ANGPT1

Материал из hpluswiki
Версия от 17:57, 12 мая 2021; OdysseusBot (обсуждение | вклад) (Новая страница: «Angiopoietin-1 precursor (ANG-1) [KIAA0003] ==Publications== {{medline-entry |title=Altered microRNA expression in bovine skeletal muscle with age. |pubmed-url=...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску

Angiopoietin-1 precursor (ANG-1) [KIAA0003]

Publications[править]

Altered microRNA expression in bovine skeletal muscle with age.

Age-dependent decline in skeletal muscle function leads to several inherited and acquired muscular disorders in elderly individuals. The levels of microRNAs (miRNAs) could be altered during muscle maintenance and repair. We therefore performed a comprehensive investigation for miRNAs from five different periods of bovine skeletal muscle development using next-generation small RNA sequencing. In total, 511 miRNAs, including one putatively novel miRNA, were identified. Thirty-six miRNAs were differentially expressed between prenatal and postnatal stages of muscle development including several myomiRs (miR-1, miR-206 and let-7 families). Compared with miRNA expression between different muscle tissues, 14 miRNAs were up-regulated and 22 miRNAs were down-regulated in the muscle of postnatal stage. In addition, a novel miRNA was predicted and submitted to the miRBase database as bta-mir-10020. A dual luciferase reporter assay was used to demonstrate that bta-mir-10020 directly targeted the 3'-UTR of the bovine ANGPT1 gene. The overexpression of bta-mir-10020 significantly decreased the DsRed fluorescence in the wild-type expression cassette compared to the mutant type. Using three computational approaches - miranda, pita and rnahybrid - these differentially expressed miRNAs were also predicted to target 3609 bovine genes. Disease and biological function analyses and the KEGG pathway analysis revealed that these targets were statistically enriched in functionality for muscle growth and disease. Our miRNA expression analysis findings from different states of muscle development and aging significantly expand the repertoire of bovine miRNAs now shown to be expressed in muscle and could contribute to further studies on growth and developmental disorders in this tissue type.

MeSH Terms

  • Aging
  • Animals
  • Cattle
  • Female
  • Gene Library
  • HEK293 Cells
  • Humans
  • Male
  • MicroRNAs
  • Muscle, Skeletal
  • Sequence Analysis, RNA

Keywords

  • ANGPT1
  • growth and development
  • miRNA target prediction