |||
|keywords=* Aging | |||
* Electrical risk score | |||
* Gender | |||
* Mortality | |||
* QTc | |||
* Repolarization phase | |||
* T peak-tend interval | |||
|full-text-url=https://sci-hub.do/10.1016/j.jelectrocard.2020.01.009 | |||
}} | |||
{{medline-entry | |||
|title=Comorbid Chronic Conditions Among Older Adults with Subjective Cognitive Decline, United States, 2015-2017. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31915725 | |||
|keywords=* Aging | |||
* Chronic disease | |||
* Cognitive dysfunction | |||
* Dementia | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938465 | |||
}} | |||
{{medline-entry | |||
|title=Resting State BOLD Variability Is Linked to White Matter Vascular Burden in Healthy Aging but Not in Older Adults With Subjective Cognitive Decline. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31920589 | |||
|keywords=* Alzheimer’s disease | |||
* aging | |||
* biomarkers | |||
* cerebrovascular health | |||
* signal variability | |||
* subjective cognitive decline | |||
* white matter | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6936515 | |||
}} | |||
{{medline-entry | |||
|title=Estimated Life Expectancy and Income of Patients With Sickle Cell Disease Compared With Those Without Sickle Cell Disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31730182 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Aged | |||
* Anemia, Sickle Cell | |||
* Child | |||
* Child, Preschool | |||
* Cohort Studies | |||
* Female | |||
* Forecasting | |||
* Humans | |||
* Income | |||
* Infant | |||
* Life Expectancy | |||
* Male | |||
* Middle Aged | |||
* Models, Statistical | |||
* Quality-Adjusted Life Years | |||
* United States | |||
* Young Adult | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6902797 | |||
}} | |||
{{medline-entry | |||
|title=Does Empirically Derived Classification of Individuals with Subjective Cognitive Complaints Predict Dementia? | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31703450 | |||
|keywords=* Compostela aging study | |||
* cluster analysis | |||
* cognitive aging | |||
* dementia | |||
* mild cognitive impairment | |||
* screening and diagnosis | |||
* subjective cognitive complaints | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895967 | |||
}} | |||
{{medline-entry | |||
|title=Spatiotemporal Oscillatory Patterns During Working Memory Maintenance in Mild Cognitive Impairment and Subjective Cognitive Decline. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31522594 | |||
|mesh-terms=* Aged | |||
* Aging | |||
* Brain Waves | |||
* Cerebral Cortex | |||
* Cognitive Dysfunction | |||
* Cortical Synchronization | |||
* Female | |||
* Humans | |||
* Magnetoencephalography | |||
* Male | |||
* Memory, Short-Term | |||
* Task Performance and Analysis | |||
|keywords=* Alzheimer’s disease (AD) | |||
* Induced oscillatory activity | |||
* magnetoencephalography (MEG) | |||
* mild cognitive impairment (MCI) | |||
* subjective cognitive decline (SCD) | |||
* working memory (WM) | |||
|full-text-url=https://sci-hub.do/10.1142/S0129065719500199 | |||
}} | |||
{{medline-entry | |||
|title=Microstructural Correlates and Laterality Effect of Prospective Memory in Non-Demented Adults with Memory Complaints. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31466053 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Corpus Callosum | |||
* Diffusion Tensor Imaging | |||
* Female | |||
* Frontal Lobe | |||
* Functional Laterality | |||
* Humans | |||
* Magnetic Resonance Imaging | |||
* Male | |||
* Memory Disorders | |||
* Middle Aged | |||
* Nerve Fibers | |||
* Neuropsychological Tests | |||
* Retrospective Studies | |||
* Surveys and Questionnaires | |||
* Taiwan | |||
|keywords=* Aging | |||
* Alzheimer’s disease | |||
* Cognitive complaints | |||
* Diffusion tensor imaging | |||
* Lateralization | |||
* Prospective memory | |||
* Tract-based spatial statistics | |||
|full-text-url=https://sci-hub.do/10.1159/000501366 | |||
}} | |||
==SCN2A== | |||
{{medline-entry | |||
|title=Na 1.2 haploinsufficiency in Scn2a knock-out mice causes an autistic-like phenotype attenuated with age. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31501495 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Autism Spectrum Disorder | |||
* Gene Knockout Techniques | |||
* Haploinsufficiency | |||
* Memory | |||
* Mice | |||
* NAV1.2 Voltage-Gated Sodium Channel | |||
* Phenotype | |||
* Spatial Learning | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733925 | |||
}} | |||
==SCN2B== | |||
{{medline-entry | |||
|title=MicroRNA‑449a regulates the progression of brain aging by targeting [[SCN2B]] in SAMP8 mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32124967 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Brain | |||
* Gene Expression Regulation | |||
* Male | |||
* Mice | |||
* Mice, Transgenic | |||
* MicroRNAs | |||
* Voltage-Gated Sodium Channel beta-2 Subunit | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7053848 | |||
}} | |||
==SCO1== | |||
{{medline-entry | |||
|title=Real-Time PCR Analysis of Metabolism-Related Genes in a Long-Lived Model of C. elegans. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32219749 | |||
|keywords=* Caenorhabditis elegans | |||
* Energy metabolism | |||
* Longevity | |||
* TaqMan real-time PCR | |||
* p53/CEP-1 | |||
|full-text-url=https://sci-hub.do/10.1007/978-1-0716-0471-7_12 | |||
}} | |||
==SDC1== | |||
{{medline-entry | |||
|title=Olmesartan alleviates bleomycin-mediated vascular smooth muscle cell senescence via the miR-665/[[SDC1]] axis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33042414 | |||
|keywords=* Atherosclerosis | |||
* MiR-665 | |||
* SDC1 | |||
* olmesartan | |||
* vascular smooth muscle cell senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540088 | |||
}} | |||
{{medline-entry | |||
|title=Sulfated syndecan 1 is critical to preventing cellular senescence by modulating fibroblast growth factor receptor endocytosis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32530114 | |||
|keywords=* FGFR1 | |||
* SDC1 | |||
* cellular senescence | |||
* endocytosis | |||
* heparan sulfation | |||
|full-text-url=https://sci-hub.do/10.1096/fj.201902714R | |||
}} | |||
==SDHB== | |||
{{medline-entry | |||
|title=Mitochondrial Signatures in Circulating Extracellular Vesicles of Older Adults with Parkinson's Disease: Results from the EXosomes in PArkiNson's Disease (EXPAND) Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32059608 | |||
|keywords=* aging | |||
* biomarkers | |||
* exosomes | |||
* mitochondrial dynamics | |||
* mitochondrial quality control | |||
* mitochondrial-derived vesicles | |||
* mitochondrial-lysosomal axis | |||
* mitophagy | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074517 | |||
}} | |||
==SDS== | |||
{{medline-entry | |||
|title=Semiautomatic morphometric analysis of skeletal muscle obtained by needle biopsy in older adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32946050 | |||
|keywords=* Aging skeletal muscle | |||
* Morphometric analysis | |||
* Myosin heavy chain | |||
* Semiautomatic muscle analysis | |||
* Skeletal muscle | |||
|full-text-url=https://sci-hub.do/10.1007/s11357-020-00266-1 | |||
}} | |||
{{medline-entry | |||
|title=Effects of late-onset dietary intake of salidroside on insulin/insulin-like growth factor-1 (IGF-1) signaling pathway of the annual fish Nothobranchius guentheri. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32858432 | |||
|keywords=* Aging | |||
* Annual fish | |||
* Lifespan | |||
* Nothobranchius | |||
* Salidroside | |||
|full-text-url=https://sci-hub.do/10.1016/j.archger.2020.104233 | |||
}} | |||
{{medline-entry | |||
|title=Quantification of Insoluble Protein Aggregation in Caenorhabditis elegans during Aging with a Novel Data-Independent Acquisition Workflow. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32831297 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Caenorhabditis elegans | |||
* Caenorhabditis elegans Proteins | |||
* Longevity | |||
* Protein Aggregates | |||
* Proteome | |||
* Proteomics | |||
* Workflow | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519758 | |||
}} | |||
{{medline-entry | |||
|title=Skeletal Muscle Myofibrillar Protein Abundance Is Higher in Resistance-Trained Men, and Aging in the Absence of Training May Have an Opposite Effect. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31936810 | |||
|keywords=* aging | |||
* myofibrillar protein | |||
* proteomics | |||
* resistance training | |||
* sarcoplasmic protein | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7022975 | |||
}} | |||
{{medline-entry | |||
|title=Characterization, evaluation of nutritional parameters of Radix isatidis protein and its antioxidant activity in D-galactose induced ageing mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31694618 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Antioxidants | |||
* Catalase | |||
* Drugs, Chinese Herbal | |||
* Galactose | |||
* Humans | |||
* Kidney | |||
* Liver | |||
* Male | |||
* Malondialdehyde | |||
* Mice | |||
* Mice, Inbred ICR | |||
* Molecular Weight | |||
* Oxidative Stress | |||
* Plant Proteins | |||
* Plant Roots | |||
* Superoxide Dismutase | |||
|keywords=* Antioxidant activity | |||
* D-galactose | |||
* Oxidative damage | |||
* Protein composition | |||
* Radix isatidis protein | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6836523 | |||
}} | |||
{{medline-entry | |||
|title=[Effects of silver nanoparticles on pupation, eclosion, life span, apoptosis and protein expression in Drosophila melanogaster]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31621246 | |||
|mesh-terms=* Animals | |||
* Apoptosis | |||
* Drosophila melanogaster | |||
* Longevity | |||
* Metal Nanoparticles | |||
* Oregon | |||
* Silver | |||
|keywords=* Drosophila melanogaster | |||
* apoptosis | |||
* protein expression | |||
* silver nanoparticles | |||
|full-text-url=https://sci-hub.do/10.13287/j.1001-9332.201910.036 | |||
}} | |||
{{medline-entry | |||
|title=Does an Age-Specific Treatment Program Augment the Efficacy of a Cognitive-Behavioral Weight Loss Program in Adolescence and Young Adulthood? Results from a Controlled Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31480678 | |||
|mesh-terms=* Adolescent | |||
* Aging | |||
* Behavior Therapy | |||
* Cognitive Behavioral Therapy | |||
* Female | |||
* Humans | |||
* Male | |||
* Weight Loss | |||
* Weight Reduction Programs | |||
* Young Adult | |||
|keywords=* adolescents | |||
* behavioral weight loss | |||
* controlled trial | |||
* emerging adults | |||
* obesity | |||
* quality of life | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769959 | |||
}} | |||
==SELENBP1== | |||
{{medline-entry | |||
|title=A Caenorhabditis elegans ortholog of human selenium-binding protein 1 is a pro-aging factor protecting against selenite toxicity. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31557719 | |||
|mesh-terms=* Animals | |||
* Caenorhabditis elegans | |||
* Caenorhabditis elegans Proteins | |||
* Cytoplasm | |||
* Drug Resistance | |||
* Gene Expression Regulation | |||
* Humans | |||
* Longevity | |||
* Membrane Proteins | |||
* Oxidative Stress | |||
* Paraquat | |||
* Selenious Acid | |||
* Selenium-Binding Proteins | |||
* Structural Homology, Protein | |||
|keywords=* Caenorhabditis elegans | |||
* Lifespan | |||
* Selenium-binding protein | |||
* Stress signaling | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812014 | |||
}} | |||
==SELENOK== | |||
{{medline-entry | |||
|title=Dietary selenium deficiency and supplementation differentially modulate the expression of two ER-resident selenoproteins (selenoprotein K and selenoprotein M) in the ovaries of aged mice: Preliminary data. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32736983 | |||
|keywords=* Female fertility | |||
* Ovarian aging | |||
* Selenium | |||
* Selenoprotein K | |||
* Selenoprotein M | |||
|full-text-url=https://sci-hub.do/10.1016/j.repbio.2020.07.006 | |||
}} | |||
==SENP6== | |||
{{medline-entry | |||
|title=Molecular signature for senile and complicated cataracts derived from analysis of sumoylation enzymes and their substrates in human cataract lenses. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32827359 | |||
|keywords=* Pax6 | |||
* SUMO1 | |||
* SUMO2/3 | |||
* aging | |||
* apoptosis | |||
* cataract | |||
* de-sumoylation enzymes (SENPs) | |||
* sumoylation ligases | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7576240 | |||
}} | |||
==SERPINE1== | |||
{{medline-entry | |||
|title=Elevated circulating HtrA4 in preeclampsia may alter endothelial expression of senescence genes. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32056555 | |||
|keywords=* Endothelial aging | |||
* Endothelial cells | |||
* HtrA4 | |||
* Preeclampsia | |||
* Senescence | |||
|full-text-url=https://sci-hub.do/10.1016/j.placenta.2019.12.012 | |||
}} | |||
==SESN2== | |||
{{medline-entry | |||
|title=Copy Number Alterations in Papillary Thyroid Carcinomas: Does Loss of [i][[SESN2]][/i] Have a Role in Age-related Different Prognoses? | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32859642 | |||
|keywords=* Papillary thyroid cancer | |||
* SESN2 | |||
* aCGH | |||
* deletion | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472442 | |||
}} | |||
==SFN== | |||
{{medline-entry | |||
|title=The phytoprotective agent sulforaphane prevents inflammatory degenerative diseases and age-related pathologies via Nrf2-mediated hormesis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33160067 | |||
|keywords=* Aging | |||
* Hormesis | |||
* Inflammation | |||
* Neuroprotection | |||
* Nrf2 | |||
* Sulforaphane | |||
|full-text-url=https://sci-hub.do/10.1016/j.phrs.2020.105283 | |||
}} | |||
{{medline-entry | |||
|title=Multi-Omic Analysis Reveals Different Effects of Sulforaphane on the Microbiome and Metabolome in Old Compared to Young Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33003447 | |||
|keywords=* aging | |||
* biomarkers | |||
* gut microbiome | |||
* metabolome | |||
* sulforaphane | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599699 | |||
}} | |||
{{medline-entry | |||
|title=Sulforaphane controls the release of paracrine factors by keratinocytes and thus mitigates particulate matter-induced premature skin aging by suppressing melanogenesis and maintaining collagen homeostasis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32659677 | |||
|keywords=* Coculture system | |||
* Collagen homeostasis | |||
* Melanogenesis | |||
* Particulate matter 2.5 | |||
* Premature skin aging | |||
* Sulforaphane | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2020.153276 | |||
}} | |||
{{medline-entry | |||
|title=Sulforaphane Inhibits Autophagy and Induces Exosome-Mediated Paracrine Senescence via Regulating mTOR/TFE3. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32476238 | |||
|keywords=* ROS | |||
* autophagy | |||
* exosome | |||
* senescence | |||
* sulforaphane | |||
|full-text-url=https://sci-hub.do/10.1002/mnfr.201901231 | |||
}} | |||
==SFPQ== | |||
{{medline-entry | |||
|title=Downregulation of LncRNA NORAD promotes Ox-LDL-induced vascular endothelial cell injury and atherosclerosis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32267831 | |||
|keywords=* IL-8 | |||
* NORAD | |||
* cell apoptosis | |||
* cell senescence | |||
* ox-LDL | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7185106 | |||
}} | |||
==SGK1== | |||
{{medline-entry | |||
|title=Epigenetic Regulation of KL (Klotho) via H3K27me3 (Histone 3 Lysine [K] 27 Trimethylation) in Renal Tubule Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32223380 | |||
|keywords=* AKT | |||
* EZH2 | |||
* aging | |||
* mTOR | |||
* p53 | |||
|full-text-url=https://sci-hub.do/10.1161/HYPERTENSIONAHA.120.14642 | |||
}} | |||
==SHBG== | |||
{{medline-entry | |||
|title=Endogenous Testosterone Levels and the Risk of Incident Cardiovascular Events in Elderly Men: The MrOS Prospective Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32337470 | |||
|keywords=* aging | |||
* cardiovascular events | |||
* men | |||
* testosterone | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7173399 | |||
}} | |||
{{medline-entry | |||
|title=Associations of Endogenous Sex Hormones with Carotid Plaque Burden and Characteristics in Midlife Women. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31900485 | |||
|keywords=* aging | |||
* atherosclerosis | |||
* carotid artery | |||
* hormones | |||
* women | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7077951 | |||
}} | |||
{{medline-entry | |||
|title=Analysis of the Relationship between the Levels of Androgens and Biochemical Bone Markers in Men Aged 60-75 Years. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31877849 | |||
|mesh-terms=* Absorptiometry, Photon | |||
* Aged | |||
* Aging | |||
* Androgens | |||
* Biomarkers | |||
* Bone Density | |||
* Bone Remodeling | |||
* Bone and Bones | |||
* Collagen Type I | |||
* Dehydroepiandrosterone Sulfate | |||
* Estradiol | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Parathyroid Hormone | |||
* Peptide Fragments | |||
* Peptides | |||
* Procollagen | |||
* Sex Hormone-Binding Globulin | |||
* Testosterone | |||
|keywords=* aging men | |||
* biochemical bone markers | |||
* levels of androgens | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982106 | |||
}} | |||
{{medline-entry | |||
|title=Testosterone and Estrone Increase From the Age of 70 Years: Findings From the Sex Hormones in Older Women Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31408149 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Biomarkers | |||
* Community-Based Participatory Research | |||
* Cross-Sectional Studies | |||
* Dehydroepiandrosterone | |||
* Estrone | |||
* Female | |||
* Follow-Up Studies | |||
* Humans | |||
* Obesity | |||
* Overweight | |||
* Prognosis | |||
* Testosterone | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6830527 | |||
}} | |||
==SHD== | |||
{{medline-entry | |||
|title=Does self-reported hearing difficulty decrease older adults' cognitive and physical functioning? The mediating role of social isolation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33036703 | |||
|mesh-terms=* Activities of Daily Living | |||
* Aged | |||
* Aged, 80 and over | |||
* Cognition | |||
* Cognitive Dysfunction | |||
* Cohort Studies | |||
* Disabled Persons | |||
* Female | |||
* Health Status | |||
* Hearing Loss | |||
* Humans | |||
* Longevity | |||
* Longitudinal Studies | |||
* Male | |||
* Mental Status and Dementia Tests | |||
* Odds Ratio | |||
* Self Report | |||
* Social Isolation | |||
|keywords=* Cognitive impairment | |||
* Older people | |||
* Physical disability | |||
* Self-reported hearing difficulty | |||
* Social isolation | |||
|full-text-url=https://sci-hub.do/10.1016/j.maturitas.2020.06.011 | |||
}} | |||
==SHH== | |||
{{medline-entry | |||
|title=Recent advances in [[SHH]] medulloblastoma progression: tumor suppressor mechanisms and the tumor microenvironment. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31700613 | |||
|mesh-terms=* Animals | |||
* Cerebellar Neoplasms | |||
* Cerebellum | |||
* Hedgehog Proteins | |||
* Humans | |||
* Medulloblastoma | |||
* Mice | |||
* Tumor Microenvironment | |||
|keywords=* Medulloblastoma | |||
* Sonic hedgehog | |||
* cell senescence | |||
* tumor microenvironment | |||
* tumor progression | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6820827 | |||
}} | |||
==SI== | |||
{{medline-entry | |||
|title=Microarray Profiling Reveals Distinct Circulating miRNAs in Aged Male and Female Mice Subjected to Post-stroke Social Isolation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33074466 | |||
|keywords=* Aging | |||
* Biomarkers | |||
* Sex differences | |||
* Social isolation | |||
* Stroke | |||
* miRNAs | |||
|full-text-url=https://sci-hub.do/10.1007/s12017-020-08622-2 | |||
}} | |||
{{medline-entry | |||
|title=Is Heart Rate a Confounding Factor for Photoplethysmography Markers? A Systematic Review. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32290168 | |||
|mesh-terms=* Aging | |||
* Cardiovascular Diseases | |||
* Diabetes Mellitus, Type 2 | |||
* Female | |||
* Fingers | |||
* Heart Rate | |||
* Humans | |||
* Male | |||
* Microcirculation | |||
* Photoplethysmography | |||
* Vascular Stiffness | |||
|keywords=* cardiovascular disease | |||
* heart rate | |||
* photoplethysmography | |||
* reflection index | |||
* second derivative of photoplethysmography | |||
* stiffness index | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177218 | |||
}} | |||
{{medline-entry | |||
|title=Survival time after marked reduction in oral intake in terminally ill noncancer patients: A retrospective study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32161695 | |||
|keywords=* elderly | |||
* geriatrics | |||
* palliative medicine | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060293 | |||
}} | |||
{{medline-entry | |||
|title=Adherence to Mediterranean diet moderates the association between multimorbidity and depressive symptoms in older adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109694 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Cohort Studies | |||
* Depression | |||
* Diet, Mediterranean | |||
* Healthy Aging | |||
* Humans | |||
* Multimorbidity | |||
* Surveys and Questionnaires | |||
|keywords=* Aging | |||
* Depressive symptoms | |||
* Mediterranean diet | |||
* Mental health | |||
* Multimorbidity | |||
|full-text-url=https://sci-hub.do/10.1016/j.archger.2020.104022 | |||
}} | |||
{{medline-entry | |||
|title=Loneliness, Social Isolation, and Objectively Measured Physical Activity in Rural-Living Older Adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31860831 | |||
|keywords=* accelerometry | |||
* aging | |||
* health | |||
* social well-being | |||
* volunteering | |||
|full-text-url=https://sci-hub.do/10.1123/japa.2019-0027 | |||
}} | |||
{{medline-entry | |||
|title=The associations between social support and negative social interaction with suicidal ideation in US Chinese older adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31650846 | |||
|keywords=* Chinese American | |||
* Social support | |||
* aging | |||
* negative social interaction | |||
* suicidal ideation | |||
|full-text-url=https://sci-hub.do/10.1080/13607863.2019.1680953 | |||
}} | |||
{{medline-entry | |||
|title=Cell Senescence and Cerebral Small Vessel Disease in the Brains of People Aged 80 Years and Older. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31553444 | |||
|mesh-terms=* Aged, 80 and over | |||
* Aging | |||
* Brain | |||
* Cellular Senescence | |||
* Cerebral Arteries | |||
* Cerebral Small Vessel Diseases | |||
* Female | |||
* Humans | |||
* Male | |||
* White Matter | |||
|keywords=* Brain aging | |||
* Cerebrovascular disease | |||
* Senescence | |||
* Small vessel disease | |||
|full-text-url=https://sci-hub.do/10.1093/jnen/nlz088 | |||
}} | |||
==SIK3== | |||
{{medline-entry | |||
|title=Quantitative and Qualitative Role of Antagonistic Heterogeneity in Genetics of Blood Lipids. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31566214 | |||
|keywords=* Age-related phenotypes | |||
* Aging | |||
* Genome-wide association studies | |||
* Health span | |||
* Life span | |||
* Pleiotropy | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518561 | |||
}} | |||
==SIRT1== | |||
{{medline-entry | |||
|title=Anthocyanins attenuate endothelial dysfunction through regulation of uncoupling of nitric oxide synthase in aged rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33274583 | |||
|keywords=* NO | |||
* SIRT1 | |||
* anthocyanins | |||
* eNOS deacetylation | |||
* senescence | |||
|full-text-url=https://sci-hub.do/10.1111/acel.13279 | |||
}} | |||
{{medline-entry | |||
|title=Sirtuins and Their Implications in Neurodegenerative Diseases from a Drug Discovery Perspective. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33280374 | |||
|keywords=* Aging | |||
* neurodegenerative diseases | |||
* neuroprotective | |||
* sirtuin | |||
* sirtuin activators | |||
* sirtuin inhibitors | |||
|full-text-url=https://sci-hub.do/10.1021/acschemneuro.0c00696 | |||
}} | |||
{{medline-entry | |||
|title=Effects of alpha-mangostin on memory senescence induced by high glucose in human umbilical vein endothelial cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33149857 | |||
|keywords=* Cellular senescence | |||
* Diabetes | |||
* Diabetes complications | |||
* Endothelial cells | |||
* Garcinia mangostana | |||
* Hyperglycemia | |||
* Mangostin | |||
* Metabolic syndrome | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7585532 | |||
}} | |||
{{medline-entry | |||
|title=[[SIRT1]] Activation Using CRISPR/dCas9 Promotes Regeneration of Human Corneal Endothelial Cells through Inhibiting Senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33158256 | |||
|keywords=* CRISPR/dCas9 | |||
* SIRT1 | |||
* corneal endothelial cells | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7694272 | |||
}} | |||
{{medline-entry | |||
|title=Histone Deacetylase [[SIRT1]], Smooth Muscle Cell Function, and Vascular Diseases. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33117155 | |||
|keywords=* SIRT1 | |||
* SIRT1 activators | |||
* calorie restriction | |||
* senescence | |||
* vascular diseases | |||
* vascular smooth muscle cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7573826 | |||
}} | |||
{{medline-entry | |||
|title=6,4'-dihydroxy-7-methoxyflavanone protects against H O -induced cellular senescence by inducing [[SIRT1]] and inhibiting phosphatidylinositol 3-kinase/Akt pathway activation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33111210 | |||
|keywords=* 6,4′-dihydroxy-7-methoxyflavanone | |||
* Akt | |||
* Oxidative stress | |||
* Premature senescence | |||
* SIRT1 | |||
|full-text-url=https://sci-hub.do/10.1007/s11010-020-03951-z | |||
}} | |||
{{medline-entry | |||
|title=Isoparvifuran isolated from Dalbergia odorifera attenuates H O -induced senescence of BJ cells through [[SIRT1]] activation and AKT/mTOR pathway inhibition. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33010892 | |||
|keywords=* AKT/mTOR signaling pathway | |||
* Antioxidant: SIRT1 | |||
* Cellular senescence | |||
* Isoparvifuran | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2020.09.096 | |||
}} | |||
{{medline-entry | |||
|title=[[SIRT1]] Is the Target Gene for 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-Glucoside Alleviating the HUVEC Senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33013385 | |||
|keywords=* 2,3,5,4’-tetrahydroxystilbene-2-O-β-d-glucoside | |||
* SIRT1 | |||
* human umbilical vein cells | |||
* hydrogen peroxide | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7508177 | |||
}} | |||
{{medline-entry | |||
|title=The Role of Sirtuins in Kidney Diseases. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32932720 | |||
|keywords=* acute kidney injury | |||
* aging kidney | |||
* chronic kidney disease | |||
* diabetic nephropathy | |||
* kidney | |||
* sirtuins | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555196 | |||
}} | |||
{{medline-entry | |||
|title=The effect of 12-week resistance exercise training on serum levels of cellular aging process parameters in elderly men. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32919015 | |||
|keywords=* Cellular senescence | |||
* Elderly | |||
* Resistance training | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2020.111090 | |||
}} | |||
{{medline-entry | |||
|title=Virus-Induced Asthma Exacerbations: [[SIRT1]] Targeted Approach. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32823491 | |||
|keywords=* SIRT1 | |||
* asthma | |||
* cellular senescence | |||
* exacerbations | |||
* virus infection | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464235 | |||
}} | |||
{{medline-entry | |||
|title=Novel resveratrol derivatives have diverse effects on the survival, proliferation and senescence of primary human fibroblasts. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32793997 | |||
|keywords=* Resveratrol | |||
* SIRT1 | |||
* Senescence | |||
* Toxicity | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-020-09896-6 | |||
}} | |||
{{medline-entry | |||
|title=Glucose restriction delays senescence and promotes proliferation of HUVECs via the AMPK/[[SIRT1]]-FOXA3-Beclin1 pathway. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32768436 | |||
|keywords=* Beclin1 | |||
* Endothelial cells | |||
* FOXA3 | |||
* Glucose restriction | |||
* Proliferation | |||
* Senescence | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2020.111053 | |||
}} | |||
{{medline-entry | |||
|title=Therapeutic Effects of SRT2104 on Lung Injury in Rats with Emphysema via Reduction of Type II Alveolar Epithelial Cell Senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32722945 | |||
|keywords=* Sirtuin 1 | |||
* alveolar epithelial cells | |||
* cellular senescence | |||
* chronic obstructive pulmonary disease | |||
* cigarette smoking | |||
|full-text-url=https://sci-hub.do/10.1080/15412555.2020.1797657 | |||
}} | |||
{{medline-entry | |||
|title=Latifolin Inhibits Oxidative Stress-Induced Senescence via Upregulation of [[SIRT1]] in Human Dermal Fibroblasts. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32404543 | |||
