EIF5A

Материал из hpluswiki
Версия от 18:32, 12 мая 2021; OdysseusBot (обсуждение | вклад) (Новая страница: «Eukaryotic translation initiation factor 5A-1 (eIF-5A-1) (eIF-5A1) (Eukaryotic initiation factor 5A isoform 1) (eIF-5A) (Rev-binding factor) (eIF-4D) ==Publicati...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску

Eukaryotic translation initiation factor 5A-1 (eIF-5A-1) (eIF-5A1) (Eukaryotic initiation factor 5A isoform 1) (eIF-5A) (Rev-binding factor) (eIF-4D)

Publications[править]

The curious case of polyamines: spermidine drives reversal of B cell senescence.

Spermidine, a polyamine that induces macroautophagy/autophagy, exhibits anti-aging properties. It is thought that these properties of spermidine are primarily due to its ability to modulate autophagy, but the mechanistic details were hitherto unclear. Studying the effects of spermidine on B lymphocytes, Zhang [i]et al[/i] uncover the molecular mechanism that places spermidine at the crossroads of autophagy and immune senescence. Their work highlights the role of spermidine as an anti-aging metabolite that exerts its effects through the translational control of autophagy. EIF5A, eukaryotic translation initiation factor 5A; HC, hematopoietic cell; ODC1, ornithine decarboxylase 1; PBMCs, peripheral blood mononuclear cells.

MeSH Terms

  • Autophagy
  • B-Lymphocytes
  • Cellular Senescence
  • Leukocytes, Mononuclear
  • Polyamines
  • Spermidine

Keywords

  • Aging
  • EIF5A
  • hypusination
  • lysosome
  • macroautophagy
  • spermidine
  • stress
  • translation


Polyamines reverse immune senescence via the translational control of autophagy.

Organismal aging is associated with compromised cellular function, which can be partially attributed to accumulation of cellular damage. Being the major, if not only, cellular bulk-degradation mechanism, macroautophagy (hereafter autophagy) declines with age in multiple tissues and organisms. Spermidine is an endogenous polyamine metabolite that also declines with age. It prolongs lifespan and improves tissue functions of model organisms in an autophagy-dependent manner. We report that autophagic flux is significantly reduced in B cells from old mice. Spermidine induces autophagy and improves the function of both old mouse and old human B cells. Mechanistically, spermidine post-translationally modifies (hypusinates) the translation factor EIF5A. Hypusinated EIF5A specifically regulates the synthesis of the master autophagy and lysosome transcription factor, TFEB (transcription factor EB). This pathway declines with age in both mice and humans, which may eventually lead to declining autophagy and impaired tissue functions in old individuals.

MeSH Terms

  • Aging
  • Animals
  • Autophagy
  • Humans
  • Lysosomes
  • Polyamines
  • Protein Processing, Post-Translational
  • Spermidine

Keywords

  • Aging
  • B cells
  • EIF5A
  • TFEB
  • autophagy
  • hypusine
  • spermidine
  • translation