|keywords=* human dermal fibroblast | |||
* latifolin | |||
* mammalian target of rapamycin | |||
* oxidative stress | |||
* senescence | |||
* silent information regulator 1 | |||
|full-text-url=https://sci-hub.do/10.1248/bpb.b20-00094 | |||
}} | |||
{{medline-entry | |||
|title=SRT1720-induced activation of [[SIRT1]] alleviates vascular smooth muscle cell senescence through PKA-dependent phosphorylation of AMPKα at Ser485. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32421926 | |||
|keywords=* SIRT1 | |||
* SRT1720 | |||
* VSMC senescence | |||
* p-AMPK (Ser485) | |||
* telomere length | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327920 | |||
}} | |||
{{medline-entry | |||
|title=miR-128 plays a critical role in murine osteoclastogenesis and estrogen deficiency-induced bone loss. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32292498 | |||
|keywords=* PMOP | |||
* aging | |||
* inflammation | |||
* miR-128 | |||
* osteoclastogenesis | |||
* ovariectomy | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7150474 | |||
}} | |||
{{medline-entry | |||
|title=Lymphocyte senescence in COPD is associated with decreased sirtuin 1 expression in steroid resistant pro-inflammatory lymphocytes. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32270742 | |||
|keywords=* CD28nullCD8+ T and NKT-like cells | |||
* COPD | |||
* IFNγ and TNFα | |||
* SIRT1 | |||
* lymphocyte senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7153179 | |||
}} | |||
{{medline-entry | |||
|title=Therapeutic effects of hydro-alcoholic leaf extract of Withania somnifera on age-induced changes in daily rhythms of Sirt1, Nrf2 and Rev-erbα in the SCN of male Wistar rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32249404 | |||
|keywords=* Aging | |||
* Ashwagandha | |||
* Circadian clock | |||
* NRF2 | |||
* SCN | |||
* SIRT1 | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-020-09875-x | |||
}} | |||
{{medline-entry | |||
|title=The Serum Concentration of Anti-Aging Proteins, Sirtuin1 and αKlotho in Patients with End-Stage Kidney Disease on Maintenance Hemodialysis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32214805 | |||
|mesh-terms=* Age Factors | |||
* Aged | |||
* Aging | |||
* Biomarkers | |||
* Blood Pressure | |||
* Cardiovascular Diseases | |||
* Case-Control Studies | |||
* Diabetes Complications | |||
* Echocardiography | |||
* Female | |||
* Glucuronidase | |||
* Heart Ventricles | |||
* Humans | |||
* Kidney | |||
* Kidney Failure, Chronic | |||
* Male | |||
* Middle Aged | |||
* Renal Dialysis | |||
* Sirtuin 1 | |||
* Stroke Volume | |||
|keywords=* chronic kidney disease | |||
* hemodialysis | |||
* sirtuin1 | |||
* αKlotho | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7084123 | |||
}} | |||
{{medline-entry | |||
|title=Small extracellular vesicles deliver miR-21 and miR-217 as pro-senescence effectors to endothelial cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32158519 | |||
|keywords=* Cellular senescence | |||
* DNMT1 | |||
* SIRT1 | |||
* extracellular vesicles | |||
* microRNAs | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7048230 | |||
}} | |||
{{medline-entry | |||
|title=Spatiotemporal gating of [[SIRT1]] functions by O-GlcNAcylation is essential for liver metabolic switching and prevents hyperglycemia. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32152092 | |||
|mesh-terms=* Acetylglucosamine | |||
* Aging | |||
* Animals | |||
* Fasting | |||
* Gluconeogenesis | |||
* Glycosylation | |||
* HEK293 Cells | |||
* Homeostasis | |||
* Humans | |||
* Hyperglycemia | |||
* Insulin Resistance | |||
* Liver | |||
* Male | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Obesity | |||
* Phosphorylation | |||
* Protein Processing, Post-Translational | |||
* Sirtuin 1 | |||
* Spatio-Temporal Analysis | |||
|keywords=* PGC1α | |||
* fed–fast cycle | |||
* gluconeogenesis | |||
* insulin signaling | |||
* ubiquitinylation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7104039 | |||
}} | |||
{{medline-entry | |||
|title=Hydrogen Sulfide Inhibits Homocysteine-Induced Neuronal Senescence by Up-Regulation of [[SIRT1]]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32132865 | |||
|keywords=* SIRT1 | |||
* cell senescence | |||
* homocysteine | |||
* hydrogen sulfide | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7053352 | |||
}} | |||
{{medline-entry | |||
|title=[[SIRT1]] and aging related signaling pathways. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32084459 | |||
|keywords=* Aging | |||
* Deacetylate | |||
* NAD(+) | |||
* SIRT1 | |||
* Signaling pathways | |||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2020.111215 | |||
}} | |||
{{medline-entry | |||
|title=Tropisetron protects against brain aging via attenuating oxidative stress, apoptosis and inflammation: The role of [[SIRT1]] signaling. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32088214 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Antioxidants | |||
* Apoptosis | |||
* Brain | |||
* Drug Administration Schedule | |||
* Galactose | |||
* Gene Expression Regulation | |||
* Inflammation | |||
* Injections, Intraperitoneal | |||
* Injections, Subcutaneous | |||
* Interleukin-6 | |||
* Male | |||
* Mice | |||
* Mitochondria | |||
* Neurons | |||
* Nitric Oxide | |||
* Oxidative Stress | |||
* Proto-Oncogene Proteins c-bcl-2 | |||
* Reactive Oxygen Species | |||
* Serotonin 5-HT3 Receptor Antagonists | |||
* Sirtuin 1 | |||
* Tropisetron | |||
* Tumor Necrosis Factor-alpha | |||
* bcl-2-Associated X Protein | |||
|keywords=* Aging | |||
* Brain | |||
* Neurotoxicity | |||
* Sirtuin 1 | |||
* Tropisetron | |||
* d-galactose | |||
|full-text-url=https://sci-hub.do/10.1016/j.lfs.2020.117452 | |||
}} | |||
{{medline-entry | |||
|title=Nicotinamide mononucleotide (NMN) supplementation promotes neurovascular rejuvenation in aged mice: transcriptional footprint of [[SIRT1]] activation, mitochondrial protection, anti-inflammatory, and anti-apoptotic effects. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32056076 | |||
|keywords=* Aging | |||
* Geroscience | |||
* Mitochondria dysfunction | |||
* Transcriptomics | |||
* Vascular cognitive impairment | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206476 | |||
}} | |||
{{medline-entry | |||
|title=Deacetylation of MRTF-A by [[SIRT1]] defies senescence induced down-regulation of collagen type I in fibroblast cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32061777 | |||
|mesh-terms=* Acetylation | |||
* Animals | |||
* Benzamides | |||
* Carbazoles | |||
* Cellular Senescence | |||
* Collagen Type I | |||
* Down-Regulation | |||
* Embryo, Mammalian | |||
* Fibroblasts | |||
* HEK293 Cells | |||
* Heterocyclic Compounds, 4 or More Rings | |||
* Humans | |||
* Mice | |||
* Mutation | |||
* Naphthols | |||
* Primary Cell Culture | |||
* Promoter Regions, Genetic | |||
* RNA, Small Interfering | |||
* Resveratrol | |||
* Sirtuin 1 | |||
* Trans-Activators | |||
|keywords=* Collagen type I | |||
* Fibroblast | |||
* Lysine deacetylation | |||
* Post-translational modification | |||
* Senescence | |||
* Transcriptional regulation | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbadis.2020.165723 | |||
}} | |||
{{medline-entry | |||
|title=Chronic Polyphenon-60 or Catechin Treatments Increase Brain Monoamines Syntheses and Hippocampal [[SIRT1]] Levels Improving Cognition in Aged Rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31991916 | |||
|mesh-terms=* Age Factors | |||
* Animals | |||
* Behavior, Animal | |||
* Biogenic Monoamines | |||
* Catechin | |||
* Cognition | |||
* Cognitive Aging | |||
* Corpus Striatum | |||
* Hippocampus | |||
* Male | |||
* Memory, Episodic | |||
* Memory, Short-Term | |||
* Neuroprotective Agents | |||
* Rats, Sprague-Dawley | |||
* Sirtuin 1 | |||
* Time Factors | |||
|keywords=* NF-κB | |||
* RBAP46/48 | |||
* SIRT1 | |||
* brain aging | |||
* brain monoamine synthesis | |||
* catechin | |||
* green tea | |||
* memory | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071257 | |||
}} | |||
{{medline-entry | |||
|title=Duck Oil-loaded Nanoemulsion Inhibits Senescence of Angiotensin II-treated Vascular Smooth Muscle Cells by Upregulating [[SIRT1]]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31970335 | |||
|keywords=* SIRT1 | |||
* angiotensin II | |||
* duck oil | |||
* nanoemulsion | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6957441 | |||
}} | |||
{{medline-entry | |||
|title=Two novel [[SIRT1]] activators, SCIC2 and SCIC2.1, enhance [[SIRT1]]-mediated effects in stress response and senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31942817 | |||
|keywords=* Sirtuins | |||
* drug discovery | |||
* epigenetic modulators | |||
* senescence | |||
* stress response | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574383 | |||
}} | |||
{{medline-entry | |||
|title=Hydrogen sulfide attenuates mitochondrial dysfunction-induced cellular senescence and apoptosis in alveolar epithelial cells by upregulating sirtuin 1. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31881011 | |||
|mesh-terms=* A549 Cells | |||
* Alveolar Epithelial Cells | |||
* Apoptosis | |||
* Cellular Senescence | |||
* Humans | |||
* Hydrogen Sulfide | |||
* Mitochondria | |||
* Oxidative Stress | |||
* Sirtuin 1 | |||
* Smoke | |||
* Tobacco | |||
* Up-Regulation | |||
|keywords=* alveolar epithelial cell | |||
* cigarette smoke extract | |||
* hydrogen sulfide | |||
* mitochondria injury | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949053 | |||
}} | |||
{{medline-entry | |||
|title=The protective role of omentin-1 in IL-1β-induced chondrocyte senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31852248 | |||
|mesh-terms=* Adipokines | |||
* Caveolin 1 | |||
* Cell Line, Tumor | |||
* Cellular Senescence | |||
* Chondrocytes | |||
* Cyclin-Dependent Kinase Inhibitor p21 | |||
* Cytoprotection | |||
* G1 Phase Cell Cycle Checkpoints | |||
* Humans | |||
* Interleukin-1beta | |||
* Plasminogen Activator Inhibitor 1 | |||
* Sirtuin 1 | |||
* Transcriptional Activation | |||
|keywords=* IL-1β | |||
* Omentin-1 | |||
* SIRT-1 | |||
* chondrocyte senescence | |||
|full-text-url=https://sci-hub.do/10.1080/21691401.2019.1699803 | |||
}} | |||
{{medline-entry | |||
|title=The Lifespan Extension Ability of Nicotinic Acid Depends on Whether the Intracellular NAD Level Is Lower than the Sirtuin-Saturating Concentrations. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31878234 | |||
|mesh-terms=* Animals | |||
* Caenorhabditis elegans | |||
* Caenorhabditis elegans Proteins | |||
* Caloric Restriction | |||
* Cell Line | |||
* Humans | |||
* NAD | |||
* Niacin | |||
* Sirtuins | |||
* beta-Galactosidase | |||
|keywords=* C. elegans | |||
* Hs68 cells | |||
* NAD+ | |||
* calorie restriction mimetic | |||
* lifespan | |||
* nicotinic acid | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982340 | |||
}} | |||
{{medline-entry | |||
|title=Alpha-mangostin decreased cellular senescence in human umbilical vein endothelial cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31792920 | |||
|keywords=* Alpha-mangostin | |||
* Diabetes | |||
* HUVEC | |||
* High glucose | |||
* SIRT1 | |||
* Senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214571 | |||
}} | |||
{{medline-entry | |||
|title=Central nervous system [[SIRT1]] expression is required for cued and contextual fear conditioning memory responses in aging mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31763496 | |||
|keywords=* Fear conditioning | |||
* SIRT1 | |||
* aging | |||
* classically conditioned memory | |||
* hippocampus | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6839599 | |||
}} | |||
{{medline-entry | |||
|title=Does education level protect us from rapid ageing? Sirtuin expression versus age and level of education. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31785216 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Age Factors | |||
* Aging | |||
* Aging, Premature | |||
* Educational Status | |||
* Epigenesis, Genetic | |||
* Female | |||
* Gene Expression Regulation, Enzymologic | |||
* Histones | |||
* Humans | |||
* Learning | |||
* Male | |||
* Middle Aged | |||
* Sirtuins | |||
* Young Adult | |||
}} | |||
{{medline-entry | |||
|title=CO ameliorates endothelial senescence induced by 5-fluorouracil through [[SIRT1]] activation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31704100 | |||
|mesh-terms=* Antioxidants | |||
* Carbon Monoxide | |||
* Cellular Senescence | |||
* Down-Regulation | |||
* Fluorouracil | |||
* Heme Oxygenase-1 | |||
* Human Umbilical Vein Endothelial Cells | |||
* Humans | |||
* Nitric Oxide Synthase Type III | |||
* Reactive Oxygen Species | |||
* Sirtuin 1 | |||
|keywords=* 5-Fluorouracil | |||
* Carbon monoxide | |||
* Endothelial senescence | |||
* Reactive oxygen species | |||
* SIRT1 | |||
|full-text-url=https://sci-hub.do/10.1016/j.abb.2019.108185 | |||
}} | |||
{{medline-entry | |||
|title=Long noncoding RNA GAS5 inhibits cell proliferation and fibrosis in diabetic nephropathy by sponging miR-221 and modulating [[SIRT1]] expression. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31631065 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Argonaute Proteins | |||
* Cell Proliferation | |||
* Diabetes Mellitus, Experimental | |||
* Diabetic Nephropathies | |||
* Fibrosis | |||
* Gene Deletion | |||
* Gene Expression Regulation | |||
* Glucose | |||
* Male | |||
* Mesangial Cells | |||
* Mice | |||
* MicroRNAs | |||
* RAW 264.7 Cells | |||
* RNA, Long Noncoding | |||
* Rats | |||
* Rats, Sprague-Dawley | |||
* Sirtuin 1 | |||
|keywords=* diabetic nephropathy | |||
* fibrosis | |||
* lncRNA GAS5 | |||
* proliferation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834398 | |||
}} | |||
{{medline-entry | |||
|title=The Role of Sirtuin1 in Regulating Endothelial Function, Arterial Remodeling and Vascular Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31572218 | |||
|keywords=* PVAT | |||
* SIRT1 | |||
* eNOS | |||
* vascular aging | |||
* vascular remodeling | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6751260 | |||
}} | |||
{{medline-entry | |||
|title=Deacetylation of LAMP1 drives lipophagy-dependent generation of free fatty acids by Abrus agglutinin to promote senescence in prostate cancer. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31544977 | |||
|keywords=* Abrus agglutinin | |||
* LAMP1 | |||
* SIRT1 | |||
* free fatty acid | |||
* lipophagy | |||
* reactive oxygen species | |||
* senescence | |||
|full-text-url=https://sci-hub.do/10.1002/jcp.29182 | |||
}} | |||
{{medline-entry | |||
|title=Plasma exosomes in OSA patients promote endothelial senescence: effect of long-term adherent continuous positive airway pressure. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31552414 | |||
|keywords=* CPAP | |||
* OSA | |||
* aging | |||
* cardiovascular | |||
* endothelium | |||
* exosomes | |||
* extracellular vesicles | |||
* intermittent hypoxia | |||
* oxidative stress | |||
* senescence | |||
|full-text-url=https://sci-hub.do/10.1093/sleep/zsz217 | |||
}} | |||
{{medline-entry | |||
|title=Hydrogen Sulfide Inhibits High Glucose-Induced Neuronal Senescence by Improving Autophagic Flux [i]via[/i] Up-regulation of [[SIRT1]]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31481873 | |||
|keywords=* SIRT1 | |||
* autophagic flux | |||
* high glucose | |||
* hydrogen sulfide | |||
* neuronal senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710442 | |||
}} | |||
{{medline-entry | |||
|title=Activation of the miR-34a-Mediated [[SIRT1]]/mTOR Signaling Pathway by Urolithin A Attenuates D-Galactose-Induced Brain Aging in Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31420820 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Brain | |||
* Coumarins | |||
* Galactose | |||
* Male | |||
* Mice | |||
* Mice, Inbred ICR | |||
* MicroRNAs | |||
* PC12 Cells | |||
* Random Allocation | |||
* Rats | |||
* Signal Transduction | |||
* Sirtuin 1 | |||
* TOR Serine-Threonine Kinases | |||
|keywords=* D-Gal | |||
* SIRT1/mTOR signal pathway | |||
* Urolithin A | |||
* aging | |||
* autophagy | |||
* miR-34a | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6985387 | |||
}} | |||
==SIRT2== | |||
{{medline-entry | |||
|title=Melatonin ameliorates the advanced maternal age-associated meiotic defects in oocytes through the [[SIRT2]]-dependent H4K16 deacetylation pathway. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31980591 | |||
|keywords=* aging | |||
* histone acetylation | |||
* meiosis | |||
* melatonin | |||
* oocyte quality | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7053624 | |||
}} | |||
==SIRT3== | |||
{{medline-entry | |||
|title=[[SIRT3]] protects endothelial cells from high glucose-induced senescence and dysfunction via the p53 pathway. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33160987 | |||
|keywords=* Endothelial senescence | |||
* High glucose | |||
* SIRT3 | |||
* p53 | |||
|full-text-url=https://sci-hub.do/10.1016/j.lfs.2020.118724 | |||
}} | |||
{{medline-entry | |||
|title=Melatonin and Sirtuins in Buccal Epithelium: Potential Biomarkers of Aging and Age-Related Pathologies. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33143333 | |||
|keywords=* aging | |||
* arterial hypertension | |||
* buccal epithelium | |||
* melatonin | |||
* sirtuins | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662974 | |||
}} | |||
{{medline-entry | |||
|title=[i][[SIRT3]][/i] Transfection of Aged Human Bone Marrow-Derived Mesenchymal Stem Cells Improves Cell Therapy-Mediated Myocardial Repair. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32228121 | |||
|keywords=* O-hMSC transplantation | |||
* SIRT3 | |||
* aging | |||
* gene modification | |||
* myocardial infarction | |||
* myocardial repair | |||
|full-text-url=https://sci-hub.do/10.1089/rej.2019.2260 | |||
}} | |||
{{medline-entry | |||
|title=17β-estradiol inhibits H O -induced senescence in HUVEC cells through upregulating [[SIRT3]] expression and promoting autophagy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32172411 | |||
|keywords=* 17β-estradiol | |||
* Autophagy | |||
* SIRT3 | |||
* Senescence | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-020-09868-w | |||
}} | |||
{{medline-entry | |||
|title=CR6 interacting factor 1 deficiency induces premature senescence via [[SIRT3]] inhibition in endothelial cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109515 | |||
|keywords=* Antioxidant system | |||
* Mitochondria | |||
* Oxidative stress | |||
* Senescence | |||
* Vascular endothelial cell | |||
|full-text-url=https://sci-hub.do/10.1016/j.freeradbiomed.2020.02.017 | |||
}} | |||
{{medline-entry | |||
|title=Mitochondrial function in skeletal myofibers is controlled by a TRF2-[[SIRT3]] axis over lifetime. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31991048 | |||
|keywords=* aging | |||
* mitochondria | |||
* postmitotic cells | |||
* skeletal muscle | |||
* telomeres | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059141 | |||
}} | |||
{{medline-entry | |||
|title=Context-Dependent Roles for SIRT2 and [[SIRT3]] in Tumor Development Upon Calorie Restriction or High Fat Diet. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31970087 | |||
|keywords=* SIRT2 | |||
* SIRT3 | |||
* aging | |||
* calorie restriction | |||
* cancer | |||
* high fat diet | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960403 | |||
}} | |||
{{medline-entry | |||
|title=The yin and yang faces of the mitochondrial deacetylase sirtuin 3 in age-related disorders. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31740222 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Cardiovascular Diseases | |||
* Humans | |||
* Metabolic Diseases | |||
* Mitochondria | |||
* Neurodegenerative Diseases | |||
* Protein Isoforms | |||
* Sirtuin 3 | |||
|keywords=* Age-related diseases | |||
* Deacetylation | |||
* Genetic manipulations | |||
* Mitochondria | |||
* Pharmacological modulators | |||
* Sirtuins | |||
|full-text-url=https://sci-hub.do/10.1016/j.arr.2019.100983 | |||
}} | |||
==SIRT5== | |||
{{medline-entry | |||
|title=Lysine malonylation and propionylation are prevalent in human lens proteins. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31678036 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Blotting, Western | |||
* Chromatography, Liquid | |||
* Crystallins | |||
* Cytoskeletal Proteins | |||
* Cytosol | |||
* Epithelial Cells | |||
* Humans | |||
* Immunohistochemistry | |||
* Lens, Crystalline | |||
* Lysine | |||
* Malonates | |||
* Membrane Proteins | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* Middle Aged | |||
* Mitochondrial Proteins | |||
* Organ Culture Techniques | |||
* Paraffin Embedding | |||
* Propionates | |||
* Sirtuin 3 | |||
* Sirtuins | |||
* Tandem Mass Spectrometry | |||
|keywords=* Lens proteins | |||
* Malonylation | |||
* Mass spectrometry | |||
* Propionylation | |||
* Sirtuins | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6957740 | |||
}} | |||
==SIRT6== | |||
{{medline-entry | |||
|title=Association between [[SIRT6]] Methylation and Human Longevity in a Chinese Population. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33238266 | |||
|keywords=* DNA Methylation | |||
* Longevity | |||
* Messenger RNA | |||
* SIRT6 | |||
|full-text-url=https://sci-hub.do/10.1159/000508832 | |||
}} | |||
{{medline-entry | |||
|title=The [[SIRT6]] activator MDL-800 improves genomic stability and pluripotency of old murine-derived iPS cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33089974 | |||
|keywords=* DNA repair | |||
* MDL-800 | |||
* SIRT6 | |||
* aging | |||
* genome integrity | |||
* pluripotency | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431819 | |||
}} | |||
{{medline-entry | |||
|title=Sirtuins as Possible Predictors of Aging and Alzheimer's Disease Development: Verification in the Hippocampus and Saliva. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33098511 | |||
|keywords=* Alzheimer’s disease | |||
* aging | |||
* intravital diagnosis | |||
* saliva | |||
* sirtuins | |||
|full-text-url=https://sci-hub.do/10.1007/s10517-020-04986-4 | |||
}} | |||
{{medline-entry | |||
|title=Age-related epigenetic drift deregulates [i][[SIRT6]][/i] expression and affects its downstream genes in human peripheral blood mononuclear cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32573339 | |||
|keywords=* SIRT6 | |||
* aging | |||
* interaction network | |||
* longevity | |||
* methylation | |||
* miRNA | |||
* peripheral blood mononuclear cells (PBMCs) | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7678931 | |||
}} | |||
{{medline-entry | |||
|title=Biological and catalytic functions of sirtuin 6 as targets for small-molecule modulators. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32518153 | |||
|keywords=* SIRT6 | |||
* activator | |||
* aging | |||
* cancer | |||
* cell metabolism | |||
* chromatin | |||
* gene expression | |||
* histone deacetylase (HDAC) | |||
* longevity | |||
* metabolic disorder | |||
* sirtuin | |||
* small molecule | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415977 | |||
}} | |||
{{medline-entry | |||
|title=Age-dependent role of [[SIRT6]] in jawbone via regulating senescence and autophagy of bone marrow stromal cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32002721 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aging | |||
* Animals | |||
* Bone Marrow Cells | |||
* Humans | |||
* Jaw | |||
* Male | |||
* Mesenchymal Stem Cells | |||
* Mice | |||
* Mice, Knockout | |||
* Middle Aged | |||
* Osteogenesis | |||
* Sirtuins | |||
|keywords=* Autophagy | |||
* Bone marrow stromal cells | |||
* Jawbone | |||
* Osteoporosis | |||
* SIRT6 | |||
* Senescence | |||
|full-text-url=https://sci-hub.do/10.1007/s10735-020-09857-w | |||
}} | |||
{{medline-entry | |||
|title=Mechanism of activation for the sirtuin 6 protein deacylase. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31822559 | |||
|mesh-terms=* Allosteric Regulation | |||
* Biocatalysis | |||
* Fatty Acids | |||
* HEK293 Cells | |||
* Histones | |||
* Humans | |||
* Hydrophobic and Hydrophilic Interactions | |||
* Kinetics | |||
* Lipids | |||
* Mutagenesis | |||
* Mutation | |||
* NAD | |||
* Peptides | |||
* Protein Binding | |||
* Protein Conformation | |||
* Sirtuins | |||
* Small Molecule Libraries | |||
|keywords=* SIRT6 | |||
* activator | |||
* cancer | |||
* chromatin | |||
* deacetylation | |||
* epigenetics | |||
* histone | |||
* histone deacetylase (HDAC) | |||
* lifespan | |||
* long chain acyl substrate | |||
* longevity | |||
* sirtuin | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996886 | |||
}} | |||
{{medline-entry | |||
|title=Proteomics of Long-Lived Mammals. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31737995 | |||
|keywords=* SIRT6 | |||
* aging | |||
* long-lived mammals | |||
* naked mole rats | |||
* proteomics | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7117992 | |||
}} | |||
{{medline-entry | |||
|title=Sirtuins and [[SIRT6]] in Carcinogenesis and in Diet. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31591350 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Carcinogenesis | |||
* Diet | |||
* Gene Expression Regulation, Neoplastic | |||
* Humans | |||
* Nanomedicine | |||
* Organ Specificity | |||
* Sirtuins | |||
|keywords=* SIRT6 | |||
* cancer | |||
* chemotherapy | |||
* diet | |||
* modulator | |||
* sirtuins | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6801518 | |||
}} | |||
{{medline-entry | |||
|title=[[SIRT6]]-mediated transcriptional suppression of MALAT1 is a key mechanism for endothelial to mesenchymal transition. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31399301 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Cells, Cultured | |||
* Disease Models, Animal | |||
* Endothelium, Vascular | |||
* Epithelial-Mesenchymal Transition | |||
* Gene Expression Regulation | |||
* Male | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* RNA, Long Noncoding | |||
* Signal Transduction | |||
* Sirtuins | |||
* Vascular Diseases | |||
|full-text-url=https://sci-hub.do/10.1016/j.ijcard.2019.07.082 | |||
}} | |||
==SIRT7== | |||
{{medline-entry | |||
|title=[[SIRT7]] antagonizes human stem cell aging as a heterochromatin stabilizer. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32504224 | |||
|keywords=* LINE1 | |||
* SIRT7 | |||
* STING | |||
* aging | |||
* cGAS | |||
* stem cell | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7305295 | |||
}} | |||
==SLA== | |||
{{medline-entry | |||
|title=Vaccination of aged mice with adjuvanted recombinant influenza nucleoprotein enhances protective immunity. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32540272 | |||
|keywords=* Adjuvant | |||
* Aging | |||
* Influenza | |||
* Mouse | |||
* Nucleoprotein | |||
* Vaccination | |||
|full-text-url=https://sci-hub.do/10.1016/j.vaccine.2020.05.085 | |||
}} | |||
{{medline-entry | |||
|title=Mechanical Anisotropy and Surface Roughness in Additively Manufactured Parts Fabricated by Stereolithography ([[SLA]]) Using Statistical Analysis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32486137 | |||
|keywords=* Taguchi methods | |||
* additive manufacturing | |||
* aging effect | |||
* analysis of variance | |||
* anisotropy | |||
* design of experiments | |||
* stereolithography | |||
* surface roughness | |||
* tensile testing | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7321476 | |||
}} | |||
{{medline-entry | |||
|title=The Effect of Age of Titanium Dental Implants on Implant Survival and Marginal Bone Resorption: A 5-Year Retrospective Follow-Up Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32369581 | |||
|keywords=* | |||
aged implant | |||
* | |||
biological aging | |||
* | |||
implant survival | |||
* | |||
marginal bone resorption | |||
* | |||
titanium dental implant | |||
|full-text-url=https://sci-hub.do/10.1563/aaid-joi-D-19-00316 | |||
}} | |||
==SLC16A7== | |||
{{medline-entry | |||
|title=Genetics of facial telangiectasia in the Rotterdam Study: a genome-wide association study and candidate gene approach. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33095951 | |||
|keywords=* GWAS | |||
* KIAA0930 | |||
* MC1R | |||
* SLCA45A2 | |||
* SNP | |||
* Telangiectasia | |||
* candidate gene approach | |||
* epidemiology | |||
* genetics | |||
* pigmentation genes | |||
* red veins | |||
* skin aging | |||
|full-text-url=https://sci-hub.do/10.1111/jdv.17014 | |||
}} | |||
==SLC26A2== | |||
{{medline-entry | |||
|title=Phenotypic characterization of Slc26a2 mutant mice reveals a multifactorial etiology of spondylolysis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31914611 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Lumbar Vertebrae | |||
* Male | |||
* Mice | |||
* Osteogenesis | |||
* Phenotype | |||
* Spondylolysis | |||
* Sulfate Transporters | |||
|keywords=* SLC26A2 | |||
* bone loss | |||
* isthmic defect | |||
* spondylolysis | |||
* vertebral development | |||
|full-text-url=https://sci-hub.do/10.1096/fj.201901040RR | |||
}} | |||
==SLC6A4== | |||
{{medline-entry | |||
|title=The Psilocybin-Telomere Hypothesis: An empirically falsifiable prediction concerning the beneficial neuropsychopharmacological effects of psilocybin on genetic aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31634774 | |||
|mesh-terms=* Aging | |||
* Aging, Premature | |||
* Animals | |||
* Anxiety | |||
* Brain-Derived Neurotrophic Factor | |||
* Consciousness | |||
* DNA Methylation | |||
* Depression | |||
* Disease Models, Animal | |||
* Endocrine System | |||
* Humans | |||
* Models, Genetic | |||
* Models, Psychological | |||
* Neurotransmitter Agents | |||
* Oxidative Stress | |||
* Personality | |||
* Psilocybin | |||
* Psychotropic Drugs | |||
* Research Design | |||
* Serotonin Plasma Membrane Transport Proteins | |||
* Stress, Psychological | |||
* Telomere Shortening | |||
|keywords=* Cellular senescence | |||
* Depression | |||
* Epigenetic clock | |||
* Genetic aging | |||
* Life extension | |||
* Neurophenomenology | |||
* Psilocybin | |||
* Rejuvenation | |||
* Rumination | |||
* Senotherapy | |||
* Telomeres | |||
|full-text-url=https://sci-hub.do/10.1016/j.mehy.2019.109406 | |||
}} | |||
==SMAD1== | |||
{{medline-entry | |||
|title=TGFB1-Mediated Gliosis in Multiple Sclerosis Spinal Cords Is Favored by the Regionalized Expression of HOXA5 and the Age-Dependent Decline in Androgen Receptor Ligands. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31779094 | |||
|mesh-terms=* Age Factors | |||
* Aged | |||
* Aging | |||
* Brain | |||
* Data Mining | |||
* Databases, Genetic | |||
* Disease Progression | |||
* Female | |||
* Gene Expression Profiling | |||
* Gliosis | |||
* Homeodomain Proteins | |||
* Humans | |||
* Ligands | |||
* Male | |||
* Middle Aged | |||
* Multiple Sclerosis | |||
* Proteomics | |||
* Receptors, Androgen | |||
* Sequence Analysis, RNA | |||
* Signal Transduction | |||
* Smad1 Protein | |||
* Spinal Cord | |||
* Transforming Growth Factor beta1 | |||
* Up-Regulation | |||
|keywords=* androgen receptor | |||
* astrocytes | |||
* homeobox A5 | |||
* multiple sclerosis | |||
* spinal cord | |||
* transforming growth factor beta 1 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928867 | |||
}} | |||
==SMAD2== | |||
{{medline-entry | |||
|title=Prostate epithelial-specific expression of activated PI3K drives stromal collagen production and accumulation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31674011 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Class I Phosphatidylinositol 3-Kinases | |||
* Collagen | |||
* Disease Models, Animal | |||
* Disease Progression | |||
* Epithelium | |||
* Male | |||
* Mice, Mutant Strains | |||
* Phosphorylation | |||
* Prostate | |||
* Prostatic Hyperplasia | |||
* Prostatic Intraepithelial Neoplasia | |||
* Prostatic Neoplasms | |||
* Signal Transduction | |||
* Smad2 Protein | |||
* Stromal Cells | |||
* Transforming Growth Factor beta | |||
|keywords=* PIK3CA | |||
* cancer | |||
* collagen | |||
* fibrosis | |||
* mouse model | |||
* prostate | |||
* stroma | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071816 | |||
}} | |||
==SMAD3== | |||
{{medline-entry | |||
|title=Sirtuin 6 deficiency transcriptionally up-regulates TGF-β signaling and induces fibrosis in mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31744885 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Fibroblasts | |||
* Fibrosis | |||
* Gene Deletion | |||
* Male | |||
* Mice | |||
* Myocardium | |||
* Myofibroblasts | |||
* Signal Transduction | |||
* Sirtuins | |||
* Smad3 Protein | |||
* Transcriptional Activation | |||
* Transforming Growth Factor beta | |||
|keywords=* SIRT6 deacetylase | |||
* SMAD transcription factor | |||
* SMAD3 | |||
* TGF-beta signaling | |||
* aging | |||
* aging-associated fibrosis | |||
* caloric restriction | |||
* cardiac disease | |||
* extracellular matrix (ECM) | |||
* fibrosis | |||
* sirtuin | |||
* transforming growth factor beta (TGF-beta) | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6956532 | |||
}} | |||
==SMN2== | |||
{{medline-entry | |||
|title=Age-dependent SMN expression in disease-relevant tissue and implications for SMA treatment. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31589162 | |||
|mesh-terms=* Aging | |||
* Autopsy | |||
* Cell Survival | |||
* Female | |||
* Humans | |||
* Male | |||
* Motor Neurons | |||
* Muscular Atrophy, Spinal | |||
* Oligodeoxyribonucleotides, Antisense | |||
* Spinal Cord | |||
* Survival of Motor Neuron 2 Protein | |||
|keywords=* Development | |||
* Neurodegeneration | |||
* Neurodevelopment | |||
* Neuromuscular disease | |||
* Neuroscience | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6819103 | |||
}} | |||
==SMS== | |||
{{medline-entry | |||
|title=Does a Live Performance Impact Synchronization to Musical Rhythm in Cognitively Impaired Elderly? | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33104027 | |||
|keywords=* Aging | |||
* Alzheimer’s disease | |||
* cognitive impairment | |||
* dementia | |||
* motor activity | |||
* music therapy | |||
* social interaction | |||
|full-text-url=https://sci-hub.do/10.3233/JAD-200521 | |||
}} | |||
{{medline-entry | |||
|title=Testing the effectiveness of physical activity advice delivered via text messaging vs. human phone advisors in a Latino population: The On The Move randomized controlled trial design and methods. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32659437 | |||
|keywords=* Aging | |||
* Digital health | |||
* Latino | |||
* Physical activity | |||
* Text-messaging | |||
* mHealth | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351675 | |||
}} | |||
==SNAP25== | |||
{{medline-entry | |||
|title=The Biological Foundations of Sarcopenia: Established and Promising Markers. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31457015 | |||
|keywords=* SNAP25 | |||
* aging | |||
* biomarkers | |||
* neuromuscular junction | |||
* sarcopenia | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700259 | |||
}} | |||
==SNCA== | |||
{{medline-entry | |||
|title=Behavioural and dopaminergic changes in double mutated human A30P*A53T alpha-synuclein transgenic mouse model of Parkinson´s disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31758049 | |||
|mesh-terms=* Aging | |||
* Alanine | |||
* Amino Acid Substitution | |||
* Animals | |||
* Behavior, Animal | |||
* Disease Models, Animal | |||
* Dopaminergic Neurons | |||
* Humans | |||
* Locomotion | |||
* Male | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Mice, Transgenic | |||
* Mutation, Missense | |||
* Parkinson Disease | |||
* Proline | |||
* Threonine | |||
* alpha-Synuclein | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874660 | |||
}} | |||
==SND1== | |||
{{medline-entry | |||
|title=[Downregulation of [[SND1]] Expression Accelerates Cell Senescence of Human Diploid Fibroblasts 2BS via Modulating the SASP]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32543144 | |||
|mesh-terms=* Cellular Senescence | |||
* Diploidy | |||
* Down-Regulation | |||
* Endonucleases | |||
* Fibroblasts | |||
* Humans | |||
* Nuclear Proteins | |||
|keywords=* Aging | |||
* Cellular senescent | |||
* SND1 | |||
* Senescence-associated-secretory-phenotype | |||
|full-text-url=https://sci-hub.do/10.12182/20200560504 | |||
}} | |||
==SOD1== | |||
{{medline-entry | |||
|title=[[SOD1]], more than just an antioxidant. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33259795 | |||
|keywords=* Aging | |||
* Cancer | |||
* Neurodegenerative diseases | |||
* Post-translational modifications | |||
* Superoxide dismutase 1 | |||
|full-text-url=https://sci-hub.do/10.1016/j.abb.2020.108701 | |||
}} | |||
{{medline-entry | |||
|title=The Exacerbation of Aging and Oxidative Stress in the Epididymis of [i]Sod1[/i] Null Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32054065 | |||
|keywords=* 4-hydroxynonenal | |||
* 8-hydroxyguanosine | |||
* aging | |||
* epididymis | |||
* oxidative stress | |||
* reactive oxygen species | |||
* spermatozoa | |||
* superoxide dismutase | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071042 | |||
}} | |||
{{medline-entry | |||
|title=Alterations in lipid metabolism of spinal cord linked to amyotrophic lateral sclerosis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31406145 | |||
|mesh-terms=* Aging | |||
* Amyotrophic Lateral Sclerosis | |||
* Animals | |||
* Cardiolipins | |||
* Cholesterol Esters | |||
* Disease Models, Animal | |||
* Disease Progression | |||
* Fatty Acids, Unsaturated | |||
* Female | |||
* Humans | |||
* Lipid Droplets | |||
* Lipid Metabolism | |||
* Lipidomics | |||
* Male | |||
* Mass Spectrometry | |||
* Motor Cortex | |||
* Motor Neurons | |||
* Mutation | |||
* Oxidative Stress | |||
* Rats | |||
* Rats, Transgenic | |||
* Spinal Cord | |||
* Superoxide Dismutase-1 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6691112 | |||
}} | |||
==SOD2== | |||
{{medline-entry | |||
|title=Astaxanthin Counteracts Vascular Calcification In Vitro Through an Early Up-Regulation of [[SOD2]] Based on a Transcriptomic Approach. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33198315 | |||
|keywords=* aortic calcification | |||
* astaxanthin | |||
* chronic kidney disease | |||
* chronic kidney disease-mineral bone disorder | |||
* oxidative stress | |||
* reactive oxygen species | |||
* senescence | |||
* vascular calcification | |||
* vascular smooth muscle cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698184 | |||
}} | |||
{{medline-entry | |||
|title=Alginate Oligosaccharide Prevents against D-galactose-mediated Cataract in C57BL/6J Mice via Regulating Oxidative Stress and Antioxidant System. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33153341 | |||
|keywords=* Cataract | |||
* D-galactose | |||
* aging | |||
* alginate oligosaccharide | |||
* oxidative stress | |||
|full-text-url=https://sci-hub.do/10.1080/02713683.2020.1842456 | |||
}} | |||
{{medline-entry | |||
|title=Protoflavones in melanoma therapy: Prooxidant and pro-senescence effect of protoapigenone and its synthetic alkyl derivative in A375 cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32931795 | |||
|mesh-terms=* Antineoplastic Agents, Phytogenic | |||
* Autophagy | |||
* Biomarkers | |||
* Cell Cycle | |||
* Cell Line, Tumor | |||
* Cellular Senescence | |||
* Cyclohexanones | |||
* Flavones | |||
* Humans | |||
* Melanoma | |||
* Reactive Oxygen Species | |||
* Superoxide Dismutase | |||
* beta-Galactosidase | |||
|keywords=* Alkyl protoflavone | |||
* Flavonoid | |||
* Melanoma | |||
* Protoapigenone | |||
* Semi-synthesis | |||
* Senescence | |||
|full-text-url=https://sci-hub.do/10.1016/j.lfs.2020.118419 | |||
}} | |||
{{medline-entry | |||
|title=Ginsenoside Rg1 protects against Sca-1 HSC/HPC cell aging by regulating the SIRT1-FOXO3 and SIRT3-[[SOD2]] signaling pathways in a γ-ray irradiation-induced aging mice model. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32765665 | |||
|keywords=* SIRT1 | |||
* SIRT3 | |||
* aging | |||
* ginsenoside Rg1 | |||
* hematopoietic progenitor cells | |||
* hematopoietic stem cells | |||
* senescence | |||
* γ-ray irradiation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7388550 | |||
}} | |||
{{medline-entry | |||
|title=Almond Skin Extracts and Chlorogenic Acid Delay Chronological Aging and Enhanced Oxidative Stress Response in Yeast. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32481725 | |||
|keywords=* 8-Oxo-guanine | |||
* aging | |||
* almond | |||
* chlorogenic acid | |||
* lipid peroxidation | |||
* mitochondria | |||
* oxidative stress | |||
* protein carbonylation | |||
* sirtuin | |||
* superoxide dismutase | |||
* yeast | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345664 | |||
}} | |||
{{medline-entry | |||
|title=Opposing p53 and mTOR/AKT promote an in vivo switch from apoptosis to senescence upon telomere shortening in zebrafish. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32427102 | |||
|keywords=* AKT | |||
* aging | |||
* apoptosis | |||
* cell biology | |||
* p53 | |||
* regenerative medicine | |||
* senescence | |||
* stem cells | |||
* telomeres | |||
* zebrafish | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237213 | |||
}} | |||
{{medline-entry | |||
|title=Bioactive peptides derived from crimson snapper and in vivo anti-aging effects on fat diet-induced high fat Drosophila melanogaster. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31844865 | |||
|mesh-terms=* Aging | |||
* Animal Scales | |||
* Animals | |||
* Catalase | |||
* Diet, High-Fat | |||
* Disease Models, Animal | |||
* Drosophila Proteins | |||
* Drosophila melanogaster | |||
* Female | |||
* Fish Proteins | |||
* Fishes | |||
* Humans | |||
* Longevity | |||
* Male | |||
* Malondialdehyde | |||
* Oxidative Stress | |||
* Peptides | |||
* Superoxide Dismutase | |||
|full-text-url=https://sci-hub.do/10.1039/c9fo01414d | |||
}} | |||
{{medline-entry | |||
|title=Ellagic acid prolongs the lifespan of Drosophila melanogaster. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31786733 | |||
|keywords=* Drosophila melanogaster | |||
* Ellagic acid | |||
* Gene expression | |||
* Longevity | |||
* Stress | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031466 | |||
}} | |||
{{medline-entry | |||
|title=Chlorella vulgaris modulates the expression of senescence-associated genes in replicative senescence of human diploid fibroblasts. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31642042 | |||
|mesh-terms=* Antioxidants | |||
* Catalase | |||
* Cell Differentiation | |||
* Cell Proliferation | |||
* Cells, Cultured | |||
* Cellular Senescence | |||
* Chlorella vulgaris | |||
* DNA Damage | |||
* Diploidy | |||
* Fibroblasts | |||
* Gene Expression | |||
* Genes, p53 | |||
* Humans | |||
* Male | |||
* Mitogen-Activated Protein Kinase 14 | |||
* Molecular Chaperones | |||
* Primary Cell Culture | |||
* Signal Transduction | |||
* Superoxide Dismutase | |||
* Superoxide Dismutase-1 | |||
|keywords=* Chlorella vulgaris | |||
* Fibroblasts | |||
* Replicative senescence | |||
* Senescence-associated genes | |||
|full-text-url=https://sci-hub.do/10.1007/s11033-019-05140-8 | |||
}} | |||
{{medline-entry | |||
|title=Age-Associated Changes in Antioxidants and Redox Proteins of Rat Heart. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31647296 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Antioxidants | |||
* Glutathione Peroxidase | |||
* Male | |||
* Myocardium | |||
* Oxidation-Reduction | |||
* Rats | |||
* Rats, Wistar | |||
* Superoxide Dismutase | |||
|full-text-url=https://sci-hub.do/10.33549/physiolres.934170 | |||
}} | |||
{{medline-entry | |||
|title=Impact of curcumin on replicative and chronological aging in the Saccharomyces cerevisiae yeast. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31659616 | |||
|keywords=* Aging | |||
* Curcumin | |||
* Hypertrophy | |||
* Oxidative stress | |||
* Yeast | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6942599 | |||
}} | |||
==SOX13== | |||
{{medline-entry | |||
|title=In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31520345 | |||
|mesh-terms=* Aging | |||
* Computer Simulation | |||
* Epistasis, Genetic | |||
* Humans | |||
* Promoter Regions, Genetic | |||
* Renin | |||
|keywords=* Aging | |||
* Diseases of aging | |||
* Gene expression | |||
* Gene–gene interaction | |||
* Genomics | |||
* Longevity | |||
* Renin-angiotensin system | |||
* Topologically associated domains | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-019-09834-1 | |||
}} | |||
==SOX2== | |||
{{medline-entry | |||
|title=Multiple nanosecond pulsed electric fields stimulation with conductive poly(l-lactic acid)/carbon nanotubes films maintains the multipotency of mesenchymal stem cells during prolonged in vitro culture. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32592324 | |||
|keywords=* cell physical stimulus | |||
* differentiation | |||
* mesenchymal stem cells | |||
* multipotency | |||
* nanosecond pulsed electric fields | |||
* senescence | |||
|full-text-url=https://sci-hub.do/10.1002/term.3088 | |||
}} | |||
{{medline-entry | |||
|title=Subpopulations of miniature pig mesenchymal stromal cells with different differentiation potentials differ in the expression of octamer-binding transcription factor 4 and sex determining region Y-box 2. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32054231 | |||
|keywords=* Aging | |||
* Mesenchymal Stromal Cell (MSC) Subpopulations | |||
* Miniature Pig | |||
* Octamerbinding Transcription Factor 4 (OCT4) | |||
* Sex Determining Region Y-box 2 (SOX2) | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054621 | |||
}} | |||
{{medline-entry | |||
|title=Increased Type I and Decreased Type II Hair Cells after Deletion of Sox2 in the Developing Mouse Utricle. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31678344 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Cell Count | |||
* Cell Differentiation | |||
* Cell Lineage | |||
* Hair Cells, Vestibular | |||
* Mice | |||
* Mice, Knockout | |||
* Mice, Transgenic | |||
* SOXB1 Transcription Factors | |||
* Saccule and Utricle | |||
|keywords=* SOX2 | |||
* balance disorder | |||
* hair cell | |||
* utricle | |||
* vestibule | |||
|full-text-url=https://sci-hub.do/10.1016/j.neuroscience.2019.09.027 | |||
}} | |||
==SOX4== | |||
{{medline-entry | |||
|title=Age-induced accumulation of methylmalonic acid promotes tumour progression. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32814897 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aging | |||
* Animals | |||
* Cell Line, Tumor | |||
* Disease Progression | |||
* Female | |||
* Gene Expression Regulation, Neoplastic | |||
* Humans | |||
* Male | |||
* Methylmalonic Acid | |||
* Mice | |||
* Middle Aged | |||
* Neoplasm Invasiveness | |||
* Neoplasm Metastasis | |||
* Neoplasms | |||
* SOXC Transcription Factors | |||
* Signal Transduction | |||
* Transcriptome | |||
* Transforming Growth Factor beta | |||
|full-text-url=https://sci-hub.do/10.1038/s41586-020-2630-0 | |||
}} | |||
==SOX9== | |||
{{medline-entry | |||
|title=Positive Effects of a Young Systemic Environment and High Growth Differentiation Factor 11 Levels on Chondrocyte Proliferation and Cartilage Matrix Synthesis in Old Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32067417 | |||
|mesh-terms=* Adolescent | |||
* Aged | |||
* Aging | |||
* Animals | |||
* Arthroplasty, Replacement, Knee | |||
* Bone Morphogenetic Proteins | |||
* Cartilage, Articular | |||
* Cell Proliferation | |||
* Chondrocytes | |||
* Collagen Type II | |||
* Collagen Type X | |||
* Core Binding Factor Alpha 1 Subunit | |||
* Extracellular Matrix | |||
* Female | |||
* Growth Differentiation Factors | |||
* Humans | |||
* In Vitro Techniques | |||
* Knee Joint | |||
* Male | |||
* Matrix Metalloproteinase 13 | |||
* Mice | |||
* Osteoarthritis, Knee | |||
* Parabiosis | |||
* Phosphorylation | |||
* RNA, Messenger | |||
* Reverse Transcriptase Polymerase Chain Reaction | |||
* SOX9 Transcription Factor | |||
* Smad2 Protein | |||
* Smad3 Protein | |||
* Stifle | |||
* Young Adult | |||
|full-text-url=https://sci-hub.do/10.1002/art.41230 | |||
}} | |||
==SPARC== | |||
{{medline-entry | |||
|title=[[SPARC]] Metrics Provide Mobility Smoothness Assessment in Oldest-Old With and Without a History of Falls: A Case Control Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32587523 | |||
|keywords=* aging | |||
* falls | |||
* functional mobility | |||
* movement smoothness | |||
* oldest-old | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7298141 | |||
}} | |||
{{medline-entry | |||
|title=Reduced fibrillar collagen accumulation in skeletal muscle of secreted protein acidic and rich in cysteine ([[SPARC]])-null mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31582603 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Fibrillar Collagens | |||
* Gene Expression | |||
* Male | |||
* Mice | |||
* Mice, Knockout | |||
* Muscle, Skeletal | |||
* Myofibrils | |||
* Osteonectin | |||
|keywords=* Secreted protein acidic and rich in cysteine | |||
* collagen | |||
* fibrosis | |||
* myofiber | |||
* skeletal muscle | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895640 | |||
}} | |||
==SPR== | |||
{{medline-entry | |||
|title=Regulation of lifespan by neural excitation and REST. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31619788 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Brain | |||
* Caenorhabditis elegans | |||
* Caenorhabditis elegans Proteins | |||
* DNA-Binding Proteins | |||
* Forkhead Transcription Factors | |||
* Humans | |||
* Longevity | |||
* Mice | |||
* Mice, 129 Strain | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* Mice, Transgenic | |||
* Neurons | |||
* RNA Interference | |||
* RNA-Binding Proteins | |||
* Repressor Proteins | |||
* Transcription Factors | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6893853 | |||
}} | |||
==SPRTN== | |||
{{medline-entry | |||
|title=Tandem Deubiquitination and Acetylation of [[SPRTN]] Promotes DNA-Protein Crosslink Repair and Protects against Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32649882 | |||
|mesh-terms=* Acetylation | |||
* Aging | |||
* Animals | |||
* Cell Line | |||
* DNA Damage | |||
* DNA Repair | |||
* DNA-Binding Proteins | |||
* Deubiquitinating Enzymes | |||
* Endopeptidases | |||
* Female | |||
* Genomic Instability | |||
* HEK293 Cells | |||
* Humans | |||
* Male | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* Phosphorylation | |||
* Protein Domains | |||
* Protein Processing, Post-Translational | |||
* Ubiquitination | |||
|keywords=* DNA repair | |||
* DNA-protein crosslink | |||
* SPRTN | |||
* Top1cc | |||
* VCPIP1/VCIP135 | |||
* acetylation | |||
* aging | |||
* genomic instability | |||
* metalloprotease | |||
* ubiquitination | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7484104 | |||
}} | |||
==SPRY1== | |||
{{medline-entry | |||
|title=Sprouty1 Prevents Cellular Senescence Maintaining Proliferation and Differentiation Capacity of Human Adipose Stem/Progenitor Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32304210 | |||
|keywords=* Adipogenesis | |||
* Adipose stem cell | |||
* Obesity | |||
* Senescence | |||
* Sprouty1 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662188 | |||
}} | |||
{{medline-entry | |||
|title=Mechanism of [[SPRY1]] methylation regulating natural aging of skin epidermal cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31483543 | |||
|keywords=* SPRY1 | |||
* methylation | |||
* natural aging | |||
* skin epidermal aging | |||
|full-text-url=https://sci-hub.do/10.1111/jocd.13126 | |||
}} | |||
==SQSTM1== | |||
{{medline-entry | |||
|title=The selective autophagy receptor [[SQSTM1]]/p62 improves lifespan and proteostasis in an evolutionarily conserved manner. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32041473 | |||
|keywords=* Aging | |||
* C. elegans | |||
* Drosophila | |||
* SQST-1 | |||
* SQSTM1 | |||
* aggrephagy | |||
* heat shock | |||
* mitophagy | |||
* p62 | |||
* proteostasis | |||
* ref(2)P | |||
* selective autophagy | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138197 | |||
}} | |||
==SRC== | |||
{{medline-entry | |||
|title=Metabolic characteristics of CD8 T cell subsets in young and aged individuals are not predictive of functionality. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32504069 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aging | |||
* Animals | |||
* CD8-Positive T-Lymphocytes | |||
* Cell Differentiation | |||
* Cell Proliferation | |||
* Disease Models, Animal | |||
* Female | |||
* Humans | |||
* Immunologic Memory | |||
* Influenza A virus | |||
* Influenza, Human | |||
* Male | |||
* Mice | |||
* Microscopy, Electron, Transmission | |||
* Mitochondria | |||
* T-Lymphocyte Subsets | |||
* Young Adult | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7275080 | |||
}} | |||
==SRD5A2== | |||
{{medline-entry | |||
|title=Extract of Plumbago zeylanica enhances the growth of hair follicle dermal papilla cells with down-regulation of 5α-reductase type II. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32125089 | |||
|keywords=* | |||
P zeylanica | |||
* 5α-reductase | |||
* dermal papilla | |||
* hair | |||
* plumbagin | |||
* senescence | |||
|full-text-url=https://sci-hub.do/10.1111/jocd.13355 | |||
}} | |||
==SRF== | |||
{{medline-entry | |||
|title=Changes in snail and [[SRF]] expression in the kidneys of diabetic rats during ageing. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31668740 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Diabetes Mellitus, Experimental | |||
* Diabetic Nephropathies | |||
* Gene Expression Regulation | |||
* Kidney | |||
* Male | |||
* Rats | |||
* Rats, Sprague-Dawley | |||
* Snail Family Transcription Factors | |||
* Transcription Factors | |||
|keywords=* Diabetic nephropathy | |||
* Renal fibrosis | |||
* SRF | |||
* Snail | |||
|full-text-url=https://sci-hub.do/10.1016/j.acthis.2019.151460 | |||
}} | |||
{{medline-entry | |||
|title=Mechanosensitive transcriptional coactivators MRTF-A and YAP/TAZ regulate nucleus pulposus cell phenotype through cell shape. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31638828 | |||
|mesh-terms=* Actins | |||
* Adaptor Proteins, Signal Transducing | |||
* Aging | |||
* Biomechanical Phenomena | |||
* Cells, Cultured | |||
* Cytoskeleton | |||
* Gene Expression Regulation | |||
* Humans | |||
* Hydrogels | |||
* Intervertebral Disc Degeneration | |||
* Nucleus Pulposus | |||
* RNA Interference | |||
* Trans-Activators | |||
* Transcription Factors | |||
* rho-Associated Kinases | |||
|keywords=* F-actin | |||
* SRF | |||
* TEAD | |||
* intervertebral disc | |||
* mechanotransduction | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894097 | |||
}} | |||
==SRL== | |||
{{medline-entry | |||
|title=Income dividends and subjective survival in a Cherokee Indian cohort: a quasi-experiment. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32432936 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Cohort Studies | |||
* Female | |||
* Humans | |||
* Income | |||
* Indians, South American | |||
* Longevity | |||
* Male | |||
* Middle Aged | |||
* North Carolina | |||
* Social Class | |||
* Surveys and Questionnaires | |||
* Survival Analysis | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250001 | |||
}} | |||
==SRM== | |||
{{medline-entry | |||
|title=[Geriatric specificities of localized renal cell carcinoma]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31771769 | |||
|mesh-terms=* Age Factors | |||
* Aged | |||
* Carcinoma, Renal Cell | |||
* Geriatric Assessment | |||
* Humans | |||
* Kidney Neoplasms | |||
|keywords=* Cancer du rein | |||
* Diagnosis | |||
* Diagnostic | |||
* Elderly | |||
* Geriatrics | |||
* Gériatrie | |||
* Personne âgée | |||
* Petite masse rénale | |||
* Renal cell carcinoma | |||
* Small renal mass | |||
* Traitement | |||
* Treatment | |||
|full-text-url=https://sci-hub.do/10.1016/j.purol.2019.08.281 | |||
}} | |||
==SSB== | |||
{{medline-entry | |||
|title=Modelling the Effects of Beverage Substitution during Adolescence on Later Obesity Outcomes in Early Adulthood: Results from the Raine Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31816850 | |||
|mesh-terms=* Adolescent | |||
* Adolescent Nutritional Physiological Phenomena | |||
* Aging | |||
* Humans | |||
* Models, Biological | |||
* Obesity | |||
* Odds Ratio | |||
* Risk Factors | |||
* Sugar-Sweetened Beverages | |||
* Young Adult | |||
|keywords=* obesity | |||
* substitution modelling | |||
* sugar-sweetened beverages | |||
* waist circumference | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950484 | |||
}} | |||
==SST== | |||
{{medline-entry | |||
|title=The distance to death perceptions of older adults explain why they age in place: A theoretical examination. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32972627 | |||
|keywords=* Agency- or belonging-related | |||
* Distance to death, aging in place | |||
* Emotions | |||
* Residential mobility | |||
* Socioemotional selectivity theory | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7489887 | |||
}} | |||
{{medline-entry | |||
|title=Population Segmentation Based on Healthcare Needs: Validation of a Brief Clinician-Administered Tool. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32607929 | |||
|keywords=* aging | |||
* health services research | |||
* psychometrics | |||
|full-text-url=https://sci-hub.do/10.1007/s11606-020-05962-4 | |||
}} | |||
{{medline-entry | |||
|title=Examination on how emotion regulation mediates the relationship between future time perspective and well-being: a counter-evidence to the socioemotional selectivity theory. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32158369 | |||
|keywords=* Aging | |||
* Emotion regulation | |||
* Future time perspective | |||
* Socioemotional selectivity theory | |||
* Time left in life | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7040126 | |||
}} | |||
==STAT1== | |||
{{medline-entry | |||
|title=[[STAT1]]-p53-p21axis-dependent stress-induced progression of chronic nephrosis in adriamycin-induced mouse model. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32953802 | |||
|keywords=* Adriamycin | |||
* STAT1 | |||
* chronic nephrosis (CN) | |||
* mitogen-activated protein kinase | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7475511 | |||
}} | |||
{{medline-entry | |||
|title=Age-Dependent and -Independent Effects of Perivascular Adipose Tissue and Its Paracrine Activities during Neointima Formation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31906225 | |||
|mesh-terms=* Adipose Tissue | |||
* Aging | |||
* Animals | |||
* Carotid Arteries | |||
* Carotid Artery Diseases | |||
* Carotid Artery Injuries | |||
* Humans | |||
* Mice | |||
* Mice, Mutant Strains | |||
* Neointima | |||
* Paracrine Communication | |||
* STAT1 Transcription Factor | |||
|keywords=* aging | |||
* atherosclerosis | |||
* neointima formation | |||
* perivascular adipose tissue | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981748 | |||
}} | |||
{{medline-entry | |||
|title=Legumain-deficient macrophages promote senescence of tumor cells by sustaining JAK1/[[STAT1]] activation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31857155 | |||
|mesh-terms=* Animals | |||
* Bone Marrow Transplantation | |||
* Breast Neoplasms | |||
* Cell Cycle Proteins | |||
* Cell Line, Tumor | |||
* Cellular Senescence | |||
* Disease Models, Animal | |||
* Female | |||
* Gene Expression Regulation, Neoplastic | |||
* Humans | |||
* Integrin alphaVbeta3 | |||
* Interleukin-1beta | |||
* Janus Kinase 1 | |||
* Macrophage Activation | |||
* Macrophages | |||
* Mice | |||
* Mice, Knockout | |||
* STAT1 Transcription Factor | |||
* Signal Transduction | |||
|keywords=* Cellular senescence | |||
* Legumain | |||
* M1 polarization | |||
* Tumor-associated macrophage | |||
|full-text-url=https://sci-hub.do/10.1016/j.canlet.2019.12.013 | |||
}} | |||
==STAT3== | |||
{{medline-entry | |||
|title=Dietary Restriction Suppresses Steatosis-Associated Hepatic Tumorigenesis in Hepatitis C Virus Core Gene Transgenic Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33083279 | |||
|keywords=* Cyclin D1 | |||
* NF-κB | |||
* STAT3 | |||
* Senescence | |||
* p62/SQSTM1 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7548900 | |||
}} | |||
{{medline-entry | |||
|title=Skeletal glucocorticoid signalling determines leptin resistance and obesity in aging mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33045434 | |||
|keywords=* Aging | |||
* Appetite | |||
* Glucocorticoid | |||
* Leptin | |||
* Obesity | |||
* Osteoblast | |||
* Osteocyte | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7596342 | |||
}} | |||
{{medline-entry | |||
|title=AMPK alleviates oxidative stress‑induced premature senescence via inhibition of NF-κB/[[STAT3]] axis-mediated positive feedback loop. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32882228 | |||
|keywords=* AMPK | |||
* NF-κB/STAT3 signalling | |||
* Oxidative stress | |||
* SASP | |||
* Senescence | |||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2020.111347 | |||
}} | |||
{{medline-entry | |||
|title=Age-related loss of neural stem cell O-GlcNAc promotes a glial fate switch through [[STAT3]] activation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32848054 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Cell Differentiation | |||
* Cell Proliferation | |||
* Computational Biology | |||
* Gene Expression Regulation | |||
* Glucosamine | |||
* Hippocampus | |||
* Mice | |||
* Neural Stem Cells | |||
* Neurogenesis | |||
* Neuroglia | |||
* STAT3 Transcription Factor | |||
* Sequence Analysis, RNA | |||
|keywords=* O-GlcNAcylation | |||
* aging | |||
* gliogenesis | |||
* neural stem cells | |||
* neurogenesis | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486730 | |||
}} | |||
{{medline-entry | |||
|title=Cell Death by Gallotannin Is Associated with Inhibition of the JAK/STAT Pathway in Human Colon Cancer Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32714471 | |||
|keywords=* Apoptosis | |||
* JAK/STAT | |||
* caspase | |||
* colon cancer | |||
* gallotannin | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7378856 | |||
}} | |||
{{medline-entry | |||
|title=The effect of interleukin 6 deficiency on myocardial signal transduction pathways activation induced by bacterial lipopolysaccharide in young and old mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32693349 | |||
|keywords=* Aging | |||
* For review: bacterial lipolisacharide (LPS) | |||
* Heart | |||
* Inflammation | |||
* Interleukin-6 | |||
* Signal transduction | |||
|full-text-url=https://sci-hub.do/10.1016/j.advms.2020.06.006 | |||
}} | |||
{{medline-entry | |||
|title=Silibinin and SARS-CoV-2: Dual Targeting of Host Cytokine Storm and Virus Replication Machinery for Clinical Management of COVID-19 Patients. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32517353 | |||
|keywords=* IL-6 | |||
* JAK | |||
* coronavirus | |||
* cytokine storm | |||
* remdesivir | |||
* senescence | |||
* stat3 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7356916 | |||
}} | |||
{{medline-entry | |||
|title=Implication of JAK1/[[STAT3]]/SOCS3 Pathway in Aging of Cerebellum of Male Rat: Histological and Molecular study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32483368 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Caspase 3 | |||
* Cerebellum | |||
* Glial Fibrillary Acidic Protein | |||
* Glutathione | |||
* Immunohistochemistry | |||
* Janus Kinase 1 | |||
* Male | |||
* Malondialdehyde | |||
* Microscopy, Electron | |||
* Rats | |||
* Rats, Wistar | |||
* STAT3 Transcription Factor | |||
* Signal Transduction | |||
* Suppressor of Cytokine Signaling 3 Protein | |||
* Tumor Necrosis Factor-alpha | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7264275 | |||
}} | |||
{{medline-entry | |||
|title=Atorvastatin-induced senescence of hepatocellular carcinoma is mediated by downregulation of hTERT through the suppression of the IL-6/[[STAT3]] pathway. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32257389 | |||
|keywords=* Cancer therapy | |||
* Senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7105491 | |||
}} | |||
{{medline-entry | |||
|title=Deciphering the Molecular Mechanism of Spontaneous Senescence in Primary Epithelial Ovarian Cancer Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32012719 | |||
|keywords=* aging biomarkers | |||
* cancer biology | |||
* cellular senescence | |||
* epithelial ovarian cancer | |||
* oxidative stress | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072138 | |||
}} | |||
{{medline-entry | |||
|title=Persistent Activation of [[STAT3]] Pathway in the Retina Induced Vision Impairment and Retinal Degenerative Changes in Ageing Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31884637 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Retina | |||
* Retinal Degeneration | |||
* STAT3 Transcription Factor | |||
* Suppressor of Cytokine Signaling 3 Protein | |||
* Suppressor of Cytokine Signaling Proteins | |||
* Uveitis | |||
|keywords=* EAU | |||
* Experimental autoimmune uveitis | |||
* Retinal dystrophies | |||
* SOCS3 | |||
* STAT3 | |||
* Transgenic mouse | |||
* Uveitis | |||
|full-text-url=https://sci-hub.do/10.1007/978-3-030-27378-1_58 | |||
}} | |||
{{medline-entry | |||
|title=Interleukin-10 induces senescence of activated hepatic stellate cells via [[STAT3]]-p53 pathway to attenuate liver fibrosis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31730896 | |||
|keywords=* Hepatic stellate cells | |||
* Interleukin-10 | |||
* Liver fibrosis | |||
* Senescence | |||
* Signal pathway | |||
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2019.109445 | |||
}} | |||
==STC2== | |||
{{medline-entry | |||
|title=Genome-wide Associations Reveal Human-Mouse Genetic Convergence and Modifiers of Myogenesis, CPNE1 and [[STC2]]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31761296 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aging | |||
* Animals | |||
* Body Composition | |||
* Body Weight | |||
* Calcium-Binding Proteins | |||
* Case-Control Studies | |||
* Female | |||
* Follow-Up Studies | |||
* Genome-Wide Association Study | |||
* Glycoproteins | |||
* Humans | |||
* Intercellular Signaling Peptides and Proteins | |||
* Male | |||
* Mice | |||
* Middle Aged | |||
* Muscle Development | |||
* Muscle, Skeletal | |||
* Quantitative Trait Loci | |||
* Thinness | |||
|keywords=* UK Biobank | |||
* human and mouse GWAS | |||
* sarcopenia | |||
* skeletal muscle | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904802 | |||
}} | |||
==STIM1== | |||
{{medline-entry | |||
|title=Progerin in muscle leads to thermogenic and metabolic defects via impaired calcium homeostasis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31833196 | |||
|mesh-terms=* Animals | |||
* Calcium | |||
* Calnexin | |||
* Cell Nucleus | |||
* Disease Models, Animal | |||
* Endoplasmic Reticulum | |||
* Endoplasmic Reticulum Stress | |||
* Lamin Type A | |||
* Mice | |||
* Mice, Knockout | |||
* Microscopy, Electron, Transmission | |||
* Muscle Proteins | |||
* Muscle, Skeletal | |||
* Muscular Dystrophies | |||
* Mutation | |||
* Myoblasts | |||
* ORAI1 Protein | |||
* Progeria | |||
* Proteolipids | |||
* Stromal Interaction Molecule 1 | |||
* Thermogenesis | |||
* Up-Regulation | |||
|keywords=* aging | |||
* calcium homeostasis | |||
* lamin A | |||
* muscular dystrophy | |||
* progeria | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996945 | |||
}} | |||
==STS== | |||
{{medline-entry | |||
|title=Delayed Impairment of Postural, Physical, and Muscular Functions Following Downhill Compared to Level Walking in Older People. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33192547 | |||
|keywords=* aging | |||
* balance | |||
* falls | |||
* fatigue | |||
* functional performance | |||
* muscle damage | |||
* walking | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7609421 | |||
}} | |||
{{medline-entry | |||
|title=Autophagy displays divergent roles during intermittent amino acid starvation and toxic stress-induced senescence in cultured skeletal muscle cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33022071 | |||
|keywords=* autophagy | |||
* caspase | |||
* cell death | |||
* remodeling | |||
* senescence | |||
|full-text-url=https://sci-hub.do/10.1002/jcp.30079 | |||
}} | |||
{{medline-entry | |||
|title=The WRKY53 transcription factor enhances stilbene synthesis and disease resistance by interacting with MYB14 and MYB15 in Chinese wild grape. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32080737 | |||
|keywords=* Chinese wild grape (Vitis quinquangularis) | |||
* WRKY transcription factor | |||
* disease resistance | |||
* leaf senescence | |||
* stilbene | |||
* transcriptional regulation | |||
|full-text-url=https://sci-hub.do/10.1093/jxb/eraa097 | |||
}} | |||
{{medline-entry | |||
|title=On the role of ageing and musculoskeletal pain on dynamic balance in manual workers. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31733466 | |||
|mesh-terms=* Aged | |||
* Aging | |||
* Female | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Muscle, Skeletal | |||
* Musculoskeletal Pain | |||
* Occupational Diseases | |||
* Postural Balance | |||
|keywords=* Discomfort | |||
* Lower extremity function | |||
* Posturography | |||
* Sit-to-stand | |||
|full-text-url=https://sci-hub.do/10.1016/j.jelekin.2019.102374 | |||
}} | |||
==SUCNR1== | |||
{{medline-entry | |||
|title=[The effect of Mexidol on cerebral mitochondriogenesis at a young age and during aging]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32105271 | |||
|mesh-terms=* Age Factors | |||
* Aging | |||
* Animals | |||
* Male | |||
* Mitochondria | |||
* Neurodegenerative Diseases | |||
* Picolines | |||
* Rats | |||
* Receptors, G-Protein-Coupled | |||
* Transcription Factors | |||
|keywords=* Western blot analysis | |||
* aging | |||
* cerebral mitochondriogenesis | |||
* mexidol | |||
* mitochondrial dysfunction | |||
* rats | |||
* respiratory enzyme subunits | |||
* succinate receptor | |||
* transcriptional coactivator PGC-1α | |||
|full-text-url=https://sci-hub.do/10.17116/jnevro202012001162 | |||
}} | |||
==SUGCT== | |||
{{medline-entry | |||
|title=Knockout of the non-essential gene [[SUGCT]] creates diet-linked, age-related microbiome disbalance with a diabetes-like metabolic syndrome phenotype. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31722069 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Anti-Bacterial Agents | |||
* Bacteria | |||
* Carnitine | |||
* Coenzyme A-Transferases | |||
* Dietary Supplements | |||
* Feces | |||
* Gastrointestinal Microbiome | |||
* Humans | |||
* Kidney | |||
* Lipid Metabolism | |||
* Liver | |||
* Lysine | |||
* Metabolic Syndrome | |||
* Metabolome | |||
* Mice | |||
* Mice, Knockout | |||
* Obesity | |||
* Tryptophan | |||
|keywords=* C7orf10 | |||
* Glutaric aciduria type 3 (GA3) | |||
* Gut microflora | |||
* Lipids | |||
* Metabolomics | |||
* Obesity | |||
* Sugct | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7426296 | |||
}} | |||
==SUV39H1== | |||
{{medline-entry | |||
|title=Increase in hippocampal histone H3K9me3 is negatively correlated with memory in old male mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31760560 | |||
|keywords=* Aging | |||
* H3K9me3 | |||
* Hippocampus | |||
* IEGs | |||
* Memory | |||
* SUV39H1 | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-019-09850-1 | |||
}} | |||
==SYK== | |||
{{medline-entry | |||
|title=miR-25-3p promotes endothelial cell angiogenesis in aging mice via TULA-2/[[SYK]]/VEGFR-2 downregulation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33201836 | |||
|keywords=* TULA-2 | |||
* aging | |||
* angiogenesis | |||
* endothelial cell | |||
* miR-25-3p | |||
|full-text-url=https://sci-hub.do/10.18632/aging.103834 | |||
}} | |||
{{medline-entry | |||
|title=Identification of [[SYK]] inhibitor, R406 as a novel senolytic agent. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32379705 | |||
|keywords=* FAK | |||
* apoptosis | |||
* cellular senescence | |||
* p38 | |||
* senolytics | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244031 | |||
}} | |||
==SYNE1== | |||
{{medline-entry | |||
|title=Nesprin-1 impact on tumorigenic cell phenotypes. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31741263 | |||
|mesh-terms=* Actins | |||
* Carcinogenesis | |||
* Cell Line, Tumor | |||
* Cell Nucleus | |||
* Cytoskeletal Proteins | |||
* Gene Expression | |||
* Gene Expression Regulation, Neoplastic | |||
* Humans | |||
* Microfilament Proteins | |||
* Nerve Tissue Proteins | |||
* Nuclear Envelope | |||
* Phenotype | |||
|keywords=* Cancer | |||
* Cellular senescence | |||
* Genome stability | |||
* Nesprin-1 | |||
* Nuclear envelope | |||
|full-text-url=https://sci-hub.do/10.1007/s11033-019-05184-w | |||
}} | |||
==TAAR1== | |||
{{medline-entry | |||
|title=Minimal Age-Related Alterations in Behavioral and Hematological Parameters in Trace Amine-Associated Receptor 1 ([[TAAR1]]) Knockout Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31399838 | |||
|mesh-terms=* Age Factors | |||
* Animals | |||
* Anxiety | |||
* Dose-Response Relationship, Drug | |||
* Male | |||
* Mice | |||
* Mice, 129 Strain | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* Receptors, G-Protein-Coupled | |||
* Sodium Chloride | |||
|keywords=* Aging | |||
* Anxiety | |||
* Hematology | |||
* Leukocytes | |||
* Neutrophils | |||
* TAAR1 | |||
* Thyroid | |||
* Trace amines | |||
|full-text-url=https://sci-hub.do/10.1007/s10571-019-00721-4 | |||
}} | |||
==TAS2R16== | |||
{{medline-entry | |||
|title=Taste receptor polymorphisms and longevity: a systematic review and meta-analysis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33170488 | |||
|keywords=* Immune-inflammatory responses | |||
* Longevity | |||
* Meta-analysis | |||
* Taste receptors | |||
|full-text-url=https://sci-hub.do/10.1007/s40520-020-01745-3 | |||
}} | |||
==TAS2R38== | |||
{{medline-entry | |||
|title=[[TAS2R38]] bitter taste receptor and attainment of exceptional longevity. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31792278 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* Case-Control Studies | |||
* Female | |||
* Food Preferences | |||
* Gene Frequency | |||
* Genetic Variation | |||
* Haplotypes | |||
* Humans | |||
* Longevity | |||
* Male | |||
* Middle Aged | |||
* Receptors, G-Protein-Coupled | |||
* Taste | |||
* Taste Perception | |||
* Young Adult | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6889489 | |||
}} | |||
==TAZ== | |||
{{medline-entry | |||
|title=Transcriptional Coactivator [[TAZ]] Negatively Regulates Tumor Suppressor p53 Activity and Cellular Senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31936650 | |||
|keywords=* TAZ | |||
* cellular senescence | |||
* oncogene | |||
* p300 | |||
* p53 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7016652 | |||
}} | |||
==TBC1D5== | |||
{{medline-entry | |||
|title=[[TBC1D5]]-Catalyzed Cycling of Rab7 Is Required for Retromer-Mediated Human Papillomavirus Trafficking during Virus Entry. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32521275 | |||
|keywords=* HPV | |||
* Rab7B | |||
* TBC1D5 | |||
* functional genetics screen | |||
* proximity ligation assay | |||
* retrograde | |||
* retromer | |||
* senescence | |||
* traptamer | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7339955 | |||
}} | |||
{{medline-entry | |||
|title=Retromer and [[TBC1D5]] maintain late endosomal RAB7 domains to enable amino acid-induced mTORC1 signaling. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31431476 | |||
|mesh-terms=* Animals | |||
* Caenorhabditis elegans | |||
* Caenorhabditis elegans Proteins | |||
* Longevity | |||
* Mechanistic Target of Rapamycin Complex 1 | |||
* Membrane Microdomains | |||
* Signal Transduction | |||
* rab GTP-Binding Proteins | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719456 | |||
}} | |||
==TBK1== | |||
{{medline-entry | |||
|title=Parkin overexpression alleviates cardiac aging through facilitating K63-polyubiquitination of [[TBK1]] to facilitate mitophagy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33164878 | |||
|keywords=* Aging | |||
* K63-linked polyubiquitination | |||
* Mitophagy | |||
* Parkin | |||
* TBK1 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbadis.2020.165997 | |||
}} | |||
==TCF7L2== | |||
{{medline-entry | |||
|title=A myelin-related transcriptomic profile is shared by Pitt-Hopkins syndrome models and human autism spectrum disorder. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32015540 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Autism Spectrum Disorder | |||
* Cell Count | |||
* DNA Fingerprinting | |||
* Facies | |||
* Gene Expression Regulation | |||
* Humans | |||
* Hyperventilation | |||
* Intellectual Disability | |||
* Methyl-CpG-Binding Protein 2 | |||
* Mice | |||
* Mice, Knockout | |||
* Myelin Sheath | |||
* Oligodendroglia | |||
* PTEN Phosphohydrolase | |||
* Primary Cell Culture | |||
* Signal Transduction | |||
* Transcription Factor 4 | |||
* Transcriptome | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065955 | |||
}} | |||
==TEC== | |||
{{medline-entry | |||
|title=Vestibular function and cortical and sub-cortical alterations in an aging population. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32904672 | |||
|keywords=* Aging | |||
* Cognition | |||
* Diffeomorphometry | |||
* Epidemiology | |||
* Eye-ear-nose-throat | |||
* MRI | |||
* Medical imaging | |||
* Shape | |||
* Vestibular | |||
* Volume | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7457317 | |||
}} | |||
{{medline-entry | |||
|title=Metabolic Flexibility and Innate Immunity in Renal Ischemia Reperfusion Injury: The Fine Balance Between Adaptive Repair and Tissue Degeneration. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32733450 | |||
|keywords=* cell death | |||
* innate immunity | |||
* kidney transplantation | |||
* mitochondria | |||
* senescence | |||
* tubular repair | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7358591 | |||
}} | |||
{{medline-entry | |||
|title=Postnatal Involution and Counter-Involution of the Thymus. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32477366 | |||
|keywords=* Myc | |||
* aging | |||
* cyclin D1 | |||
* growth | |||
* involution | |||
* thymus | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235445 | |||
}} | |||
{{medline-entry | |||
|title=Gender Disparity Impacts on Thymus Aging and LHRH Receptor Antagonist-Induced Thymic Reconstitution Following Chemotherapeutic Damage. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32194555 | |||
|keywords=* aging | |||
* chemotherapy | |||
* gender | |||
* luteinizing hormone-releasing hormone | |||
* regeneration | |||
* sex hormone deprivation | |||
* thymic epithelial cell | |||
* thymus | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062683 | |||
}} | |||
{{medline-entry | |||
|title=Clonogenic Culture of Mouse Thymic Epithelial Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31396938 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Cell Differentiation | |||
* Cell Line | |||
* Coculture Techniques | |||
* Colony-Forming Units Assay | |||
* DNA-Binding Proteins | |||
* Epithelial Cells | |||
* Flow Cytometry | |||
* Fluorescent Antibody Technique, Direct | |||
* Fluorescent Dyes | |||
* Immunomagnetic Separation | |||
* Mice | |||
* Mice, Knockout | |||
* Primary Cell Culture | |||
* Rhodamines | |||
* Self Tolerance | |||
* Staining and Labeling | |||
* Stem Cells | |||
* Thymus Gland | |||
|keywords=* Clonogenic assay | |||
* Thymic epithelial cells | |||
* Thymic epithelial stem cells | |||
* Thymus | |||
|full-text-url=https://sci-hub.do/10.1007/978-1-4939-9728-2_15 | |||
}} | |||
==TEF== | |||
{{medline-entry | |||
|title=Expression of human HSP27 in yeast extends replicative lifespan and uncovers a hormetic response. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32189112 | |||
|keywords=* Aging | |||
* Cancer | |||
* HSP27 | |||
* Hormesis | |||
* Neurodegeneratve diseases | |||
* Proteasome | |||
|full-text-url=https://sci-hub.do/10.1007/s10522-020-09869-9 | |||
}} | |||
==TERT== | |||
{{medline-entry | |||
|title=Telomeres and telomerase in risk assessment of cardiovascular diseases. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33171154 | |||
|keywords=* Cardiovascular diseases | |||
* Senescence | |||
* Telomerase | |||
* Telomeres | |||
|full-text-url=https://sci-hub.do/10.1016/j.yexcr.2020.112361 | |||
}} | |||
{{medline-entry | |||
|title=A 4-Base-Pair Core-Enclosing Helix in Telomerase RNA Is Essential for Activity and for Binding to the Telomerase Reverse Transcriptase Catalytic Protein Subunit. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33046533 | |||
|keywords=* RNA | |||
* RNP | |||
* TERT | |||
* TLC1 | |||
* senescence | |||
* telomerase | |||
* telomerase RNA | |||
* telomere | |||
* two-hybrid screening | |||
* yeast | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7685517 | |||
}} | |||
{{medline-entry | |||
|title=Angiotensin inhibition and cellular senescence in the developing rat kidney. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33010296 | |||
|keywords=* Apoptosis | |||
* Cellular senescence | |||
* Fetal development | |||
* Kidney | |||
* Renin-angiotensin system | |||
|full-text-url=https://sci-hub.do/10.1016/j.yexmp.2020.104551 | |||
}} | |||
{{medline-entry | |||
|title=Decreased expression of [[TERT]] and telomeric proteins as human ovaries age may cause telomere shortening. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32856217 | |||
|keywords=* Ovarian aging | |||
* TERT | |||
* Telomere | |||
* Telomere-binding proteins | |||
|full-text-url=https://sci-hub.do/10.1007/s10815-020-01932-1 | |||
}} | |||
{{medline-entry | |||
|title=The secrets of telomerase: Retrospective analysis and future prospects. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32698073 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Diabetes Mellitus | |||
* Humans | |||
* Neoplasms | |||
* Telomerase | |||
* Telomere Shortening | |||
|keywords=* Cancers | |||
* G-quadruplex formation | |||
* Metabolic disorders | |||
* TERT gene | |||
* Telomere-telomerase system | |||
|full-text-url=https://sci-hub.do/10.1016/j.lfs.2020.118115 | |||
}} | |||
{{medline-entry | |||
|title=Gene expression in human mesenchymal stem cell aging cultures: modulation by short peptides. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32399807 | |||
|keywords=* Cell aging | |||
* Genes | |||
* Human mesenchymal stem cells | |||
* Short peptides | |||
|full-text-url=https://sci-hub.do/10.1007/s11033-020-05506-3 | |||
}} | |||
{{medline-entry | |||
|title=Unravelling Cellular Mechanisms of Stem Cell Senescence: An Aid from Natural Bioactive Molecules. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32244882 | |||
|keywords=* cellular mechanisms | |||
* gene expression | |||
* nutraceuticals | |||
* oxidative stress | |||
* senescence | |||
* stem cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7150900 | |||
}} | |||
{{medline-entry | |||
|title=Expression of telomerase reverse transcriptase positively correlates with duration of lithium treatment in bipolar disorder. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32114208 | |||
|mesh-terms=* Adult | |||
* Aging | |||
* Antimanic Agents | |||
* Bipolar Disorder | |||
* Cellular Senescence | |||
* Female | |||
* Humans | |||
* Lithium | |||
* Lithium Compounds | |||
* Male | |||
* Middle Aged | |||
* Mitochondria | |||
* Oxidative Stress | |||
* Polymorphism, Single Nucleotide | |||
* Real-Time Polymerase Chain Reaction | |||
* Telomerase | |||
* Telomere | |||
* Telomere Homeostasis | |||
* Telomere Shortening | |||
|keywords=* Affective disorder | |||
* Aging | |||
* Mitochondria | |||
* Oxidative stress | |||
* TERT | |||
* Telomere | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334059 | |||
}} | |||
{{medline-entry | |||
|title=FAM96B inhibits the senescence of dental pulp stem cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32039527 | |||
|keywords=* FAM96B | |||
* aging | |||
* dental pulp stem cells (DPSCs) | |||
* proteomic analysis | |||
|full-text-url=https://sci-hub.do/10.1002/cbin.11319 | |||
}} | |||
{{medline-entry | |||
|title=Aging and biomarkers: Transcriptional levels evaluation of Osteopontin/miRNA-181a axis in hepatic tissue of rats in different age ranges. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32061643 | |||
|keywords=* Aging | |||
* Long non-coding RNA | |||
* Osteopontin | |||
* Telomeres | |||
* miRNA | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2020.110879 | |||
}} | |||
{{medline-entry | |||
|title=Resveratrol inhibits adipocyte differentiation and cellular senescence of human bone marrow stromal stem cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31978617 | |||
|keywords=* Adipogenesis | |||
* Antioxidant | |||
* Bone marrow adiposity | |||
* Bone marrow skeletal stromal cells | |||
* Cellular senescence | |||
* Osteogenesis | |||
|full-text-url=https://sci-hub.do/10.1016/j.bone.2020.115252 | |||
}} | |||
{{medline-entry | |||
|title=Characterization of human telomerase reverse transcriptase immortalized anterior cruciate ligament cell lines. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31948601 | |||
|mesh-terms=* Adolescent | |||
* Aged | |||
* Anterior Cruciate Ligament | |||
* Cell Differentiation | |||
* Cell Separation | |||
* Cells, Cultured | |||
* Humans | |||
* Mesenchymal Stem Cells | |||
* Telomerase | |||
|keywords=* Anterior cruciate ligament | |||
* Immortalization | |||
* Mesenchymal stem cells | |||
* Multilineage differentiation | |||
* Senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962762 | |||
}} | |||
{{medline-entry | |||
|title=Mitochondria, Telomeres and Telomerase Subunits. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31781563 | |||
|keywords=* TERC | |||
* TERT | |||
* aging | |||
* mitochondria | |||
* telomerase | |||
* telomere | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6851022 | |||
}} | |||
{{medline-entry | |||
|title=Towards Therapeutic Alternatives for Mercury Neurotoxicity in the Amazon: Unraveling the Pre-Clinical Effects of the Superfruit Açaí ([i]Euterpe oleracea[/i], Mart.) as Juice for Human Consumption. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31717801 | |||
|mesh-terms=* Animals | |||
* Antioxidants | |||
* Behavior, Animal | |||
* Brain Chemistry | |||
* Euterpe | |||
* Fruit and Vegetable Juices | |||
* Lipid Peroxidation | |||
* Male | |||
* Mercury | |||
* Mice | |||
* Motor Skills | |||
* Neurotoxins | |||
* Plant Extracts | |||
* Telomere | |||
|keywords=* Euterpe | |||
* acai | |||
* aging | |||
* antioxidant | |||
* açaí | |||
* extract | |||
* intoxication | |||
* methylmercury | |||
* telomere | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6893510 | |||
}} | |||
{{medline-entry | |||
|title=Replication Stress at Telomeric and Mitochondrial DNA: Common Origins and Consequences on Ageing. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31597307 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Cellular Senescence | |||
* DNA Damage | |||
* DNA Replication | |||
* DNA, Mitochondrial | |||
* Epigenesis, Genetic | |||
* Humans | |||
* Mitochondria | |||
* Oxidative Stress | |||
* Stress, Physiological | |||
* Telomere | |||
* Telomere Homeostasis | |||
* Telomere Shortening | |||
|keywords=* G-quadruplex | |||
* R-loop | |||
* ageing | |||
* helicase | |||
* mitochondria | |||
* replication stress | |||
* senescence | |||
* telomere | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6801922 | |||
}} | |||
{{medline-entry | |||
|title=Telomerase Biology Associations Offer Keys to Cancer and Aging Therapeutics. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31544708 | |||
|keywords=* Aging | |||
* TERT | |||
* associates | |||
* cancer | |||
* cell cycle | |||
* diseases | |||
* oncogenes | |||
* viral infection. | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7403649 | |||
}} | |||
{{medline-entry | |||
|title=Transient induction of telomerase expression mediates senescence and reduces tumorigenesis in primary fibroblasts. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31481614 | |||
|mesh-terms=* Animals | |||
* Cell Cycle | |||
* Cell Transformation, Neoplastic | |||
* Cells, Cultured | |||
* Cellular Senescence | |||
* Fibroblasts | |||
* Gene Expression | |||
* Gene Expression Regulation | |||
* Gene Knockdown Techniques | |||
* Humans | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* Phenotype | |||
* Telomerase | |||
* Telomere | |||
|keywords=* ATM | |||
* senescence | |||
* telomerase | |||
* tumorigenesis | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6754593 | |||
}} | |||
==TET2== | |||
{{medline-entry | |||
|title=Non-coding and Loss-of-Function Coding Variants in [[TET2]] are Associated with Multiple Neurodegenerative Diseases. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32330418 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Alzheimer Disease | |||
* Animals | |||
* Cognition | |||
* DNA-Binding Proteins | |||
* Female | |||
* Frontotemporal Dementia | |||
* Humans | |||
* Loss of Function Mutation | |||
* Male | |||
* Mice | |||
* Neurodegenerative Diseases | |||
* Proto-Oncogene Proteins | |||
|keywords=* AD | |||
* ALS | |||
* Alzheimer | |||
* FTD | |||
* TET2 | |||
* aging | |||
* amyotrophic lateral sclerosis | |||
* frontotemporal dementia | |||
* genome sequencing | |||
* non-coding | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7212268 | |||
}} | |||
{{medline-entry | |||
|title=60 Years of clonal hematopoiesis research: From X-chromosome inactivation studies to the identification of driver mutations. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32001340 | |||
|mesh-terms=* Adult | |||
* Aging | |||
* Biomedical Research | |||
* Chromosomes, Human, X | |||
* DNA-Binding Proteins | |||
* Female | |||
* Hematopoiesis | |||
* Hematopoietic Stem Cells | |||
* History, 20th Century | |||
* History, 21st Century | |||
* Humans | |||
* Male | |||
* Mutation | |||
* Proto-Oncogene Proteins | |||
* Receptors, Androgen | |||
* Repressor Proteins | |||
* X Chromosome Inactivation | |||
|full-text-url=https://sci-hub.do/10.1016/j.exphem.2020.01.008 | |||
}} | |||
{{medline-entry | |||
|title=DNA methylation instability by BRAF-mediated TET silencing and lifestyle-exposure divides colon cancer pathways. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31842975 | |||
|mesh-terms=* Animals | |||
* Caco-2 Cells | |||
* Cell Line, Tumor | |||
* Colonic Neoplasms | |||
* DNA Methylation | |||
* DNA-Binding Proteins | |||
* Down-Regulation | |||
* Epigenesis, Genetic | |||
* Female | |||
* Gene Regulatory Networks | |||
* HT29 Cells | |||
* Humans | |||
* Male | |||
* Mice | |||
* Mixed Function Oxygenases | |||
* Mutation | |||
* Neoplasms, Experimental | |||
* Proto-Oncogene Proteins | |||
* Proto-Oncogene Proteins B-raf | |||
|keywords=* Aging | |||
* BRAF V600E | |||
* CIMP | |||
* Colon cancer | |||
* DNA methylation | |||
* TET | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6916434 | |||
}} | |||
{{medline-entry | |||
|title=Clonal haematopoiesis: connecting ageing and inflammation in cardiovascular disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31406340 | |||
|mesh-terms=* Adult | |||
* Age Factors | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Animals | |||
* Cardiovascular Diseases | |||
* DNA (Cytosine-5-)-Methyltransferases | |||
* DNA-Binding Proteins | |||
* Genetic Predisposition to Disease | |||
* Hematopoiesis | |||
* Hematopoietic Stem Cells | |||
* Humans | |||
* Inflammation | |||
* Middle Aged | |||
* Mutation | |||
* Phenotype | |||
* Proto-Oncogene Proteins | |||
* Repressor Proteins | |||
* Risk Assessment | |||
* Risk Factors | |||
|full-text-url=https://sci-hub.do/10.1038/s41569-019-0247-5 | |||
}} | |||
==TF== | |||
{{medline-entry | |||
|title=A preliminary investigation of the contribution of different tenderness factors to beef loin, tri-tip and heel tenderness. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32736289 | |||
|keywords=* Aging | |||
* Beef | |||
* Collagen | |||
* Tenderness | |||
* Trained panel | |||
|full-text-url=https://sci-hub.do/10.1016/j.meatsci.2020.108247 | |||
}} | |||
{{medline-entry | |||
|title=The transcription factor ZmNAC126 accelerates leaf senescence downstream of the ethylene signalling pathway in maize. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32430911 | |||
|keywords=* ZmNAC | |||
* chlorophyll catabolic genes | |||
* ethylene | |||
* leaf senescence | |||
* maize | |||
|full-text-url=https://sci-hub.do/10.1111/pce.13803 | |||
}} | |||
{{medline-entry | |||
|title=Extensive transcriptome changes during seasonal leaf senescence in field-grown black cottonwood (Populus trichocarpa Nisqually-1). | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32313054 | |||
|mesh-terms=* Aging | |||
* Gene Expression Profiling | |||
* Gene Expression Regulation, Plant | |||
* Genome, Plant | |||
* Photosynthesis | |||
* Plant Leaves | |||
* Populus | |||
* Seasons | |||
* Transcription Factors | |||
* Transcriptome | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7170949 | |||
}} | |||
{{medline-entry | |||
|title=Expression of Transferrin and Albumin in the Sperm-Storage Tubules of Japanese Quail and their Possible Involvement in Long-Term Sperm Storage. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32174770 | |||
|keywords=* Japanese quail | |||
* albumin | |||
* sperm longevity | |||
* sperm storage tubules | |||
* transferrin | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7063080 | |||
}} | |||
{{medline-entry | |||
|title=OsWRKY5 Promotes Rice Leaf Senescence via Senescence-Associated NAC and Abscisic Acid Biosynthesis Pathway. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31505875 | |||
|mesh-terms=* Abscisic Acid | |||
* Chlorophyll | |||
* Gene Expression Regulation, Plant | |||
* Gene Knockdown Techniques | |||
* Oryza | |||
* Plant Leaves | |||
* Plant Proteins | |||
* Transcription Factors | |||
|keywords=* NAC | |||
* OsWRKY | |||
* abscisic acid (ABA) | |||
* leaf senescence | |||
* rice | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770167 | |||
}} | |||
{{medline-entry | |||
|title=BrTCP7 Transcription Factor Is Associated with MeJA-Promoted Leaf Senescence by Activating the Expression of [i]BrOPR3[/i] and [i]BrRCCR[/i]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31416297 | |||
|mesh-terms=* Amino Acid Sequence | |||
* Brassica | |||
* Cellular Senescence | |||
* Cyclopentanes | |||
* Gene Expression Regulation, Plant | |||
* Oxylipins | |||
* Phenotype | |||
* Phylogeny | |||
* Plant Growth Regulators | |||
* Plant Leaves | |||
* Plant Proteins | |||
* Promoter Regions, Genetic | |||
* Protein Binding | |||
* Transcription Factors | |||
|keywords=* Chinese flowering cabbage | |||
* JA | |||
* leaf senescence | |||
* transcriptional activation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719003 | |||
}} | |||
{{medline-entry | |||
|title=Activation of the Transcription of [i]BrGA20ox3[/i] by a BrTCP21 Transcription Factor Is Associated with Gibberellin-Delayed Leaf Senescence in Chinese Flowering Cabbage during Storage. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31398806 | |||
|mesh-terms=* Aging | |||
* Base Sequence | |||
* Brassica | |||
* Food Preservation | |||
* Gene Expression Regulation, Plant | |||
* Gibberellins | |||
* Phenotype | |||
* Phylogeny | |||
* Plant Leaves | |||
* Plant Proteins | |||
* Promoter Regions, Genetic | |||
* Protein Binding | |||
* Transcription Factors | |||
|keywords=* Chinese flowering cabbage | |||
* GA | |||
* leaf senescence | |||
* transcriptional activation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720506 | |||
}} | |||
==TFEB== | |||
{{medline-entry | |||
|title=A Novel Lipofuscin-detecting Marker of Senescence Relates With Hypoxia, Dysregulated Autophagy and With Poor Prognosis in Non-small-cell-lung Cancer. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33144423 | |||
|keywords=* Senescence | |||
* autophagy | |||
* glycolysis | |||
* hypoxia | |||
* lipofuscin | |||
* lung cancer | |||
|full-text-url=https://sci-hub.do/10.21873/invivo.12154 | |||
}} | |||
{{medline-entry | |||
|title=ESC-sEVs Rejuvenate Senescent Hippocampal NSCs by Activating Lysosomes to Improve Cognitive Dysfunction in Vascular Dementia. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32440476 | |||
|keywords=* embryonic stem cells derived small extracellular vesicles (ESC‐sEVs) | |||
* hippocampal neural stem cells (HNSCs) | |||
* lysosomes | |||
* senescence | |||
* vascular dementia | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237844 | |||
}} | |||
{{medline-entry | |||
|title=Nitrative Stress-Related Autophagic Insufficiency Participates in Hyperhomocysteinemia-Induced Renal Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32047576 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Autophagy | |||
* Cells, Cultured | |||
* Homocysteine | |||
* Humans | |||
* Hyperhomocysteinemia | |||
* Kidney | |||
* Kidney Diseases | |||
* Male | |||
* Metalloporphyrins | |||
* Peroxynitrous Acid | |||
* Rats | |||
* Rats, Sprague-Dawley | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007752 | |||
}} | |||
{{medline-entry | |||
|title=Polyamines reverse immune senescence via the translational control of autophagy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31679458 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Autophagy | |||
* Humans | |||
* Lysosomes | |||
* Polyamines | |||
* Protein Processing, Post-Translational | |||
* Spermidine | |||
|keywords=* Aging | |||
* B cells | |||
* EIF5A | |||
* TFEB | |||
* autophagy | |||
* hypusine | |||
* spermidine | |||
* translation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6984486 | |||
}} | |||
{{medline-entry | |||
|title=Polyamines Control eIF5A Hypusination, [[TFEB]] Translation, and Autophagy to Reverse B Cell Senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31474573 | |||
|mesh-terms=* Adaptive Immunity | |||
* Age Factors | |||
* Aging | |||
* Animals | |||
* Autophagy | |||
* B-Lymphocytes | |||
* Basic Helix-Loop-Helix Leucine Zipper Transcription Factors | |||
* Cellular Senescence | |||
* HEK293 Cells | |||
* Humans | |||
* Immunologic Memory | |||
* Immunosenescence | |||
* Jurkat Cells | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* NIH 3T3 Cells | |||
* Peptide Initiation Factors | |||
* Protein Processing, Post-Translational | |||
* RNA-Binding Proteins | |||
* Signal Transduction | |||
* Spermidine | |||
|keywords=* B cell | |||
* TFEB | |||
* aging | |||
* autophagy | |||
* eIF5A | |||
* spermidine | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6863385 | |||
}} | |||
==TFPI== | |||
{{medline-entry | |||
|title=Identification of cardiovascular health gene variants related to longevity in a Chinese population. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32897244 | |||
|keywords=* Chinese | |||
* factor related to cardiovascular health (FCH) | |||
* genetic variation | |||
* lipid metabolism | |||
* longevity | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521493 | |||
}} | |||
==TG== | |||
{{medline-entry | |||
|title=Inhibition of the alternative lengthening of telomeres pathway by subtelomeric sequences in Saccharomyces cerevisiae. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33126043 | |||
|keywords=* Budding yeast | |||
* Rad52 | |||
* Replicative senescence | |||
* Subtelomeric Y’ elements | |||
* Telomerase-independent telomere maintenance | |||
* Telomere recombination | |||
|full-text-url=https://sci-hub.do/10.1016/j.dnarep.2020.102996 | |||
}} | |||
{{medline-entry | |||
|title=E4orf1, an Adeno-viral protein, attenuates renal lipid accumulation in high fat fed mice: A novel approach to reduce a key risk factor for chronic kidney disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33102865 | |||
|keywords=* Aging | |||
* CKD | |||
* Diabetes | |||
* Diet | |||
* E4orf1 | |||
* FA synthesis | |||
* Hyperinsulinemia | |||
* Insulin | |||
* Lipid metabolism | |||
* Obesity | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575883 | |||
}} | |||
{{medline-entry | |||
|title=Resistance exercise attenuates postprandial metabolic responses to a high-fat meal similarly in younger and older men. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33032071 | |||
|keywords=* Aging | |||
* Cardiometabolic | |||
* Lipemia | |||
* Metabolism | |||
* Nutrition | |||
|full-text-url=https://sci-hub.do/10.1016/j.nutres.2020.08.012 | |||
}} | |||
{{medline-entry | |||
|title=Aging-induced aberrant RAGE/PPARα axis promotes hepatic steatosis via dysfunctional mitochondrial β oxidation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32936538 | |||
|keywords=* PPARα | |||
* RAGE | |||
* aging | |||
* hepatic steatosis | |||
* mitochondria | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7576254 | |||
}} | |||
{{medline-entry | |||
|title=Fenofibrate impairs liver function and structure more pronounced in old than young rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32927318 | |||
|keywords=* Aging | |||
* Fenofibrate | |||
* Lipids | |||
* Liver function and morphology | |||
* Rat | |||
* serum | |||
|full-text-url=https://sci-hub.do/10.1016/j.archger.2020.104244 | |||
}} | |||
{{medline-entry | |||
|title=Awareness of major cardiovascular risk factors and its relationship with markers of vascular aging: Data from the Brisighella Heart Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32249143 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Age Factors | |||
* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Biomarkers | |||
* Blood Glucose | |||
* Blood Pressure | |||
* Cardiovascular Diseases | |||
* Cholesterol | |||
* Cross-Sectional Studies | |||
* Diabetes Mellitus | |||
* Female | |||
* Humans | |||
* Hypercholesterolemia | |||
* Hypertension | |||
* Hypertriglyceridemia | |||
* Italy | |||
* Male | |||
* Middle Aged | |||
* Risk Assessment | |||
* Risk Factors | |||
* Triglycerides | |||
* Vascular Stiffness | |||
* Young Adult | |||
|keywords=* Arterial aging | |||
* Awareness | |||
* Epidemiology | |||
* Pulse wave velocity | |||
* Risk factors | |||
|full-text-url=https://sci-hub.do/10.1016/j.numecd.2020.03.005 | |||
}} | |||
{{medline-entry | |||
|title=Characterisation of the dynamic nature of lipids throughout the lifespan of genetically identical female and male Daphnia magna. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32221338 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Daphnia | |||
* Diglycerides | |||
* Female | |||
* Lipid Metabolism | |||
* Longevity | |||
* Male | |||
* Phosphatidylcholines | |||
* Sphingomyelins | |||
* Triglycerides | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7101400 | |||
}} | |||
{{medline-entry | |||
|title=Effects of laboratory biotic aging on the characteristics of biochar and its water-soluble organic products. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31472466 | |||
|mesh-terms=* Benzopyrans | |||
* Charcoal | |||
* Humic Substances | |||
* Microbiota | |||
* Soil Microbiology | |||
* Solubility | |||
* Triticum | |||
* Water | |||
|keywords=* Biochar | |||
* Biotic incubation aging | |||
* Dissolved organic matter (DOM) | |||
* Excitation-emission matrix | |||
* Humification | |||
|full-text-url=https://sci-hub.do/10.1016/j.jhazmat.2019.121071 | |||
}} | |||
{{medline-entry | |||
|title=Using Caenorhabditis elegans for Studying Trans- and Multi-Generational Effects of Toxicants. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31403614 | |||
|mesh-terms=* Animals | |||
* Caenorhabditis elegans | |||
* Hazardous Substances | |||
* Humans | |||
* Longevity | |||
* Reproduction | |||
* Toxicity Tests | |||
|full-text-url=https://sci-hub.do/10.3791/59367 | |||
}} | |||
==TH== | |||
{{medline-entry | |||
|title=Thyroid hormone signaling is associated with physical performance, muscle mass, and strength in a cohort of oldest-old: results from the Mugello study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33219914 | |||
|keywords=* Aging | |||
* Muscle mass | |||
* Muscle strength | |||
* Oldest-old | |||
* Physical performance | |||
* Rehabilitation | |||
* Thyroid hormone signaling | |||
|full-text-url=https://sci-hub.do/10.1007/s11357-020-00302-0 | |||
}} | |||
{{medline-entry | |||
|title=Social Environment Ameliorates Behavioral and Immune Impairments in Tyrosine Hydroxylase Haploinsufficient Female Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32772235 | |||
|keywords=* Behavioral responses | |||
* Immunosenescence | |||
* Oxidative-inflammatory stress | |||
* Social environmental strategy | |||
* Tyrosine hydroxylase haploinsufficient mice | |||
|full-text-url=https://sci-hub.do/10.1007/s11481-020-09947-2 | |||
}} | |||
{{medline-entry | |||
|title=Mechanism of thyroid hormone signaling in skeletal muscle of aging mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32720201 | |||
|keywords=* Aging | |||
* Mice | |||
* Skeletal muscle | |||
* Thyroid hormone signaling | |||
|full-text-url=https://sci-hub.do/10.1007/s12020-020-02428-9 | |||
}} | |||
{{medline-entry | |||
|title=Longitudinal changes in bone mineral density and trabecular bone score in Korean adults: a community-based prospective study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32621253 | |||
|mesh-terms=* Absorptiometry, Photon | |||
* Adult | |||
* Bone Density | |||
* Cancellous Bone | |||
* Cohort Studies | |||
* Female | |||
* Humans | |||
* Lumbar Vertebrae | |||
* Male | |||
* Prospective Studies | |||
* Republic of Korea | |||
|keywords=* Aging | |||
* Bone mineral density | |||
* Natural history | |||
* Osteoporosis | |||
|full-text-url=https://sci-hub.do/10.1007/s11657-020-00731-6 | |||
}} | |||
{{medline-entry | |||
|title=Quantitative proteomic profiling of the rat substantia nigra places glial fibrillary acidic protein at the hub of proteins dysregulated during aging: Implications for idiopathic Parkinson's disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32270889 | |||
|keywords=* RRID:AB_11145309 | |||
* RRID:AB_2109791 | |||
* RRID:AB_228307 | |||
* RRID:AB_228341 | |||
* RRID:AB_2336820 | |||
* RRID:AB_2631098 | |||
* RRID:AB_390204 | |||
* RRID:MGI:5651135 | |||
* RRID:SCR_001881 | |||
* RRID:SCR_002798 | |||
* RRID:SCR_003070 | |||
* RRID:SCR_004946 | |||
* RRID:SCR_005223 | |||
* aging | |||
* dopaminergic neuron | |||
* glial fibrillary acidic protein | |||
* proteome | |||
* proteomics | |||
* substantia nigra | |||
|full-text-url=https://sci-hub.do/10.1002/jnr.24622 | |||
}} | |||
{{medline-entry | |||
|title=Withaferin-A Protects the Nigral Dopamine Neuron and Recovers Motor Activity in Aged Rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31982873 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Brain | |||
* Corpus Striatum | |||
* Dopaminergic Neurons | |||
* Male | |||
* Motor Activity | |||
* Neuroprotective Agents | |||
* Rats | |||
* Rats, Wistar | |||
* Substantia Nigra | |||
* Tyrosine 3-Monooxygenase | |||
* Withanolides | |||
|keywords=* Ageing | |||
* Dopamine | |||
* Striatum | |||
* Substantia nigra | |||
* Withaferin-A | |||
|full-text-url=https://sci-hub.do/10.1159/000505183 | |||
}} | |||
{{medline-entry | |||
|title=Effects of physical activity on bone mineral density in older adults: Korea National Health and Nutrition Examination Survey, 2008-2011. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31655946 | |||
|mesh-terms=* Absorptiometry, Photon | |||
* Aged | |||
* Bone Density | |||
* Cross-Sectional Studies | |||
* Exercise | |||
* Female | |||
* Femur Neck | |||
* Humans | |||
* Lumbar Vertebrae | |||
* Male | |||
* Middle Aged | |||
* Nutrition Surveys | |||
* Osteoporosis | |||
* Republic of Korea | |||
* Surveys and Questionnaires | |||
|keywords=* Aging | |||
* Bone mineral density | |||
* Exercise | |||
* Gender | |||
* Osteoporosis | |||
* Physical activity | |||
|full-text-url=https://sci-hub.do/10.1007/s11657-019-0655-5 | |||
}} | |||
{{medline-entry | |||
|title=Age-Related Resistance to Thyroid Hormone Action. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31512083 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Animals | |||
* Humans | |||
* Hyperthyroidism | |||
* Hypothyroidism | |||
* Iodide Peroxidase | |||
* Male | |||
* Receptors, Thyroid Hormone | |||
* Thyroid Hormones | |||
* Thyroxine | |||
* Triiodothyronine | |||
|full-text-url=https://sci-hub.do/10.1007/s40266-019-00711-7 | |||
}} | |||
{{medline-entry | |||
|title=Age-Dependent Changes in Glucose Homeostasis in Male Deiodinase Type 2 Knockout Zebrafish. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31504428 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Animals, Genetically Modified | |||
* Glucose | |||
* Glucose Transport Proteins, Facilitative | |||
* Homeostasis | |||
* Hyperglycemia | |||
* Iodide Peroxidase | |||
* Islets of Langerhans | |||
* Male | |||
* Proglucagon | |||
* Proinsulin | |||
* Receptor, Insulin | |||
* Receptors, Glucagon | |||
* Zebrafish | |||
|full-text-url=https://sci-hub.do/10.1210/en.2019-00445 | |||
}} | |||
{{medline-entry | |||
|title=Age effect on thyroid hormone brain response in male mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31494803 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Brain | |||
* Gene Expression | |||
* Hyperthyroidism | |||
* Hypothyroidism | |||
* Male | |||
* Maze Learning | |||
* Mice, Inbred C57BL | |||
* Monocarboxylic Acid Transporters | |||
* Organic Cation Transport Proteins | |||
* Rotarod Performance Test | |||
* Symporters | |||
* Thyroid Hormones | |||
* Thyrotropin | |||
* Thyrotropin-Releasing Hormone | |||
|keywords=* Ageing | |||
* Hyperthyroidism | |||
* Hypothyroidism | |||
* Male mice | |||
* Thyroid hormones | |||
|full-text-url=https://sci-hub.do/10.1007/s12020-019-02078-6 | |||
}} | |||
{{medline-entry | |||
|title=Aging Is Associated with Low Thyroid State and Organ-Specific Sensitivity to Thyroxine. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31441387 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* DNA-Binding Proteins | |||
* Hypothalamo-Hypophyseal System | |||
* Liver | |||
* Male | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Myocardium | |||
* Pituitary Gland | |||
* Thyroid Gland | |||
* Thyroid Hormones | |||
* Thyrotropin | |||
* Thyroxine | |||
* Transcription Factors | |||
|keywords=* HPT-axis | |||
* aging | |||
* mice | |||
* thyroid gland | |||
* thyroid hormones | |||
|full-text-url=https://sci-hub.do/10.1089/thy.2018.0377 | |||
}} | |||
==TLR1== | |||
{{medline-entry | |||
|title=Effects of aging and lifelong aerobic exercise on expression of innate immune components in human skeletal muscle. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32969782 | |||
|keywords=* TLR | |||
* aging | |||
* innate immunity | |||
* lifelong exercise | |||
* skeletal muscle | |||
|full-text-url=https://sci-hub.do/10.1152/japplphysiol.00615.2020 | |||
}} | |||
{{medline-entry | |||
|title=Association of TLR gene variants in a Czech Red Pied cattle population with reproductive traits. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31901560 | |||
|mesh-terms=* Age Factors | |||
* Animals | |||
* Breeding | |||
* Cattle | |||
* Czech Republic | |||
* Female | |||
* Genotype | |||
* Longevity | |||
* Male | |||
* Phenotype | |||
* Polymorphism, Single Nucleotide | |||
* Reproduction | |||
* Toll-Like Receptor 1 | |||
* Toll-Like Receptor 2 | |||
* Toll-Like Receptor 6 | |||
* Toll-Like Receptors | |||
|keywords=* Cattle | |||
* Diversity | |||
* Effect prediction | |||
* Health traits | |||
* Toll-like receptors | |||
|full-text-url=https://sci-hub.do/10.1016/j.vetimm.2019.109997 | |||
}} | |||
==TLR2== | |||
{{medline-entry | |||
|title=Changes in salivary microbial sensing proteins CD14 and [[TLR2]] with aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32529494 | |||
|mesh-terms=* Adolescent | |||
* Adult | |||
* Aging | |||
* Biomarkers | |||
* Child | |||
* Child, Preschool | |||
* Humans | |||
* Lipopolysaccharide Receptors | |||
* Middle Aged | |||
* Saliva | |||
* Salivary Proteins and Peptides | |||
* Toll-Like Receptor 2 | |||
* Young Adult | |||
|keywords=* Age changes | |||
* CD14 | |||
* Saliva | |||
* Toll-like receptor-2 | |||
|full-text-url=https://sci-hub.do/10.1007/s00784-020-03274-9 | |||
}} | |||
{{medline-entry | |||
|title=Culture Model for Non-human Primate Choroid Plexus. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31555096 | |||
|keywords=* aging | |||
* cell culture | |||
* choroid plexus | |||
* epithelial cell | |||
* infectious disease | |||
* rhesus macaque | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6724611 | |||
}} | |||
==TLR4== | |||
{{medline-entry | |||
|title=Age-Dependent Changes of Adipokine and Cytokine Secretion From Rat Adipose Tissue by Endogenous and Exogenous Toll-Like Receptor Agonists. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32973755 | |||
|keywords=* adipokines | |||
* aging | |||
* batokines | |||
* biglycan | |||
* cytokines | |||
* fat explant cultures | |||
* high mobility group box-1 protein | |||
* lipopolysaccharide | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466552 | |||
}} | |||
{{medline-entry | |||
|title=Role of Toll Like Receptor 4 in Alzheimer's Disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32983082 | |||
|keywords=* Alzheimer’s disease | |||
* TLR4 | |||
* aging | |||
* amyloid beta oligomers | |||
* calcium | |||
* hippocampal neurons | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7479089 | |||
}} | |||
{{medline-entry | |||
|title=Commentary on Some Recent Theses Relevant to Combating Aging: August 2020. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32718230 | |||
|keywords=* aging | |||
* dissertations | |||
* theses | |||
|full-text-url=https://sci-hub.do/10.1089/rej.2020.2378 | |||
}} | |||
{{medline-entry | |||
|title=Sialylation and Galectin-3 in Microglia-Mediated Neuroinflammation and Neurodegeneration. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32581723 | |||
|keywords=* aging | |||
* desialylation | |||
* galectin-3 | |||
* microglia | |||
* neurodegeneration | |||
* phagocytosis | |||
* sialic acid | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7296093 | |||
}} | |||
{{medline-entry | |||
|title=Chemerin facilitates intervertebral disc degeneration via [[TLR4]] and CMKLR1 and activation of NF-kB signaling pathway. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32526705 | |||
|keywords=* chemerin | |||
* inflammation | |||
* intervertebral disc | |||
* nucleus pulposus | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343479 | |||
}} | |||
{{medline-entry | |||
|title=Toll-like receptor 4 differentially regulates adult hippocampal neurogenesis in an age- and sex-dependent manner. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32343455 | |||
|keywords=* TLR4 | |||
* adult hippocampal neurogenesis | |||
* aging | |||
* proliferation | |||
* sex differences | |||
|full-text-url=https://sci-hub.do/10.1002/hipo.23209 | |||
}} | |||
{{medline-entry | |||
|title=Aging-associated immunosenescence via alterations in splenic immune cell populations in rat. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31838133 | |||
|mesh-terms=* Animals | |||
* B-Lymphocytes | |||
* Cells, Cultured | |||
* Immunity, Cellular | |||
* Immunosenescence | |||
* Male | |||
* Malondialdehyde | |||
* Oxidative Stress | |||
* Rats | |||
* Rats, Wistar | |||
* Spleen | |||
* Superoxide Dismutase | |||
* T-Lymphocytes | |||
|keywords=* Aging | |||
* Immunohistochemistry | |||
* Immunosenescence | |||
* Oxidative stress | |||
* Spleen | |||
|full-text-url=https://sci-hub.do/10.1016/j.lfs.2019.117168 | |||
}} | |||
{{medline-entry | |||
|title=Leptin induces immunosenescence in human B cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31831137 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* B-Lymphocytes | |||
* Humans | |||
* Immunoglobulin Class Switching | |||
* Immunosenescence | |||
* Leptin | |||
* Middle Aged | |||
* Obesity | |||
|keywords=* B cells | |||
* Immunosenescence | |||
* Leptin | |||
* Obesity | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7002206 | |||
}} | |||
{{medline-entry | |||
|title=Genetic Variation in the Magnitude and Longevity of the IgG Subclass Response to a Diphtheria-Tetanus-Acellular Pertussis (DTaP) Vaccine in Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31547158 | |||
|keywords=* DTaP | |||
* IgG subclass | |||
* antibody longevity | |||
* antibody magnitude | |||
* genetics | |||
* vaccine | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6963843 | |||
}} | |||
{{medline-entry | |||
|title=Rapamycin improves sevoflurane‑induced cognitive dysfunction in aged rats by mediating autophagy through the [[TLR4]]/MyD88/NF‑κB signaling pathway. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31432123 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Autophagic Cell Death | |||
* Cognitive Dysfunction | |||
* Male | |||
* Myeloid Differentiation Factor 88 | |||
* NF-kappa B | |||
* Rats | |||
* Rats, Sprague-Dawley | |||
* Sevoflurane | |||
* Signal Transduction | |||
* Sirolimus | |||
* Toll-Like Receptor 4 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6755174 | |||
}} | |||
==TLR9== | |||
{{medline-entry | |||
|title=Age-Associated B Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31986068 | |||
|keywords=* B lymphocytes | |||
* aging | |||
* autoimmunity | |||
* memory B cells | |||
|full-text-url=https://sci-hub.do/10.1146/annurev-immunol-092419-031130 | |||
}} | |||
==TMEM106B== | |||
{{medline-entry | |||
|title=Genetics of Gene Expression in the Aging Human Brain Reveal TDP-43 Proteinopathy Pathophysiology. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32526197 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Alzheimer Disease | |||
* Amyloid beta-Peptides | |||
* Apolipoproteins E | |||
* Brain | |||
* Cohort Studies | |||
* DNA-Binding Proteins | |||
* Female | |||
* Gene Expression Regulation | |||
* Haplotypes | |||
* Humans | |||
* Lysosomes | |||
* Male | |||
* Membrane Proteins | |||
* Myelin Sheath | |||
* Nerve Tissue Proteins | |||
* Progranulins | |||
* Quantitative Trait Loci | |||
* RNA Splicing Factors | |||
* TDP-43 Proteinopathies | |||
|keywords=* Alzheimer's disease | |||
* Amyloid-β | |||
* GRN | |||
* RBFOX1 | |||
* TDP-43 | |||
* TMEM106B | |||
* co-expression module | |||
* cognitive resilience | |||
* eQTL | |||
* expression quantitative trait loci | |||
* sQTL | |||
* splicing quantitative trait loci | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416464 | |||
}} | |||
==TMPRSS2== | |||
{{medline-entry | |||
|title=Susceptibility to COVID-19 in populations with health disparities: Posited involvement of mitochondrial disorder, socioeconomic stress, and pollutants. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32905655 | |||
|keywords=* SARS-CoV-2 | |||
* dysfunction | |||
* exposome | |||
* immunosenescence | |||
* metabolomics | |||
* mitochondria | |||
* pollutant | |||
* socioeconomic | |||
* stress | |||
|full-text-url=https://sci-hub.do/10.1002/jbt.22626 | |||
}} | |||
{{medline-entry | |||
|title=Expression of the SARS-CoV-2 Entry Proteins, ACE2 and [[TMPRSS2]], in Cells of the Olfactory Epithelium: Identification of Cell Types and Trends with Age. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32379417 | |||
|mesh-terms=* Age Factors | |||
* Angiotensin-Converting Enzyme 2 | |||
* Animals | |||
* Betacoronavirus | |||
* COVID-19 | |||
* Coronavirus Infections | |||
* Gene Expression | |||
* Gene Expression Profiling | |||
* Immunohistochemistry | |||
* In Situ Hybridization | |||
* Mice | |||
* Olfaction Disorders | |||
* Olfactory Mucosa | |||
* Olfactory Receptor Neurons | |||
* Pandemics | |||
* Peptidyl-Dipeptidase A | |||
* Pneumonia, Viral | |||
* RNA-Seq | |||
* Reverse Transcriptase Polymerase Chain Reaction | |||
* SARS-CoV-2 | |||
* Serine Endopeptidases | |||
* Virus Internalization | |||
|keywords=* ACE2 expression | |||
* COVID-19 | |||
* SARS-CoV-2 | |||
* aging | |||
* anosmia | |||
* olfactory epithelium | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7241737 | |||
}} | |||
==TNC== | |||
{{medline-entry | |||
|title=Effects of Tenascin C on the Integrity of Extracellular Matrix and Skin Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33217999 | |||
|keywords=* TGF-β | |||
* aging | |||
* collagen | |||
* extracellular matrix | |||
* fibroblast | |||
* skin | |||
* tenascin C | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698786 | |||
}} | |||
{{medline-entry | |||
|title=Tenascin-C expression controls the maturation of articular cartilage in mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32066496 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Cartilage, Articular | |||
* Cell Count | |||
* Genotype | |||
* Mice | |||
* Tenascin | |||
|keywords=* Adhesion | |||
* Articular cartilage | |||
* Cartilage defect | |||
* Cell density | |||
* Knock-out mouse | |||
* Load | |||
* Tenascin C | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7027060 | |||
}} | |||
{{medline-entry | |||
|title=Effects of hydrothermal aging, thermal cycling, and water storage on the mechanical properties of a machinable resin-based composite containing nano-zirconia fillers. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31877525 | |||
|keywords=* Aging | |||
* Mechanical properties | |||
* Nano-zirconia | |||
* Phase transformation | |||
* Resin nano-ceramic | |||
* Resin-based composite | |||
|full-text-url=https://sci-hub.do/10.1016/j.jmbbm.2019.103522 | |||
}} | |||
==TNF== | |||
{{medline-entry | |||
|title=Naringenin alleviates nonalcoholic steatohepatitis in middle-aged Apoe mice: role of SIRT1. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33234364 | |||
|keywords=* AML-12 cells | |||
* Aging | |||
* ApoE(−/−) mice | |||
* Naringenin | |||
* Nonalcoholic steatohepatitis | |||
* SIRT1 | |||
|full-text-url=https://sci-hub.do/10.1016/j.phymed.2020.153412 | |||
}} | |||
{{medline-entry | |||
|title=Protective role of microglial HO-1 blockade in aging: Implication of iron metabolism. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33212416 | |||
|keywords=* Aging | |||
* Ferroptosis | |||
* Heme oxygenase-1 | |||
* Iron metabolism | |||
* Microglia | |||
* Neuroinflammation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7680814 | |||
}} | |||
{{medline-entry | |||
|title=Anti-aging effect of DL-β-hydroxybutyrate against hepatic cellular senescence induced by D-galactose or γ-irradiation via autophagic flux stimulation in male rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33147533 | |||
|keywords=* Autophagy | |||
* D-galacose | |||
* Ionizing radiation | |||
* Senescence | |||
* β-hydroxybutyric acid | |||
|full-text-url=https://sci-hub.do/10.1016/j.archger.2020.104288 | |||
}} | |||
{{medline-entry | |||
|title=Exploring the extensive crosstalk between the antagonistic cytokines- TGF-β and [[TNF]]-α in regulating cancer pathogenesis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33153895 | |||
|keywords=* Apoptosis | |||
* Autophagy | |||
* EMT | |||
* Fibrogenesis | |||
* Senescence | |||
* TGF-β and TNF-α | |||
|full-text-url=https://sci-hub.do/10.1016/j.cyto.2020.155348 | |||
}} | |||
{{medline-entry | |||
|title=Long non-coding RNA SNHG29 regulates cell senescence via p53/p21 signaling in spontaneous preterm birth. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33080448 | |||
|keywords=* Cellular senescence | |||
* Oxidative stress | |||
* SASP | |||
* SNHG29 | |||
* Spontaneous preterm birth | |||
* p53/p21 | |||
|full-text-url=https://sci-hub.do/10.1016/j.placenta.2020.10.009 | |||
}} | |||
{{medline-entry | |||
|title=Cognition Is Associated With Peripheral Immune Molecules in Healthy Older Adults: A Cross-Sectional Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32983153 | |||
|keywords=* chemokines | |||
* cognition | |||
* cytokines | |||
* healthy aging | |||
* immune molecules | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7493640 | |||
}} | |||
{{medline-entry | |||
|title=Anti-aging effects of [i]Ribes meyeri[/i] anthocyanins on neural stem cells and aging mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32920547 | |||
|keywords=* Ribes meyeri anthocyanin | |||
* aging | |||
* cognition | |||
* naringenin | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521483 | |||
}} | |||
{{medline-entry | |||
|title=Effects of a four week detraining period on physical, metabolic, and inflammatory profiles of elderly women who regularly participate in a program of strength training. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32863968 | |||
|keywords=* Aging | |||
* Inflammation | |||
* Physical exercise | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7450596 | |||
}} | |||
{{medline-entry | |||
|title=Contribution of Porphyromonas gingivalis lipopolysaccharide to experimental periodontitis in relation to aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32851571 | |||
|keywords=* Aging | |||
* Bone loss | |||
* Osteoclastogenesis | |||
* Periodontitis | |||
* Porphyromonas gingivalis lipopolysaccharide | |||
|full-text-url=https://sci-hub.do/10.1007/s11357-020-00258-1 | |||
}} | |||
{{medline-entry | |||
|title=New MoDC-Targeting [[TNF]] Fusion Proteins Enhance Cyclic Di-GMP Vaccine Adjuvanticity in Middle-Aged and Aged Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32849581 | |||
|keywords=* 3′ | |||
* 5′-cyclic diguanylic acid (cyclic di-GMP) | |||
* aging | |||
* monocyte-derived dendritic cells (moDCs) | |||
* tumor necrosis factor (TNF) | |||
* vaccine | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7427090 | |||
}} | |||
{{medline-entry | |||
|title=Cognitive impairment in elderly patients with rheumatic disease and the effect of disease-modifying anti-rheumatic drugs. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32862311 | |||
|keywords=* Aging | |||
* Biologics | |||
* Cognition | |||
* Rheumatic diseases | |||
|full-text-url=https://sci-hub.do/10.1007/s10067-020-05372-1 | |||
}} | |||
{{medline-entry | |||
|title=Cotinine ameliorates memory and learning impairment in senescent mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32818583 | |||
|keywords=* Aging | |||
* Cognitive impairment | |||
* Cotinine | |||
* Improvement | |||
* α(7)nAChRs | |||
|full-text-url=https://sci-hub.do/10.1016/j.brainresbull.2020.08.010 | |||
}} | |||
{{medline-entry | |||
|title=Kynurenines link chronic inflammation to functional decline and physical frailty. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32814718 | |||
|keywords=* Aging | |||
* Cytokines | |||
* Inflammation | |||
* Neurodegeneration | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7455140 | |||
}} | |||
{{medline-entry | |||
|title=Voluntary exercise training attenuated the middle-aged maturity-induced cardiac apoptosis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32781061 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Apoptosis | |||
* Heart | |||
* In Situ Nick-End Labeling | |||
* Male | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Mitochondria, Heart | |||
* Muscle, Skeletal | |||
* Physical Conditioning, Animal | |||
* Running | |||
* Sedentary Behavior | |||
|keywords=* Caspase-independent | |||
* Cell death | |||
* Fas dependent | |||
* IGF-related | |||
* Mitochondrial | |||
|full-text-url=https://sci-hub.do/10.1016/j.lfs.2020.118187 | |||
}} | |||
{{medline-entry | |||
|title=Preclinical Evaluation of a Food-Derived Functional Ingredient to Address Skeletal Muscle Atrophy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32751276 | |||
|keywords=* aging | |||
* bioactive | |||
* functional ingredient | |||
* immobilization | |||
* inflammation | |||
* muscle atrophy | |||
* peptide | |||
* protein synthesis | |||
* skeletal muscle | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469066 | |||
}} | |||
{{medline-entry | |||
|title=Childhood survivors of high-risk neuroblastoma show signs of immune recovery and not immunosenescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32744364 | |||
|keywords=* adverse late effects | |||
* childhood | |||
* immune recovery | |||
* immunosenescence | |||
* neuroblastoma | |||
|full-text-url=https://sci-hub.do/10.1002/eji.202048541 | |||
}} | |||
{{medline-entry | |||
|title=FK506 induces lung lymphatic endothelial cell senescence and downregulates LYVE-1 expression, with associated decreased hyaluronan uptake. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32736525 | |||
|keywords=* Endothelial cells | |||
* Fk506 | |||
* Hyaluronan | |||
* LYVE-1 | |||
* Lung lymphatic | |||
* Senescence | |||
* TERT | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7395348 | |||
}} | |||
{{medline-entry | |||
|title=Late-onset hypogonadism: Reductio ad absurdum of the cardiovascular risk-benefit of testosterone replacement therapy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32737921 | |||
|keywords=* aging | |||
* androgen | |||
* heart failure | |||
* myocardial infarction | |||
* testosterone | |||
* thromboembolism | |||
|full-text-url=https://sci-hub.do/10.1111/andr.12876 | |||
}} | |||
{{medline-entry | |||
|title=Doxorubicin generates senescent microglia that exhibit altered proteomes, higher levels of cytokine secretion, and a decreased ability to internalize amyloid β. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32738344 | |||
|keywords=* Aging | |||
* Alzheimer's disease | |||
* Inflammation | |||
* Microglia | |||
* Proteomics | |||
* Senescence | |||
|full-text-url=https://sci-hub.do/10.1016/j.yexcr.2020.112203 | |||
}} | |||
{{medline-entry | |||
|title=Time restricted feeding provides a viable alternative to alternate day fasting when evaluated in terms of redox homeostasis in rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32717588 | |||
|keywords=* Aging | |||
* Alternate day fasting (ADF) | |||
* Intermittent fasting (IF) | |||
* Oxidative stress | |||
* Time-Restricted feeding (TRF) | |||
|full-text-url=https://sci-hub.do/10.1016/j.archger.2020.104188 | |||
}} | |||
{{medline-entry | |||
|title=Associations Between Plasma Immunomodulatory and Inflammatory Mediators With VACS Index Scores Among Older HIV-Infected Adults on Antiretroviral Therapy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32695109 | |||
|keywords=* HIV | |||
* aging | |||
* anti-retroviral therapy | |||
* inflammation | |||
* morbidity | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7338430 | |||
}} | |||
{{medline-entry | |||
|title=Chrysin Impact on Oxidative and Inflammation Damages in the Liver of Aged Male Rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32679027 | |||
|keywords=* Aging | |||
* chrysin | |||
* inflammation | |||
* liver | |||
* oxidative stress | |||
* rat. | |||
|full-text-url=https://sci-hub.do/10.2174/1871530320666200717162304 | |||
}} | |||
{{medline-entry | |||
|title=Correction of immunosuppression in aged septic rats by human ghrelin and growth hormone through the vagus nerve-dependent inhibition of TGF-β production. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32677895 | |||
|keywords=* Aging | |||
* Ghrelin | |||
* Immunosuppression | |||
* Sepsis | |||
* Vagus nerve | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7364485 | |||
}} | |||
{{medline-entry | |||
|title=Epigenetics of neuroinflammation: Immune response, inflammatory response and cholinergic synaptic involvement evidenced by genome-wide DNA methylation analysis of delirious inpatients. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32590150 | |||
|keywords=* Aging | |||
* Delirium | |||
* Genome-wide DNA methylation | |||
* Immune response | |||
* Inflammatory response | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486988 | |||
}} | |||
{{medline-entry | |||
|title=[i]Andrographis paniculata[/i] and Its Bioactive Diterpenoids Against Inflammation and Oxidative Stress in Keratinocytes. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32560449 | |||
|keywords=* Andrographis paniculata | |||
* andrographolide | |||
* inflammation | |||
* keratinocytes | |||
* oxidative stress | |||
* skin aging | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7346124 | |||
}} | |||
{{medline-entry | |||
|title=Etanercept improves aging-induced cognitive deficits by reducing inflammation and vascular dysfunction in rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32569601 | |||
|keywords=* Aging | |||
* Etanercept | |||
* Inflammation | |||
* Learning | |||
* Memory | |||
* TNFα | |||
* Vascular dementia | |||
|full-text-url=https://sci-hub.do/10.1016/j.physbeh.2020.113019 | |||
}} | |||
{{medline-entry | |||
|title=Bacterial antigen translocation and age as BMI-independent contributing factors on systemic inflammation in NAFLD patients. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32559006 | |||
|keywords=* NAFLD | |||
* aging | |||
* bacterial translocation | |||
* cytokines | |||
* insulin resistance | |||
|full-text-url=https://sci-hub.do/10.1111/liv.14571 | |||
}} | |||
{{medline-entry | |||
|title=Bone marrow mesenchymal stem cells improve thymus and spleen function of aging rats through affecting P21/PCNA and suppressing oxidative stress. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32561691 | |||
|keywords=* BMSCs | |||
* P21/PCNA | |||
* aging | |||
* immune system | |||
* oxidative stress | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343510 | |||
}} | |||
{{medline-entry | |||
|title=Glycolic acid adjusted to pH 4 stimulates collagen production and epidermal renewal without affecting levels of proinflammatory [[TNF]]-alpha in human skin explants. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32583600 | |||
|keywords=* cosmetics | |||
* glycolic acid | |||
* keratolytic agents | |||
* rejuvenation | |||
* skin aging | |||
|full-text-url=https://sci-hub.do/10.1111/jocd.13570 | |||
}} | |||
{{medline-entry | |||
|title=A20 of nucleus pulposus cells plays a self-protection role via the nuclear factor-kappa B pathway in the inflammatory microenvironment. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32566144 | |||
|keywords=* A20 | |||
* Nuclear factor-kappa B | |||
* Nucleus pulposus | |||
* Senescence | |||
* Tumour necrosis factor alpha | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284293 | |||
}} | |||
{{medline-entry | |||
|title=Age-associated decline in neural, endocrine, and immune responses in men and women: Involvement of intracellular signaling pathways. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32563124 | |||
|mesh-terms=* Adult | |||
* Aging | |||
* Estradiol | |||
* Female | |||
* Humans | |||
* Hydrocortisone | |||
* Immunity, Cellular | |||
* Intracellular Fluid | |||
* Male | |||
* Middle Aged | |||
* Signal Transduction | |||
* Testosterone | |||
* Young Adult | |||
|keywords=* 17β-estradiol | |||
* Cortisol | |||
* Cytokines | |||
* Testosterone | |||
* Tyrosine hydroxylase | |||
|full-text-url=https://sci-hub.do/10.1016/j.jneuroim.2020.577290 | |||
}} | |||
{{medline-entry | |||
|title=Classical and lectin complement pathways and markers of inflammation for investigation of susceptibility to infections among healthy older adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32536956 | |||
|keywords=* Aging | |||
* Complement system | |||
* Elderly | |||
* Immune | |||
* Inflammation | |||
* Lectin | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7285792 | |||
}} | |||
{{medline-entry | |||
|title=Activation of FoxO1/SIRT1/RANKL/OPG pathway may underlie the therapeutic effects of resveratrol on aging-dependent male osteoporosis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32532246 | |||
|keywords=* Aging | |||
* FoxO1 | |||
* Male osteoporosois | |||
* OPG | |||
* RANKL | |||
* Resveratrol | |||
* SIRT1 | |||
* Type II osteoporosis | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7293127 | |||
}} | |||
{{medline-entry | |||
|title=The senescence-associated secretome as an indicator of age and medical risk. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32554926 | |||
|keywords=* Aging | |||
* Cellular senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7406245 | |||
}} | |||
{{medline-entry | |||
|title=Exercise Partially Rejuvenates Muscle Stem Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32484032 | |||
|keywords=* TGF-beta | |||
* aging | |||
* cyclin D1 | |||
* longevity | |||
* regeneration | |||
* stem cells | |||
|full-text-url=https://sci-hub.do/10.1089/rej.2020.2359 | |||
}} | |||
{{medline-entry | |||
|title=Brazilian berry extract (Myrciaria jaboticaba): A promising therapy to minimize prostatic inflammation and oxidative stress. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32460430 | |||
|mesh-terms=* Age Factors | |||
* Animals | |||
* Anti-Inflammatory Agents | |||
* Antioxidants | |||
* Cyclooxygenase 2 | |||
* Diet, High-Fat | |||
* Dose-Response Relationship, Drug | |||
* Fruit | |||
* Interleukin-1beta | |||
* Interleukin-6 | |||
* Lipid Peroxidation | |||
* Male | |||
* Mice | |||
* Myrtaceae | |||
* Oxidative Stress | |||
* Plant Extracts | |||
* Prostatitis | |||
* T-Lymphocytes | |||
|keywords=* aging | |||
* bioactive compounds | |||
* obesity | |||
* overweight | |||
* polyphenols | |||
|full-text-url=https://sci-hub.do/10.1002/pros.24017 | |||
}} | |||
{{medline-entry | |||
|title=Potential therapeutic effects of endothelial cells trans-differentiated from Wharton's Jelly-derived mesenchymal stem cells on altered vascular functions in aged diabetic rat model. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32426041 | |||
|keywords=* Aging | |||
* Diabetes mellitus | |||
* Endothelial cells | |||
* Hypertension | |||
* Mesenchymal stem cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7216374 | |||
}} | |||
{{medline-entry | |||
|title=[Effect of fragmented sleep on postoperative cognitive function and central neuroinflammation]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32375444 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Cognition | |||
* Cognition Disorders | |||
* Fear | |||
* Hippocampus | |||
* Mice | |||
* Mice, Inbred ICR | |||
|keywords=* Central nervous system | |||
* Cognition disorders | |||
* Inflammation | |||
* Postoperative period | |||
* Sleep deprivation | |||
|full-text-url=https://sci-hub.do/10.3760/cma.j.cn112137-20191215-02734 | |||
}} | |||
{{medline-entry | |||
|title=Can blocking inflammation enhance immunity during aging? | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32386656 | |||
|keywords=* Inflammaging | |||
* p38-MAP Kinase | |||
* senescence | |||
* senolytics | |||
|full-text-url=https://sci-hub.do/10.1016/j.jaci.2020.03.016 | |||
}} | |||
{{medline-entry | |||
|title=[FAS- and [[TNF]]-dependent ways participation in apoptosis mechanisms in hypotalumus in physiological and pathological aging.] | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32362081 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Apoptosis | |||
* Female | |||
* Hypothalamus | |||
* Mice | |||
* Mice, Transgenic | |||
* Signal Transduction | |||
* Tumor Necrosis Factor-alpha | |||
* fas Receptor | |||
|keywords=* FAS-, TNF-dependent pathways | |||
* aging | |||
* apoptosis | |||
* hypothalamus | |||
* neurons | |||
}} | |||
{{medline-entry | |||
|title=Ultrasound-guided continuous thoracic paravertebral block alleviates postoperative delirium in elderly patients undergoing esophagectomy: A randomized controlled trial. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32332664 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Analgesia, Patient-Controlled | |||
* Delirium | |||
* Esophagectomy | |||
* Female | |||
* Geriatrics | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Nerve Block | |||
* Postoperative Complications | |||
* Prospective Studies | |||
* Ultrasonography | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7440095 | |||
}} | |||
{{medline-entry | |||
|title=17β-Estradiol improves insulin signalling and insulin resistance in the aged female hearts: Role of inflammatory and anti-inflammatory cytokines. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32311377 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Anti-Inflammatory Agents | |||
* Blood Glucose | |||
* Cytokines | |||
* Estradiol | |||
* Female | |||
* Heart | |||
* Insulin | |||
* Insulin Resistance | |||
* Lipid Metabolism | |||
* Menopause | |||
* Ovariectomy | |||
* Rats | |||
* Rats, Wistar | |||
* Signal Transduction | |||
|keywords=* 17β-estradiol | |||
* Aging | |||
* Cytokines | |||
* Heart | |||
* Insulin signalling | |||
|full-text-url=https://sci-hub.do/10.1016/j.lfs.2020.117673 | |||
}} | |||
{{medline-entry | |||
|title=Synergistic Antitumor Efficacy of Magnetohyperthermia and Poly(lactic-co-glycolic acid)-Encapsulated Selol in Ehrlich Breast Adenocarcinoma Treatment in Elderly Swiss Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32252879 | |||
|mesh-terms=* Adenocarcinoma | |||
* Aging | |||
* Animals | |||
* Cell Line, Tumor | |||
* Glycols | |||
* Humans | |||
* Mice | |||
* Nanoparticles | |||
* Polylactic Acid-Polyglycolic Acid Copolymer | |||
* Selenium Compounds | |||
|full-text-url=https://sci-hub.do/10.1166/jbn.2020.2890 | |||
}} | |||
{{medline-entry | |||
|title=Pinitol suppresses [[TNF]]-α-induced chondrocyte senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32200264 | |||
|keywords=* Cellular senescence | |||
* Nrf2 | |||
* Osteoarthritis | |||
* Pinitol | |||
* TNF-α | |||
|full-text-url=https://sci-hub.do/10.1016/j.cyto.2020.155047 | |||
}} | |||
{{medline-entry | |||
|title=[Aging of skin fibroblasts: genetic and epigenetic factors.] | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32160428 | |||
|mesh-terms=* Cells, Cultured | |||
* Epigenesis, Genetic | |||
* Fibroblasts | |||
* Humans | |||
* Skin Aging | |||
|keywords=* aging | |||
* melatonin | |||
* signal molecules | |||
* skin fibroblasts | |||
}} | |||
{{medline-entry | |||
|title=Functional and traditional training improve muscle power and reduce proinflammatory cytokines in older women: A randomized controlled trial. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32151735 | |||
|keywords=* Aging | |||
* Cytokines. | |||
* Dynapenia | |||
* Inflamm-aging | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2020.110920 | |||
}} | |||
{{medline-entry | |||
|title=Associations of [[TNF]]-α -308 G>A and [[TNF]]-β 252 A>G with Physical Function and BNP-Rugao Longevity and Ageing Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32115620 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Female | |||
* Humans | |||
* Longevity | |||
* Male | |||
* Natriuretic Peptide, Brain | |||
* Tumor Necrosis Factor-alpha | |||
|keywords=* Physical function | |||
* TNF-α -308 G>A polymorphism | |||
* TNF-β 252 A>G polymorphism | |||
* plasma BNP | |||
* population study. | |||
|full-text-url=https://sci-hub.do/10.1007/s12603-020-1336-1 | |||
}} | |||
{{medline-entry | |||
|title=3D TECA hydrogel reduces cellular senescence and enhances fibroblasts migration in wound healing. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32104405 | |||
|keywords=* 3D TECA | |||
* Cellular senescence | |||
* Fibroblast migration | |||
* SA-β-gal | |||
* TNF-α | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7032142 | |||
}} | |||
{{medline-entry | |||
|title=Regulatory Effect of Anwulignan on the Immune Function Through Its Antioxidation and Anti-Apoptosis in D-Galactose-Induced Aging Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32099340 | |||
|mesh-terms=* Animals | |||
* Antioxidants | |||
* Apoptosis | |||
* Cytokines | |||
* Immunologic Factors | |||
* Immunosenescence | |||
* Male | |||
* Medicine, Chinese Traditional | |||
* Mice | |||
* Models, Animal | |||
* NF-E2-Related Factor 2 | |||
* Oxidative Stress | |||
* Phytochemicals | |||
* Schisandra | |||
* Spleen | |||
|keywords=* Anwulignan | |||
* anti-apoptosis | |||
* antioxidation | |||
* immunosenescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996228 | |||
}} | |||
{{medline-entry | |||
|title=Pretreatment Frailty Is Independently Associated With Increased Risk of Infections After Immunosuppression in Patients With Inflammatory Bowel Diseases. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32105728 | |||
|keywords=* Aging | |||
* Immunosuppression | |||
* Side Effect | |||
* Thiopurine | |||
|full-text-url=https://sci-hub.do/10.1053/j.gastro.2020.02.032 | |||
}} | |||
{{medline-entry | |||
|title=The Citrus Flavonoid Naringenin Protects the Myocardium from Ageing-Dependent Dysfunction: Potential Role of SIRT1. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32047577 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Antioxidants | |||
* Cell Line | |||
* Cellular Senescence | |||
* Citrus | |||
* Cytoprotection | |||
* Disease Models, Animal | |||
* Flavanones | |||
* Humans | |||
* Interleukin-6 | |||
* Mice | |||
* Myocardium | |||
* Protein Binding | |||
* Rats | |||
* Reactive Oxygen Species | |||
* Sirtuin 1 | |||
* Tumor Necrosis Factor-alpha | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7003265 | |||
}} | |||
{{medline-entry | |||
|title=In the Absence of a TCR Signal IL-2/IL-12/18-Stimulated γδ T Cells Demonstrate Potent Anti-Tumoral Function Through Direct Killing and Senescence Induction in Cancer Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31947966 | |||
|keywords=* IL-12 | |||
* IL-18 | |||
* TCR bypass stimulation | |||
* senescence | |||
* γδ T cells | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7017313 | |||
}} | |||
{{medline-entry | |||
|title=Aging is associated with loss of beneficial effects of estrogen on leptin responsiveness in mice fed high fat diet: Role of estrogen receptor α and cytokines. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31904410 | |||
|keywords=* Aging | |||
* Cytokines | |||
* ERα | |||
* Estrogen | |||
* Leptin sensitivity | |||
|full-text-url=https://sci-hub.do/10.1016/j.mad.2019.111198 | |||
}} | |||
{{medline-entry | |||
|title=Mitochondrial Dysfunction and Alpha-Lipoic Acid: Beneficial or Harmful in Alzheimer's Disease? | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31885820 | |||
|mesh-terms=* Aging | |||
* Alzheimer Disease | |||
* Amyloid beta-Peptides | |||
* Animals | |||
* Cytokines | |||
* Humans | |||
* Inflammation Mediators | |||
* Mitochondria | |||
* Neurofibrillary Tangles | |||
* Neurons | |||
* Neuroprotective Agents | |||
* Thioctic Acid | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6914903 | |||
}} | |||
{{medline-entry | |||
|title=Design, synthesis and evaluation of diosgenin carbamate derivatives as multitarget anti-Alzheimer's disease agents. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31837501 | |||
|mesh-terms=* Aging | |||
* Alzheimer Disease | |||
* Amyloid beta-Peptides | |||
* Animals | |||
* Anti-Inflammatory Agents, Non-Steroidal | |||
* Astrocytes | |||
* Carbamates | |||
* Cell Line, Tumor | |||
* Cell Survival | |||
* Diosgenin | |||
* Dose-Response Relationship, Drug | |||
* Drug Design | |||
* Galactose | |||
* Humans | |||
* Inflammation | |||
* Male | |||
* Mice | |||
* Mice, Inbred ICR | |||
* Molecular Structure | |||
* Neuroprotective Agents | |||
* Oxidative Stress | |||
* Protein Aggregates | |||
* Structure-Activity Relationship | |||
|keywords=* Alzheimer’s disease | |||
* Anti-Aβ activity | |||
* Anti-inflammatory | |||
* Antioxidant | |||
* Diosgenin | |||
* Multi-target-directed ligands | |||
|full-text-url=https://sci-hub.do/10.1016/j.ejmech.2019.111913 | |||
}} | |||
{{medline-entry | |||
|title=Oral Administration of Okara Soybean By-Product Attenuates Cognitive Impairment in a Mouse Model of Accelerated Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31816987 | |||
|mesh-terms=* Aging | |||
* Animal Feed | |||
* Animals | |||
* Brain-Derived Neurotrophic Factor | |||
* Cognitive Dysfunction | |||
* Diet | |||
* Gastrointestinal Microbiome | |||
* Gene Expression Regulation | |||
* Hippocampus | |||
* Male | |||
* Mice | |||
* Soybeans | |||
* Tumor Necrosis Factor-alpha | |||
|keywords=* BDNF | |||
* SAMP8 | |||
* cognitive impairment | |||
* neuroprotection | |||
* okara | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950093 | |||
}} | |||
{{medline-entry | |||
|title=Electric vagal nerve stimulation inhibits inflammation and improves early postoperation cognitive dysfunction in aged rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31759387 | |||
|mesh-terms=* Aging | |||
* Anesthesia, General | |||
* Animals | |||
* Behavior, Animal | |||
* Hippocampus | |||
* Inflammation | |||
* Male | |||
* Maze Learning | |||
* NF-kappa B | |||
* Postoperative Cognitive Complications | |||
* Rats | |||
* Rats, Sprague-Dawley | |||
* Splenectomy | |||
* Tumor Necrosis Factor-alpha | |||
* Vagus Nerve Stimulation | |||
|keywords=* Cognitive dysfunction | |||
* General anesthesia | |||
* Inflammation | |||
* Vagus nerve stimulation | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6875068 | |||
}} | |||
{{medline-entry | |||
|title=Metformin decreases LPS-induced inflammatory response in rabbit annulus fibrosus stem/progenitor cells by blocking HMGB1 release. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31772144 | |||
|mesh-terms=* Animals | |||
* Annulus Fibrosus | |||
* Anti-Inflammatory Agents | |||
* Cellular Senescence | |||
* HMGB1 Protein | |||
* Inflammation | |||
* Intervertebral Disc Degeneration | |||
* Lipopolysaccharides | |||
* Metformin | |||
* Rabbits | |||
* Stem Cells | |||
|keywords=* HMGB1 | |||
* annulus fibrosis stem cells | |||
* cell senescence | |||
* intervertebral disc degeneration | |||
* metformin | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6914423 | |||
}} | |||
{{medline-entry | |||
|title=The effects of blueberry and strawberry serum metabolites on age-related oxidative and inflammatory signaling in vitro. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31746877 | |||
|mesh-terms=* Aged | |||
* Aging | |||
* Animals | |||
* Blueberry Plants | |||
* Double-Blind Method | |||
* Female | |||
* Fragaria | |||
* Fruit | |||
* Humans | |||
* Male | |||
* Microglia | |||
* Middle Aged | |||
* Nitric Oxide | |||
* Nitric Oxide Synthase Type II | |||
* Oxidative Stress | |||
* Postprandial Period | |||
* Rats | |||
* Tumor Necrosis Factor-alpha | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6906224 | |||
}} | |||
{{medline-entry | |||
|title=Arsenic induces human chondrocyte senescence and accelerates rat articular cartilage aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31734849 | |||
|keywords=* Aging | |||
* Arsenic | |||
* Articular cartilage | |||
* Human chondrocyte | |||
* Senescence | |||
* Senescence-associated secretory phenotype | |||
|full-text-url=https://sci-hub.do/10.1007/s00204-019-02607-2 | |||
}} | |||
{{medline-entry | |||
|title=Bone Benefits of Fish Oil Supplementation Depend on its EPA and DHA Content. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31717258 | |||
|mesh-terms=* Age Factors | |||
* Animals | |||
* Bone Density | |||
* Bone Density Conservation Agents | |||
* Bone Marrow Cells | |||
* Bone Remodeling | |||
* Bone and Bones | |||
* Cells, Cultured | |||
* Cytokines | |||
* Dietary Supplements | |||
* Disease Models, Animal | |||
* Docosahexaenoic Acids | |||
* Eicosapentaenoic Acid | |||
* Female | |||
* JNK Mitogen-Activated Protein Kinases | |||
* Mice, Inbred C57BL | |||
* Osteoporosis | |||
* Signal Transduction | |||
* p38 Mitogen-Activated Protein Kinases | |||
|keywords=* aging | |||
* bone mineral density | |||
* bone resorption | |||
* concentrated fish oil | |||
* cytokines | |||
* inflammation | |||
* omega-3 fatty acids | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6893665 | |||
}} | |||
{{medline-entry | |||
|title=Inflammaging phenotype in rhesus macaques is associated with a decline in epithelial barrier-protective functions and increased pro-inflammatory function in CD161-expressing cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31713098 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Chronic Disease | |||
* Cytokines | |||
* Disease Models, Animal | |||
* Epithelium | |||
* Flow Cytometry | |||
* Immunity, Innate | |||
* Inflammation | |||
* Macaca mulatta | |||
* NK Cell Lectin-Like Receptor Subfamily B | |||
* Phenotype | |||
* Th17 Cells | |||
|keywords=* CD161+ cells | |||
* I-FABP | |||
* Inflammaging | |||
* LBP | |||
* Leaky gut | |||
* sCD14 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925095 | |||
}} | |||
{{medline-entry | |||
|title=Single-cell transcriptomics reveals expansion of cytotoxic CD4 T cells in supercentenarians. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31719197 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aged, 80 and over | |||
* B-Lymphocytes | |||
* CD4-Positive T-Lymphocytes | |||
* Case-Control Studies | |||
* Cell Differentiation | |||
* Cells, Cultured | |||
* Clonal Evolution | |||
* Gene Expression Profiling | |||
* Humans | |||
* Interferon-gamma | |||
* Leukocytes, Mononuclear | |||
* Middle Aged | |||
* Single-Cell Analysis | |||
* Tumor Necrosis Factor-alpha | |||
|keywords=* CD4 CTL | |||
* aging | |||
* centenarian | |||
* single-cell transcriptome | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883788 | |||
}} | |||
{{medline-entry | |||
|title=Gut microbiota combined with metabolomics reveals the metabolic profile of the normal aging process and the anti-aging effect of FuFang Zhenshu TiaoZhi(FTZ) in mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31704617 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Bacteria | |||
* Biomarkers | |||
* Drugs, Chinese Herbal | |||
* Gastrointestinal Microbiome | |||
* Hyperlipidemias | |||
* Lipid Metabolism | |||
* Male | |||
* Metabolome | |||
* Metabolomics | |||
* Mice | |||
* Mice, Inbred C57BL | |||
|keywords=* Aging | |||
* FTZ | |||
* Gut microbiota | |||
* Metabolomics | |||
|full-text-url=https://sci-hub.do/10.1016/j.biopha.2019.109550 | |||
}} | |||
{{medline-entry | |||
|title=Intervertebral disc ageing and degeneration: The antiapoptotic effect of oestrogen. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31669486 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Apoptosis | |||
* Cytokines | |||
* Estrogens | |||
* Female | |||
* Humans | |||
* Inflammation | |||
* Intervertebral Disc | |||
* Intervertebral Disc Degeneration | |||
* Intervertebral Disc Displacement | |||
* Male | |||
* Phosphatidylinositol 3-Kinases | |||
* Signal Transduction | |||
|keywords=* Ageing | |||
* Apoptosis | |||
* Intervertebral disc degeneration | |||
* Oestrogen | |||
* Spine | |||
|full-text-url=https://sci-hub.do/10.1016/j.arr.2019.100978 | |||
}} | |||
{{medline-entry | |||
|title=MicroRNA 16-5p is upregulated in calorie-restricted mice and modulates inflammatory cytokines of macrophages. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31654705 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Caloric Restriction | |||
* Cytokines | |||
* Diet Therapy | |||
* Inflammation | |||
* Interleukin-1beta | |||
* Macrophages | |||
* Male | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* MicroRNAs | |||
* Models, Animal | |||
* RAW 264.7 Cells | |||
* Transcriptional Activation | |||
* Tumor Necrosis Factor-alpha | |||
* Up-Regulation | |||
|keywords=* Caloric restriction | |||
* Cellular immunology | |||
* Cytokines | |||
* Macrophages | |||
* microRNA | |||
|full-text-url=https://sci-hub.do/10.1016/j.gene.2019.144191 | |||
}} | |||
{{medline-entry | |||
|title=Aerobic exercise modulates cytokine profile and sleep quality in elderly. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31656505 | |||
|mesh-terms=* Aged | |||
* Cytokines | |||
* Exercise | |||
* Female | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Sedentary Behavior | |||
* Sleep Wake Disorders | |||
|keywords=* Sleep quality | |||
* aerobic exercise | |||
* aging | |||
* inflammatory cytokines | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6794533 | |||
}} | |||
{{medline-entry | |||
|title=Trehalose targets Nrf2 signal to alleviate d-galactose induced aging and improve behavioral ability. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31630800 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Disease Models, Animal | |||
* Dose-Response Relationship, Drug | |||
* Galactose | |||
* Male | |||
* Memory Disorders | |||
* Mice | |||
* Mice, Inbred ICR | |||
* NF-E2-Related Factor 2 | |||
* Signal Transduction | |||
* Trehalose | |||
|keywords=* Antioxidant stress | |||
* Cognitive impairment | |||
* Inflammation | |||
* Nrf2 | |||
* Trehalose | |||
* d-galactose | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbrc.2019.10.088 | |||
}} | |||
{{medline-entry | |||
|title=Anti-Inflammatory and Anti-Aging Evaluation of Pigment-Protein Complex Extracted from [i]Chlorella Pyrenoidosa[/i]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31623220 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Anti-Inflammatory Agents | |||
* Antioxidants | |||
* Biological Products | |||
* Chlorella | |||
* Cytokines | |||
* Disease Models, Animal | |||
* Galactose | |||
* Inflammation | |||
* Interleukin-6 | |||
* Lipopolysaccharides | |||
* Macrophages | |||
* Male | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* NF-kappa B | |||
* Nitric Oxide | |||
* Oxidative Stress | |||
* RAW 264.7 Cells | |||
* Superoxide Dismutase | |||
* Tumor Necrosis Factor-alpha | |||
|keywords=* Chlorella pyrenoidosa | |||
* NF-κB | |||
* PPARs | |||
* anti-aging | |||
* anti-inflammation | |||
* pigment–protein complex | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6836285 | |||
}} | |||
{{medline-entry | |||
|title=Inflammatory mediators and the risk of falls among older women with acute low back pain: data from Back Complaints in the Elders (BACE)-Brazil. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31606818 | |||
|keywords=* Aging | |||
* BACE | |||
* Cytokines | |||
* Disability | |||
* Fall risk | |||
* Low back pain | |||
|full-text-url=https://sci-hub.do/10.1007/s00586-019-06168-x | |||
}} | |||
{{medline-entry | |||
|title=Acetylcholinesterase inhibitors targeting the cholinergic anti-inflammatory pathway: a new therapeutic perspective in aging-related disorders. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31583530 | |||
|keywords=* Acetylcholinesterase inhibitor | |||
* Aging | |||
* CHRFAM7A | |||
* CHRNA7 | |||
* Cholinergic anti-inflammatory pathway | |||
* Neuroinflammation | |||
|full-text-url=https://sci-hub.do/10.1007/s40520-019-01359-4 | |||
}} | |||
{{medline-entry | |||
|title=Study on Metabolic Trajectory of Liver Aging and the Effect of Fufang Zhenzhu Tiaozhi on Aging Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31555127 | |||
|keywords=* Fufang Zhenzhu Tiaozhi | |||
* liver aging | |||
* mass spectrometry | |||
* metabolomics | |||
* ultra-performance liquid chromatography | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722462 | |||
}} | |||
{{medline-entry | |||
|title=Systemic Tumor Necrosis Factor-Alpha Trajectories Relate to Brain Health in Typically Aging Older Adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31549145 | |||
|keywords=* Brain aging | |||
* Cognition | |||
* Gray matter volume | |||
* Inflammation | |||
* Neuroimaging | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7457183 | |||
}} | |||
{{medline-entry | |||
|title=Targeting senescence improves angiogenic potential of adipose-derived mesenchymal stem cells in patients with preeclampsia. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31521202 | |||
|mesh-terms=* Adipose Tissue | |||
* Adult | |||
* Cell Movement | |||
* Cell Proliferation | |||
* Cell Survival | |||
* Cellular Senescence | |||
* Dasatinib | |||
* Female | |||
* Humans | |||
* Mesenchymal Stem Cells | |||
* Pre-Eclampsia | |||
* Pregnancy | |||
* Protein Kinase Inhibitors | |||
|keywords=* Angiogenesis, Senolytics, Dasatinib | |||
* Mesenchymal stem cells | |||
* Preeclampsia | |||
* Senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6744626 | |||
}} | |||
{{medline-entry | |||
|title=Suppression of gut dysbiosis by Bifidobacterium longum alleviates cognitive decline in 5XFAD transgenic and aged mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31413350 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Bifidobacterium longum | |||
* Cognitive Dysfunction | |||
* Dysbiosis | |||
* Feces | |||
* Gastrointestinal Microbiome | |||
* Humans | |||
* Lipopolysaccharides | |||
* Mice | |||
* Mice, Transgenic | |||
* Probiotics | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6694197 | |||
}} | |||
{{medline-entry | |||
|title=Moderate hyperoxia induces senescence in developing human lung fibroblasts. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31411059 | |||
|mesh-terms=* Autophagy | |||
* CCAAT-Enhancer-Binding Protein-beta | |||
* Cell Proliferation | |||
* Cellular Senescence | |||
* Cyclin-Dependent Kinase Inhibitor p21 | |||
* DNA Damage | |||
* Endoplasmic Reticulum Stress | |||
* Etoposide | |||
* Extracellular Matrix | |||
* Fetus | |||
* Fibroblasts | |||
* G2 Phase Cell Cycle Checkpoints | |||
* Gene Expression Regulation | |||
* Humans | |||
* Hyperoxia | |||
* Interleukin-1 | |||
* Interleukin-8 | |||
* Lung | |||
* Matrix Metalloproteinase 3 | |||
* Oxygen | |||
* Plasminogen Activator Inhibitor 1 | |||
* Primary Cell Culture | |||
* Tumor Necrosis Factor-alpha | |||
* Tumor Suppressor Protein p53 | |||
|keywords=* autophagy | |||
* endoplasmic reticulum stress | |||
* lung development | |||
* oxygen | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6879905 | |||
}} | |||
{{medline-entry | |||
|title=Aging-related carcinoembryonic antigen-related cell adhesion molecule 1 signaling promotes vascular dysfunction. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31389127 | |||
|mesh-terms=* Aged | |||
* Aging | |||
* Animals | |||
* Antigens, CD | |||
* Cell Adhesion Molecules | |||
* Cells, Cultured | |||
* Endothelium, Vascular | |||
* Humans | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Mice, Knockout | |||
* Middle Aged | |||
* Signal Transduction | |||
|keywords=* aging | |||
* anti-aging | |||
* cytokines | |||
* inflammation | |||
* mouse | |||
* reactive oxygen species | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826129 | |||
}} | |||
{{medline-entry | |||
|title=Microglia Express Insulin-Like Growth Factor-1 in the Hippocampus of Aged APP /PS1 Transgenic Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31417357 | |||
|keywords=* aging | |||
* cerebral amyloidosis | |||
* insulin-like growth factor | |||
* neurogenesis | |||
* neuroinflammation | |||
* tumor necrosis factor | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6682662 | |||
}} | |||
{{medline-entry | |||
|title=Age- and diet-specific effects of chronic exposure to chlorpyrifos on hormones, inflammation and gut microbiota in rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31400786 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Chlorpyrifos | |||
* Diet, High-Fat | |||
* Gastrointestinal Microbiome | |||
* Hypothalamo-Hypophyseal System | |||
* Inflammation | |||
* Male | |||
* Pituitary-Adrenal System | |||
* RNA, Ribosomal, 16S | |||
* Rats | |||
|keywords=* 16S rRNA gene sequencing | |||
* Gut endocrine | |||
* Gut-brain axis | |||
* Hormone | |||
* Hypothalamic-pituitary-adrenal axis | |||
* Inflammation | |||
|full-text-url=https://sci-hub.do/10.1016/j.pestbp.2019.05.018 | |||
}} | |||
==TOMM20== | |||
{{medline-entry | |||
|title=Effect of aging on mitochondria and metabolism of bovine granulosa cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32921645 | |||
|keywords=* Aging | |||
* Cow | |||
* Granulosa cells | |||
* Mitochondria | |||
|full-text-url=https://sci-hub.do/10.1262/jrd.2020-071 | |||
}} | |||
==TP53== | |||
{{medline-entry | |||
|title=p53 inhibits the osteogenic differentiation but does not induce senescence in human dental follicle cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32473528 | |||
|keywords=* Cellular senescence | |||
* Dental follicle cells | |||
* E2F-1 | |||
* Osteogenic differentiation | |||
* p53 | |||
|full-text-url=https://sci-hub.do/10.1016/j.diff.2020.05.003 | |||
}} | |||
{{medline-entry | |||
|title=Mutational spectrum and dynamics of clonal hematopoiesis in anemia of older individuals. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32243522 | |||
|mesh-terms=* Age Factors | |||
* Aged | |||
* Aging | |||
* Anemia | |||
* Female | |||
* Hematopoiesis | |||
* Humans | |||
* Kaplan-Meier Estimate | |||
* Male | |||
* Middle Aged | |||
* Mutation | |||
* Prospective Studies | |||
|full-text-url=https://sci-hub.do/10.1182/blood.2019004362 | |||
}} | |||
{{medline-entry | |||
|title=[[TP53]]/miR-34a-associated signaling targets [i]SERPINE1[/i] expression in human pancreatic cancer. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31986125 | |||
|keywords=* Aging | |||
* PDAC | |||
* SERPINE1 | |||
* TP53 | |||
* cancer | |||
* miR-34a | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7041729 | |||
}} | |||
{{medline-entry | |||
|title=Expression of p16 in nodular fasciitis: an implication for self-limited and inflammatory nature of the lesion. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31933915 | |||
|keywords=* CDK4 | |||
* MDM2 | |||
* TP53 | |||
* nodular fasciitis | |||
* p16 | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6945175 | |||
}} | |||
==TPH1== | |||
{{medline-entry | |||
|title=[i]Lactobacillus plantarum[/i] DR7 improved brain health in aging rats via the serotonin, inflammatory and apoptosis pathways. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33245015 | |||
|keywords=* Lactobacillus spp. | |||
* aging | |||
* brain | |||
|full-text-url=https://sci-hub.do/10.3920/BM2019.0200 | |||
}} | |||
==TPO== | |||
{{medline-entry | |||
|title=Megakaryocytes promote osteoclastogenesis in aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32634116 | |||
|keywords=* aging | |||
* bone marrow macrophage | |||
* megakaryocyte | |||
* osteoclast | |||
* thrombopoietin | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7425434 | |||
}} | |||
==TPP1== | |||
{{medline-entry | |||
|title=FBW7 Mediates Senescence and Pulmonary Fibrosis through Telomere Uncapping. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33086033 | |||
|keywords=* DNA damage response | |||
* FBXW7 | |||
* TPP1 | |||
* cellular senescence | |||
* chronic stress | |||
* idiopathic pulmonary fibrosis | |||
* premature aging | |||
* proteostasis | |||
* stem cells | |||
* telomere | |||
* telomere uncapping | |||
|full-text-url=https://sci-hub.do/10.1016/j.cmet.2020.10.004 | |||
}} | |||
==TPR== | |||
{{medline-entry | |||
|title=Catalytic Performances of Cu/MCM-22 Zeolites with Different Cu Loadings in NH -SCR. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33143192 | |||
|keywords=* Cu loading | |||
* Cu/MCM-22 | |||
* NH3-SCR | |||
* hydrothermal aging | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7694057 | |||
}} | |||
{{medline-entry | |||
|title=Do traits of plant species predict the efficacy of species distribution models for finding new occurrences? | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32551077 | |||
|keywords=* dispersal | |||
* generalist | |||
* lifespan | |||
* niche models | |||
* range size | |||
* specialist | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297770 | |||
}} | |||
{{medline-entry | |||
|title=In-situ modified the surface of Pt-doped perovskite catalyst for soot oxidation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31541957 | |||
|keywords=* Aging resistance | |||
* Amorphization | |||
* Surface modification | |||
* Symmetrical structure | |||
|full-text-url=https://sci-hub.do/10.1016/j.jhazmat.2019.121210 | |||
}} | |||
==TRAF3== | |||
{{medline-entry | |||
|title=[[TRAF3]], a Target of MicroRNA-363-3p, Suppresses Senescence and Regulates the Balance Between Osteoblastic and Adipocytic Differentiation of Rat Bone Marrow-Derived Mesenchymal Stem Cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32111144 | |||
|keywords=* TRAF3 | |||
* adipogenic differentiation | |||
* bone marrow-derived mesenchymal stem cells | |||
* miR-363-3p | |||
* osteogenic differentiation | |||
* senescence | |||
|full-text-url=https://sci-hub.do/10.1089/scd.2019.0276 | |||
}} | |||
==TREM2== | |||
{{medline-entry | |||
|title=Loss of [[TREM2]] Confers Resilience to Synaptic and Cognitive Impairment in Aged Mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33139402 | |||
|keywords=* TREM2 | |||
* aging | |||
* dendritic spine density | |||
* learning and memory | |||
* long-term potentiation | |||
* synaptic plasticity | |||
|full-text-url=https://sci-hub.do/10.1523/JNEUROSCI.2193-20.2020 | |||
}} | |||
{{medline-entry | |||
|title=Triggering Receptor Expressed on Myeloid Cell 2 R47H Exacerbates Immune Response in Alzheimer's Disease Brain. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33101276 | |||
|keywords=* NKG2D ligands | |||
* aging | |||
* inflammation | |||
* interferon type I response | |||
* microglia | |||
* neurodegeneration | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7546799 | |||
}} | |||
{{medline-entry | |||
|title=Knockdown of astrocytic [[TREM2]] in the hippocampus relieves cognitive decline in elderly male mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32991925 | |||
|keywords=* Aging | |||
* Long-term potentiation | |||
* TREM2 | |||
* astrocytes | |||
* learning and memory | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbr.2020.112939 | |||
}} | |||
==TRIM21== | |||
{{medline-entry | |||
|title=[[TRIM21]] overexpression promotes tumor progression by regulating cell proliferation, cell migration and cell senescence in human glioma. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32064156 | |||
|keywords=* Glioma | |||
* TRIM21 | |||
* cell senescence | |||
* drug resistance | |||
* p53-p21 pathway | |||
* prognosis | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7017742 | |||
}} | |||
==TRIM27== | |||
{{medline-entry | |||
|title=[[TRIM27]] Functions as a Novel Oncogene in Non-Triple-Negative Breast Cancer by Blocking Cellular Senescence through p21 Ubiquitination. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33251042 | |||
|keywords=* EP300 | |||
* TRIM27 | |||
* breast cancer | |||
* cell apoptosis | |||
* cell senescence | |||
* chemoresistance | |||
* p21 | |||
* prognosis | |||
* transcription | |||
* ubiquitination | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7666371 | |||
}} | |||
==TRIP13== | |||
{{medline-entry | |||
|title=BubR1 allelic effects drive phenotypic heterogeneity in mosaic-variegated aneuploidy progeria syndrome. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31738183 | |||
|mesh-terms=* Aging | |||
* Alleles | |||
* Animals | |||
* Cell Cycle Proteins | |||
* Chromosome Disorders | |||
* Lung Neoplasms | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Mitosis | |||
* Mosaicism | |||
* Mutation | |||
* Phenotype | |||
* Progeria | |||
* Protein-Serine-Threonine Kinases | |||
|keywords=* Aging | |||
* Cancer | |||
* Cellular senescence | |||
* Genetic diseases | |||
* Oncology | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934189 | |||
}} | |||
==TRPC6== | |||
{{medline-entry | |||
|title=Redox and mTOR-dependent regulation of plasma lamellar calcium influx controls the senescence-associated secretory phenotype. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32686475 | |||
|keywords=* SASP | |||
* Senescence | |||
* TRPC6 | |||
* calcium | |||
* hydrogen peroxide | |||
* mTOR | |||
|full-text-url=https://sci-hub.do/10.1177/1535370220943122 | |||
}} | |||
==TRPC7== | |||
{{medline-entry | |||
|title=Nociceptive transient receptor potential canonical 7 ([[TRPC7]]) mediates aging-associated tumorigenesis induced by ultraviolet B. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31755176 | |||
|keywords=* TRPC7 | |||
* aging | |||
* p53 | |||
* tumor initiator gene | |||
* tumorigenesis | |||
* ultraviolet pathology | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974716 | |||
}} | |||
==TRPV4== | |||
{{medline-entry | |||
|title=[[TRPV4]] receptor as a functional sensory molecule in bladder urothelium: Stretch-independent, tissue-specific actions and pathological implications. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31914645 | |||
|mesh-terms=* Animals | |||
* Calcium | |||
* Guinea Pigs | |||
* Humans | |||
* Muscle Contraction | |||
* Muscle, Smooth | |||
* TRPV Cation Channels | |||
* Urinary Bladder | |||
* Urothelium | |||
|keywords=* ATP release | |||
* TRPV4 receptor | |||
* aging | |||
* overactive bladders | |||
* urothelium | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6973053 | |||
}} | |||
{{medline-entry | |||
|title=Exercise restores impaired endothelium-derived hyperpolarizing factor-mediated vasodilation in aged rat aortic arteries via the [[TRPV4]]-K 2.3 signaling complex. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31564840 | |||
|mesh-terms=* Animals | |||
* Biological Factors | |||
* Cardiovascular Diseases | |||
* Endothelial Cells | |||
* Endothelium, Vascular | |||
* Male | |||
* Potassium Channels, Calcium-Activated | |||
* Rats | |||
* Rats, Sprague-Dawley | |||
* TRPV Cation Channels | |||
* Vasodilation | |||
|keywords=* EDHF | |||
* KCa2.3 | |||
* TRPV4 | |||
* aging | |||
* endothelium | |||
* exercise | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731547 | |||
}} | |||
==TSPO== | |||
{{medline-entry | |||
|title=Age and Sex Influence the Neuro-inflammatory Response to a Peripheral Acute LPS Challenge. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31749696 | |||
|keywords=* 18 kDa translocator protein | |||
* aging | |||
* astrocytes | |||
* microglia | |||
* neuroinflammation | |||
* triggering receptor expressed on myeloid cells 2 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6848890 | |||
}} | |||
{{medline-entry | |||
|title=Upregulation of cannabinoid receptor type 2, but not [[TSPO]], in senescence-accelerated neuroinflammation in mice: a positron emission tomography study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31707986 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Brain | |||
* Inflammation | |||
* Mice | |||
* Microglia | |||
* Positron-Emission Tomography | |||
* Radiopharmaceuticals | |||
* Receptor, Cannabinoid, CB2 | |||
* Receptors, GABA | |||
* Up-Regulation | |||
|keywords=* Cannabinoid receptor type 2 | |||
* Immunostaining | |||
* Microglial activation | |||
* Positron emission tomography | |||
* Senescence-accelerated prone mouse | |||
* Translocator protein | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842455 | |||
}} | |||
==TST== | |||
{{medline-entry | |||
|title=H S Donors Reverse Age-Related Gastric Malfunction Impaired Due to Fructose-Induced Injury [i]via[/i] CBS, CSE, and [[TST]] Expression. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32848752 | |||
|keywords=* aging | |||
* donor | |||
* fructose | |||
* gastric mucosa | |||
* hydrogen sulfide | |||
* oxidative stress | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396573 | |||
}} | |||
{{medline-entry | |||
|title=Adaptations in mechanical muscle function, muscle morphology, and aerobic power to high-intensity endurance training combined with either traditional or power strength training in older adults: a randomized clinical trial. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32239311 | |||
|keywords=* Aging | |||
* Concurrent training | |||
* Explosive force | |||
* Functional capacity | |||
* HIIT | |||
|full-text-url=https://sci-hub.do/10.1007/s00421-020-04355-z | |||
}} | |||
{{medline-entry | |||
|title=Digital phenotyping by consumer wearables identifies sleep-associated markers of cardiovascular disease risk and biological aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31602410 | |||
|mesh-terms=* Adult | |||
* Aged | |||
* Aging | |||
* Body Mass Index | |||
* Cardiovascular Diseases | |||
* Cohort Studies | |||
* Female | |||
* Humans | |||
* Male | |||
* Middle Aged | |||
* Risk Factors | |||
* Self Report | |||
* Sleep | |||
* Telomere | |||
* Waist Circumference | |||
* Wearable Electronic Devices | |||
* Young Adult | |||
|keywords=* Data integration | |||
* Predictive markers | |||
* Risk factors | |||
* Senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778117 | |||
}} | |||
{{medline-entry | |||
|title=Objective Sleep Duration in Older Adults: Results From The Irish Longitudinal Study on Ageing. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31579942 | |||
|mesh-terms=* Accelerometry | |||
* Aged | |||
* Aging | |||
* Cross-Sectional Studies | |||
* Exercise | |||
* Female | |||
* Health Status | |||
* Humans | |||
* Independent Living | |||
* Ireland | |||
* Longitudinal Studies | |||
* Male | |||
* Polysomnography | |||
* Self Report | |||
* Sleep | |||
* Time Factors | |||
|keywords=* GENEActiv | |||
* accelerometer | |||
* actigraphy | |||
* older population | |||
* sleep duration | |||
|full-text-url=https://sci-hub.do/10.1111/jgs.16177 | |||
}} | |||
==TTL== | |||
{{medline-entry | |||
|title=Longitudinal Associations of Body Mass Index, Waist Circumference, and Waist-to-Hip Ratio with Biomarkers of Oxidative Stress in Older Adults: Results of a Large Cohort Study. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31986512 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Biomarkers | |||
* Body Mass Index | |||
* Cohort Studies | |||
* Female | |||
* Germany | |||
* Humans | |||
* Longitudinal Studies | |||
* Male | |||
* Middle Aged | |||
* Oxidative Stress | |||
* Waist Circumference | |||
* Waist-Hip Ratio | |||
|keywords=* Body mass index | |||
* Free radicals | |||
* Oxidative stress | |||
* Reactive oxygen metabolites | |||
* Total thiol levels | |||
* Waist circumference | |||
* Waist-to-hip ratio | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7098284 | |||
}} | |||
==TTN== | |||
{{medline-entry | |||
|title=LncRNA [[TTN]]-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/MBTD1 axis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31600142 | |||
|mesh-terms=* Aging | |||
* Apoptosis | |||
* Brain Neoplasms | |||
* Cell Line, Tumor | |||
* Cell Proliferation | |||
* Chromosomal Proteins, Non-Histone | |||
* Computational Biology | |||
* Drug Resistance | |||
* Gene Expression Regulation, Neoplastic | |||
* Humans | |||
* MicroRNAs | |||
* Osteosarcoma | |||
* RNA, Long Noncoding | |||
|keywords=* aging and age-related diseases | |||
* lncRNA TTN-AS1 | |||
* malignant brain tumour domain containing protein 1 | |||
* miR-134-5p | |||
* osteosarcoma | |||
* resistance | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814585 | |||
}} | |||
==TTR== | |||
{{medline-entry | |||
|title=Cellular secretion and cytotoxicity of transthyretin mutant proteins underlie late-onset amyloidosis and neurodegeneration. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31728576 | |||
|mesh-terms=* Amyloid Neuropathies, Familial | |||
* Animals | |||
* Cell Death | |||
* Cell Line, Tumor | |||
* Disease Models, Animal | |||
* Drosophila | |||
* HEK293 Cells | |||
* Humans | |||
* Locomotion | |||
* Longevity | |||
* Mutant Proteins | |||
* Mutation | |||
* Nerve Degeneration | |||
* Prealbumin | |||
|keywords=* Amyloidosis | |||
* Drosophila melanogaster | |||
* ERQC | |||
* Endoplasmic reticulum quality control | |||
* Proteostasis | |||
* TTR | |||
* Transthyretin | |||
|full-text-url=https://sci-hub.do/10.1007/s00018-019-03357-1 | |||
}} | |||
==TXNIP== | |||
{{medline-entry | |||
|title=Panax notoginseng saponins attenuate neuroinflammation through [[TXNIP]]-mediated NLRP3 inflammasome activation in aging rats. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33176641 | |||
|keywords=* Aging | |||
* Microglia | |||
* NLRP3 inflammasome | |||
* Saponins from Panax notoginseng. | |||
* TXNIP | |||
* neuroinflammation | |||
|full-text-url=https://sci-hub.do/10.2174/1389201021999201110204735 | |||
}} | |||
{{medline-entry | |||
|title=Redox homeostasis and cell cycle activation mediate beta-cell mass expansion in aged, diabetes-prone mice under metabolic stress conditions: Role of thioredoxin-interacting protein ([[TXNIP]]). | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33128997 | |||
|keywords=* Aging | |||
* Beta-cells | |||
* Cell cycle | |||
* Metabolic stress | |||
* Redox homeostasis | |||
* Thioredoxin-interacting protein | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589534 | |||
}} | |||
{{medline-entry | |||
|title=[Effect of diabetic induced thioredoxin interacting protein ([[TXNIP]]) on islet cell senescence]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32744003 | |||
|mesh-terms=* Animals | |||
* Carrier Proteins | |||
* Cellular Senescence | |||
* Diabetes Mellitus, Experimental | |||
* Islets of Langerhans | |||
* Mice | |||
* Thioredoxins | |||
|keywords=* INS-1 cell | |||
* cell senescence | |||
* diabetes | |||
* thioredoxin interacting protein | |||
|full-text-url=https://sci-hub.do/10.12047/j.cjap.5878.2020.027 | |||
}} | |||
{{medline-entry | |||
|title=PRMT5-TRIM21 interaction regulates the senescence of osteosarcoma cells by targeting the [[TXNIP]]/p21 axis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32023548 | |||
|keywords=* PRMT5 | |||
* TRIM21 | |||
* TXNIP | |||
* p21 | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7041745 | |||
}} | |||
==TXNRD2== | |||
{{medline-entry | |||
|title=Wogonin induces cellular senescence in breast cancer via suppressing [[TXNRD2]] expression. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32671444 | |||
|keywords=* Breast cancer | |||
* Immune surveillance | |||
* ROS | |||
* Senescence | |||
* TXNRD2 | |||
* Wogonin | |||
|full-text-url=https://sci-hub.do/10.1007/s00204-020-02842-y | |||
}} | |||
==U2AF1== | |||
{{medline-entry | |||
|title=Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of mRNA splicing relevant proteins in aging HSPCs. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32141009 | |||
|keywords=* Aging | |||
* DEPs | |||
* HSPC | |||
* iTRAQ | |||
* mRNA splicing | |||
|full-text-url=https://sci-hub.do/10.1007/s40520-020-01509-z | |||
}} | |||
==UACA== | |||
{{medline-entry | |||
|title=Knockdown of [i][[UACA]][/i] inhibitsproliferation and invasion and promotes senescence of hepatocellular carcinoma cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31949867 | |||
|keywords=* HIF1α | |||
* UACA | |||
* hepatocellular carcinoma | |||
* invasion | |||
* knockdown | |||
* proliferation | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962967 | |||
}} | |||
==UCHL1== | |||
{{medline-entry | |||
|title=Abolishing [[UCHL1]]'s hydrolase activity exacerbates TBI-induced axonal injury and neuronal death in mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33159930 | |||
|keywords=* Aging | |||
* Axonal injury | |||
* Neurodegeneration | |||
* Traumatic brain injury | |||
* Ubiquitin carboxy terminal hydrolase L1 | |||
* Ubiquitin proteasome pathway | |||
|full-text-url=https://sci-hub.do/10.1016/j.expneurol.2020.113524 | |||
}} | |||
==UCP1== | |||
{{medline-entry | |||
|title=Muscle-dependent regulation of adipose tissue function in long-lived growth hormone-mutant mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32464603 | |||
|keywords=* adipose tissue | |||
* aging | |||
* growth hormone | |||
* inflammation | |||
* uncoupling protein 1 (UCP1) | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7288969 | |||
}} | |||
{{medline-entry | |||
|title=Lack of [[UCP1]] stimulates fatty liver but mediates [[UCP1]]-independent action of beige fat to improve hyperlipidemia in Apoe knockout mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32179129 | |||
|keywords=* Apoe knockout mice | |||
* Beige fat | |||
* Gene expression | |||
* Hyperlipidemia | |||
* Longevity | |||
* Uncoupling protein 1 | |||
|full-text-url=https://sci-hub.do/10.1016/j.bbadis.2020.165762 | |||
}} | |||
{{medline-entry | |||
|title=Postnatal leptin surge is critical for the transient induction of the developmental beige adipocytes in mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31961706 | |||
|mesh-terms=* Adipocytes, Beige | |||
* Adipocytes, White | |||
* Adipose Tissue | |||
* Aging | |||
* Animals | |||
* Dose-Response Relationship, Drug | |||
* Female | |||
* Leptin | |||
* Male | |||
* Mice | |||
* Mice, Obese | |||
* Sympathetic Nervous System | |||
* Tyrosine 3-Monooxygenase | |||
* Uncoupling Protein 1 | |||
|keywords=* beige adipocytes | |||
* leptin | |||
* sympathetic nerve system | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191411 | |||
}} | |||
{{medline-entry | |||
|title=Age-related sex differences in the expression of important disease-linked mitochondrial proteins in mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31806023 | |||
|mesh-terms=* Adipose Tissue, Brown | |||
* Aging | |||
* Animals | |||
* Brain | |||
* Female | |||
* Male | |||
* Mice, Inbred C57BL | |||
* Mitochondrial Proteins | |||
* Muscle, Skeletal | |||
* Sex Characteristics | |||
* Spleen | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896328 | |||
}} | |||
{{medline-entry | |||
|title=An anti-inflammatory phenotype in visceral adipose tissue of old lean mice, augmented by exercise. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31427677 | |||
|mesh-terms=* Adipocytes | |||
* Aging | |||
* Animals | |||
* Humans | |||
* Inflammation | |||
* Intra-Abdominal Fat | |||
* Macrophages | |||
* Mice | |||
* Obesity | |||
* Phenotype | |||
* Physical Conditioning, Animal | |||
* Resistance Training | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700172 | |||
}} | |||
==UGT2B28== | |||
{{medline-entry | |||
|title=Ages of hepatocellular carcinoma occurrence and life expectancy are associated with a [[UGT2B28]] genomic variation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31805979 | |||
|mesh-terms=* Adult | |||
* Age of Onset | |||
* Aged | |||
* Aged, 80 and over | |||
* Carcinoma, Hepatocellular | |||
* Female | |||
* Genetic Association Studies | |||
* Genetic Predisposition to Disease | |||
* Glucuronosyltransferase | |||
* Humans | |||
* Life Expectancy | |||
* Liver Neoplasms | |||
* Male | |||
* Middle Aged | |||
* Neoplasm Metastasis | |||
* Neoplasm Recurrence, Local | |||
* Odds Ratio | |||
* Polymorphism, Single Nucleotide | |||
* Survival Analysis | |||
* Young Adult | |||
|keywords=* Alcoholism | |||
* Xenobiotic metabolizing enzymes | |||
* Young hepatocellular carcinoma; age of death | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896495 | |||
}} | |||
==USP7== | |||
{{medline-entry | |||
|title=Deubiquitinase [[USP7]] regulates [i]Drosophila[/i] aging through ubiquitination and autophagy. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33221768 | |||
|keywords=* DMC | |||
* Drosophila | |||
* USP7 | |||
* aging | |||
* autophagy | |||
|full-text-url=https://sci-hub.do/10.18632/aging.104067 | |||
}} | |||
==VCAM1== | |||
{{medline-entry | |||
|title=Sunitinib facilitates metastatic breast cancer spreading by inducing endothelial cell senescence. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32993785 | |||
|keywords=* Cell senescence | |||
* Metastasis | |||
* Metastatic breast cancer (MBC) | |||
* Receptor tyrosine kinase (RTK) | |||
* Sunitinib | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7526390 | |||
}} | |||
==VDAC1== | |||
{{medline-entry | |||
|title=Low abundance of NDUFV2 and NDUFS4 subunits of the hydrophilic complex I domain and [[VDAC1]] predicts mammalian longevity. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32353747 | |||
|keywords=* Complex I | |||
* Droplet digital PCR | |||
* Longevity | |||
* Mammals | |||
* Mitochondria | |||
* NDUFS4 subunit | |||
* NDUFV2 subunit | |||
* VDAC | |||
* Western blot | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191849 | |||
}} | |||
{{medline-entry | |||
|title=Changes in the expression of oxidative phosphorylation complexes in the aging intestinal mucosa. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32173460 | |||
|keywords=* Aging | |||
* Colonic crypt | |||
* Expression | |||
* Intestine | |||
* Mitochondria | |||
* OXPHOS | |||
|full-text-url=https://sci-hub.do/10.1016/j.exger.2020.110924 | |||
}} | |||
==VDR== | |||
{{medline-entry | |||
|title=25-Hydroxyvitamin D positively regulates periodontal inflammaging via SOCS3/STAT signaling in diabetic mice. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31917967 | |||
|keywords=* 25-Hydroxyvitamin D(3) | |||
* Diabetic periodontitis | |||
* Inflammaging | |||
* SOCS3 | |||
* Senescence | |||
* Senescence-associated secretory phenotypes | |||
|full-text-url=https://sci-hub.do/10.1016/j.steroids.2019.108570 | |||
}} | |||
{{medline-entry | |||
|title=1,25-Dihydroxyvitamin D protects against age-related osteoporosis by a novel [[VDR]]-Ezh2-p16 signal axis. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31880094 | |||
|mesh-terms=* 25-Hydroxyvitamin D3 1-alpha-Hydroxylase | |||
* Aging | |||
* Animals | |||
* Bone and Bones | |||
* Cells, Cultured | |||
* Cyclin-Dependent Kinase Inhibitor p16 | |||
* Cyclin-Dependent Kinase Inhibitor p19 | |||
* DNA Damage | |||
* Enhancer of Zeste Homolog 2 Protein | |||
* Female | |||
* Histones | |||
* Male | |||
* Mesenchymal Stem Cells | |||
* Mice | |||
* Mice, Knockout | |||
* Osteocytes | |||
* Osteogenesis | |||
* Osteoporosis | |||
* Oxidative Stress | |||
* Receptors, Calcitriol | |||
* Vitamin D | |||
|keywords=* Ezh2 | |||
* Vitamin D | |||
* cellular senescence | |||
* osteogenesis | |||
* osteoporosis | |||
* p16 | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996957 | |||
}} | |||
{{medline-entry | |||
|title=Active vitamin D impedes the progression of non-alcoholic fatty liver disease by inhibiting cell senescence in a rat model. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31810868 | |||
|keywords=* Active vitamin D | |||
* Cell senescence | |||
* Non-alcoholic fatty liver disease | |||
* Oxidative stress | |||
* P53-p21 signaling pathway | |||
* Vitamin D receptor | |||
|full-text-url=https://sci-hub.do/10.1016/j.clinre.2019.10.007 | |||
}} | |||
==VEGFA== | |||
{{medline-entry | |||
|title=APOE ε4-specific associations of VEGF gene family expression with cognitive aging and Alzheimer's disease. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31791659 | |||
|mesh-terms=* Aged | |||
* Aged, 80 and over | |||
* Aging | |||
* Apolipoprotein E4 | |||
* Cognitive Aging | |||
* Cognitive Dysfunction | |||
* Female | |||
* Gene Expression | |||
* Genetic Association Studies | |||
* Genetic Predisposition to Disease | |||
* Genotype | |||
* Humans | |||
* Male | |||
* Neovascularization, Physiologic | |||
* Neuropilin-1 | |||
* Vascular Endothelial Growth Factor A | |||
|keywords=* APOE-ε4 | |||
* Aging | |||
* Cognition | |||
* Gene expression | |||
* Vascular endothelial growth factor (VEGF) | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064375 | |||
}} | |||
==VGLL4== | |||
{{medline-entry | |||
|title=The lncRNA MEG3/miR-16-5p/[[VGLL4]] regulatory axis is involved in etoposide-induced senescence of tumor cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33141998 | |||
|keywords=* LncRNA MEG3 | |||
* breast cancer | |||
* cell senescence | |||
* etoposide | |||
* lung adenocarcinoma | |||
|full-text-url=https://sci-hub.do/10.1002/jgm.3291 | |||
}} | |||
==VHL== | |||
{{medline-entry | |||
|title=Hypoxic response regulators RHY-1 and EGL-9/PHD promote longevity through a [[VHL]]-1-independent transcriptional response. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32399915 | |||
|keywords=* Aging | |||
* C. elegans | |||
* EGL-9/PHD | |||
* HIF-1 signaling | |||
* Hypoxic response | |||
* Lifespan | |||
* RHY-1 | |||
|full-text-url=https://sci-hub.do/10.1007/s11357-020-00194-0 | |||
}} | |||
==VIM== | |||
{{medline-entry | |||
|title=Establishment and characterization of a fibroblast cell line from postmortem skin of an adult Chinese muntjac (Muntiacus reevesi). | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31898011 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Cell Culture Techniques | |||
* Cell Line | |||
* Cell Proliferation | |||
* Cell Shape | |||
* Chromosomes, Mammalian | |||
* Fibroblasts | |||
* Male | |||
* Muntjacs | |||
* Postmortem Changes | |||
* Skin | |||
|keywords=* Characteristics | |||
* Chinese muntjac | |||
* Fibroblast cell line | |||
* Postmortem skin | |||
|full-text-url=https://sci-hub.do/10.1007/s11626-019-00422-8 | |||
}} | |||
==VIP== | |||
{{medline-entry | |||
|title=Alterations in Intrinsic and Synaptic Properties of Hippocampal CA1 [[VIP]] Interneurons During Aging. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33173468 | |||
|keywords=* VIP | |||
* action potential | |||
* aging | |||
* calretinin | |||
* circuit disinhibition | |||
* hippocampus | |||
* synapse | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591401 | |||
}} | |||
{{medline-entry | |||
|title=Nutrition and exercise interventions could ameliorate age-related cognitive decline: a meta-analysis of randomized controlled trials. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33052590 | |||
|keywords=* Aging | |||
* Cognitive impairment | |||
* Exercise | |||
* Meta-analysis | |||
* Nutrition | |||
|full-text-url=https://sci-hub.do/10.1007/s40520-020-01730-w | |||
}} | |||
==VSIG4== | |||
{{medline-entry | |||
|title=Immune checkpoint protein [[VSIG4]] as a biomarker of aging in murine adipose tissue. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32856419 | |||
|keywords=* VSIG4 | |||
* adipose tissue | |||
* aging | |||
* frailty index | |||
* immune checkpoint | |||
* inflammation | |||
* macrophage | |||
* mouse | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7576241 | |||
}} | |||
==WASL== | |||
{{medline-entry | |||
|title=Loss of Wasl improves pancreatic cancer outcome. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32434991 | |||
|keywords=* Cancer | |||
* Cellular senescence | |||
* Mouse models | |||
* Oncology | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259520 | |||
}} | |||
==WDR5== | |||
{{medline-entry | |||
|title=Inhibition of the H3K4 methyltransferase MLL1/[[WDR5]] complex attenuates renal senescence in ischemia reperfusion mice by reduction of p16 . | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31570196 | |||
|mesh-terms=* Acute Kidney Injury | |||
* Animals | |||
* Biphenyl Compounds | |||
* Cell Line | |||
* Cyclin-Dependent Kinase Inhibitor p16 | |||
* Dihydropyridines | |||
* Drug Evaluation, Preclinical | |||
* Fibroblasts | |||
* Histone-Lysine N-Methyltransferase | |||
* Histones | |||
* Intracellular Signaling Peptides and Proteins | |||
* Male | |||
* Mice, Inbred C57BL | |||
* Myeloid-Lymphoid Leukemia Protein | |||
* Rats | |||
* Renal Insufficiency | |||
* Reperfusion Injury | |||
|keywords=* H3K4me3 | |||
* MLL1 | |||
* WDR5 | |||
* acute kidney injury | |||
* p16(INK4a) | |||
* senescence | |||
|full-text-url=https://sci-hub.do/10.1016/j.kint.2019.06.021 | |||
}} | |||
==WFDC2== | |||
{{medline-entry | |||
|title=Differences in biomarkers and molecular pathways according to age for patients with HFrEF. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33002110 | |||
|keywords=* aging | |||
* biological age | |||
* biomarkers | |||
* chronological age | |||
* heart failure with reduced ejection fraction | |||
|full-text-url=https://sci-hub.do/10.1093/cvr/cvaa279 | |||
}} | |||
==WIPI2== | |||
{{medline-entry | |||
|title=Neuronal autophagy declines substantially with age and is rescued by overexpression of [[WIPI2]]. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31794336 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Autophagy | |||
* Autophagy-Related Proteins | |||
* Mice, Transgenic | |||
* Models, Biological | |||
* Neurons | |||
* Phagosomes | |||
* Phosphate-Binding Proteins | |||
* RNA, Messenger | |||
|keywords=* Aging | |||
* WIPI2 | |||
* autophagosome biogenesis | |||
* autophagy | |||
* macroautophagy | |||
* neurodegeneration | |||
* neuronal autophagy | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6984449 | |||
}} | |||
==WNT1== | |||
{{medline-entry | |||
|title=Plasma proteomic profile of age, health span, and all-cause mortality in older adults. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33089916 | |||
|keywords=* SomaScan® assay | |||
* aging | |||
* proteomics | |||
* weighted gene co-expression network analysis | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7681045 | |||
}} | |||
==WNT10A== | |||
{{medline-entry | |||
|title=Dysregulation of the Wnt Signaling Pathway and Synovial Stem Cell Dysfunction in Osteoarthritis Development. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31964233 | |||
|keywords=* Wnt signaling pathway | |||
* cell senescence | |||
* differentiation | |||
* osteoarthritis | |||
* synovial mesenchymal stem cells (SMSCs) | |||
|full-text-url=https://sci-hub.do/10.1089/scd.2019.0260 | |||
}} | |||
==WNT3A== | |||
{{medline-entry | |||
|title=Chronic WNT/β-catenin signaling induces cellular senescence in lung epithelial cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32109549 | |||
|keywords=* ATII cells | |||
* Aging | |||
* Cellular senescence | |||
* IPF | |||
* WNT signaling | |||
|full-text-url=https://sci-hub.do/10.1016/j.cellsig.2020.109588 | |||
}} | |||
==WNT7A== | |||
{{medline-entry | |||
|title=Exogenous Expression of [[WNT7A]] in Leukemia-Derived Cell Lines Induces Resistance to Chemotherapeutic Agents. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32436833 | |||
|keywords=* WNT signaling | |||
* WNT7A | |||
* cell cycle | |||
* chemotherapeutic agents | |||
* leukemias | |||
* senescence | |||
|full-text-url=https://sci-hub.do/10.2174/1871520620666200521114100 | |||
}} | |||
==WRN== | |||
{{medline-entry | |||
|title=The Impact of Vitamin C on Different System Models of Werner Syndrome. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33202145 | |||
|keywords=* Werner syndrome | |||
* aging | |||
* mouse | |||
* stem cells | |||
* vitamin C | |||
* worm | |||
|full-text-url=https://sci-hub.do/10.1089/ars.2020.8147 | |||
}} | |||
{{medline-entry | |||
|title=[[WRN]] modulates translation by influencing nuclear mRNA export in HeLa cancer cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/33054770 | |||
|keywords=* Cancer | |||
* NXF1 export receptor | |||
* Senescence | |||
* Translation | |||
* Werner syndrome protein | |||
* mRNA export | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557079 | |||
}} | |||
{{medline-entry | |||
|title=MIB1-mediated degradation of [[WRN]] promotes cellular senescence in response to camptothecin treatment. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32652764 | |||
|keywords=* CPT | |||
* Mind bomb 1 | |||
* Werner syndrome protein | |||
* aging | |||
* protein stability | |||
|full-text-url=https://sci-hub.do/10.1096/fj.202000268RRR | |||
}} | |||
{{medline-entry | |||
|title=A Case Report of Werner's Syndrome With a Novel Mutation From India. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32528764 | |||
|keywords=* aging | |||
* novel mutation | |||
* progeria | |||
* werner syndrome | |||
* wrn gene | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7282380 | |||
}} | |||
{{medline-entry | |||
|title=Evidence for premature aging in a Drosophila model of Werner syndrome. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31518666 | |||
|mesh-terms=* Aging, Premature | |||
* Animals | |||
* Behavior, Animal | |||
* Body Composition | |||
* Body Weight | |||
* DNA Repair | |||
* Drosophila | |||
* Drosophila Proteins | |||
* Exonucleases | |||
* Female | |||
* Gastrointestinal Neoplasms | |||
* Male | |||
* Motor Activity | |||
* Muscle Weakness | |||
* Mutation | |||
* Phenotype | |||
* Werner Syndrome | |||
|keywords=* Aging | |||
* DNA repair | |||
* Locomotor function | |||
* Tumor | |||
* Werner syndrome | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6935377 | |||
}} | |||
==WT1== | |||
{{medline-entry | |||
|title=Age and weight at first mating affects plasma leptin concentration but no effects on reproductive performance of gilts. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31602307 | |||
|keywords=* Backfat | |||
* Gilts | |||
* Leptin | |||
* Litter performance | |||
* Longevity | |||
* Mating | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778857 | |||
}} | |||
==WWP1== | |||
{{medline-entry | |||
|title=The ubiquitin ligase [[WWP1]] contributes to shifts in matrix proteolytic profiles and a myocardial aging phenotype with diastolic heart. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32822210 | |||
|mesh-terms=* Age Factors | |||
* Animals | |||
* Cells, Cultured | |||
* Diastole | |||
* Disease Models, Animal | |||
* Extracellular Matrix | |||
* Female | |||
* Fibroblasts | |||
* Heart Failure | |||
* Hypertrophy, Left Ventricular | |||
* Male | |||
* Mice, Inbred C57BL | |||
* Mice, Transgenic | |||
* Myocardium | |||
* Phenotype | |||
* Proteolysis | |||
* Stroke Volume | |||
* Ubiquitin-Protein Ligases | |||
* Ventricular Dysfunction, Left | |||
* Ventricular Function, Left | |||
* Ventricular Remodeling | |||
|keywords=* aging | |||
* cardiac hypertrophy | |||
* diastolic dysfunction | |||
* heart failure | |||
* ventricular remodeling | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7717125 | |||
}} | |||
==XBP1== | |||
{{medline-entry | |||
|title=Age-dependent impairment of adipose-derived stem cells isolated from horses. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31900232 | |||
|keywords=* Aging | |||
* Endoplasmic reticulum stress | |||
* Equine adipose-derived mesenchymal stem cells | |||
* Insulin resistance | |||
* Pro-inflammatory cytokines | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6942290 | |||
}} | |||
==XDH== | |||
{{medline-entry | |||
|title=Enhancing xanthine dehydrogenase activity is an effective way to delay leaf senescence and increase rice yield. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32162142 | |||
|keywords=* Allantoin | |||
* Reactive oxygen species | |||
* Rice (Oryza sativa L.) | |||
* Senescence | |||
* Xanthine dehydrogenase | |||
* Yield | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065298 | |||
}} | |||
==ZC3H12A== | |||
{{medline-entry | |||
|title=Keratinocyte-specific ablation of Mcpip1 impairs skin integrity and promotes local and systemic inflammation. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31786670 | |||
|mesh-terms=* Aging | |||
* Animals | |||
* Calgranulin A | |||
* Cell Differentiation | |||
* Cell Proliferation | |||
* Cells, Cultured | |||
* Cornified Envelope Proline-Rich Proteins | |||
* Epidermis | |||
* Gene Expression Regulation | |||
* Gene Ontology | |||
* Inflammation | |||
* Interleukin-1 | |||
* Keratinocytes | |||
* Keratins | |||
* Lymph Nodes | |||
* Mice | |||
* Mice, Inbred C57BL | |||
* Mice, Transgenic | |||
* Proliferating Cell Nuclear Antigen | |||
* Ribonucleases | |||
* Skin | |||
* Spleen | |||
* Transcriptome | |||
|keywords=* MCPIP1 | |||
* Regnase-1 | |||
* Skin inflammation | |||
* ZC3H12A | |||
|full-text-url=https://sci-hub.do/10.1007/s00109-019-01853-2 | |||
}} | |||
==ZEB2== | |||
{{medline-entry | |||
|title=miR-200b regulates cellular senescence and inflammatory responses by targeting [[ZEB2]] in pulmonary emphysema. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/32070140 | |||
|mesh-terms=* Animals | |||
* Cell Line | |||
* Cellular Senescence | |||
* Disease Models, Animal | |||
* Gene Expression | |||
* Gene Expression Regulation | |||
* Inflammation | |||
* Lung | |||
* Mice | |||
* MicroRNAs | |||
* Pulmonary Emphysema | |||
* Zinc Finger E-box Binding Homeobox 2 | |||
|keywords=* ZEB2 | |||
* cellular senescence | |||
* inflammation | |||
* miR-200b | |||
* pulmonary emphysema | |||
|full-text-url=https://sci-hub.do/10.1080/21691401.2020.1725029 | |full-text-url=https://sci-hub.do/10.1080/21691401.2020.1725029 | ||
}} | |||
==ZMPSTE24== | |||
{{medline-entry | |||
|title=Bone marrow-derived mesenchymal stem cells in three-dimensional co-culture attenuate degeneration of nucleus pulposus cells. | |||
|pubmed-url=https://pubmed.ncbi.nlm.nih.gov/31666429 | |||
|mesh-terms=* Bone Marrow Cells | |||
* Cell Cycle | |||
* Cell Proliferation | |||
* Cell Survival | |||
* Cells, Cultured | |||
* Cellular Senescence | |||
* Coculture Techniques | |||
* Collagen Type II | |||
* Female | |||
* Humans | |||
* Intervertebral Disc Degeneration | |||
* Male | |||
* Matrix Metalloproteinase 9 | |||
* Membrane Proteins | |||
* Mesenchymal Stem Cells | |||
* Metalloendopeptidases | |||
* Middle Aged | |||
* Nucleus Pulposus | |||
* Signal Transduction | |||
* Transcription Factor RelA | |||
* Up-Regulation | |||
* beta-Galactosidase | |||
|keywords=* 3D co-culture | |||
* ZMPSTE24 | |||
* bone marrow-derived mesenchymal stem cells | |||
* nucleus pulposus | |||
* senescence | |||
|full-text-url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834418 | |||
}} | }} |